Buscar

53305217-Problemas-Resolvidos-Termodinamica-Prof-Aquino

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 13 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 13 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 13 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

PROBLEMAS SOBRE ENERGIA E A PRIMEIRA LEI DA TERMODINAMICA
01 - Sujeitando-se um mol de um gás ideal, Cv = 12.47 J/K mol, a várias mudanças de estado, 
qual será a variação de temperatura em cada caso?
a) Perda de 512 J de calor; destruição de 134 J de trabalho.
b) Absorção de 500 J de calor; produção de 500 J de trabalho.
c) Sem escoamento de calor; destruição de 126 J de trabalho.
Resolução
a) ∆E=Q-W=-512-(-134)=-512+134=-378J
∆E=Cv∆T=-378=12,47∆T donde ∆T=-37812,47=-30,312K
b) ∆E=Q-W=500-500=0
c) ∆E=Q-W=0—126=126J
∆E=Cv∆T=126=12,47∆T donde ∆T=12612,47=10,10K
02- Numa dada mudança de estado são destruídos 44 J de trabalho e a energia interna 
aumenta de 170 J.Qual é a capacidade calorífica do sistema, se a temperatura deste aumentou 
de 10 K.
Resolução
∆E=Q-W=170=Q-(-44)
170=Q+44 donde Q=170-44=126J 
Cv=Q/∆T donde Cv = 126 / 10 = 12,6 J/ K
03- Três moles de um gás ideal expandem-se, isotermicamente, contra uma pressão oposta de 
100 kPa, de 20 para 60 dm3. Calcule Q,W ,∆E e ∆H.
Resolução
W=PopV2-V1=100×10360×10-3-20×10-3=4000J
∆E=Q-W ∆E=0 logo Q=W=4000J
Para processos isotérmicos ,não há variação de temperatura e para o gás ideal temos 
 ∆E =0 e ∆H=0 
04- Três moles de um gás ideal a 27°C expandem-se isotérmica e reversívelmente de 20 para 
60 dm3.Calcule Q, W, ∆E e ∆H.
Resolução
W=nRTlnV2V1=3×8,314×300ln6020=8220J
∆E=Q-W ∆E=0 logo Q=W=8220J
Em processos isotérmicos a temperatura é constante e temos ∆E = 0 e ∆H = 0
05-Três moles de um gás ideal são comprimidos isotermicamente de 60 para 20 litros, usando-
se uma pressão constante de 5 atm. Calcule Q, W, ∆E e ∆H
Resolução 
W=PopV2-V1=5×10520×10-3-60×10-3=-20000J
Como o processo é isotérmico , a temperatura permanece constante ,temos ∆E = 0 e ∆H = 0
Q = W = - 20000J
06-Deduza uma equação para o trabalho produzido numa expansão isotérmica e reversível de 
V1 para V2 de um gás cuja equação de estado é:
PV=RT+bRT-a1V
Resolução
P=RTV+bRT-a1V2
W=V1V2PdV=V1V2RTVdV+bRT-a1V2dV
W=RTV1V2dVV+bRT-aV1V21V2dV
W=RTlnV2V1+bRT-a1V1-1V2
07- Um mol de um gás de van der Waals a 300 K expande-se isotérmica e 
reversivelmente de 20 cm3 para 60 dm3 (a = 0,556 m6Pa mol-2 b = 0,064 dm3/mol). Para o 
gás de van der Waals
 ∂E∂VT=aV2
 Calcule W, Q, ∆E e ∆H para esta transformação.
Resolução
A equação de Van Der waals para 1 mol de gás
P=RTV-b-aV2
W=V1V2PdV=V1V2RTV-bdV-aV2dV
W=RTV1V2dVV-b-aV1V2dVV2
W=RTlnV2-bV1-b-a1V1-1V2
W=8,314×300ln60-0,06420-0,064-0,556160×10-3-120×10-3=2727J
A derivada parcial dada no enunciado permite escrever:
∂E∂VT=aV2
dE=aV2dV donde ∆E=V1V2aV2dV=a1V1-1V2
∆E=0,556160×10-3-120×10-3=18,5J/mol
A primeira lei da termodinâmica permite escrever:
∆E=Q-W donde Q=∆E+W=18,5+2727=2745,5J/mol
Cálculo do valor de ∆H
P=RTV-b-aV2 donde P1=RTV1-b-aV12
P1=8,314×30020×10-3-0,064×10-3-0,55620×10-32=1,237×105Pa
P2=8,314×30060×10-3-0,064×10-3-0,55660×10-32=4,145×105Pa
∆H=∆E+∆PV
∆H=18,5+4,16×105×60×10-3-1,25×105×20×10-3
∆H= 18,5+13,189 =31,68 J/mol
08 - Um mol de um gás ideal é mantido sob pressão constante, Pop = p = 200 kPa. A 
temperatura é variada de 100°C para 25°C. Sendo Cv =3R/2, calcule W, Q, ∆E e ∆H.
