Buscar

Trabalho de Cálculo Numérico

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 11 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 11 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 11 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

UNIVERSIDADE DO ESTADO DO AMAZONAS
ESCOLA SUPERIOR DE TECNOLOGIA
GRADUAÇÃO EM ENGENHARIA NAVAL
FELIPE SERRA PIMENTEL
GABRIEL NOGUEIRA
MÉTODO DE SIMPSON PARA CÁLCULO DA ÁREA DO PLANO DE FLUTUAÇÃO DE UMA EMBARCAÇÃO
MANAUS
2014
FELIPE SERRA PIMENTEL
GABRIEL NOGUIERA
MÉTODO DE SIMPSON PARA CÁLCULO DA ÁREA DO PLANO DE FLUTUAÇÃO DE UMA EMBARCAÇÃO
Trabalho de pesquisa apresentado ao Curso de Engenharia Naval da Universidade do Estado do Amazonas, como requisito para obtenção de nota parcial da disciplina de Cálculo Numérico, ministrada pelo professor Ricardo Barbosa. 
MANAUS
2014
INTRODUÇÃO
A navegação não é apenas a execução da viagem, mas também todo o planejamento da mesma, levando-se em consideração diversos aspectos fundamentais para a viagem. Para esclarecer o planejamento, pode-se levar em conta a necessidade de transporte de um determinado número de contêineres a um destino. Para isso é necessário verificar as condições de navegação do mar ou do rio, levando em conta o calado da embarcação, disposição da carga, como será inserida esta carga no navio, consumíveis (água e diesel) necessários para os motores, geradores, tripulantes, passageiros, entre outros.
Uma das etapas desse planejamento é o processo de carregamento e descarregamento da embarcação, fundamental para se atingir um sucesso na navegação. Porém, essa etapa é muito particular de cada embarcação. Como para navios petroleiros é importante controlar as vazões de entrada e saída dos produtos, disposição dos diversos tanques, verificarem o rejeito de produtos entre tanque, efeito do balanço dos líquidos, cuidados para a estabilidade do mesmo ao se carregar um determinado tanque deixando outro vazio. Para navios conteneiros é fundamental a verificação da disposição dos boxes quanto à estabilidade do mesmo, para a carga e descarga, pois muitas vezes os navios têm mais que um destino para o descarregamento. Já para os navios graneleiros a programação de carga respeita outros princípios, também relacionados à segurança e eficiência.
Outro aspecto levado em conta é que, diferentemente do que acontece na navegação com distâncias longas, na navegação interior as condições são peculiares e típicas, dando esse mesmo aspecto às operações ali executadas. Os próprios projetos de embarcações partem de premissas distintas para dimensionamentos, tanto estruturais quanto quantidades de tanques de consumíveis, equipamentos, etc. as profundidades das lagoas, rios, lagos variam conforme as condições climáticas como chuvas, ventos, condições de dragagens da hidrovia, entre outros. Para a navegação interior as viagens são mais curtas e a extensão dos trajetos é variada, podendo ser mais preciso dos consumíveis necessários, assim não transportando óleo diesel, água, entre outros desnecessariamente.
APRESENTAÇÃO DO PROBLEMA
Bacia do Sudeste
A Bacia do Sul, também chamada de Bacia do Sudeste, é formada principalmente pelas Lagunas dos Patos e Mirim, o Canal de São Gonçalo e o Lago Guaíba e seus afluentes: Jacuí, Taquari, Caí, Sinos e Gravataí. A extensão total navegável é de 1.100 km com um calado mínimo de 2,50 m, com média de 6 m, assegurado por dragagem e um sistema de eclusa. O trecho entre Rio Grande e Porto Alegre permite a navegação de navios oceânicos com limite de calado de 17 pés, os quais podem acessar também o porto de Pelotas, situado no Canal de São Gonçalo e o Canal de Santa Clara, a montante do porto de Porto Alegre. A hidrovia com calado de 17 pés tem uma extensão de 315 km, neste trecho. O nível da água no rio Jacuí é garantido por 3 barragens eclusadas e no rio Taquari por uma barragem também eclusada. Além destas, existe uma barragem eclusada no Canal de São Gonçalo, para impedir a entrada de água salgada na Lagoa Mirim. Os efeitos de cheia e estiagem não chegam a afetar a navegação, a não ser em casos extraordinários onde a alta velocidade das águas afeta a segurança da navegação, ou anos excepcionalmente secos que reduzem a profundidade em alguns trechos de montante. A Bacia dispõe de 3 portos ligados à navegação marítima: Rio Grande, Pelotas e Porto Alegre.
