Buscar

galdenoro-uso-do-eletroencefalograma-e-instrumentacao-virtual-para-analise-do-perfil-do-sono


Prévia do material em texto

CAMPUS EXPERIMENTAL DE SOROCABA 
ENGENHARIA DE CONTROLE E AUTOMAÇÃO 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
USO DO ELETROENCEFALOGRAMA E INSTRUMENTAÇÃO 
VIRTUAL PARA ANÁLISE DO PERFIL DO SONO 
 
 
 
 
 
 
 
 
 
 
 
 
JOÃO HENRIQUE CARDOSO ESPINELLI 
 
 
Orientador: 
PROF. DR. GALDENORO BOTURA JR. 
 
 
 
 
 
Sorocaba - SP 
2011 
 
 
 
UNIVERSIDADE ESTADUAL PAULISTA “JÚLIO DE MESQUITA FILHO” 
CAMPUS EXPERIMENTAL DE SOROCABA 
ENGENHARIA DE CONTROLE E AUTOMAÇÃO 
 
 
 
 
 
 
 
JOÃO HENRIQUE CARDOSO ESPINELLI 
 
 
 
 
 
USO DO ELETROENCEFALOGRAMA E INSTRUMENTAÇÃO 
VIRTUAL PARA ANÁLISE DO PERFIL DO SONO 
 
 
 
Trabalho de graduação apresentado à banca 
examinadora da Universidade Estadual Paulista 
“Júlio de Mesquita Filho”, como requisito para 
obtenção do título de Engenheiro de Controle e 
Automação. 
 
Orientador: Professor Doutor Galdenoro Botura Jr. 
 
 
 
 
 
 
 
 
 
 
 
Sorocaba – SP 
2011
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Dedico este trabalho de graduação aos 
meus pais, irmãos e amigos pela 
compreensão, amor e paciência. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Agradeço a Deus, que sempre me rege, 
me guarda e me ilumina. 
Ao professor Galdenoro, por toda ajuda, 
paciência e dedicação durante toda 
realização do trabalho. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Epígrafe 
 
 
"O único lugar onde sucesso vem antes do trabalho é no dicionário." 
(Albert Einstein) 
 
 
 
RESUMO 
Este projeto contempla a análise do perfil do sono, através da identificação das 
ondas cerebrais e suas porcentagens, utilizando um software de 
instrumentação virtual para processamento de sinais de EEG. 
Utilizando a linguagem LabVIEW sobre arquivos com gravações de sinais 
bipolares (Fpz-Cz e Pz-Oz), resultados de exames de EEG realizados no final 
dos anos 1980 em homens e mulheres caucasianas saudáveis, entre 21 e 35 
anos, sem uso de quaisquer medicamentos, foi possível realizar testes 
identificando as ondas cerebrais que compõe o EEG (alfa, beta, teta e delta). 
Além disso, as análises dos gráficos demonstrando as porcentagens das ondas 
cerebrais, no EEG, época a época, geradas a partir do uso do algoritmo FFT, 
possibilitou visualizar e identificar a influência das ondas cerebrais, que são 
bases para estabelecer o estagiamento do sono. 
Palavras-chave: ondas cerebrais, EEG, instrumentação virtual. 
 
 
 
 
ÍNDICE DE FIGURAS 
Figura 1 - O sistema internacional 10-20 visto pelo lado esquerdo (A) e 
superior (B) da cabeça. A = lóbulo da orelha, C = central, Pg = nasofaringe, P 
= parietal, F = frontal, Fp = polar frontal, O = occipital ..................................... 4 
Figura 2 - Localização e nomenclatura dos eletrodos intermediários 10%, 
como padronizados pela Sociedade Americana de Eletroencefalografia36 ........ 5 
Figura 3 - Medições (A) bipolares e (B) unipolares. Note que a forma de 
onda depende do local de medição36 ................................................................. 5 
Figura 4 - Alguns exemplos de ondas de EEG36 ....................................... 6 
Figura 5 - Programando com structures - For loop .................................. 14 
Figura 6 - Case structures – Boolean ...................................................... 15 
Figura 7 – Arrays ..................................................................................... 15 
Figura 8 - Auto-indexing no For Loop ...................................................... 16 
Figura 9 – Exemplo de janelas de FFT e seus piores casos de erro de 
amplitude .......................................................................................................... 18 
Figura 10 - Diagrama de blocos do desenvolvimento do sistema ............ 20 
Figura 11 - Localização do pontos Fpz-Cz e Pz-Oz, sinais bipolares, sobre 
a cabeça de um indivíduo36 .............................................................................. 21 
Figura 12 – Sistema de leitura de arquivos ASCII ................................... 22 
Figura 13 – Bloco Current VIs Path ......................................................... 23 
Figura 14 - bloco Path to String ............................................................... 23 
Figura 15 - bloco Search and replace string ............................................ 23 
Figura 16 - bloco String Subset................................................................ 23 
Figura 17 - bloco "Concatenate Strings" .................................................. 24 
Figura 18 - bloco "String to Path" ............................................................. 24 
Figura 19 - bloco "Read From Spreadsheet File" ..................................... 24 
Figura 20 - Representação do retorno ao valor original de amplitude ..... 25 
Figura 21 - bloco Array Size..................................................................... 26 
Figura 22 - bloco "Build Waveform", sinais de EEG e taxa de amostragem
 ......................................................................................................................... 27 
Figura 23 - Obtenção da onda alfa .......................................................... 28 
Figura 24 - Configuração para filtro passa banda das ondas alfa ............ 28 
Figura 25 - Obtenção das ondas beta, teta e delta .................................. 29 
Figura 26 - For loop de análise dos sinais de EEG .................................. 29 
 
 
 
Figura 27 - bloco "Waveform Subset" ...................................................... 30 
Figura 28 - FFT de pico com janela Flat Top ........................................... 30 
Figura 29 - Configurações do bloco "Spectral Measurements" ................ 31 
Figura 30 - Sistema para obtenção de porcentagens de ondas cerebrais 
para cada época a partir do espectro de freqüência ........................................ 31 
Figura 31 - bloco "Get Waveform Time Array" ......................................... 32 
Figura 32 - blocos "Format Date/Time String" e "Decimal String To 
Numbe" ............................................................................................................ 32 
Figura 33 - bloco "Get Waveform Components" e sua saída entrando For 
loop por auto-indexing ...................................................................................... 33 
Figura 34 - Situação "true" do case structure de soma de valores de 
magnitude do espectro de cada uma das ondas cerebrais .............................. 33 
Figura 35 - Situação "false" do case structure de soma de valores de 
magnitude do espectro de cada uma das ondas cerebrais .............................. 33 
Figura 36 - Soma de todos os valores de saída dos case structures e 
obtenção da porcentagem de ondas cerebrais para cada época ..................... 34 
Figura 37 – Aba de Sinais EEG ............................................................... 35 
Figura 38 - aba de % Ondas .................................................................... 36 
Figura 39 - Resultados obtidos dos sinais de EEG bipolares, Fpz-Cz e Pz-
Oz ..................................................................................................................... 37 
Figura 40 - Resultados obtidos das ondas cerebrais ............................... 38 
Figura 41 - Resultados obtidos com relação às porcentagens de ondas 
cerebrais para cada uma das épocas em estudo ............................................. 39 
 
 
 
 
 
 
 
 
SUMÁRIO 
 
 
 
 
1.0 INTRODUÇÃO E OBJETIVOS ....................................................... 1 
2.0 REVISÃO BIBLIOGRÁFICA ........................................................... 2 
2.1 ELETROENCEFALOGRAMA ...................................................... 3 
2.2 INSTRUMENTAÇÃO VIRTUAL ................................................. 122.3 TRANFORMAÇÃO DE SINAIS DO DOMÍNIO DO TEMPO PARA 
O DOMÍNIO DA FREQÜÊNCIA .................................................................... 16 
3.0 METODOLOGIA ........................................................................... 18 
4.0 DESENVOLVIMENTO .................................................................. 20 
5.0 RESULTADOS OBTIDOS ............................................................ 36 
6.0 CONCLUSÃO ............................................................................... 40 
7.0 REFERÊNCIAS BIBLIOGRÁFICAS ............................................. 41 
 
 
 
