Prévia do material em texto
Trabalho 2 etapa 1) Um bloco de massa m = 2,50 kg é empurrado por uma distância d = 2,20 m ao longo de uma mesa horizontal sem atrito por uma força aplicada constante de módulo F = 16,0 N direcionada a um ângulo θ = 25,0° abaixo da horizontal, como mostrado na Figura. Determine o trabalho realizado no bloco pela (a) força aplicada, (b) força normal exercida pela mesa, (c) a força gravitacional e (d) força resultante sobre o bloco. (Resposta: 31,9 J) 2) Uma partícula está sujeita a uma força Fx que varia com a posição, como mostrado na Figura. Encontre o trabalho realizado pela força sobre a partícula enquanto ela se move (a) de x = 0 a x = 5,00 m, (b) de x = 5,00 m a x = 10,0 m e (c) de x = 10,0 m a x = 15,0 m. (d) Qual é o trabalho total realizado pela força na distância de x = 0 a x = 15,0 m? (Resposta: 7, 50 J; 15,0 J; 7, 50 J; 30,0 J) 3) A força que age sobre uma partícula varia como mostrado na Figura. Encontre o trabalho realizado pela força sobre a partícula enquanto ela se move (a) de x = 0 a x = 8,00 m, (b) de x = 8,00 m a x = 10,0 m e (c) de x = 0 a x = 10,0 m. (Resposta: 4) Quando um corpo de 4,00 kg é pendurado verticalmente em certa mola leve que obedece à lei de Hooke, a mola é esticada 2,50 cm. Se o corpo de 4,00 kg for removido, (a) a que distância a mola é distendida se um corpo de 1,50 kg for pendurado nela? (b) Quanto trabalho um agente externo deve realizar para distender a mesma mola 4,00 cm de sua posição relaxada? (Resposta: 0.938 cm; 1.25 J) 5) Um vagão de carga de 6 000 kg corre ao longo dos trilhos com atrito desprezível. O vagão é trazido ao repouso por uma combinação de duas molas como ilustrado na Figura. Ambas as molas são descritas pela lei de Hooke e têm constantes elásticas k1 = 1 600 N/m e k2 = 3 400 N/m. Depois que a primeira mola comprime uma distância de 30,0 cm, a segunda mola age com a primeira para aumentar a força quando ocorre compressão adicional, como mostrado no gráfico. O vagão entra em repouso 50,0 cm depois de conectar primeiro o sistema de duas molas. Encontre a velocidade inicial do vagão. (Resposta: 0.299 m/s) 6) Uma partícula de 0,600 kg tem uma velocidade escalar de 2,00 m/s no ponto A e energia cinética de 7,50 J no ponto B. Qual é (a) sua energia cinética em A, (b) a velocidade escalar em B? e (c) o trabalho resultante realizado sobre a partícula por forças externas enquanto ela se move de A até B? (Resposta: 1,20 J; 5,00 m/s; 6,30 J) 7) Uma partícula de 4,00 kg está sujeita a uma força resultante que varia com a posição, como mostrado na Figura. A partícula parte do repouso em x = 0. Qual é a velocidade escalar dela em (a) x = 5,00 m, (b) x = 10,0 m, e (c) x = 15,0 m? (Resposta: 1,94 m/s; 3,35 m/s; 3,87 m/s) 8) Um bloco de massa m = 5,00 kg é solto do ponto A e desliza na pista sem atrito mostrada na Figura. Determine (a) a velocidade do bloco nos pontos B e C e (b) o trabalho resultante realizado pela força gravitacional sobre o bloco conforme ele se move do ponto A para o ponto C. 9) Uma partícula de massa de 0,500 Kg é arremessada de P como mostrado na figura. A partícula tem velocidade inicial vi com uma componente horizontal de 30,0 m/s. A partícula sobe até uma altura máxima de 20,0m acima de P. Utilizando a lei de conservação da energia, determine: (a) a componente vertical de vi (b) o trabalho feito pela força gravitacional sobre a partícula durante seu movimento de P até B e (c) as componentes horizontal e vertical quando a partícula alcança B. (Resposta: 19, 8 m/s; 294 J; 10) Dois corpos são conectados por um barbante leve que passa sobre uma roldana leve e sem atrito, como mostrado na Figura. O corpo de massa m1 = 5,00 kg é solto do repouso a uma altura h = 4,00 m acima da mesa. Usando o modelo de sistema isolado, (a) determine a velocidade do corpo de massa m2 = 3,00 kg assim que o corpo de 5,00 kg atinge a mesa e (b) encontre a altura máxima acima da mesa que o corpo de 3,00 kg alcança. (Resposta: 4,43 m/s; 5,00 m). 11) Um bloco de massa 0,250 Kg é colocado na parte superior de uma mola vertical leve com constante elástica de 5000 N/m e empurrado para baixo, de tal forma que a mola seja comprimida 0,100 m. Após o bloco ser solto do repouso, ele sobre e então deixa a mola. Qual é a altura máxima que ele sobre acima do ponto de partida? (Resposta: 10, 2 m) 12) Sob a ação de uma única força constante de intensidade de 50 N, paralela ao deslocamento horizontal, um ponto material de 5,0 Kg parte do repouso e percorre 12,8 m. Determine: (a) a aceleração do ponto material; (b) a velocidade atingida após percorrer 12,8 m (c) o trabalho realizado pela força. 