Buscar

Unidade-1 Evolução dos sistemas computacionais

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 42 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 42 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 42 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Evolução dos sistemas computacionais
Atualmente, os computadores fazem parte da nossa vida de uma forma nunca vista anteriormente. Seja em casa, na escola, na faculdade, na empresa ou em qualquer outro lugar, eles estão sempre entre nós, ainda mais se considerarmos o avanço dos smartphones e tablets, que permitem uma convivência quase que total do ser humano com o ambiente computacional na atualidade. Mas, ao contrário do que parece, a computação não surgiu nos últimos anos ou décadas, mas há alguns milhares de anos. Dependendo da bibliografia, essa realidade surge entre 3,5 e 7 mil anos atrás com a criação do ábaco, a primeira calculadora da história.
Após o ábaco, a próxima ferramenta para auxiliar em cálculos matemáticos foi a régua de cálculos, desenvolvida em meados de 1638 por William Oughtred, baseando-se na tábua de logaritmos que havia sido inventada por John Napier, em 1614.
EXPLICANDO
O mecanismo de William era constituído de uma régua que possuía uma quantidade de valores pré-calculados, organizados de forma que os resultados fossem acessados automaticamente. Uma espécie de ponteiro indicava o resultado do valor desejado.
Após a régua de cálculo, tivemos outros inventos, tais como a máquina de Pascal, conhecida como a primeira calculadora mecânica da história, inventada nos idos de 1642. Tivemos também o advento da programação funcional por volta dos anos de 1801, depois a máquina de diferenças e o engenho analítico, no ano de 1822, e a teoria de Boole com a introdução de um sistema lógico utilizando os algarismos zero e um, que deu origem à lógica moderna, no ano de 1847. O primeiro computador foi concebido como uma máquina de engrenagens. Pelos anos de 1890 temos o surgimento da máquina de Hollerith com o conceito dos cartões perfurados, e, na primeira metade do século XX, temos os primeiros computadores mecânicos. Já a computação no conceito de fase moderna nasce em torno de 1945 com a primeira geração de computadores, em que seu principal propulsor está representado pelo ENIAC.
Desenvolvido pelos cientistas norte-americanos John Eckert e John Mauchly, foi criado no ano de 1946 e era 1.000 vezes mais rápido que qualquer um dos seus antecessores. Na década de 1960, uma empresa de hardware chamada IBM surgiu como líder em computação, apresentando um marco na computação: o IBM 7300, conhecido como Strech, que marcou a segunda geração de computadores, que vai de 1959 até aproximadamente 1964. Apesar de atualmente ser um “monstro”, para sua época era pequeno em relação aos seus concorrentes. Com o início do uso dos circuitos integrados, entre 1964 e 1970, surgiu a terceira geração de computadores, permitindo que vários componentes e circuitos fossem armazenados em uma mesma placa, aumentando a velocidade de processamento e também reduzindo o custo dos dispositivos. Mais uma vez a IBM veio inovar com o lançamento do IBM 360/91, lançado em 1967. Esse modelo foi o pioneiro em permitir a programação da CPU por microcódigos e não precisava ter suas operações projetadas em hardware. Além disso, ele permitia o uso de dispositivos modernos para a época, como disco de fita e impressoras simples.
Avançando para a década de 1970, começaram a surgir versões de computadores que podem ser consideradas como os primeiros computadores pessoais, pois acompanhavam um pequeno monitor gráfico que exibia o que estava acontecendo no “PC”. O Altair pode ser um desses pioneiros. Como o sucesso da máquina foi muito grande, em 1979 foi lançado o Apple II, que seguia a mesma ideia. Ainda na mesma linha, os computadores Lisa (1983) e Macintosh (1984) foram os primeiros a utilizar o mouse e possuírem a interface gráfica como conhecemos hoje em dia, com pastas, menus e área de trabalho.
Figura 2. O Macintosh foi o primeiro computador pessoal a popularizar a interface gráfica. Fonte: Shutterstock. Acesso em: 27/05/2019.
Nessa mesma época, visando a melhoria do seu sistema operacional, Bill Gates acabou criando uma parceria com Steve Jobs e, após algum tempo, programou toda a tecnologia gráfica do Macintosh para o seu novo sistema operacional, o Windows. Desta época para cá, a história já é mais conhecida, pois tivemos vários processadores lançados, acompanhados de várias versões de sistemas operacionais.
EXEMPLIFICANDO
Entre os modelos da Intel, podemos citar: 8086, 80186, 80286, 80386, 80486, Pentium 1, Pentium 2, Pentium 3, Pentium 4, Dual Core, Core 2 Duo, i3, i5 e i7. Também temos a AMD, que entrou no ramo de processadores em 1993, com o K5, lançando posteriormente K6, K7, Athlon, Duron, Sempron, entre outros.
Atualmente, qualquer smartphone tem a capacidade de processamento muito superior aos supercomputadores da segunda ou terceira gerações. Além disso, a variedade de equipamentos criada para os computadores é bastante variada, pois temos desktops, laptops, tablets, os já falados smartphones e, a cada dia, a evolução tecnológica permite mais dispositivos e possibilidades de inovação nessa área. Porém, com toda essa evolução dos computadores, também veio a necessidade de comunicação, da integração entre os diversos computadores, serviços mais avançados para os usuários, necessidade de guardar as informações em banco de dados, e assim por diante, por isso fizemos questão de mostrar a evolução histórica dos sistemas computacionais antes de entrarmos realmente na área das redes de computadores.
DEFINIÇÃO DAS REDES DE COMPUTADORES
Durante as primeiras décadas da utilização dos computadores, eles estavam restritos a áreas corporativas, governamentais, científicas e militares, criando, assim, sistemas computacionais altamente centralizados, o que implicava em existir uma máquina que concentrava todos os dados, ou seja, um dispositivo que fornecia todo o processamento e todas as informações necessárias. Esse dispositivo era tipicamente um computador de grande porte para época, conhecido como Mainframe, do qual qual o maior fabricante da época era a IBM, empresa já mencionada anteriormente.
Estas poderosas máquinas tinham um poder incrível de processamento (para a época) e uma estrutura onde concentrava as informações. Os terminais eram chamados de “Terminais Burros”, pois não tinham processamento interno. Apesar de sua capacidade de processamento, o modelo centralizado acabou perdendo forças com a evolução dos PCs (Personal Computers ou Computadores Pessoais), pois o custo elevado e características de manutenção acabaram tornando os PCs a solução mais adotada com o passar do tempo. Com o crescimento da variedade e oferta dos computadores pessoais, vem também a necessidade de integrá-los de alguma forma. Até certo ponto, essa necessidade de integrar ou interagir uns com os outros tinha que ser feita gravando os dados em discos (disquete ou fita) e levando até o outro computador.