LISTA DE ABREVIATURAS 
 
EEG – Eletroencefalograma 
EMG – Eletromiograma 
EOG – Eletrooculograma 
REM – Rapid Eyes Movement (Movimento rápido dos olhos) 
FFT – Fast Fourier Transform (Transformada rápida de Fourier) 
DFT – Discrete Fourier Transform (Transformada discrete de Fourier) 
PGO – ponto-genículo-occipitais 
NREM – non-rapid eyes movement 
1 
 
 
 
1.0 INTRODUÇÃO E OBJETIVOS 
O estudo do sono tornou-se, recentemente, uma das grandes áreas de 
pesquisa dentro da medicina. O sono é tão importante para o ser humano que 
representa um terço de sua vida1. 
Antes do advento do EEG (Eletroencefalograma), acreditava-se que o 
sono era uma etapa de baixa atividade cerebral, de repouso. 
O EEG, inventado por Hans Berger, tem função de obter um registro 
elétrico contínuo do cérebro, medindo atividades espontâneas, como o sono. 
Com o EEG foi possível detectar as ondas cerebrais, como alfa, beta, teta e 
delta, inclusive no sono, consolidando-o como uma etapa de alta atividade 
cerebral, em que uma série de atividades imprescindíveis para a saúde 
humana ocorre2. 
A partir do sinal de EEG pode-se, portanto, obter um perfil do sono com 
relação às porcentagens de cada uma das ondas cerebrais (alfa, beta, teta e 
delta) para cada período de análise. 
Para isso é necessário que se faça o processamento do sinal de EEG, 
realizando algoritmos, como, por exemplo, FFT (Fast Fourier Transform), de 
forma a obter as ondas cerebrais, caracterizadas por faixas de freqüência 
dentro do espectro do sinal36. 
O uso de um software de instrumentação virtual, como o LabVIEW, usado 
neste trabalho, em processamento de sinais permite a criação de soluções 
próprias para sistemas científicos, oferecendo a flexibilidade e a performance 
de uma poderosa linguagem de programação com menores dificuldades e 
complexidades com relação às linguagens convencionais3. 
Neste projeto, foi utilizado o LabVIEW para processar o sinal de EEG 
gravado em um arquivo, realizando algoritmo FFT para obter as ondas 
cerebrais e suas porcentagens para um determinado período. 
 
 
2 
 
 
 
 
A análise do perfil do sono, caracterizando as porcentagens das ondas 
cerebrais dentro de um período de tempo, tem papel principal na diferenciação 
dos estágios do sono. 
O processamento sendo realizado no software de instrumentação virtual 
LabVIEW gera uma flexibilidade para que se possa, no futuro, englobar a este 
projeto, soluções de aquisição do sinal de EEG de forma mais simples, além da 
aquisição de outros sinais fisiológicos, como EOG (Eletrooculograma) e EMG 
(Eletromiograma) e suas respectivas análises, importantes na diferenciação do 
estágio REM (Rapid Eyes Movement) para os demais estágios. 
A proposta deste trabalho foi de construir um sistema que fizesse uma 
análise do perfil do sono de um indivíduo salientando as características das 
ondas cerebrais – alfa, beta, delta e teta – presentes no sinal de EEG no 
decorrer do sono, fazendo uso do software de instrumentação virtual, 
LabVIEW. 
Dentre essas características, mostrar os sinais de EEG (Fpz-Cz e Pz-Oz) 
e cada uma das ondas cerebrais que os compõem, no domínio do tempo, para 
todo o período dos sinais. Mostrar a porcentagem de cada uma das ondas 
cerebrais em cada uma das épocas, períodos de 30s, do sinal de EEG, de 
forma contínua, em gráficos separados. Mostrar em um único gráfico a 
porcentagem de todas as ondas cerebrais analisando a transição dessas entre 
as épocas. 
 
 
 
 
 
 
3 
 
 
 
2.0 REVISÃO BIBLIOGRÁFICA 
Este capítulo aborda sobre o eletroencefalograma – principal variável 
fisiológica na identificação da qualidade do sono –, sobre a eficiência do 
processamento dos sinais, através da Instrumentação Virtual, sobre a 
transformação dos sinais de domínio do tempo para domínio de freqüência, 
imprescindível na obtenção das porcentagens das ondas cerebrais. 
2.1 ELETROENCEFALOGRAMA 
Hans Berger, um psiquiatra alemão, em 1924, fez a primeira gravação de 
um campo elétrico do cérebro humano, que foi dado o nome de 
eletroencefalograma2. 
O EEG serve para medir atividades espontâneas, potenciais de estímulo 
e eventos bioelétricos produzidos por um único neurônio. 
As atividades espontâneas são medidas no couro cabeludo com 
amplitudes médias de 100 uV e largura de banda do sinal de 1 Hz a 50 Hz. 
Uma atividade espontânea significa que atividade ocorre continuamente no 
individuo. 
Potenciais de estimulo são aqueles que surgem em resposta a um 
estimulo no EEG. Esses sinais geralmente estão abaixo do nível de ruído, 
portanto para obtê-los deve-se usar uma sucessão de estímulos. 
Os eventos bioelétricos produzidos por um único neurônio podem ser 
examinados com o uso de microeletrodos. 
Para a gravação das atividades espontâneas pelo EEG, o sistema 10-20, 
padrão internacional, é utilizado4. Nesse sistema 21 eletrodos são localizados 
na superfície do couro cabeludo, representados pela figura 1. Há dois pontos 
de referências, násio, no topo do nariz nivelado com os olhos, e ínion, que é a 
protuberância óssea na base do crânio na linha média da parte detrás da 
cabeça. A partir desses pontos, os perímetros do crânio são mensurados nos 
planos transversal e mediano. A localização dos eletrodos é determinada 
dividindo esses perímetros em intervalos de 10% e 20%. Três outros eletrodos 
são colocados em cada lado equidistantemente dos pontos vizinhos5. 
4 
 
 
 
 
Figura 1 - O sistema internacional 10-20 visto pelo lado esquerdo (A) e 
superior (B) da cabeça. A = lóbulo da orelha, C = central, Pg = nasofaringe, P 
= parietal, F = frontal, Fp = polar frontal, O = occipital 
Além dos 21 eletrodos do sistema internacional 10-20, posições 
intermediárias de 10% são também utilizadas, representadas pela figura 2. A 
localização e nomenclatura desses eletrodos são padronizadas pela Sociedade 
Americana de Eletroencefalografia6. 
5 
 
 
 
 
Figura 2 - Localização e nomenclatura dos eletrodos intermediários 10%, 
como padronizados pela Sociedade Americana de Eletroencefalografia36 
Eletrodos unipolares ou bipolares podem ser utilizados no EEG. No 
primeiro método, unipolar, o potencial de cada eletrodo é comparado com 
eletrodo neutro ou com a média de todos os eletrodos. No outro método, 
bipolar, a diferença de potencial entre o par de eletrodos é medida. Ambos os 
métodos são representados pela figura 3. 
 
Figura 3 - Medições (A) bipolares e (B) unipolares. Note que a forma de 
onda depende do local de medição36 
6 
 
 
 
Classificação do sinal de EEG em ondas, conforme fa ixas de 
freqüência 
O sinal de EEG pode ser dividido em ondas alfa, beta, delta e teta com 
relação às faixas de freqüência. As ondas alfa têm um espectro de freqüência 
de 8-13 Hz, as ondas beta, 13-30 Hz, as ondas delta, 0,5-4 Hz e as ondas teta, 
4-8 Hz. Um período de quatro segundos das ondas supracitadas é 
representado pela figura 47,8,9. 
 