13) Um indivíduo empurra uma caixa de peso 200 N ao longo de uma rampa de 25 m, para cima, com força de intensidade F = 150 N. Entre a caixa e o piso há uma força de atrito de intensidade de 30 N. Determine o trabalho realizado por todas a forças separadamente, e pela força resultante no trajeto AB, de 25 m. 14) Um homem empurra um carrinho ao longo de uma estrada plana, comunicando a ele uma força constante, paralela, ao deslocamento, e de intensidade 3,0x102 N. Determine o trabalho realizado pela força aplicada pelo homem sobre o carrinho, considerando deslocamento de 15 metros. 15) Uma partícula de massa 50g realiza um movimento circular uniforme quando presa a um fio ideal de comprimento 30 cm. O trabalho total realizado pela tração no fio, sobre a partícula, durante o percurso de uma volta e meia é: 16) O Centro de uma caixa de massa M desloca-se de uma distância d com aceleração a constante sobre a superfície horizontal de uma mesa sob a ação das forças F, fc, N e P. Considere fc a força de atrito cinético. De acordo com a figura, pode-se afirmar que realizam trabalho, apenas, as forças: a) F e fc b) F e N c) Fc e N d) Fc e P 17) Um homem puxa a corda com uma força constante, horizontal e de intensidade 1,0 x 10² N, fazendo com que o bloco sofra, com velocidade constante, um deslocamento de 10 m ao longo do plano horizontal. Desprezando a influência do ar e considerando o fio e a polia ideais, determine o trabalho realizado pela força que o homem exerce na corda; 18) O bloco da figura acha-se inicialmente em repouso, livre da ação de forças externas. Em dado instante, aplica-se sobre ele o sistema de forças indicado, constituído por F1 ,F 2 ,F 3 e F 4 , de modo que F1 e F3 sejam perpendiculares a F 4. para um deslocamento de 5,0 m, calcule os trabalhos realizados 19) Na figura estão representadas em escala duas forças F1 e F2 aplicadas em um anel que pode se movimentar ao longo de um trilho. Admitindo que a intensidade de F1 seja de 10 N e que o anel sofra um deslocamento de 2,0 m da esquerda para a direita, Calcule a) A intensidade de F2 b) Os trabalhos realizados de F1 e F2 no deslocamento referido horizontal T. 20) Na figura a massa do bloco é 8,5 Kg e o ângulo θ é 30º. Determine: (a) a tensão na corda (b) a força normal que age sobre o bloco. (c) Determine o módulo da aceleração do bloco se a corda for cortada. 21) Em 4 de abril de 1974 John Massis, da Belgica, conseguiu puxar dois vagões de passageiros mordendo um freio preso por uma corda aos vagões e se inclinando para trás com as pemas apoiadas nos dormentes da ferrovia. Os vagões pesavam 700 kN (cerca de 80 toneladas). Suponha que ele tenha puxado com uma força constante de modulo 2,5 vezes maior que o seu peso e angulo θ de 30º com a horizontal. Sua massa era de 80 kg, e ele fez os vagões se deslocarem de 1 m. Desprezando as forças de atrito, determine a velocidade dos vagões quando Massis parou de puxar. 22) Qual é o módulo da força necessária para acelerar um trenó foguete de 500 Kg até 1600 Km/h em 1,8 s partindo do repouso? 23) Um “ iate solar” é uma nave espacial com uma grande vela que é empurrada pela luz do Sol. Embora esse empurrão seja fraco em circunstâncias normais, pode ser suficiente para afastar a nave do sol em uma viagem. Suponha que a espaçonave tenha uma massa de 900 Kg e receba um empurrão de 20 N. (a) Qual é o módulo da aceleração resultante? (b) que distância percorreem um dia . (c) qual é a velocidade no final do dia? 24) Um trabalhador arrasta um caixote pelo chão de uma fábrica, puxando-o por uma corda. Ele exerce sobre a corda, que faz um ângulo de 38° com a horizontal, uma força de 450 N, e o chão exerce uma força horizontal de 125 N que se opõe ao movimento. Calcule a aceleração do caixote se sua massa for 310 kg. 25) Um corpo A, de 10 kg, é colocado num plano horizontal sem atrito. Uma corda ideal de peso desprezível liga o corpo A a um corpo B, de 40 kg, passando por uma polia de massa desprezível e também sem atrito. O corpo B, inicialmente em repouso, está a uma altura de 0,36m, como mostra a figura., determine: a) O módulo da tração na corda. b) O mínimo intervalo de tempo necessário para que o corpo B chegue ao solo. 26) No arranjo experimental da figura, os corpos A e B têm massas iguais a 10 e 20 Kg respectivamente. O plano inclinado é perfeitamente liso. O fio é inextensível e passa sem atrito pela polia de massa desprezível. O plano faz um ângulo de 30º com a superfície determine: (a) aceleração do sistema de corpos. (b) tração no fio. 27) Dada a figura abaixo e sabendo que F = 30 N e Ma = 2 Kg e Mb = 3 Kg e θ = 30º, determine: (a) A aceleração do sistema (b) A força que o bloco A exerce sobre o bloco B