Nesse momento, vários fabricantes iniciaram o desenvolvimento de redes proprietárias, como a Novell e o IPX, o que dificultava a vida das empresas, pois ficavam presas a um determinado padrão ou fabricante, o que gerou a necessidade de padronização e o nascimento de modelos de referência como o OSI (Open Systems Interconnection ou Interconexão de Sistemas Abertos). As redes se tornam populares e praticamente indispensáveis a partir dos anos 1990 com o surgimento da internet e a massificação do uso do protocolo TCP/IP, atual protocolo de rede utilizado na internet e nas redes internas das empresas (Intranet). Em termos físicos, as redes iniciam com os cabos coaxiais, depois evolui para o uso do UTP, com as redes Ethernet 10baseT. Os cabos coaxiais foram substituídos por pares metálicos após algum tempo devido ao custo, espaço ocupado (eles são mais espessos), os conectores mais caros e também devido ao fato de que quando o cabo tinha um problema, todos os computadores para trás perdiam conexão com a rede.
Atualmente, a maioria das redes utiliza uma velocidade de 100Mbps ou 1Gbps em suas LANs (Local Area Network ou Redes Locais) utilizando cabos metálicos UTP (Unshielded Twisted Pair ou Pares Trançados não Blindados) e são interligadas pormeio de equipamentos chamados switches (comutadores) ou eventualmente hubs (atualmente em desuso). Também não podemos esquecer a evolução das redes sem fio, chamadas de wireless ou Wi-Fi (Wireless Fidelity ou Fidelidade Sem Fio), que nasceram com velocidades de 11Mbps e, atualmente, tem versões em desenvolvimento que prometem velocidades acima de 400Mbps.
Em uma rede sem fio, temos um elemento chamado AP (Access Point ou Ponto de Acesso) que faz a distribuição do sinal de rede para as diversas placas de rede sem fio que estão nos dispositivos dos usuários. Outro meio muito utilizado em redes, principalmente para interligar os diversos dispositivos de redes, como os switches, é a fibra ótica. Apesar do seu custo elevado (tanto de instalação como manutenção), ela é muito utilizada para interligar os diversos switches ou servidores de alta capacidade dentro de uma rede de computadores. A grande vantagem da fibra óptica é sua imunidade às interferências eletromagnéticas e maior largura de banda que o par metálico.
O uso das redes de computadores em corporações tem o objetivo de gerar economia de tempo e maior controle dos processos, ou seja, tornar a organização mais eficiente. Outro ponto importante é a necessidade que as corporações possuem de manter informações em tempo real, tornando a rede não apenas um “artigo de luxo”, mas uma necessidade real para seus negócios poderem fluir da melhor maneira possível. A maioria das empresas já reconhece que, para ter sucesso nos negócios, é preciso compartilhar informação e manter uma boa comunicação não apenas internamente, mas também com todo o ambiente externo (clientes, parceiros, governo etc.). Uma empresa que utiliza redes acaba se tornando mais competitiva, uma vez que sua eficiência interna aumenta.
O uso das redes, em especial da internet, tem proporcionado novas oportunidades para as empresas e novos mercados são alcançados, permitindo que a empresa ultrapasse barreiras geográficas, atuando não apenas em sua região, mas de forma nacional, regional ou até global. O avanço das redes permitiu o desenvolvimento de diversas aplicações que atualmente fazem parte do nosso cotidiano, tais como:
· 1
1
Acessos a bases de dados via internet;
· 2
2
Acessos às contas bancárias via Internet Banking;
· 3
3
Realização de compras de diversos tipos de produtos e serviços por meio de sites de e-commerce (comércio eletrônico);
· 4
4
Ferramentas de comunicação online como as de chat (bate-papo);
· 5
5
Envio e recebimento de correio eletrônico (e-mail) com ferramentas como o Gmail e muitas outras opções e serviços são cada vez mais comuns.
Em um ambiente corporativo, a rede permite acesso a cadastros de clientes e fornecedores, banco de dados com os produtos disponíveis, diversos controles de processos como estoque, pedidos de compra, logística e muito mais. Esses sistemas têm diversos nomes padronizados pelas indústrias como ERP (Enterpser_educacional Resource Planning ou Planejamento de Recursos Empresariais), CRM (Customer Relationship Management ou Gestão de Relacionamento com o Cliente) e assim por diante. Estes sistemas que podem ser utilizados para administrar os processos de uma corporação de maneira única e muito mais eficiente.
Além disso, em um ambiente corporativo, existe ainda o grande desafio da convergência entre os dados e serviços de multimídia, como voz e imagem, pois, atualmente, essa é a realidade de uma rede em uma grande corporação e não mais uma tendência, ou seja, ambientes de rede complexos e com cada vez mais dispositivos, diferentes tipos de tráfego e necessidades para serem tratadas pelos elementos de rede.
REDES LOCAIS, METROPOLITANAS E GEOGRAFICAMENTE DISTRIBUÍDAS
O conceito de rede se refere à transmissão de dados digitais entre dois ou mais computadores. Este sistema de comunicação é composto por elementos ou dispositivos que têm funções bem específicas na rede, tais como os switches, que têm a função de dar acesso à rede para os computadores, ou os roteadores, que têm a função de encaminhar os pacotes IP para os destinos corretos, e assim por diante. A conexão física entre os dispositivos de computação em rede é estabelecida usando mídia cabo (com fio) ou mídia ar (sem fio). A rede de computadores mais conhecida é a internet.
por meio de protocolos. Na ciência da computação ou informática, um protocolo é uma convenção ou padrão que controla e possibilita uma conexão, comunicação, transferência de dados entre dois sistemas computacionais. De maneira simples, um protocolo pode ser definido como "as regras que governam" a sintaxe, semântica e sincronização da comunicação, ou seja, que controlam essa “conversa” entre os dispositivos. Os protocolos podem ser implementados pelo hardware, software ou por uma combinação dos dois.
É bem simples de visualizar a importância dos protocolos de comunicação em rede. Imagine você em uma reunião onde diversas pessoas estão sentadas ao redor da mesa querendo expor seus problemas e pontos de vista. Se não houver uma regra ou protocolo fica impossível haver a comunicação. Pois é simples de visualizar que se todos falarem ao mesmo tempo, ninguém irá se entender. A função dos protocolos de rede é bem semelhante, porém muito mais complexa e com uma variedade de padrões. Falando em termos simples, uma rede precisa dos seguintes protocolos:
· 1
1
Os que regulam o acesso aos meios físicos, como Ethernet com CSMA/CD, PPP, Frame-relay, etc.;
· 2
2
Os que regulam o envio pela rede e endereçamento lógico da rede, como o protocolo IP;
· 3
3
Os que regulam o envio das informações dentro dos computadores e as separem em diversas comunicações, como os protocolos TCP e UDP;
· 4
4
Os que fornecem os serviços de rede aos usuários, como os protocolos HTTP, FTP, Telnet, DHCP, DNS, etc.