Resolução
W=PopV2-V1=PopV2- PopV1=RT2-RT1=RT2-T1
W=8,314298-373=-623,5J
∆E=CvT2-T1=3R2T2-T1=3×8,3142298-373=-935J/mol
Q=∆E+W=-935+-623,5=-1558,8J/mol
∆H=QP=-1558,8J/mol
09 - Um mol de um gás ideal, Cv = 20,8 J/K mol, é transformado a volume constante de 
0°C para 750C
Calcule Q, W, ∆E e ∆H.
Resolução
W=PdV a volume constante ∆V=0 logo W=0
∆E=CvT2-T1=20,8348-273=1560J/mol
∆H=∆E+∆PV=∆E+P2V-P1V=∆E+RT2-RT1
∆H=1560+8,314×348-8,314×273=2183,5J/mol
10 - Calcule ∆H e ∆E para a transformação de um mol de um gás ideal de 27°C e l atm 
para 3270C e 17 atm
Cp = 20,9 + 0,042 T J/K mol.
Resolução
∆H=T1T2CpdT=T1T220,9+0,042TdT
∆H=T1T220,9dT+T1T20,042TdT
∆H=20,9T2-T1+0,042T222-T122
∆H=20,9600-300+0,04260022-30022=11940J/mol
∆E=∆H+∆PV=∆H+P2V2-P1V1
∆E =∆H+RT2-RT1
∆E=11940+8,314×17-8,314×1=12073J/mol
11 - Se um gás ideal sofre uma expansão politrópica reversível, vale a relação PV n = 
C, onde C e n são constantes com n > 1.
Calcule W para tal expansão, se um mol do gás se expandir de V1 para V2 e se T1=300K, 
T2=200K e n=2
Resolução
W=V1V2PdV P=CVn
W=V1V2CVndV=CV1V2dVVn=CV21-n1-n-V11-n1-n (eq 01)
PVn=C donde P1V1n=P2V2n 
 (eq02)
Substituindo a equação 02 em 01,teremos:
W=P2V2nV21-n1-n-P1V1nV11-n1-n=P2V21-n-P1V11-n
W=11-nP2V2-P1V1=11-nRT2-RT1
W=11-28,314×200-8,314×300=831,4J/mol
.
12- A 25°C o coeficiente de expansão térmica da água é α = 2,7x10-4 K-1 e a densidade é 
0,9970 g/cm3.Se elevarmos 200 g de água de 25°C para 50°C, à pressão constante de 101 
kPa,Calcule w, Q, ∆H e ∆E.