Figura 4 - Alguns exemplos de ondas de EEG36 
Ondas alfa 
As ondas alfa (ondas de Berger), cuja faixa de freqüência é de 8-13 Hz, 
foram descobertas por Hans Berger, mais conhecido pela invenção do EEG. 
Elas caracterizam um estado de consciência alerta, porém relaxado. São 
atenuadas de acordo com aumento da sonolência do indivíduo e são melhores 
visualizadas no córtex occipital com o individuoacordado e olhos fechados. 
Os ritmos alfa são derivados da massa branca do cérebro, cuja função é 
fazer a conexão de todas as partes do cérebro com cada uma. Além disso, 
7 
 
 
 
também estão relacionados à extroversão, criatividade, trabalho mental, bom 
humor e otimismo. 
Uma geração sadia de ondas alfa promove uma desenvoltura mental, 
ajuda na habilidade de coordenação e melhora a sensação de relaxamento. 
Nesse estado você pode rapidamente e eficientemente completar qualquer 
tarefa. 
As ondas alfa estão presentes em diferentes estágios do sono. 
A primeira ocorrência é durante um estado de relaxamento mental, em 
que o sujeito está descansando com os olhos fechados, mas não está 
cansado, nem adormecido. 
A segunda ocorrência é durante o sono REM, que será melhor explicado 
no item diferenciação dos estágios do sono. A razão da atividade alfa no sono 
REM ainda não foi totalmente compreendida. Atualmente existem argumentos 
que os padrões alfa são uma parte normal do sono REM, indicando um período 
de semi-despertares. 
A terceira ocorrência é no estado de ondas lentas, estágios 3 e 4 do 
sono10,11,12. 
Ondas beta 
As ondas beta, 13-30 Hz, são freqüentemente de baixa amplitude e 
simétricas, além disso, são associadas com a ansiedade e muita concentração. 
Quando se está com os olhos abertos e pensando sobre a solução de um 
problema analítico, julgamentos, tomando decisões ou processando 
informações sobre o mundo, a maior parte do cérebro está gerando ondas 
beta. 
Drogas, como barbitúricos, benzodiazepínicos, aumentam a ocorrência de 
ondas beta11,12. 
 
 
8 
 
 
 
Ondas delta 
As ondas delta, 0,5-4 Hz, foram primeiramente descritas no começo do 
século XX por W. Grey Walter, elas são as ondas mais lentas, porém com as 
maiores amplitudes. 
Encefalopatias, como sonambulismo, privação de sono, mal de Parkinson 
e esquizofrenia, além de diabetes, alcoolismo, depressão e ansiedade estão 
relacionadas com alterações do ritmo delta. 
Em geral, estão associadas com os estágios de sono profundo, 3 e 4, que 
serão melhor explicados no item diferenciação dos estágios do sono. 
Elas começam a aparecer no estágio 3 do sono, mas no estágio 4 
praticamente toda a atividade espectral é dominada pelas mesmas11,12. 
Ondas teta 
As ondas teta, 4-8 Hz, são classificadas como de lenta atividade, além de 
terem conexão com a intuição, a fantasia, emoções e sensações. 
Elas aparecem em demasia durante uma meditação ou uma reza, 
refletem o estado entre a vigília e o sono, e são relacionadas ao subconsciente 
da mente11. 
A importância da identificação da qualidade do sono 
O sono serve para restaurar os níveis normais de atividade e equilíbrio 
normal entre as diferentes partes do sistema nervoso central13 e está também 
envolvido com a conservação do metabolismo energético, com a cognição, 
com a termorregulação, com a maturação neural e a saúde mental14. 
Dentro do aspecto científico Berger em 1930, obteve avanço nos estudos 
dos mecanismos de sono e vigília quando registrou a atividade elétrica 
encefálica, por meio de eletrodos de agulhas introduzidos no couro cabeludo, 
criando o eletroencefalograma2. 
Nos primeiros EEGs registrados durante o sono, Berger descreveu as 
ondas alfa e delta, que caracterizam os estágios do sono humano. 
9 
 
 
 
O sono apresenta estágios alternantes, e cada estágio possui padrões 
eletroencefalográficos característicos, segundo freqüência e amplitude das 
ondas, que são distintos daqueles observados durante a vigília15,16. 
Rimbaud e cols17 observaram durante o sono de um animal, a ocorrência 
de fases curtas dessincronizadas no EEG, que eram semelhantes ao padrão 
típico de atividade elétrica no hipocampo (ritmo teta). Essas fases constituem 
um estado de sono inteiramente distinto daquele com padrão sincronizado e 
foram denominadas de sono dessincronizado18 ou sono paradoxal19, pois 
possui padrão eletroencefalográfico igual ao da vigília, porém associado à 
ausência do tônus muscular20. 
A fase do sono paradoxal, também denominado sono REM, se caracteriza 
pela presença de sonhos21, pelos eventos fásicos – movimentos oculares 
rápidos, abalos musculares ou mioclonias e ondas PGO e tônicos – ondas de 
baixa amplitude e alta freqüência, e flutuação cardio-respiratórias22,23,24,25. 
A área responsável pela geração do sono REM, conforme revisado por 
Vertes e Siegel24,25, está no tronco encefálico, na formação reticular pontina 
lateral e bulbar medial. 
A outra fase que do que existe é a NREM, que também pode ser 
denominado sono sincronizado, pois tem um potencial elétrico rítmico inibitório-
excitatório, gerado por neurônios talâmicos e corticais, formando ondas 
sincronizadas de alta amplitude e baixa freqüência26. Esta fase também é 
dividida em quatro estágios conforme o aumento de sua profundidade27. 
Estagiamento do sono 
O estagiamento do sono é baseado em regras criadas por Rechtschaffen 
e Kales27, foi criado com o objetivo de estudar padrões semelhantes em 
determinados períodos do sono. O estagiamento do sono é uma ferramenta 
que tem como variável de saída fundamental a eficiência do sono de um 
indivíduo. Ele é realizado, na maioria das vezes, em períodos de 30 segundos, 
comumente chamados de épocas28. 
Para cada época podem ser encontradas características de mais de um 
estágio, entretanto, o objetivo de realizar o estagiamento é justamente 
10 
 
 
 
determinar o estágio predominante em cada época, de acordo com as regras 
descritas por Rechtschaffen e Kales27. 
Diferenciação dos estágios do sono 29 
Quando um pesquisador estuda o processo do sono geralmente se 
baseia em três medidas principais, como base na diferenciação dos estágios 
do sono. 
Primeiro, a atividade das ondas cerebrais, medida pelo EEG. Segundo, 
tônus musculas, medido pelo EMG. Por último, os movimentos oculares são 
gravados via EOG. Nesta seção será visto que o EEG é a medição 
determinante para que se faça a diferenciação dos estágios do sono, enquanto 
o EMG e EOG são os mais importantes na diferenciação do estágio REM para 
os outros estágios38. 
As regras de Rechtschaffen e Kales definem o sono como composto de, 
basicamente, 6 estados, os estágios de 1 a 4, mais o estágio REM e o estágio 
0, de vigília. 
Estágio 0 – Vigília 
O Estágio 0 é o estágio em que o indivíduo encontra-se acordado. 
No EEG, há presença de ritmo alfa, desde que o indivíduo encontre-se de 
olhos fechados. 
No EOG, há presença de movimentos oculares rápidos. 
No EMG, há tonicidade muscular. 
Estágio 1 
No estágio 1, o indivíduo se encontra entre o estado de vigília e o sono, 
com ondas no EEG de baixa voltagem. 
No EEG, há ritmo alfa presente em menos de 50% da época, há 
presença, também de ondas do vértex. 
No EOG, há presença de movimentos oculares lentos. 
11 
 
 
 
No EMG, há uma tonicidade muscular, podendo apresentar potenciais do 
que em vigília. 
Estágio 2 
No estágio 2, há presença de ondas de baixa voltagem, com a presença 
de interrupções de ondas de alta amplitude. 
No EEG, há ritmo delta com mais de 75 uV e em no máximo 20% da 
época. 
No EOG, não há movimento oculares. 
No EMG, há uma tonicidade muscular, podendo apresentar potenciais do 
que em vigília. 
Estágio 3 
No EEG, há presença de ondas delta, que possuem baixa freqüência e 
alta amplitude, com mais de 75 uV em mais de 20% e em menos de 50% da 
época. 
No EOG, não há movimento oculares. 
No EMG, há uma tonicidade muscular, podendo apresentar potenciais do 
que em vigília. 
Estágio 4 
No EEG, há presença de ondas delta com mais de 75 uV em mais de 
50% da época. 
No EOG, não há movimento oculares. 
No EMG, há uma tonicidade muscular, podendo apresentar potenciais do 
que em vigília. 
Estágio REM 
No EEG, dessincronizado e semelhante ao estágio 1, sem presença de 
ondas do vértex. 
12 
 
 
 