REDES GEOGRAFICAMENTE DISTRIBUÍDAS
Uma maneira de categorizar os diferentes tipos de projetos de redes de computadores é pelo seu escopo ou escala. Por razões históricas, a indústria de redes refere-se a quase todo tipo de projeto como uma espécie de rede de área. A classificação quanto à abrangência geográfica é a mais comum e a que utilizamos em nosso dia a dia. Exemplos comuns de tipos de redes de área são:
· 1
1
LAN (Local Area Network ou Rede Local): são redes que fornecem recursos a um grupo de computadores muito próximos uns dos outros, como em um prédio de escritórios, escola ou casa. Geralmente, as LANs são criadas para permitir o compartilhamento de recursos e serviços, como arquivos, impressoras, jogos, aplicativos, e-mail ou acesso à internet. Ela é uma rede restrita a áreas físicas menores, um escritório local, escola ou casa. Aproximadamente todas as LANs atuais, com ou sem fio, são baseadas em Ethernet. Em uma rede local, as velocidades de transferência de dados são maiores do que as da WAN e da MAN, que podem se estender a 10 Mbps (Ethernet) e 1,0 Gbps (Gigabit Ethernet).
.
· 2
2
WLAN (Wireless Local Area Network ou Rede Local sem fio): são redes LAN que funcionam usando tecnologia sem fio, também conhecida como Wi-Fi. Esse tipo de rede está se tornando mais popular à medida que a tecnologia sem fio é desenvolvida e é usada mais em casa e por pequenas empresas. Isso significa que os dispositivos não precisam depender tanto de cabos e fios físicos e podem organizar seus espaços com mais eficiência. Uma WLAN opera um ou mais pontos de acesso sem fio aos quais os dispositivos dentro do alcance do sinal se conectam.
· 3
3
WAN (Wide Area Network ou Rede de Longa Distância): são redes consideradas de longa distância, geralmente implantadas por empresas de telecomunicações privadas. Elas têm como característica serem distribuídas geograficamente e interconectar várias redes locais (LANs). Em uma empresa, uma WAN pode consistir em conexões com a sede da empresa, filiais, site-site, serviços em nuvem e outras instalações. Normalmente, um roteador ou outro dispositivo multifuncional é usado para conectar uma LAN a uma WAN. As WANs corporativas permitem que os usuários compartilhem o acesso a aplicativos, serviços e outros recursoslocalizados centralmente. Isso elimina a necessidade de instalar o mesmo servidor de aplicativos, firewall ou outro recurso em vários locais, por exemplo.
· 4
4
MAN (Metropolitan Area Network ou Rede Metropolitana): são redes que conectam dois ou mais computadores, comunicando dispositivos ou redes em uma única rede que possui área geográfica maior do que a coberta por uma rede local (LAN), mas menor que a região coberta por uma rede de longa distância (WAN). Na maioria das vezes, as MANs são construídas para cidades ou vilarejos para fornecer uma alta conexão de dados e geralmente pertencentes a uma única grande organização.
.
· 5
5
SAN (Storage Area Network ou Rede de Armazenamento, Rede de Sistema, Rede de Servidores ou, às vezes, Rede Área Pequena): são redes de armazenamento que compartilham uma base de dados comuns em um determinado ambiente, normalmente um Data Center. As SANs são mais comuns nos armazenamentos de grande porte (storage). O Data Center é um ambiente projetado para abrigar servidores e outros componentes como sistemas de armazenamento de dados e ativos de rede (switches, roteadores). Utilizam tecnologias como o Fiber Channel (canal de fibra).
· 6
6
PAN (Personal Area Network ou Rede Pessoal ou Privativa): são redes para uso pessoal. As redes PAN geralmente são sem fio, instaladas sob demanda (ad-hoc) quando são necessárias para se comunicar entre dois ou mais dispositivos. As redes PAN podem ser usadas entre dispositivos pertencentes a duas partes diferentes ou entre dois dispositivos pertencentes a uma pessoa, como um PDA e um laptop ou telefone celular. Essas redes geralmente são caracterizadas como de curto alcance, geralmente limitadas a 10 metros ou menos de alcance. Um exemplo de uma tecnologia PAN é a rede sem fio bluetooth.
TOPOLOGIAS DE REDES DE COMPUTADORES
As redes de computadores permitem que os usuários utilizem sua estrutura de forma que possam compartilhar informações com um melhor desempenho. É com a topologia de redes que podemos descrever como estes computadores estão ligados em rede e interligados entre si, tanto do ponto de vista lógico como físico. Existem duas maneiras de definir a geometria da rede: a topologia física e a topologia lógica.
· 1
1
Topologia física: descreve o posicionamento dos nós da rede e as conexões físicas entre eles. Isso inclui o arranjo e a localização dos nós da rede e a maneira como eles estão conectados. Tipos de topologias físicas:
Barramento: cada estação de trabalho é conectada a um cabo principal chamado barramento. Portanto, na verdade, cada estação de trabalho é conectada diretamente a todas as outras estações de trabalho na rede;
· bullet
Estrela: existe um concentrador central (hub, switch, roteador, computador etc.) em que todas as estações de trabalho são conectadas. Cada estação de trabalho é independente, mas com diversos concentradores elas acabam todas indiretamente conectadas;
· bullet
Anel: as estações de trabalho são conectadas em uma configuração de circuito fechado. Pares adjacentes de estações de trabalho são conectados diretamente. Outros pares de estações de trabalho estão indiretamente conectados, os dados passando por um ou mais nós intermediários;
· bullet
Malha: emprega um dos dois esquemas, chamados de malha completa e malha parcial. Na topologia de malha completa, cada estação de trabalho é conectada diretamente a cada uma das outras. Na topologia de malha parcial, algumas estações de trabalho são conectadas a todas as outras e algumas são conectadas apenas àqueles outros nós com os quais trocam a maior parte dos dados;
· bullet
Árvore: usa duas ou mais redes em estrela conectadas juntas. Os computadores centrais das redes estelares estão conectados a um barramento principal. Assim, uma rede de árvores é uma rede de barramento de redes estelares.
· 2
2
Topologia lógica: a topologia lógica refere-se à natureza dos caminhos que os sinais seguem de nó para nó; uma rede lógica é governada por protocolos usados pelos dados que se movem sobre ela. Em muitos casos, a topologia lógica é igual à topologia física, mas nem sempre é esse o caso. Por exemplo, algumas redes são fisicamente dispostas em uma configuração em estrela, mas operam logicamente como redes de barramento ou anel.