Dado Cp = 75,30 J /K.mol
Resolução
V0=md=2000,9970=200,6 cm3 V=V01+α∆T
V=200,61+2,0710-4×25=201,638
∆V=201,638-200,60=1,038 cm3=1,038×10-6m3
W=Pop∆V=101×103×1,038×10-6=0,105J
∆H=CpT2-T1=75,30323-298=1882,5J/mol
∆H=200181882,5=20916,6J
∆H=QP=20916,6J
∆E=Q-W=20916,6-0,105=20916,4J
13-Um mol de um gás ideal é comprimido adiabaticamente num único estágio com uma 
pressão oposta constante e igual a 1,00 MPa. Inicialmente o gás está a 27°C e 0,100 
MPa de pressão; a pressão final é 1,00 MPa. Calcule a temperatura final do gás, Q, W, 
∆E e ∆H. Dado Cv = 3R/2 
Resolução
∆E=Q-W Q=0
∆E=-W
CvT2-T1=-PopV2-V1 Pop=P2
CvT2-T1=-P2RT2P2-RT1P1
CvT2-CvT1=-RT2+RT1P2P1
CvT2+RT2=CvT1+RT1P2P1
T2Cv+R=T1Cv+RP2P1
T2=T1Cv+RCv+RP2P1
T2=30012,47+8,31412,47+8,314×10,1=1380K
∆E=CvT2-T1=12,471380-300=13467J/mol
W=-∆E=-1346,7J/mol
∆H=CpT2-T1=Cv+RT2-T1=12,47+8,3141380-300
∆H=22446J/mol
14- Um mol de um gás ideal a 27°C e 0,100 MPa é comprimido adiabática e 
reversivelmente a uma pressão final de 1,00 MPa. Calcule a temperatura final, Q, W, ∆E e 
∆H 
Resolução
T1T2=P1P2γ-1γ=300T2=0,110,40
T1T2=0,398 donde T2=T10,398=3000,398=753,76K
Q=0
∆E=CvT2-T1=12,47753,76-300=5658,3J/mol
∆E=-W ou w=-∆E=-5658,3J/mol
∆H=CpT2-T1=20,78753,76-300=9429,1J/mol
15-Numa expansão adiabática de um mol de um gás ideal a uma temperatura inicial de 
25°C o trabalho produzido foi de 1200 J. Se Cv =3R/2, calcule a temperatura final, Q, ∆E 
e ∆H.
Resolução
∆E=Q-W Q=0
∆E=-W
CvT2-T1=-W logo 12,47T2-298=-+1200
12,47T2-12,47×298=-1200
12,47T2=-1200+12,47×298
T2=201,76K
∆E= CvT2-T1=12,47201,76-298=-1200J/mol
16- O pneu de um automóvel contém ar à pressão total de 320 kPa e está a 20°C. 
Removendo a válvula deixa-se o ar expandir adiabaticamente contra uma pressão externa 
constante de 100 kPa até que as pressões dentro e fora do pneu se igualem. A 
capacidade calorífica molar do ar é Cv = 5R/2 e pode ser considerado como um gás 
ideal. Calcule a temperatura final do gás no pneu, Q, W ,∆E e ∆H para 1 mol do gás no 
pneu.
Resolução
∆E=Q-W Q=0
∆E=-W
CvT2-T1=-PopV2-V1 Pop=P2
CvT2-T1=-P2RT2P2-RT1P1
CvT2-CvT1=-RT2+RT1P2P1
CvT2+RT2=CvT1+RT1P2P1
T2Cv+R=T1Cv+RP2P1
T2=T1Cv+RCv+RP2P1
T2=29320,78+8,31420,78+8,314×100320
T2=235,43K
∆E=CvT2-T1=20,78235,43-293=-1196,3J/mol
W=-∆E=--1196,3=1196,3J/mol
∆H=CpT2-T1=29235,43-293=-1669,5J/mol
17 - Uma garrafa a 21°C contém um gás ideal sob a pressão de 126,4 kPa. 
Removendo-se a rolha, o gás expande-se adiabaticamente contra a pressão 
constante da atmosfera, 101,9 kPa. Obviamente, parte do gás é expelido da 
garrafa. Quando a pressão no interior da garrafa se torna igual a 101,9 kPa 
recoloca-se a rolha rapidamente. O gás, que esfriou na expansão adiabática, 
aquece-se agora lentamente até que a sua temperatura seja novamente de 21°C. 
Qual a pressão final na garrafa?Se o gás for monoatômico, CV=3R/2
Resolução
∆E=Q-W Q=0
∆E=-W
CvT2-T1=-PopV2-V1 Pop=P2
CvT2-T1=-P2RT2P2-RT1P1
CvT2-CvT1=-RT2+RT1P2P1
CvT2+RT2=CvT1+RT1P2P1
T2Cv+R=T1Cv+RP2P1
T2=T1Cv+RCv+RP2P1
T2=29412,47+8,31412,47+8,314×101,9126,4
T2=271,2 K
O aquecimento da garrafa é a volume constante,portanto:
T1T2=P1P2 donde 271,2294=101,9P2P2=110,46kPa
18 - Comprime-se adiabaticamente um mol de um gás ideal, que possui Cv 
=5R/2 e está inicialmente a 25°C e 100 kPa, usando-se uma pressão constante 
igual à pressão final, até que a temperatura do gás atinja
25°C. Calcule a pressão final, Q, W, ∆E e ∆H para esta transformação.