No EOG, presença de abalos de movimentos oculares rápidos. 
No EMG, atoniamuscular, podendo apresentar algums abalos 
musculares esporádicos. 
Eficiência do sono 30 
A eficiência do sono é um termo usado para sugerir o quanto de sono 
efetivamente foi obtido em um episódio de sono. É soma do tempo total 
adormecido dividido pelo tempo gasto na cama em porcentagem. 
Uma eficiência do sono maior do que 80% é considerada normal, menor 
do que 80%, é relacionada à insônia e maior do que 95%, pode ser o indicativo 
de narcolepsia. 
2.2 INSTRUMENTAÇÃO VIRTUAL 
A instrumentação virtual representa a sinergia entre um software 
poderoso, uma estação de trabalho e um hardware de aquisição de dados 
flexível. Enquanto nos instrumentos tradicionais o hardware desempenhava 
papel central, nos instrumentos virtuais, o software é a parte principal do 
processo. 
Ela tornou-se uma referência para aqueles que buscam um aumento de 
precisão, de produtividade e de desempenho, através do uso de computadores 
pessoais, hoje até mesmo notebooks são utilizados3. 
Principais softwares 
Os principais softwares de instrumentação no mercado são LabVIEW, da 
National Instruments, HP VEE, da Hewlett Packard, e Simulink – antigo 
MATLAB Real-time Workshop –, da MathWorks. 
Contudo, o LabVIEW, pioneiro na área de instrumentação virtual, é o mais 
difundido no mercado devido seus benefícios com relação aos demais 
softwares. 
Uma das vantagens do LabVIEW são as várias bibliotecas com inúmeras 
funções prontas para serem usadas. Outra vantagem é a grande comunidade 
13 
 
 
 
de usuários bastante ativos que se comunicam em fóruns mantidos pela 
própria National Instruments. 
O que é LabVIEW? 31 
LabVIEW, Laboratory Virtual Instrument Engineering Workbench, possui 
uma linguagem de programação gráfica, de propriedade da National 
Instruments, surgida nos anos 1980, hoje integrada com praticamente todos os 
atuais sistemas operacionais (Machintosh, Windows, Linux e Solaris). 
O LabVIEW fez do conceito de VI, Virtual Instrument, uma realidade 
prática, utilizando computadores de uso geral, como instrumentos reais, com 
controles e mostradores particulares, mas, com grande versatilidade. 
Os principais campos de aplicação do LabVIEW são a realização de 
medições e a automação. A programação é feita com modelo dataflow, que 
oferece a esta linguagem vantagens para a aquisição de dados e sua 
manipulação. É possível programar equipamentos em LabVIEW (como 
multímetros, osciloscópios, analisador de espectro, medidores de temperatura, 
dentre outros), interpretando os sinais, através de conversor analógico digital, 
com alta performance. 
Como funciona o LabVIEW? 
O LabVIEW usa uma linguagem de programação, chamada “G”, é 
conhecida, também, como programação gráfica. Possui diretivas como outras 
linguagens (linguagem C, por exemplo), mas o diferencial é que ao invés de 
trabalhar com linhas de código ele trabalha com diagramas de blocos, que 
possuem uma função específica e uma programação interna em código. 
Como funciona o modelo de programação? 
Existem várias funções ou VIs, porém, cada VI só é executada quando 
todas as entradas são devidamente conhecidas. 
As variáveis da forma como são nas linguagens de texto não existem no 
LabVIEW. No lugar disso, cada fio é uma variável, sendo relacionada a um 
dado – inteiro, booleano, vetor, dentre outros. 
14 
 
 
 
O que é uma VI? Para que serve uma VI? 
A VI é um instrumento virtual semelhante a um painel de um instrumento 
real, basicamente com a função de obter dados – através de simuladores e 
placas receptoras de sinais –, analisar dados – interpretando e filtrando os 
sinais de entrada – e apresentar dados – através de leds, gráficos, indicadores, 
dentre outros. 
Programando com Structures - For Loop 
É uma programação semelhante ao comando For utilizado em várias 
outras linguagens de programação. Executa o código dentro do loop conforme 
o número de vezes que foi determinado em N, representado pela figura 5. 
 
Figura 5 - Programando com structures - For loop 
Case structures 
Case structures é semelhante à declaração if...then...else 
(se...então...senão), quando if then for verdadeiro, a parte then da instrução 
será executada e quanto for falsa, a parte else será executada. 
 
No case structures existem dois ou mais subdiagramas (casos), porém, 
somente um subdiagrama é visível no diagrama de blocos da VI e a estrutura 
executa somente um caso por vez. 
Case structures - Boolean 
No diagrama do case structures booleana, no terminal seletor é ligado o 
controle booleano. No exemplo da figura 6, se true (verdadeiro) os números à 
15 
 
 
 
esquerda são somados, se false (falso), os números, à esquerda, são 
subtraídos. 
 
Figura 6 - Case structures – Boolean 
O que é um Array (vetor)? 
Um Array (vetor) é composto por um único tipo de elementos – dados – e 
dimensões – comprimento, altura ou profundidade. Um array pode ter tantas 
dimensões e elementos quanto couber na memória de seu computador. Está 
representado pela figura 7. 
O Array é bastante utilizado quando existem dados similares e/ou 
execução de cálculos repetitivos. Arrays também são muito eficientes para 
estocar dados coletados em gráficos waveforms ou gerados em loops, situação 
em que cada iteração de loop produz um elemento do array. 
 
Figura 7 – Arrays 
Como gerar arrays na fronteira dos loops? 
O For loop pode indexar e acumular array em sua fronteira 
automaticamente, usando a capacidade chamada de auto-indexing. 
Conectando um array a um For Loop, poderemos ler e processar cada 
elemento individualmente, basta habilitarmos auto-indexing. Utilizando o auto-
indexing, representado pela figura 8, o túnel de saída recebe um novo 
16 
 
 
 
elemento, para cada iteração do loop. O fio da saída torna-se mais espesso 
quando conectado a um array. 
 
Figura 8 - Auto-indexing no For Loop 
 
2.3 TRANFORMAÇÃO DE SINAIS DO DOMÍNIO DO TEMPO 
PARA O DOMÍNIO DA FREQÜÊNCIA 
Há duas formas de se representar um sinal, uma no domínio do tempo e 
outra no domínio da freqüência. 
A representação de um sinal no domínio do tempo está presente, 
naturalmente, no nosso dia a dia. Contudo, certas operações, principalmente 
na engenharia, tornam-se muito mais simples se trabalhando no domínio da 
freqüência, domínio este, conseguido através das Transformadas de Fourier. 
É muito importante observar o que ocorre em um domínio, quando 
efetuamos certas operações no outro domínio. Quando se deseja obter a 
contribuição em magnitude das componentes que formam um sinal, deve-se 
realizar uma transformação do sinal do domínio do tempo para a freqüência. 
Transformada de Fourier 
É um operador linear, invertível, com funções de base senoidal. 
Amplamente aplicada em várias áreas da ciência, principalmente no 
processamento de sinais, pode ser usada para funções contínuas ou discretas. 
A transformada de Fourier, quando calculada em computadores, 
comumente faz uso do algoritmo FFT. 
17 
 
 
 
A FFT, transformada rápida de Fourier, é considerada por estudiosos um 
dos algoritmos mais valiosos da vida humana37, devido ao grande número de 
inovações que foram possíveis somente com seu advento. 
FFT: Conceitos Fundamentais e Software 
Uma FFT computa a DFT e produz exatamente o mesmo resultado 
diretamente, contudo de uma forma muito mais rápida. 
A fórmula da DFT é definida como: 
 
Sendo números complexos. 
Para avaliar essa função são necessárias O(N2) operações, existem N 
saída Xk e cada saída exige uma soma de N termos. 
Uma FFT é qualquer método para computar os mesmos resultado com 
O(N log N) operações. 
O cálculo executado pelo software apresentando o resultado em 
quantidade de pico é apresentado logo abaixo. 
 
Vazamento espectral e janelas 
Para uma boa medição espectral deve-se considerar o vazamento 
espectral. 
O vazamento espectral distorce a medição de uma forma que a energia 
de um dado componente de freqüência se espalhasobre as freqüências 
adjacentes. 
O uso de janelas minimiza o efeito de vazamento espectral, alguns 
exemplos de janela são: Hanning, Blackman e Flat Top. 
18 
 
 
 
Contudo, a janela que apresenta o menor erro de amplitude é a Flat Top. 
A figura 9 apresenta uma tabela com as janelas, fatores de escala para o 
ganho, faixa de bandas para potência de ruído e pior caso de erro de 
amplitude16. 
 