· 3
3
Modelo TCP/IP: São dois dos padrões de rede que tornam a internet possível. O Protocolo IP (Internet Protocol ou Protocolo Internet) define como os computadores podem obter dados entre si por meio de um conjunto interconectado de redes. O Protocolo TCP (Transmission Control Protocol ou Protocolo de Controle de Transmissão) define como os aplicativos podem criar canais confiáveis de comunicação em uma rede IP. O IP basicamente define endereçamento e roteamento, enquanto o TCP define como ter uma conversa por meio de um enlace mediado por IP sem perder os dados.
 CURIOSIDADE
O TCP/IP surgiu da pesquisa de redes do Departamento de Defesa dos EUA.
· 4
4
Modelo OSI: O OSI (Open System Interconnection ou Interconexão de Sistemas Abertos) descreve como os diferentes componentes de software e hardware envolvidos em uma comunicação de rede devem dividir seu trabalho e interagir de outra forma. Foi criado pela ISO (International Organization for Standardization ou Organização Internacional de Normalização) para incentivar os fornecedores e desenvolvedores de redes a criar sistemas interoperáveis e intercambiáveis. É definido no padrão ISO/IEC 7498-1. O modelo OSI define uma rede como um conjunto de sete elementos funcionais ou camadas de serviço. Essas camadas variam de interconexão física de nós (por exemplo, via interface de rede ou interface de rádio bluetooth) na camada 1, também conhecida como camada física, até a camada 7, chamada de camada de aplicação. Idealmente, um componente em qualquer camada fornece serviços à camada acima dela, consome serviços da camada abaixo dela e nunca alcança diretamente nenhuma outra camada ou fornece funções que pertencem a elas.
TCP/IP X OSI
O modelo TCP/IP não é mapeado corretamente para o modelo OSI. Foi desenvolvido na década de 1970 para resolver um conjunto específico de problemas, enquanto o modelo OSI foi criado na década de 1980. O TCP/IP não se destina a funcionar como uma descrição geral para todas as comunicações de rede, de modo que não abrange todas as funções do modelo OSI, nem divide a funcionalidade tão fina ou amplamente.
ESTRUTURA DO MODELO OSI EM CAMADAS
O modelo OSI tem como objetivo criar uma estrutura para definições de padrões para interoperabilidade de sistemas e a conectividade de sistemas diferentes, ou seja, para que diferentes fabricantes possam montar protocolos que sejam interoperáveis. Esse modelo define um conjunto de sete camadas e os serviços atribuídos a cada uma, porém o modelo OSI é uma referência e não uma implementação.
Clique nos botões para saber mais
Camada 1 (física)
–
a camada física se destina a consolidar os requisitos de hardware de uma rede para permitir a transmissão bem-sucedida de dados. Os engenheiros de rede podem definir diferentes mecanismos de transmissão de bits para o nível da camada física, incluindo formas e tipos de conectores, cabos e frequências para cada meio físico. Ela às vezes desempenha um papel importante no compartilhamento efetivo dos recursos de comunicação disponíveis e ajuda a evitar a contenção entre vários usuários. Ela também lida com a taxa de transmissão para melhorar o fluxo de dados entre um remetente e um receptor. A camada física fornece os seguintes serviços:
// Modula o processo de conversão de um sinal de uma forma para outra, para que possa ser transmitido fisicamente por meio de um canal de comunicação;
// Entrega bit a bit;
// Codificação de linha, que permite que os dados sejam enviados por dispositivos de hardware otimizados para comunicações digitais que podem ter um tempo discreto no link de transmissão;
// Sincronização de bits para comunicações seriais síncronas;
Sinalização de partida e parada e controle de fluxo em comunicação serial assíncrona;
// Comutação de circuitose controle de hardware de multiplexação de sinais digitais multiplexados;
// Detecção de colisão, em que a camada física detecta a disponibilidade da operadora e evita os problemas de congestionamento causados por pacotes não entregues;
// Equalização de sinal para garantir conexões confiáveis e facilitar a multiplexação;
// Encaminhar correção de erro/codificação de canal, como código de correção de erro;
// Intercalação de bits para melhorar a correção de erros;
Autonegociação;
// Controle do modo de transmissão.
 
Exemplos de protocolos que usam camadas físicas incluem:
// xDSL (Digital Subscriber Line ou Linha Digital de Assinante);
// ISDN (Integrated Service Digital Network ou Rede Digital de Serviços Integrados);
// IrDA (Infrared Data Association ou Associação de Dados Infravermelhos);
// USB (Universal Serial Bus ou Barramento Serial Universal);
// Bluetooth;
// Ethernet.
Camada 2 (enlace)
–
Esconde características físicas do meio de transmissão para as camadas superiores, pois transforma os bits em quadros (frames). Sua principal função é fornecer um meio de transmissão confiável entre dois sistemas adjacentes. Para redes locais, a camada de enlace é dividida em dois subníveis: LLC (Logical Link Control ou Controle Lógico do Enlace) e MAC (Media Access Control ou Controle de Acesso a Mídia), sendo que a LLC faz interface com a camada de rede e o MAC com a camada física. Os representantes da camada de enlace são as interfaces de rede, switches e bridges. Nas redes atuais, recomenda-se o uso de switches (comutadores) no lugar dos HUBs (Hardware Unit Broadcast ou Unidade de Equipamento de Difusão) por questões de desempenho e segurança, pois estes, ao invés de enviar uma informação recebida para todas as portas, criam um caminho virtual ponto a ponto entre os computadores que estão se comunicando. As informações trocadas pelos protocolos da camada, tais como a Ethernet, Fast Ethernet, PPP (Point-to-Point Protocol ou Protocolo Ponto-a-Ponto) e demais são chamadas de quadros (frames). Funções mais comuns da camada 2:
// Delimitação e formato dos quadros de bits;
// Detecção de erros;
// Sequenciamento dos dados;
// Controle de fluxo de quadros;
// Endereçamento físico (endereço MAC);
// Controle de acesso aos meios físicos.
Camada 3 (rede)
–
Tem a função de fornecer um canal de comunicação independente do meio, pois ela transmite pacotes de dados por meio da rede utilizando um esquema de endereçamento lógico que pode ser roteado por diversas redes até chegar ao seu destino. As funções características da camada 3 são:
// Tradução de endereços lógicos em endereços físicos;
// Esquema de endereçamento lógico;
// Roteamento de pacotes;
// Não possuem garantia de entrega dos pacotes.