 Resolução
∆E=Q-W Q=0
∆E=-W
CvT2-T1=-PopV2-V1 Pop=P2
CvT2-T1=-P2RT2P2-RT1P1
CvT2-CvT1=-RT2+RT1P2P1
CvT2+RT2=CvT1+RT1P2P1
T2Cv+R=T1Cv+RP2P1
T2=T1Cv+RCv+RP2P1
598=29820,78+8,31420,78+8,314×P2100
598=10,2420,78+8,314×P2100
598=212,78+0,851P2
P2=452,66 kPa
∆E=CvT2-T1=20,78598-298=6234 J/mol
W=-∆E=-6234J/mol
∆H=CpT2-T1=29598-298=8700J/mol
19 - Um mol de um gás ideal, Cy = 3R/2, inicialmente a 20°C e 1,0 MPa, sofre 
uma transformação em dois estágios. Para cada estágio e para a transformação 
global calcule Q, W, ∆E e ∆H.
Estágio I: Expansão reversível e isotérmica para um volume que é o dobro do 
volume inicial.
Estágio II: Começando-se no final do estágio I, mantendo-se o volume 
constante, elevou-se a temperatura para 80°C.
 Resolução 
No estágio I a transformação é isotérmica e reversível e,portanto, o trabalho é calculado 
como:
W=nRTlnV2V1=8,314×293ln2V1V1=8,314×293×ln2=1688,5J/mol
∆E=0 portanto W=Q=1688,5J/mol
∆H=0
No estágio II ,que é um processo isovolumétrico ,W = 0
∆E=Qp=CvT2-T1=12,47353-293=748,2J/mol
∆H=CpT2-T1=20,78353-293=1247J/mol
Para o ciclo, as variações de funções de estado são nulas,por exemplo,variações de 
energia interna,entalpia,entropia e energia livre,são nulas.
∆E ciclo=0 ∆H ciclo=0
W ciclo=WI+WII=1688,5+0=1688,5J/mol
Q ciclo=QI+QII=1688,5+748,2=2436,7J/mol
21 -Um gás ideal sofre uma expansão num único estágio contra uma pressão de 
oposição constante de T, p1,V1 para T,p2, V2. Qual a maior massa M que poderá 
ser levantada de uma altura h nesta expansão?
Resolução
W=PopV2-V1
W=PopRTP2-RTP1 Pop=P2
W=P2RTP2-RTP1
W=RT-RTP2P1
W=RT1-P2P1 eq 1
W=Mgh eq 2
igualando eq1 e eq2,temos
Mgh= RT1-P2P1
M=RThg1-P2P1
22 – O coeficiente Joule-Thomson para um gás de Van Der Waals está dado por :
μJ,T=2aRT-bCp
Calcule ∆H para a compressão isotérmica a300K de 1 mol de N2 desde 1 até 500 
atm.
Dado: a = 0,136 m6.Pa / mol2 b = 0,0391 dm3 / mol
Resolução
∂H∂PT=-CpμJ.T
∂H∂PT=-Cp2aRT-bCp
∂H∂PT=-2aRT-b
Esta equação pode ser escrita na forma:
dH=-2aRT-bdP
Integrando no intervalo de P1 a P2
∆H=-2aRT-bP1P2dP
∆H=-2aRT+bP2-P1
∆H=-2×0,1368,314×300+0,0391×10-3 500×105-1×105
23 – A temperatura de ebulição do Nitrogênio é -1960C e Cp= 20,785J/K.mol.As 
constantes de Van Der Waals e o coeficiente Joule-Thomson são dados a seguir:
μJ,T=2aRT-bCp
: a = 0,136 m6.Pa / mol2 b = 0,0391 dm3 / mol
Qual devera ser a pressão inicial do Nitrogenio se desejarmos uma queda de 
temperatura numa expansão Joule – Thomson de 250C até o seu ponto de ebulição?