Figura 9 – Exemplo de janelas de FFT e seus piores casos de erro de 
amplitude 
3.0 METODOLOGIA 
Sinal de EEG 
O sistema utiliza dois sinais de EEG bipolares, Fpz-Cz e Pz-Oz gravados 
em arquivo. 
Sistema de leitura dos arquivos ASCII 
Para que a leitura do arquivo seja realizada de forma automática é 
necessário primeiro informar a localização padrão do arquivo. 
Em seguida, é necessário fazer uma transposição dos dados do arquivo, 
já que os dados em ASCII recebidos são naturalmente dispostos em linha e, 
para que o software de instrumentação virtual consiga gerar um vetor a partir 
deles é preciso que se transponha os dados para coluna. 
Retorno ao valor original de amplitude em uV 
Quando o arquivo foi gerado foram realizadas alterações propositais nos 
dados, relatadas no cabeçalho do mesmo, portanto, para o uso da amplitude 
19 
 
 
 
dos sinais dos arquivos é necessário realizar algumas operações básicas de 
matemática sobre o vetor de dados. 
 
Construção das formas de onda dos sinais EEG 
A partir dos vetores de dados de amplitude e da taxa de amostragem de 
quando os sinais de EEG foram adquiridos é possível recriar as formas de 
onda. 
Obtenção das ondas cerebrais 
Sobre o sinal Pz-Oz foi utilizado um filtro de passa banda com freqüência 
de corte mínima de 8 Hz e máxima de 13 Hz para obter o sinal da onda alfa no 
domínio do tempo. 
Assim como, sobre o sinal de Fpz-Cz foram utilizados filtros de passa 
banda com freqüências de corte mínimas e máximas, respectivamente, de 13 
Hz e 30 Hz para obter o sinal da onda beta no domínio do tempo, de 4 Hz e 8 
Hz para onda teta e de 0,5 a 4 Hz para onda delta. 
Análise dos sinais de EEG para cada época 
Utilizando-se de um For loop que tem o número de iterações igual ao 
número de épocas dos sinais, uma análise sobre cada época é feita em uma 
subfunção (subVI) chamada FFT_waves. 
FFT dos sinais de EEG para cada época 
Dentro da VI FFT_waves, sobre o sinal de EEG, é realizada uma FFT de 
pico com janela Flat Top, já que essa janel apresenta menor erro com relação à 
amplitude. 
Obtenção da porcentagem de ondas cerebrais para cad a época 
Um For loop com número de iterações igual ao tamanho da banda de 
freqüências total da FFT é usado para que se realize a soma de todos os 
valores de amplitude do espectro e também a soma dos valores de amplitude 
para cada onda cerebral. 
20 
 
 
 
Fora do For loop, a soma dos valores de amplitudes de cada onda 
cerebral é dividida pela soma de todos os valores de amplitude do espectro e, 
em seguida, multiplicado por 100. 
Obtendo-se, assim, a porcentagem de cada onda cerebral para cada 
época. 
4.0 DESENVOLVIMENTO 
Introdução 
O software de Instrumentação virtual escolhido para implementação 
sistema de processamento foi o LabVIEW, devido às suas vantagens com 
relação aos concorrentes e a grande adesão da comunidade acadêmica. 
Para transformar o sinal de EEG do domínio do tempo para a freqüência e 
assim conseguir obter, a partir das faixas de freqüência, as ondas cerebrais, o 
algoritmo mais apropriado é o FFT. O LabVIEW possui um bloco de função 
pronto do tipo Cooley-Tukey com características de radix que foi usado no 
desenvolvimento do sistema. 
Diagrama de blocos 
 
Figura 10 - Diagrama de blocos do desenvolvimento do sistema 
21 
 
 
 
Sinal de EEG 
O sistema utiliza dois sinais de EEG bipolares, Fpz-Cz e Pz-Oz32, obtidos 
entre homens e mulheres caucasianas, saudáveis, de 21 a 35 anos, sem uso 
de nenhuma medicação, em um ambulatório no ano de 1989, usando um 
gravador modificado de fita cassete33. A figura 11 representa a localização das 
posições Fpz-Cz e Pz-Oz sobre a cabeça do indíviduo. 
As gravações possuem taxa de amostragem de 100 Hz e têm duração de 
24 horas, contudo somente 8 horas e meia, das 22 horas do dia 25 de Abril às 
6 e meia do dia 26 de Abril, referentes ao período de sono do indivíduo, foram 
utilizadas neste trabalho. 
 
Figura 11 - Localização do pontos Fpz-Cz e Pz-Oz, sinais bipolares, sobre 
a cabeça de um indivíduo36 
Ambas as gravações dos sinais provêm do banco de sinais PhysioBank. 
PhysioBank é um grande e crescente banco de gravações digitais de 
sinais fisiológicos de qualidade para uso da comunidade de pesquisa 
biomédica. 
22 
 
 
 
São mais de 700 GB de dados que são gratuitamente disponibilizados. 
Os arquivos de dados do banco estão no formato EDF (European Data 
Format), que, desde 1992, é o padrão de facto para gravações de EEG e PSG 
em equipamentos comerciais e projetos de pesquisa34. 
Cadwell Laboratories e Embla, duas grandes fabricantes de máquinas de 
PSG e gravadores de EEG, usam o formato EDF. 
De forma a facilitar o uso dos arquivos no software LabVIEW, os mesmos 
foram convertidos para o formato ASCII. 
Um programa gratuito conversor de EDF para ASCII foi usado, gerando 
dois arquivos, Fpz_Cz.ascii e Pz_Oz.ascii. 
Doroshenkov e Konyshev35, em um estudo semelhante, usaram o sinal 
Pz-Oz para obtenção das porcentagens das ondas alfa e Fpz-Cz, para as 
restantes. Isso é explicado pelo fato de que ondas alfa são melhor visualizadas 
sobre o córtex occipital. 
Este trabalho fez uso da mesma estratégia, para processamento e análise 
das ondas alfa foi utilizado o sinal bipolar Pz-Oz do EEG e para o restante das 
ondas, o sinal bipolar Fpz-Cz. 
Sistema de leitura dos arquivos ASCII 
O sistema de leitura dos arquivos ASCII é representado pela figura 12. 
 
Figura 12 – Sistema de leitura de arquivos ASCII 
23 
 
 
 
A localização padrão do arquivo foi justamente a mesma na qual se 
encontra a VI. 
Para isso utilizou-se o bloco “Current VIs Path”, representada pela figura 
13, que retorna o endereço da VI. 
 
Figura 13 – Bloco Current VIs Path 
Entretanto como o bloco retorna o endereço completo, inclusive contendo 
o nome da VI, é necessário realizar um trabalho em da variável do tipo Path. 
A variável do tipo Path é convertida para String pelo bloco “Path to String” 
e o resultado é a entrada para o bloco “Search and replace string”, ambos os 
blocos são representados, respectivamente pelas figuras 14 e 15. 
A estratégia utilizada neste momento foi de procurar dentro da string de 
localização do arquivo todas as strings “\” e retornar a posição da última 
encontrada a partir do bloco “Search and replace string”. 
 
Figura 14 - bloco Path to String 
 
Figura 15 - bloco Search and replace string 
De posse da posição da última string “\” encontrada, o bloco “String 
Subset”, representado pela figura 16, é utilizado para retirar o nome da VI da 
localização, ou seja, o resultado da operação retorna a pasta atual da VI. 
 
Figura 16 - bloco String Subset 
A string que representa a pasta atual da VI e a string contendo o nome do 
arquivo ASCII são concatenadas usando o bloco “Concatenate Strings”, 
representado pela figura 17. Em seguida, o resultado da concatenação é 
24 
 
 
 
convertido para tipo de variável Path pelo bloco “String to Path”, representado 
pela figura 18. 
 
Figura 17 - bloco "Concatenate Strings" 
 
Figura 18 - bloco "String to Path" 
O arquivo ASCII é lido pelo bloco “Read From Spreadsheet File”, 
representado pela figura 19. Para que se faça a leitura correta do arquivo, 
gerando um vetor de saída com os valores do sinal de EEG, necessita-se de 5 
entradas. 
 