Camada 4 (transporte)
–
A camada de transporte funciona de forma transparente nas camadas acima para entregar e receber dados sem erros. O lado de envio divide as mensagens do aplicativo em segmentos e os transmite para a camada de rede. O lado de recebimento reagrupa segmentos em mensagens e os passa para a camada de aplicativo. A camada de transporte pode fornecer alguns ou todos os seguintes serviços:
 
// Comunicação orientada à conexão: os dispositivos nos pontos finais de uma comunicação de rede estabelecem um protocolo de “handshake” (“aperto de mão”) para garantir que a conexão seja robusta antes que os dados sejam trocados. A fraqueza desse método é que, para cada mensagem entregue, há um requisito para uma confirmação, adicionando uma carga de rede considerável em comparação com os pacotes corretores de erros de autocorreção. As solicitações repetidas causam lentidão significativa na velocidade da rede quando são enviados fluxos de bytes ou datagramas com defeito;
// Entrega de mesmo pedido: garante que os pacotes sejam sempre entregues em sequência estrita. Embora a camada de rede seja responsável, a camada de transporte pode corrigir quaisquer discrepâncias na sequência causadas por quedas de pacotes ou interrupção do dispositivo;
// Integridade dos dados: usando “checksums” (verificação de soma de bits), a integridade dos dados em todas as camadas de entrega pode ser assegurada. Essas somas de verificação garantem que os dados transmitidos são os mesmos que os dados recebidos por meio de tentativas repetidas feitas por outras camadas para que os dados ausentes sejam reenviados;
// Controle de fluxo: os dispositivos em cada extremidade de uma conexão de rede geralmente não têm como saber os recursos uns dos outros em termos de taxa de transferência de dados e, portanto, podem enviar dados mais rapidamente do que o dispositivo receptor pode armazená-los ou processá-los. Nesses casos, os excessos de buffer podem causar interrupções completas na comunicação. Por outro lado, se o dispositivo receptor não estiver recebendo dados com rapidez suficiente, isso causa um estouro de buffer, o que pode causar uma redução desnecessária no desempenho da rede;
// Controle de tráfego: as redes de comunicação digital estão sujeitas a restrições de largura de banda e velocidade de processamento, o que pode significar uma enorme quantidade de potencial para congestionamento de dados na rede. Esse congestionamento de rede pode afetar quase todas as partes de uma rede. A camada de transporte pode identificar os sintomas de nós sobrecarregados e taxas de fluxo reduzidas;
// Multiplexação: a transmissão de múltiplos fluxos de pacotes de aplicativos não relacionados a outras fontes (multiplexação) por meio de uma rede requer alguns mecanismos de controle muito dedicados, que são encontrados na camada de transporte. Essa multiplexação permite o uso de aplicativos simultâneos em uma rede, como quando diferentes navegadores da Internet são abertos no mesmo computador. No modelo OSI, a multiplexação é manipulada na camada de serviço;
// Orientação byte: algumas aplicações preferem receber fluxos de bytes em vez de pacotes; a camada de transporte permite a transmissão de fluxos de dados orientados por bytes, se necessário.
Camada 5 (sessão)
–
Essa camada gerencia uma sessão iniciando a abertura e o encerramento de sessões entre processos de aplicativos do usuário final. Também controla conexões únicas ou múltiplas para cada aplicativo de usuário final e se comunica diretamente com as camadas de apresentação e de transporte. Os serviços oferecidos pela camada de sessão são geralmente implementados em ambientes de aplicativos usando RPCs (Remote Procedure Call ou Chamada Remota de Procedimento). Sessões são mais comumente implementadas em navegadores da Web usando protocolos como o ZIP (Zone Information Protocol ou Protocolo de Informações de Zona), AppleTalk Protocol (Protocolo de Comunicação Apple) ou SCP (Session Control Protocol ou Protocolo de Controle de Sessão). Esses protocolos também gerenciam a restauração de sessão por meio de pontos de verificação e recuperação. Esta camada suporta operações full-duplex e half-duplex e cria procedimentos para verificação, adiamento, reinicialização e encerramento. A camada de sessão também é responsável por sincronizar informações de diferentes origens. Por exemplo, as sessões são implementadas em programas de televisão ao vivo nos quais os fluxos de áudio e vídeo emergentes de duas fontes diferentes são mesclados. Isso evita a sobreposição e o tempo de transmissão silencioso.
Camada 6 (apresentação)
–
A camada de apresentação traduz principalmente dados entre a camada de aplicação e o formato de rede. Os dados podem ser comunicados em diferentes formatos por meio de diferentes fontes. Assim, a camada de apresentação é responsável por integrar todos os formatos em um formato padrão para uma comunicação eficiente e eficaz. Ela segue esquemas de estrutura de programação de dados desenvolvidos para diferentes linguagens e fornece a sintaxe em tempo real para a comunicação entre dois objetos, como camadas, sistemas ou redes. O formato de dados deve ser aceitável pelas próximas camadas; caso contrário, a camada de apresentação pode não ser executadacorretamente. Dispositivos de rede ou componentes usados pela camada de apresentação incluem redirecionadores e gateways. A camada de apresentação é responsável pelo seguinte:
// Criptografia/descriptografia de dados;
// Conversão de caracteres/string;
// Compressão de dados;
// Manipulação gráfica.
Camada 7 (aplicação)
–
a camada de aplicação é a sétima do modelo OSI e a única que interage diretamente com o usuário final. Ela fornece acesso total do usuário final a uma variedade de serviços de rede compartilhados para um fluxo eficiente de dados do modelo OSI. Essa camada tem muitas responsabilidades, incluindo tratamento e recuperação de erros, fluxo de dados em uma rede e fluxo de rede total. Também é usada para desenvolver aplicativos baseados em rede. Mais de 15 protocolos são usados na camada de aplicação. A camada de aplicação fornece muitos serviços e seus protocolos, incluindo:
// SMTP (Simple Mail Transfer Protocol ou Protocolo de Transferência de Correio Simples);
// FTP (File Transfer Protocol ou Protocolo de Transferência de Arquivos);
// HTTP (Hypertext Transfer Protocol ou Protocolo de Transferência de Hipertexto);
// SNMP (Simple Network Management Protocol ou Protocolo Simples de Gerência de Rede);
// IMAP (Internet Message Access Protocol ou Protocolo de Acesso a Mensagem da Internet);
// LDAP (Lightweight Directory Access Protocol ou Protocolo Leve de Acesso a Diretório);
// Telnet (Terminal virtual).
CONTINUE
Princípios de transmissão da informação
Lesson 4 of 4
A comunicação de dados é o movimento da informação do computador de um ponto para outro por meio de sistemas de transmissão elétrica ou óptica. Tais sistemas são frequentemente chamados de redes de comunicação de dados. Isso está em contraste com o termo mais amplo de telecomunicações, que inclui a transmissão de voz e imagem (fotos e vídeos), bem como dados, e geralmente implica distâncias maiores.