Resolução
∂T∂PH=μj,T=2aRT-bCp
Substituindo os valores:
∂T∂PH=2×0,1368,314×T-0,0391×10-3/20,785
∂T∂PH=1,574×10-3T-1,88×10-3
dT= 1,574×10-3T-1,88×10-3dP
T1,574×10-3-1,88×10-3TdT=dP
T1T2T1,574×10-3-1,88×10-3dT=P1P2dP
Fórmula da integral que vai ser usado no primeiro membro da equação:
X1X2Xa-bdX=-Xb-a-b2lna-bX
-771,88×10-3-1,574×10-31,88×10-32ln1,574×10-3-1,88×10-3×77+2981,88×10-3+1,574×10-
31,88×10-32ln1,574×10-3-1,88×10-3×298=∆P
∆P=355,33×105 Pa
∆P= P2-P1 
355,33×105=1×105-P1 donde P1=354,33×105Pa
24 – Sendo dado :
Composto ∆H0F Kcal / mol
H2O(L) -68,3174 
H2O(g) -57,7979
Calcule:
a) Calor de vaporização da água a 250C
b) Trabalho produzido pela vaporização de 1 mol de água a 250C e sob pressão constante de 1 atm
c) ∆E de vaporização da água a 250C
Os valores de Cp molar são:
Cp(vaporda água ) = 8,025 cal / K.mol
Cp( água liquido) = 17,996 cal /K.mol
Resolução
a) A reação de vaporização da água é:
H2O(L) ↦ H2O(g)
∆Hvap=HFvapor-HFL=-57,7979--68,3174=10,5195 Kcal/mol
b) O trabalho produzido por 1 mol de água a 250C é calculado como segue:
W=P(Vgas-Vliquido) . Porem, Vgás ≫ Vliquido e a equação pode ser escrita como:
W=PVgás . O volume do gás pode ser calculado supondo-se que o vapor de água se 
comporta como um gás ideal.
Vgás=nRTP=1×0,082×2981=24,449 L
Substituindo na equação que permite o cálculo do trabalho,temos:
W=1×24,448 atm×L
W= 1×24,448 atm×L ×24,218calL.atm=592 cal/mol
c) Usando a equação ∆E=∆H-∆nRT ,temos:
∆E=10,5195-0,592=9,927 Kcal/mol
d) Usaremos a equação:
∆HT0=∆H10+T1T2∆CpdT
∆H273=10,5195+8,025-17,9961000373-298=9,771 Kcal/mol
25 – O coeficiente Joule- Thomson para o gás Oxigênio é +0,3660C/atm.Supondo o 
coeficiente independente da temperatura nas condições do problema, calcule a 
temperatura final do gás se 10 mols de Oxigênio inicialmente a 20 atm e 00C 
expandem através de um anteparo poroso, até que a pressão final seja de 1 atm.
Resolução
μJ,T=∂T∂PH=+0,366
dT=0,366dP
T1T2dT=0,366P1P2dP
273T2dT=0,366201dP
T-273=0,3661-20
T=266 K ou -6,950C
Como o gás tem o coeficiente Joule-Thomson positivo,ocorre resfriamento durante 
a expansão
 26 – Com base nos seguintes dados,calcule a Entalpia de fusão do gelo em cal / 
mol a -100C.
 Cp(água solido ) = 9,0 cal/K.mol
 Cp(água liquido) = 18,0 cal/K.mol
 ∆H de fusão do gelo a 00C = 1435 cal/mol
Resolução
∆HT20=∆H10+T1T2∆CpdT
∆HT2=1435+18-9263-273
∆HT2=1345 cal/mol
27 – Em uma infinitesimal compressão de um liquido ou solido sob pressão P, as 
mudanças de energia E.volume V e temperatura T , são aproximadamente 
relacionadas com a equação:
 dE=CvdT+KT-PdV 
Onde K é uma constante que depende da natureza da substância .Obtenha uma 
equação relacionando os volumes final e inicial e as temperaturas final e inicial em 
uma compressão adiabática reversível de um liquido ou solido.Considere Cv 
independente da temperatura.
Resolução
dE=-dW
CvdT+KT-PdV=-PdV
CvdT+KT-PdV+ PdV=0
CvdT+KTdV=0
CvdT=-KTdV
CvdTT=-KdV
T1T2CvdTT=V1V2KdV
CvlnT2T1=KV2-V1

Continue navegando