Figura 19 - bloco "Read From Spreadsheet File" 
A duração do sinal de EEG contido no arquivo ASCII é de 24 horas, 
contudo, somente 8 horas e meia, relativas ao período de sono do indivíduo, 
serão analisadas. 
Portanto,uma entrada será o Ínicio do sinal que, após ser multiplicado por 
3000, vai para entrada “start of read offset” do bloco e outra será Épocas que 
define o número de épocas relativas à duração total do sinal. Essa após ser 
multiplicada por 3000 entra na entrada “number of rows” do bloco. 
Os dois valores de épocas são multiplicados por 3000 porque a taxa de 
amostragem das gravações foi de 100 Hz ou 100 amostras a cada segundo, 
então, em uma época, de 30 segundos, tem-se 3000 amostras de sinal. 
O período do sono foi das 22h às 6h30, portanto, a entrada Ínicio ficou em 
860 e a entrada Épocas, em 1020 – que é o mesmo que 510 min ou 8 horas e 
meia. 
25 
 
 
 
Além das duas entradas do bloco ainda havia a entrada “file path” em que 
foi inserida a variável do tipo Path desenvolvido anteriormente contendo a 
exata localização do arquivo do exame. 
As duas outras entradas são “transpose” e a escolha do tipo de dados do 
vetor de saída, escolhendo pela lista. 
O tipo de dados de saída é deixado em “double” para que os dados do 
sinal de EEG sejam do tipo flutuante. 
E o tranpose é deixado como “true” para que dentro do arquivo ASCII os 
dados que estão no formato de linha sejam transpostos em coluna. 
Com isso a saída dos dados do sinal de EEG é gerada em “first row”. 
Todo o sistema é realizado duas vezes, uma vez para o arquivo 
Fpz_Oz.ascii e outra, para o arquivo Pz_Cz.ascii. 
Em seguida, é necessário fazer uma transposição dos dados do arquivo, 
já que os dados em ASCII recebidos são naturalmente dispostos em linha e, 
para que o LabVIEW consiga gerar um vetor a partir deles é preciso que se 
transponha os dados para coluna. 
Retorno ao valor original de amplitude em uV 
Para retornar ao valor original de amplitude foi utilizada a fórmula 
presente no cabeçalho de cada um dos arquivos. A representação de todas as 
etapas para retornar ao valor original de amplitude está na figura 20. 
 
Figura 20 - Representação do retorno ao valor original de amplitude 
26 
 
 
 
Para o sinal de Pz-Oz, cada elemento do vetor entra no For loop por auto-
indexing e esse elemento é somado ao valor constante de 32768, em seguida 
é multiplicado pelo valor constante de 0,006134126802472 e, por último, é 
subtraído do valor constante de 200. 
O For loop é executado N vezes e N é o número de elementos do vetor 
de sinal de EEG. O bloco “Array Size”, representado pela figura 21, retorna o 
tamanho – número de elementos – de um vetor. 
 
Figura 21 - bloco Array Size 
O resultado sai do For loop por auto-indexing, também, ou seja, um vetor 
de saída é gerado. 
O mesmo procedimento ocorre para o sinal de Fpz-Cz, contudo a fórmula 
difere na multiplicação – agora o valor constante é 0,006363012130922 – e na 
subtração – 208. 
Ambos os vetores de saída contém os dados do sinal de EEG em uV 
reais. 
Construção das formas de onda dos sinais EEG 
A partir dos vetores de dados de amplitude e da taxa de amostragem de 
quando os sinais de EEG foram adquiridos é possível recriar as formas de 
onda com o bloco “Build Waveform”, representado na figura 22, juntamente 
com a entrada de taxa de amostragem e os sinais de EEG. 
27 
 
 
 
 
Figura 22 - bloco "Build Waveform", sinais de EEG e taxa de amostragem 
No bloco “Build Waveform” há duas entradas utilizadas, Y e dt. Em Y, o 
sinal de EEG é ligado e em dt, que representa o intervalo de tempo entre 
amostras, a taxa de amostragem do sinal. 
Obtenção das ondas cerebrais 
Sobre o sinal Pz-Oz foi utilizado um filtro de passa banda com freqüência 
de corte mínima de 8 Hz e máxima de 13 Hz para obter o sinal da onda alfa no 
domínio do tempo. 
Para uso do bloco “Filter”, os blocos “Convert to Dynamic Data” e “Convert 
from Dynamic Data” são necessários, respectivamente, na entrada do bloco e 
na saída do bloco. 
As variáveis do tipo Dynamic Data, podem ser convertidas de e para 
diversos outros tipos de variáveis. 
Elas são usadas nos blocos na específica seção Express do LabVIEW, 
que contém diversos tipos de funções, como filtros e FFT. 
A código da obtenção da onda alfa é representado pela figura 23. 
28 
 
 
 
 
Figura 23 - Obtenção da onda alfa 
Além disso, dentro do bloco “Filter” o filtro foi deixado com configurações 
default de resposta impulsiva infinita com topologia Butterworth de 3a ordem, 
como representado pela figura 24. 
 
Figura 24 - Configuração para filtro passa banda das ondas alfa 
A última etapa é construir a onda alfa com a taxa de amostragem de 100 
Hz e o sinal filtrado de EEG, colocando as respectivas entradas nas entradas 
do bloco “Build Waveform”. 
A mesma metodologia foi aplicada sobre o sinal de Fpz-Cz em que foram 
utilizados filtros de passa banda com freqüências de corte mínimas e máximas, 
respectivamente, de 13 Hz e 30 Hz para obter o sinal da onda beta no domínio 
do tempo, de 4 Hz e 8 Hz para onda teta e de 0,5 a 4 Hz para onda delta. 
29 
 
 
 
As configurações dos filtros com relação ao tipo de resposta, topologia e 
ordem foram as mesmas do filtro alfa. E, também, forma construídas as onda 
usando a mesma taxa de amostragem e o sinal filtrado de EEG. 
A representação do código da obtenção das ondas beta, teta e delta está 
na figura 25. 
 
Figura 25 - Obtenção das ondas beta, teta e delta 
Análise dos sinais de EEG para cada época 
Utilizando-se de um For loop que tem o número de iterações igual ao 
número de épocas dos sinais, uma análise sobre cada época é feita em uma 
subfunção (subVI) chamada FFT_waves. A figura 26 representa o For loop 
para análise dos sinais de EEG. 
 
Figura 26 - For loop de análise dos sinais de EEG 
Os sinais de EEG entram no loop como variáveis do tipo waveform e vão 
para o bloco “Waveform Subset”, que tem a função de selecionar parte do 
sinal. 
30 
 
 
 
O bloco “Waveform Subset”, representado pela figura 27, tem como 
entradas, além do próprio sinal, o início, em minutos, da parte do sinal a ser 
obtida, a duração, também em minutos e o formato que é de tempo relativo, já 
que as entradas são em tempo e não número de amostras. 
 
Figura 27 - bloco "Waveform Subset" 
O início de cada parte a ser obtida depende da iteração no momento, ou 
seja, depende do número de vezes que já foi executado o For loop, portanto, 
partes diferentes do sinal de EEG serão analisadas a cada iteração. 
A lógica é realizada de modo que sempre se obtenha a análise de 0,5 
minuto do sinal, ou seja, época a época. 
Cada época do EEG é uma entrada para a subfunção FFT_waves, que 
tem quatro saídas, relativas às quatro porcentagens das ondas cerebrais. 
Cada porcentagem sai do For loop por auto-indexing, gerando um vetor 
de porcentagens com um elemento para cada época. 
FFT dos sinais de EEG para cada época 
Dentro da VI FFT_waves, sobre o sinal de EEG, é realizada uma FFT de 
pico com janela Flat Top, já que essa janela apresenta menor erro com relação 
à amplitude, como representado pela figura 28. 
 
Figura 28 - FFT de pico com janela Flat Top 
Tanto o sinal de Pz-Oz, quanto o sinal de Fpz-Cz passam pela FFT em 
cada uma de suas épocas. 
Dentro das configurações do bloco “Spectral Measurements”, configura-se 
como representado pela figura 29, Magnitude (Peak), Linear Result e Flat Top 
Window. 
31 
 
 
 
 
Figura 29 - Configurações do bloco "Spectral Measurements" 
Obtenção da porcentagem de ondas cerebrais para cad a época 
O sistema todo para obter as porcentagens de ondas cerebrais para cada 
época a partir do espectro de freqüência está representado pela figura 30. 
 