Em geral, as redes de comunicação coletam dados de computadores e outros dispositivos e transmitem essas informações para um servidor central, que é um computador, microcomputador ou mainframe mais potente, ou executam o processo inverso ou ainda uma combinação dos dois.
As redes de comunicação de dados facilitam o uso mais eficiente de computadores e melhoram o controle diário de uma empresa, fornecendo um fluxo de informações mais rápido. Eles também fornecem serviços de transferência de mensagens para permitir que usuários de computador conversem entre si via e-mail, bate-papo e streaming de vídeo.
Um canal de comunicação é necessário para transportar o sinal de um ponto para outro. Tradicionalmente, o canal é fornecido por pares de fios de cobre, por meio de micro-ondas terrestres, micro-ondas por satélite, cabo de fibra óptica e sinais de rádio. Esses meios diferem em termos de largura de banda, que é a faixa de frequências que podem transmitir. Quanto maior a largura de banda de um meio, maior a quantidade de informação que ele pode carregar.
Guias de onda são tubos ocos projetados para confinar e guiar as ondas de rádio entre dois locais.rede: analógica e digital. 
Um sinal analógico é uma forma de onda elétrica que recebe valores que variam ao longo de um contínuo de amplitudes.
O conhecimento científico de eletricidade e magnetismo que é necessário para permitir as telecomunicações começou com as investigações de Michael Faraday, muitas vezes considerado o maior experimentalista de sua época. Faraday não era habilidoso em matemática, mas seu amigo James Clerk Maxwell era.
Foi Maxwell quem unificou as descobertas discrepantes sobre as propriedades da eletricidade, do magnetismo e suas inter-relações íntimas, consagrando-as nas quatro belas equações vetoriais conhecidas como as equações de Maxwell, do eletromagnetismo.
Além disso, Maxwell representou matematicamente o conceito intuitivo de Faraday dos campos elétricos e magnéticos. Todas as teorias físicas modernas são teorias de campo e desfrutam da vantagem atraente de banir os conceitos de “ação à distância” da ciência.
A partir da matemática das equações de Maxwell, ele conseguiu calcular explicitamente a velocidade da luz a partir da medição de duas constantes elétricas e demonstrar que os efeitos eletromagnéticos viajam pelo espaço à velocidade da luz. Em sua análise, Maxwell introduziu o famoso conceito da corrente de deslocamento mostrando que sem ele as outras equações seriam inconsistentes com a conservação da carga elétrica.
John Henry Poynting mostrou que, onde quer que campos elétricos e magnéticos estejam presentes, há um fluxo de energia naquele ponto. É essa energia que permite a transmissão de mensagens pelo espaço.
TECNOLOGIAS BÁSICAS DE COMUNICAÇÃO
A tecnologia de telecomunicação envolve a transferência de sinais de informação por meio de fios, fibra ou pelo ar por meio de sinais elétricos ou ópticos. Os sinais de comunicação são geralmente caracterizados por sua intensidade (tensão e corrente) e frequência (ciclos por segundo).
Para permitir que informações sejam transferidas usando sinais de comunicação, uma fonte de informação (dados, voz ou imagem) é representada pelo sinal em si (chamado de sinal de banda base) ou a informação muda ligeiramente a forma de onda do sinal de comunicação (chamado sinal de banda larga). A informação é imposta ao sinal de transporte (chamado de portadora), variando o nível do sinal ou mudanças de tempo (mudança de frequência).
TIPOS DE SINAL
Existem dois tipos básicos de sinais: analógico e digital. Muitos sistemas de comunicação recebem sinais analógicos (por exemplo, sinais de áudio), convertem para um formato digital, transportam os sinais digitais por meio de uma rede e reconvertem os sinais digitais de volta à sua forma analógica quando chegam ao seu destino.
Sinal analógico 
É uma onda contínua denotada por uma onda senoidal e pode variar em intensidade do sinal (amplitude) ou frequência (tempo). O valor de amplitude da onda senoidal pode ser visto como os pontos mais alto e mais baixo da onda, enquanto o valor da frequência (tempo) é medido no comprimento físico da onda senoidal da esquerda para a direita. Existem muitos exemplos de sinais analógicos a nossa volta. O som de uma voz humana é analógico, porque as ondas sonoras são contínuas, assim como nossa própria visão, porque vemos várias formas e cores de maneira contínua devido às ondas de luz. Mesmo um típico relógio de cozinha, com suas mãos se movendo continuamente, pode ser representado como um sinal analógico.
Sinal digital
Tem um número limitado de estados discretos, geralmente dois, em contraste com sinais analógicos, que variam continuamente e têm um número infinito de estados. Os sinais digitais transferem níveis discretos de sinal em intervalos de tempo predeterminados. Os sinais digitais normalmente possuem dois níveis: on (logic 1) e off (logic 0). A informação contida em um único período de tempo é chamada um pulso. O número de bits transferidos em um segundo é chamado de taxa de transferência de dados ou bits por segundo (bps). Como muitos bits são tipicamente transferidos em um segundo, a taxa de dados é normalmente precedida por um multiplicador k(mil) ou M (milhões). Por exemplo, se a taxa de transferência de dados for de 3 milhões de bits por segundo, 3 Mbps indicariam isso. Normalmente, os bits são 
combinados em grupos de 8 bits para formar um byte. Quando a referência é feita para bytes em vez de bits, o b é capitalizado.
A forma mais antiga de comunicação por rádio digital era o código Morse. Para enviar o código Morse, o transmissor de rádio era simplesmente ligado e desligado para formar pontos e traços. O receptor detectaria a portadora de rádio para reproduzir os pontos e traços. Um livro de códigos de pontos e traços foi usado para decodificar a mensagem em símbolos ou letras. Os pulsos ou bits ligados e desligados que compõem um sinal digital moderno são enviados de maneira semelhante.
A tendência nos sistemas de comunicação, assim como em outros tipos de produtos eletrônicos, como discos compactos,é mudar de sistemas analógicos para sistemas digitais. Os sistemas digitais têm uma série de vantagens importantes, incluindo o fato de que os sinais digitais são mais imunes ao ruído. Ao contrário dos sistemas analógicos, mesmo quando o ruído foi introduzido, quaisquer erros resultantes no fluxo de bits digital podem ser detectados e corrigidos. Além disso, os sinais digitais podem ser facilmente manipulados ou processados de maneiras úteis, usando técnicas modernas de computação.
MODOS DE TRANSMISSÃO
// Simplex
Envia apenas informações em uma direção. Por exemplo, uma estação de rádio geralmente envia sinais para o público, mas nunca recebe sinais deles, portanto, uma estação de rádio é um canal simplex. Também é comum usar o canal simplex na comunicação por fibra ótica.