Navio NM Frederico Madörin
O Navio NM Frederico Madörin movimenta granéis sólidos (trigo, soja, farelo, etc...), cavacos de madeira, fardos de celulose, além de fertilizantes. Para o carregamento são adotados métodos semelhantes para os diferentes tipos de produtos	, via de regra os carregamentos têm sido feitos em passada única. O planejamento da disposição da carga é feito de maneira muito aproximada e empírica levando-se em conta apenas a prática dos capitães e tripulantes do navio. Na maioria das viagens sabe-se que a carga que deve ser transportada já passou da etapa de pesagem e sabe-se o destino e os calados que devem ser obedecidos pela embarcação. É importante salientar que o calado que é levado em conta é calado da popa e da proa. O nivelamento é realizado carregando grande parte da carga a ser transportada esperando-se estabilizar o calado na embarcação inteira. Após isso, é realizado o refino da carga (carregamento em um ponto específico, buscando otimizar a estabilidade da embarcação) distribuindo a vante e a ré da embarcação, buscando uma estabilidade horizontal. Este repasse de carga é lento devido ao fato de não se conhecer os calados de proa e de popa ao término da primeira etapa do carregamento.
Descrição da Embarcação
O NM Frederico Madörin é um navio motor para navegação interior de porão único classificado por sociedade classificadora renomada (Bureau Veritas). A embarcação na Figura 1.
Figura 1. Navio Frederico Madörin (fonte: Hidrovias Interiores- RS, 2010)
Trata-se de uma embarcação típica para a Bacia do Sudeste cujas dimensões respeitam as restrições impostas pelas normas da Autoridade Marítima para a navegação ininterrupta (NPCP/RS, 2008) e, se necessário, sua utilização em trechos com necessidade de transposição de nível, ou seja, passagem nas eclusas com limites de 120 m de comprimento.
A seguir, na Tabela 1, algumas especificações desse navio.
Tabela 1. – Dados de projeto da embarcação.
	Comprimento Total
	134,7 m
	Comprimento Entre Perpendiculares
	120,00 m
	Boca Moldada
	24,00 m
	Ponto Moldado
	6,4 m
	Calado de Projeto
	4,50 m
	Calado Máximo Legal
	4,50 m
	Flecha de Vau
	230 mm
	Espaçamento de Cavernas
	600 mm
	Espaçamento de Cavernas Gigantes
	2400 mm
MÉTODO DE SIMPSON
Primeira Lei de Simpson
Esta lei e utilizada para equações do segundo grau que resultam em uma curva parabólica. A equação e dada por:
Onde a0, a1 e a2 são constantes. Sendo a curva da seguinte figura uma parábola de segundo gral e y1, y2 e y3 três ordenadas espaçadas por uma distancia h.
A área da região e dada pela integral da faixa infinitesimal de altura y e comprimento ‘dx’ indo de 0 ate um distancia 2h e de:
Área de figura = 
Sendo ;
Área de figura:
Sendo a área da figura dada por: 
Utilizando a equação da curva e substituindo x por 0, h e 2h, respectivamente:
Área de figura:
Igualando os coeficientes: 
A+B+C = 2h; B+2C = 2h; B+4C = (8/3)h
Resolvendo o sistema, temos:
A = (h /3); B = (4h /3); C= (h/3)
Área da figura:
Esta equação define a primeira lei de Simpson, também conhecida como lei do 1/3 de Simpson. Perceba que os coeficientes de multiplicação são 1,4 e 1, respectivamente, e o de divisão e 1/3.
Aplicação da Primeira Lei
A primeira lei de Simpson e utilizada quando temos um numero impar de ordenadas, como na figura a seguir:
Na figura, a distancia ‘h’ entre cada par de ‘meias ordenadas’ e conhecida por intervalo comum. Aplicando a lei a linha d’agua da embarcação, temos que:
Área 1 = h/3(a+4b+c)
Área 2 = h/3(c+4d+e)
Área 3 = h/3(e+4f+g) 
E a área total e o somatório das áreas 1,2 e3 multiplicado por 2:
ÁreaT = 2 x (Área1 + Área2 + Área3) = 2 x [h/3 (a+4b+c + c+4d+e + e+4f+g)]
ÁreaT= 2 x [h/3 (a + 4b + 2c + 4d + 2e + 4f + g)]
Para este segundo caso, com a área dividida em nove intervalos comuns teremos 4 subáreas que serão somadas e multiplicadas por dois resultando na área total.