Figura 30 - Sistema para obtenção de porcentagens de ondas cerebrais 
para cada época a partir do espectro de freqüência 
Um bloco “Get Waveform Time Array”, representado pela figura 31, é 
usado para que se obtenha todos os valores de freqüência da banda de 
freqüência do espectro da época de um sinal de EEG. 
32 
 
 
 
 
Figura 31 - bloco "Get Waveform Time Array" 
Um bloco “Array Size” obtém o númerode valores de freqüência a partir 
da saída do bloco “Get Waveform Time Array” e descreve o número de 
iterações a serem realizadas no For loop. 
Cada elemento do vetor de freqüências é usado no For loop 
individualmente a cada iteração, usado o recurso de auto-indexing. 
Esse elemento que não está formatado, dentro do For loop, passa por 
dois blocos, “Format Date/Time String” e, em seguida, “Decimal String To 
Number”, representados pela figura 32. 
 
Figura 32 - blocos "Format Date/Time String" e "Decimal String To 
Numbe" 
O primeiro bloco fará com que somente a informação de freqüência, 
dentro do vetor de freqüências seja obtida. 
Contudo, ela estará no formato String e, para resolver isso, o segundo 
transforma a String em Integer – os elementos do vetor são do tipo inteiro. 
Esse valor de freqüência de um elemento do vetor será comparado com 
cada uma das faixas de freqüência que representam cada uma das ondas 
cerebrais já citadas e também com a faixa de freqüência das ondas gama, 
menos conhecidas, acima dos 30 Hz. 
Cada uma das cinco comparações pode tornar “true” um dos cinco case 
structure. 
Todos os cases structures possuem a mesma função: somar os valores 
de magnitude de cada uma das ondas cerebrais – de cada uma das faixas de 
freqüência. 
33 
 
 
 
Para isso eles têm duas entradas e uma saída. 
Uma das entradas é o valor da magnitude de cada uma das freqüências 
do espectro do sinal de EEG. Um bloco “Get Waveform Components” é usado 
para obter o vetor de magnitudes que, ao entrar no For loop, com auto-
indexing, torna-se apenas o elemento correspondente a iteração do momento. 
O bloco “Get Waveform Components” e sua saída entrando no For loop por 
auto-indexing são representados pela figura 33. 
 
Figura 33 - bloco "Get Waveform Components" e sua saída entrando For 
loop por auto-indexing 
A outra entrada do case structure é um registrador que funciona como um 
buffer, que, a cada iteração, realiza a soma de um novo valor de magnitude aos 
valores anteriores de somas de magnitudes das iterações passadas caso o 
case structure esteja na condição “true”, ou mantém o valor da soma das 
magnitudes das últimas iterações, caso o case structure esteja na condição 
“false”. A situação “true” do case structure em conjunto com o registrador é 
representado pela figura 34 e a situação “false”, pela figura 35. 
 
Figura 34 - Situação "true" do case structure de soma de valores de 
magnitude do espectro de cada uma das ondas cerebrais 
 
Figura 35 - Situação "false" do case structure de soma de valores de 
magnitude do espectro de cada uma das ondas cerebrais 
34 
 
 
 
Ao fim das iterações do For loop, os valores de saída de cada um dos 
case structures são somados, gerando soma de todas as magnitudes do 
espectro do sinal de EEG para cada época. 
Além disso, o valor de saída de cada case structure é dividido pela soma 
de todos os valores de saída e multiplicado por 100, o que gera, naturalmente, 
a porcentagem de ondas cerebrais em cada época. 
A soma de todos os valores de saída dos case structures e obtenção da 
porcentagem de ondas cerebrais para cada época estão representadas pela 
figura 36. 
 
Figura 36 - Soma de todos os valores de saída dos case structures e 
obtenção da porcentagem de ondas cerebrais para cada época 
Interface com o usuário 
O sistema contém duas abas: Sinais EEG e % Ondas. 
Na primeira aba, Sinais EEG, representada pela figura 37, é apresentado 
o Total de Épocas e Duração, em minutos, dos sinais, na partes superior. 
35 
 
 
 
Logo abaixo são apresentados as ondas cerebrais delta, teta, alfa e beta, 
em uV. 
E, por último, os sinais de EEG, Fpz-Cz e Pz-Oz, respectivamente, e em 
uV. 
A escala x, única a todos os sinais desta aba é dividida em épocas. 
 
Figura 37 – Aba de Sinais EEG 
Na aba % Ondas, representada pela figura 38, as porcentagens de ondas 
delta, teta, alfa e beta são apresentadas individualmente com relação às 
épocas – em uma escala x que vai de 0 a 50. 
Ainda sob a mesma escala e abaixo das porcentages individuais está a 
junção de todas as porcentagens em um único gráfico. 
36 
 
 
 
Por último, um gráfico exalta a transição de porcentagens das ondas 
cerebrais, época a época. 
 
Figura 38 - aba de % Ondas 
5.0 RESULTADOS OBTIDOS 
Foi realizado um teste, a partir das gravações, com durações de 8 horas e 
meia, de dois sinais de EEG bipolares, Fpz-Cz e Pz-Oz32, obtidos entre 
homens e mulheres caucasianas, saudáveis, de 21 a 35 anos, sem uso de 
nenhuma medicação, em um ambulatório no ano de 1989, usando um gravador 
37 
 
 
 
modificado de fita cassete no período do sono – 22 horas do dia 25 de Abril às 
6 e meia do dia 26 de Abril33. 
Os sinais de EEG foram analisados pelo sistema e geraram os seguintes 
resultados. 
Sinais de EEG (Fpz-Cz e Pz-Oz) e cada uma das ondas cerebrais que os 
compõem, no domínio do tempo para todo o período dos sinais – nesse caso 
para uma duração de 8 horas e meia, 510 minutos, 1020 épocas. 
Na aba de Sinais de EEG pode-se visualizar os sinais de EEG bipolares, 
Fpz-Cz e Pz-Oz, representados na figura 39 
 
Figura 39 - Resultados obtidos dos sinais de EEG bipolares, Fpz-Cz e Pz-
Oz 
Além disso, as ondas cerebrais, alfa, beta, teta e delta também foram 
geradas, a figura 40 representa as ondas cerebrais. 
38 
 
 
 
 
Figura 40 - Resultados obtidos das ondas cerebrais 
Como se pode perceber a partir da comparação da figura 4, dentro da 
revisão bibliográfica de ondas cerebrais, com a figura 40, de resultados obtidos 
das ondas cerebrais, as características visuais das ondas são extremamente 
semelhantes. 
As amplitudes das ondas cerebrais também condizem com a teoria 
relacionada. 
Além disso, é possível visualizar o Total de Épocas, 1020, e a duração em 
minutos, 510, corroborando com as expectativas iniciais de duração do sinal 
com relação a compreender todo o período do sono, sendo factível a análise 
mesmo para uma quantidade de mais de 3 milhões de amostras. 
Porcentagem de cada uma das ondas cerebrais em cada uma das épocas 
do sinal de EEG, de forma contínua, em gráficos separados. 
Na aba de sinais, é possível visualizar as porcentagens de cada uma das 
ondas cerebrais com relação às épocas em estudo. Os resultados são 
representados pela figura 41. 
39 
 
 
 
 
Figura 41 - Resultados obtidos com relação às porcentagens de ondas 
cerebrais para cada uma das épocas em estudo 
Em se tratando de um período de sono, as porcentagens das ondas 
cerebrais para cada uma das épocas correspondem à expectativa teórica. 
As porcentagens de ondas delta, em toda extensão do sinal, se 
encontram entre 10% e 70%, o que pode significar, por exemplo, que o 
indivíduo passa pelos estágios 2, 3 e 4. 
As porcentagens de ondas alfa, em toda extensão do sinal, se encontram 
abaixo de 50%, o que pode significar também que o indivíduo passa pelo 
estágio 1 do sono, além da possibilidade do próprio sono REM. 
40 
 
 
 