Um fio é usado para transmitir sinais e o outro é para receber sinais. Mas isso pode não ser óbvio porque o par de fios de fibra é frequentemente combinado a um cabo. A boa parte do modo simplex é que toda a sua largura de banda pode ser usada durante a transmissão.
// Half-duplex
Os dados podem ser transmitidos em ambas as direções em um portador de sinal, não ao mesmo tempo. Em certo ponto, é na verdade um canal simplex cuja direção de transmissão pode ser trocada. Walkie-talkie é um dispositivo half-duplex típico. Ele tem um botão "push-to-talk" (apertar para falar) que pode ser usado para ligar o transmissor, mas desliga o receptor. Portanto, uma vez que você apertar o botão, você não poderá ouvir a pessoa com quem está falando, mas seu parceiro poderá ouvi-lo. Uma vantagem do half-duplex é que o single track é mais barato que o double track.
// Full-duplex
É capaz de transmitir dados em ambas as direções em uma portadora de sinal ao mesmo tempo. Ele é construído como um par de links simplex que permite a transmissão simultânea bidirecional. Por exemplo, as pessoas nas duas extremidades de uma chamada podem falar e ser ouvidas umas pelas outras ao mesmo tempo, porque há dois caminhos de comunicação entre elas. Assim, usar o modo full duplex pode aumentar muito a eficiência da comunicação.
TAXA DE TRANSMISSÃO
A taxa de transmissão é a velocidade na qual os dados são transmitidos por um canal. Foi nomeado posteriormente de Código Baudot em homenagem ao cientista francês Jean Maurice Émile Baudot, que inventou um dos primeiros códigos de transmissão de dados. Em baixas velocidades, um baud é equivalente a um bit por segundo, portanto, um canal de 1200 bauds transmitirá dados a uma taxa de 1200 bps.
Quando a taxa de transmissão de uma linha é definida para DCE, o termo baud é frequentemente usado. Se usado corretamente, baud indica o número de mudanças de sinal de linha por segundo, portanto, se cada sinal transmitido for um ou zero, então a taxa de transmissão e a taxa de transmissão real são os mesmos. No entanto, há muitos casos em que o sinal de linha pode assumir mais de dois estados e, como tal, cada sinal pode ser usado por mais de um bit.
// Baud Rate (Taxa Baud)
É a medida das unidades de sinal necessárias para transmitir os dados. O ideal é criar um sistema eficiente usando o menor número de sinais possível. Quanto menos sinais houver, menor será a largura de banda necessária para mover os dados. A taxa de transmissão determina a quantidade de largura de banda necessária nos enlaces de comunicação. A taxa de transmissão de dados ou bit (DTR) é medida em bits por segundo (bps). A taxa de transmissão de dados indica quanto tempo levará para transmitir os dados; em termos do usuário e do computador, essa é a informação mais importante, porque o DTR é usado para comparar velocidades e desempenho. Baud sempre será menor ou igual ao DTR.
CODECS E MODEMS
O fato é que hoje não temos redes totalmente digitais ou totalmente analógicas: temos uma mistura dos dois. Portanto, em vários pontos de uma rede, é necessário converter entre os dois tipos de sinal. Os dispositivos que lidam com essas conversões são codecs e modems.
Um codec (que é uma contração do codificador-descodificador) converte sinais analógicos em sinais digitais. Existem diferentes codecs para diferentes finalidades. Para a PSTN (Public Switched Telephone Network ou Rede Pública de Telefonia Comutada), por exemplo, existem codecs que minimizam o número de bits por segundo necessário para transportar voz digitalmente por meio da PSTN. Nas redes celulares, por causa das restrições e do espectro disponível, um codec precisa comprimir ainda mais a voz para obter o uso mais eficiente do espectro. Os codecs aplicados à comunicação de vídeo também exigem técnicas de compressão muito específicas para poder mover os sinais de alta largura de banda sobre o que pode ser um pouco limitado nos canais atuais.
Um modem é um dispositivo de rede que modula e desmodula sinais analógicos da portadora (chamados ondas senoidais) para codificar e descodificar informações digitais para processamento. Os modems realizam essas duas tarefas simultaneamente e, por esse motivo, o termo modem é uma combinação de "modular" e "desmodular". Existem também modems projetados para funcionar especificamente com recursos digitais (por exemplo, modems ISDN, modems ADSL). Um modem manipula as variáveis da onda eletromagnética para diferenciar entre uns e zeros. Embora seja possível converter entre redes analógicas e digitais, em geral, as conversões são um elo fraco em uma rede. Uma conversão é um ponto no qual problemas de rede podem ocorrer, uma oportunidade para erros e distorções serem introduzidas. Portanto, idealmente, queremos avançar em direção a um ambiente óptico de ponta a ponta e digital de ponta a ponta. Isso significa que em nenhum lugar entre o transmissor e o receptor é necessário fazer conversões de sinais.
MEIOS FÍSICOS DE TRANSMISSÃO
Os meios, ou mídias, pelos quais os dados são transportados de um lugar para outro são chamados de meios de transmissão ou de comunicação. A mídia é a ligação física por meio da qual os sinais são confinados da origem até o destino. Ela é formada por um condutor interno (geralmente cobre), revestido por um material externo (capa). A mídia é ótima para redes porque oferece alta velocidade, boa segurança e boas taxas de transmissão. No entanto, alguns tipos não podem ser usados em comunicações de grandes distâncias, por limitação construtiva própria. Três tipos comuns de mídia são usados na transmissão de dados:
Cabo coaxial: é uma mídia de comunicação muito comum e amplamente utilizada. Por exemplo, o sinal de televisão a cabo é geralmente coaxial. Ele recebe esse nome porque contém dois condutores paralelos entre si. O condutor central é geralmente de cobre, podendo ser um fio sólido ou um cabo trançado marcial. Fora deste condutor central há um material não condutor, normalmente de plástico branco, chamado de dielétrico, usado para separar o condutor interno do condutor externo. O outro condutor é uma malha fina feita de cobre. Ele é usado para ajudar a proteger o cabo da EMI (Electromagnetic Interference ou Interferência Eletromagnética). Fora da malha de cobre é a capa protetora final. Os dados reais viajam pelo condutor central. A interferência EMI é capturada pela malha externa de cobre, que é devidamente aterrada. Existem diferentes tipos de cabos coaxiais que variam de acordo com a bitola e a impedância, conforme vemos na Tabela 1:
Cabo par trançado: o cabeamento de rede mais popular é o par trançado. Isto se deve por ele ser leve, fácil de instalar, apresentar baixo custo e suportar muitos tipos diferentes de rede. Também suporta velocidades de até 40 Gbps. O cabeamento de par trançado é feito de pares de cobre de fio sólido (rígido) ou de cabo trançado (flexível), um ao lado do outro. As tranças são feitas para reduzir vulnerabilidade à EMI e a paradiafonia (CrossTalk ou “Linha Cruzada”). O número de pares no cabo depende da aplicação. O núcleo de cobre é geralmente 22 AWG a 26 AWG, conforme medido no padrão americano de bitola de fio. Os tipos de cabos de pares trançados são:
· bullet
U/UTP: par trançado não blindado;
· bullet
F/UTP: partrançado blindado global com fita e sem blindagem individual;
· bullet
S/FTP: par trançado blindado global com malha e blindagem individual com fita;
· bullet
F/FTP: par trançado blindado global e individual com fita.