Área 1 = h/3(a+4b+c)
Área 2 = h/3(c+4d+e)
Área 3 = h/3(e+4f+g) 
Área 4 = h/3(g+4h+i)
ÁreaT = 2 x (Área1 + Área2 + Área3) = 2 x [h/3 (a+4b+c + c+4d+e + e+4f+g + g+4h+i)]
ÁreaT = 2 x [h/3 (a + 4b + 2c + 4d + 2e + 4f + 2g + 4h+ i)]
Desta forma, percebemos uma constância nos coeficientes das ordenadas. Para o primeiro caso tivemos: 1 4 2 4 2 4 1. E Para o segundo tivemos 1 4 2 4 2 4 2 4 1. Assim, para calcularmos a área do plano de flutuação se torna mais conveniente colocar os valores dos coeficientes predefinidos em uma tabela. 
O problema em si
O calado médio da bacia do Sudeste é de 6 m, o que significa que podem haver áreas onde o calado pode ser menor. O calado máximo da embarcação em questão (NM Frederico Madörin) é de 4,5 m, com carga máxima. Em uma de suas viagens, ele irá passar por uma área aonde o calado chega a 5 m. É necessário que o calado da embarcação fique no mínimo em mais ou menos 3,5 m, para que não ocorra algum acidente. Sabendo disso, deve-se estimar a carga máxima que o navio deve transportar para que o calado não ultrapasse 3,5 m. 
Utilizando o método de Simpson apresentado, é possível calcular essa carga através da área do plano de flutuação, como será mostrado a seguir, pelo algoritmo. Mas antes, é necessário utilizar o comprimento de baliza do navio, que geralmente é dado pelo projetista.
	Y1
	1,2 m
	Y2
	4,6 m
	Y3
	8,4 m
	Y4
	11 m
	Y5
	12 m
	Y6
	11,7 m
	Y7
	10,3 m
	Y8
	7,5 m
	Y9
	3 m
include<stdio.h>
int main()
{
 float o1, o2, o3,o4,o5,o6,o7,o8,o9,h,area1,area2,area3,area4,areas,areaT,calado,t,massa;
 printf("Entre com o calado da embarcacao: ");
 scanf("%f", &calado);
 printf("\n");
 printf("Entre com o valor das ordenadas: \n");
 scanf("%f%f%f%f%f%f%f%f%f",&o1,&o2,&o3,&o4,&o5,&o6,&o7,&o8,&o9);
 printf("Entre com o espaco comum: ");
 scanf("%f",&h);
 area1=(h/3) * (o1 + 4*o2 +o3);
 area2=(h/3) * (o3 + 4*o4 +o5);
 area3=(h/3) * (o5 + 4*o6 +o7);
 area4=(h/3) * (o7 + 4*o8 +o9);
 areas=(area1+area2+area3+area4);
 areaT=(2*areas);
 printf("A area total eh: %f\n\n",areaT);
 t=(areaT*1.01)/100;
 printf("Tonelagem: %f\n\n",t);
 massa=(t*calado)*100;
 printf("Massa: %f\n", massa);
 return 0;
}
CONCLUSÃO
Observou-se que o método de Simpson foi bem empregado nessa situação, na criação de um algoritmo de cálculo para aperfeiçoar o carregamento da embarcação. A partir do método de Simpson, foi possível calcular a área do plano de flutuação da embarcação e, posteriormente, a massa do carregamento adequado para a navegação realizada por este navio. Dessa forma, vemos que este método não só tem aplicações práticas em diversas áreas da engenharia, mas também, na área especifica de Engenharia Naval, auxilia na segurança da embarcação e, consequentemente, nas despesas financeiras, pois evita acidentes e, assim, reparo na embarcação.
REFERÊNCIAS BIBLIOGRÁFICAS
BRASIL. Ministério da Marinha. Centro de Instrução Almirante Graça Aranha. Estabilidade. Elab. [por] José Roberto Steinberger; François Armand de Souza; Sidnei Esteves Pereira e Henrique de Freitas Guimarães. 1. ed. Rio de Janeiro: CIAGA, 1990. 218p. il.
BRASIL. Ministério da Marinha. Diretoria de Portos e Costas. Estabilidade. Rio de Janeiro: DPC, 1996. Módulo 1, Ensino à Distância.
GOMES, Carlos Rubens Caminha. Arquitetura Naval para Oficiais da Marinha Mercante. 3. ed. Rio de Janeiro: Sindicato dos Oficiais de Náutica da Marinha Mercante, 1981. 422 p.il.
BIRAN, A., Ship Hydrostatics and Stability, 1 ed., Butterworth-Heinemann, 2003.
Hidrovias Interiores – RS, 2010. Disponível em: http://hidroviasinteriores.blogspot.com. Acesso em 15 de maio de 2014.
ERDOS, I. T., Folheto de Trim e Estabilidade NM Frederico Madörin, 2010.

Continue navegando