E sua classificação, em categorias, largura de banda e aplicação, conforme Tabela 2:
Fibra óptica: o cabo de fibra óptica não usa sinais elétricos para transmitir dados, mas, sim, sinais luminosos. Nele, a luz se move apenas em uma direção. Para comunicação bidirecional, uma segunda conexão deve ser feita entre os dois dispositivos. Temos duas partes no cabo: a casca (cladding) e o núcleo (core). Um feixe de laser gerado por um dispositivo é enviado no formato de pulso de luz por meio deste cabo para outro dispositivo. Esses pulsos são traduzidos em 1 e 0 no outro extremo. No centro do cabo de fibra há o núcleo de vidro envelopado em uma casca de vidro de densidade diferente. A luz do laser se move por este vidro para o outro dispositivo, refletindo nesta casca (cladding). Nenhuma luz escapa do núcleo de vidro devido a este revestimento reflexivo. O cabo de fibra ótica possui largura de banda maior que 2Gbps.
TRANSMISSÃO SEM FIO
A comunicação sem fio desempenha um papel significativo no dia a dia. Além da comunicação, a tecnologia se tornou parte integrante de nossas atividades diárias. Ela é referida como comunicação sem fio, isto é, fornece uma troca de dados sem qualquer condutor por meio de sinais de ondas eletromagnéticas. A informação é transmitida por meio dos dispositivos ao longo de alguns metros ou a centenas de quilômetros por meio de canais bem definidos; diferentes tipos de sinais são usados na comunicação entre os dispositivos para transmissão de dados sem fio. A seguir, são listados os diferentes sinais eletromagnéticos usados, dependendo do seu comprimento de onda e frequência:
Clique nos botões para saber mais
Transmissão de radiofrequência
–
É uma forma de transmissão de ondas eletromagnéticas usadas na comunicação sem fio. Sinais RF são facilmente gerados, variando de 3kHz a 300GHz. Estes são utilizados em comunicação por causa de sua propriedade de passar através de objetos e percorrer longas distâncias. A comunicação de rádio depende do comprimento de onda, potência do transmissor, qualidade do receptor, tipo, tamanho e altura da antena.
Transmissão infravermelha
–
São radiações de ondas eletromagnéticas com comprimentos de onda maiores que a luz visível. Estas são geralmente usadas para comunicações de curto alcance. Esses sinais não passam por objetos sólidos.
Transmissão de micro-ondas
–
É a forma de transmissão de ondas eletromagnéticas usada em sistemas de comunicação sem fio. O comprimento da micro-onda varia de um metro a um milímetro. A frequência varia de 300MHz a 300GHz. É amplamente utilizada para comunicações de longa distância e relativamente menos cara. As micro-ondas não passam através de edifícios e sofrem interferência devido ao mau tempo, que afeta a transmissão do sinal.
TIPOS DE TECNOLOGIAS DE COMUNICAÇÃO SEM FIO
A tecnologia de comunicação sem fio é categorizada em diferentes tipos, dependendo da distância da comunicação, do intervalo de dados e do tipo de dispositivos usados. A seguir estão alguns dos diferentes tipos de tecnologias de comunicação sem fio:
Clique nos botões para saber mais
Rádio
–
A comunicação por rádio foi uma das primeiras tecnologias sem fio desenvolvidas e ainda em uso. Os rádios multicanais portáteis permitem que o usuário se comunique a curtas distâncias em terra com outros usuários por meio de uma banda cidadã (pública). Da mesma forma, os rádios marítimos e aeronáuticos se comunicam a longas distâncias no mar e no ar com embarcações e aeronaves usando uma banda restrita (militar). A transmissão acontece com o envio de dados da antena do transmissor na forma de sinais de rádio para a antena do receptor. Outra forma de comunicação bastante difundida é a transmissão de estações de programação comuns de rádio. A transmissão acontece em simultâneo por diversas emissoras em frequências distintas, de forma que o receptor é passivo e apenas recebe a informação, sem retransmiti-la. Ela pode ocorrer por modulação de amplitude das ondas, AM (Amplitude Modulation) ou por modulação de frequência das ondas, FM (Frequency Modulation), em longas distâncias.
Celular
–
Uma rede celular usa enlaces de rádio criptografados, modulados para permitir que muitos usuários se comuniquem por meio da única banda de frequência. Como os aparelhos individuais não possuem um poder de transmissão significativo, o sistema depende de uma rede de torres de celular capazes de triangular a fonte de qualquer sinal e transferir as funções de recepção para a antena mais adequada. A transmissão de dados por meio de redes celulares é possível com sistemas 4G modernos capazes de atingir velocidades de DSL com fio. As empresas de telefonia celular cobram de seus clientes por minuto de voz ou kilobytes de dados.
Satélite
–
A comunicação por satélite é uma tecnologia sem fio que possui importância significativa em todo o mundo. Eles encontraram uso generalizado em situações especializadas. Os dispositivos que usam tecnologia de satélite para se comunicar diretamente com o satélite em órbita por meio de sinais de rádio. Isso permite que os usuários permaneçam conectados virtualmente de qualquer lugar da Terra. Os telefones e modems por satélite portáteis têm um recurso de transmissão e hardware de recepção mais poderosos do que os dispositivos celulares devido ao aumento do alcance. A comunicação por satélite consiste em um segmento espacial e um segmento terrestre. Quando o sinal é enviado para o satélite por um dispositivo, o satélite amplifica o sinal e o envia de volta para a antena do receptor, que está localizada na superfície da Terra. O segmento terrestre consiste de um transmissor, receptor e o segmento espacial, do próprio satélite.
Wi-Fi
–
É uma tecnologia de comunicação sem fio de baixo custo. Uma configuração Wi-Fi consiste em um roteador sem fio que serve como um hub de comunicação, ligando o dispositivo portátil a uma conexão com a internet. Essa rede facilita a conexão de vários dispositivos, dependendo da configuração do roteador, e têm alcance limitado devido à baixa transmissão de energia, permitindo que o usuário se conecte apenas nas proximidades.

Continue navegando