Além disso, as porcentagens para as ondas teta e beta foram geradas, 
além do gráfico de porcentagens de todas as ondas, o que pode vir a auxiliar 
bastante em análise de perfis do sono. 
A porcentagem de todas as ondas cerebrais analisando a transição 
dessas entre as épocas. 
O gráfico gerado para análise de transição das porcentagens de ondas, 
época a época, corresponde ao que se esperava, permitindo uma visão focada 
na transição de época mostrando as alterações de porcentagem e o encontro 
de curvas. 
Os resultados obtidos foram satisfatórios dentro da proposta deste 
trabalho e objetivos. 
Um sistema que permite a análise do perfil do sono caracterizando as 
ondas cerebrais em porcentagens ao longo das épocas foi gerado confirmando 
as expectativas. 
6.0 CONCLUSÃO 
O sono é um objeto de estudo recente na medicina, deixando assim uma 
grande lacuna para que se faça uso da inovação nas análises. 
Quando se fala em analisar os sinais docérebro abre-se uma porta ainda 
maior para o uso da criatividade na resolução dos problemas pertinentes ao 
diagnóstico de distúrbios do sono. 
A análise do perfil do sono, caracterizando as porcentagens de ondas 
cerebrais fazendo uso de EEG e instrumentação virtual, permitiu, além de 
mostrar a influência das ondas cerebrais no sono e do sono nas ondas 
cerebrais, uma outra abordagem no sentido da análise de transições de 
porcentagem de ondas cerebrais época a época. 
Uma ferramenta moderna, flexível e em constante evolução, como é a 
instrumentação virtual, permite, naturalmente, que se façam análises cada vez 
mais criteriosas abordando aspectos nunca antes levantados nas análises do 
sono. 
41 
 
 
 
Uma abordagem futura pode ser a inclusão de outras variáveis 
fisiológicas na análise do perfil do sono, além da possibilidade de se realizar as 
aquisições desses sinais via LabVIEW, sendo essa uma das principais funções 
de um instrumento virtual. 
7.0 REFERÊNCIAS BIBLIOGRÁFICAS 
1- Disponível em 
<http://global.respironics.eu/pdf/Sleep_Technician_Guide.pdf>. Acesso em 22 
de Março de 2010. 
2- Berger H (1929): Über das Elektroenkephalogram des Menschen. Arch. 
f. Psychiat. 87: 527-70. 
3-Disponível em 
<http://digital.ni.com/worldwide/brazil.nsf/web/all/45789169BAF412F48625757F
006E9162?OpenDocument&node=35140_pt>. Acesso em 22 de Março de 
2010. 
4-Jasper HH (1958): Report of the Committee on Methods of Clinical 
Examination in Electroencephalography. Electroenceph. Clin. Neurophysiol. 10: 
370-1. 
5-Cooper R, Osselton JW, Shaw JC (1969): EEG Technology, 2nd ed., 
275 pp. Butterworths, London. 
6-Sharbrough F, Chatrian G-E, Lesser RP, Luders H, Nuwer M, Picton TW 
(1991): American Electroencephalographic Society Guidelines for Standard 
Electrode Position Nomenclature. J. Clin. Neurophysiol 8: 200-2. 
7-Blume WT, Kaibara M. Atlas of Pediatric Electroencephalography. 2nd 
ed. Philadelphia: Lippincott-Raven; 1999. 
8-Fisch B, Spehlmann R. Fisch and Spehlmann's EEG Primer. 3rd ed. 
Amsterdam: Elsevier; 1999. 
9-Niedermeyer E, Lopes da Silva F. Electroencephalography: Basic 
Principles, Clinical Applications, and Related Fields. 5th ed. Baltimore: Williams 
& Wilkins; 1993. 
42 
 
 
 
10-Pivik R. T., Harman K. (1995). A Reconceptualization of EEG alpha 
activity as an index of arousal during sleep: all alpha activity is not equal. 
Journal of Sleep Research. 4(3):131-137. 
11-Disponível em <http://www.nhahealth.com/science.htm>. Acesso em 
13 de Julho de 2011. 
12-Disponível em <http://emedicine.medscape.com/article/1139332-
overview#showall>. Acesso em 13 de Julho de 2011. 
13-Guyton, AC; Hall, JE – Tratado de fisiologia médica; Editora 
Guanabara Koogan; nona edição, 685-689, 1997. 
14-Kandel, ER; Schwartz, JH; Jessel, TM – Princípios da neurociência; 
Editora Manole; quarta edição, 936-947, 2003. 
15-Loomis, AL; Harvey, EN; Hobart, GA – Cerebral states during sleep as 
studied by human brain potentials. J. Exp. Psychol., 21:127-144, 1937. 
16-Loomis, AL; Harvey, EN; Hobart, GA – Distribution of disturbance 
patterns in the human electroencephalogram, with special reference to sleep. 
J.Neurophysiol., 1:413-430, 1938. 
17-Rimbaud, L; Passouant, P; Cadilhac, J – Participacion de l’hippocampe 
à la régulation des états de veille et de sommeil. Rev. Neurol., 93:303-308, 
1955. 
18-Moruzzi, G – The sleep-waking system. Ergedhisse der Physiologie. 
64:1-165, 1972. Pearce, PC; Crofts, HS; Muggleton, NG; Scott, EAM – 
Concurrent monitoring of EEG and performance in the common marmoset: a 
methodological approach. Physiol Behav. 63:591-599. 
19-Jouvet, M – The role of monoamines and acetylcholine-containg 
neurons in the regulation of the sleep-waking cycle. Ergedhisse der Physiologie. 
64:166-307, 1972. 
20-Jouvet, M; Michel, F – Corrêlations électromyographique do sommeil 
chez lê chat décortiqué et mésencéfalique chronique. Compt. Rend. Soc. Biol., 
153:422-425, 1959. 
43 
 
 
 
21-Dement, W; Kleitman, N – Cyclic variations in EEG during sleep and 
their relation to eye movements, body motility, and dreaming. 
Electroencephalogr. Clin. Neurophysiol., 9:673-690, 1957. 
22-Aserinsky, E; Kleitman, N – Regularly occurring periods of eye motility 
and concomitant phenomena during sleep. Science, 118:273-274, 1953. 
23-Jouvet, M – Récherces sur les structures nerveuses et les mecanismes 
resonsables des differentes phases du sommeil physiologyque. Arch. Ital. Biol., 
100:125-296, 1962. 
24-Vertes, RP – Brainstem control of the events of REM sleep. Prog. 
Neurobiol., 22:241-288, 1984. 
25-Siegel, JM – Brainstem mechanisms generating REM sleep. Em: 
Kryger, MH; Roth, T; Dement, WC; Ed – Principles and practice of sleep 
medicine. 2° Ed. Philadelphia, W. B. Saunders Compa ny. p. 125-144, 1994. 
26-Steriade, M – Basic mechanisms of sleep generation. Neurology, 42 
(suppl. 6):9-18, 1992. 
27-Rechtschaffen, A; Kales, A – Manual of standardized terminology, 
techniques, and scoring system for sleep stages of human subjects. Brain 
Information Service/Brain Research Institute, UCLA, Los Angeles, 1968. 
28-GUIOT, Marilene. Polissonografia. In : REIMÃO, Rubens. Sono : 
Estudo Abrangente. 2. Ed. São Paulo : Atheneu, 1996. 
29-Silva, R. S. "Introdução ao Estagiamento do Sono Humano". Em: 
Brazilian Journal of Epilepsy and Clinical Neurophysiology p.187-199, 1996. 
30-Disponível em 
<http://www.medindia.net/patients/patientinfo/sleep/sleepdisorder_Efficiency.ht
m>. Acesso em 13 de Julho de 2011. 
31-“LabVIEW - Basics Course Manual”, National Instruments, Maio 2006 
32-B van Sweden, B Kemp, HAC Kamphuisen, EA van der Velde. 
Alternative electrode placement in (automatic) sleep scoring (Fpz-Cz / Pz-Oz 
versus C4-A1 / C3-A2). Sleep 13(3):279-283 (1990). 
44 
 
 
 
33-MS Mourtazaev, B Kemp, AH Zwinderman, HAC Kamphuisen. Age and 
gender affect different characteristics of slow waves in the sleep EEG. Sleep 
18(7):557-564 (1995). 
34-B Kemp, A Värri, AC Rosa, KD Nielsen, J Gade. A simple format for 
exchange of digitized polygraphic recordings. Electroencephalography and 
Clinical Neurophysiology 82:391-393 (1992). 
35-Doroshenkov L. G., Konyshev V. A. Usage of Hidden Markov Models 
for automatic sleep stages classification. Department of Biomedical Systems, 
Moscow State Institute of Electronics Technology (Technical University). 
36-Disponível em < http://www-
psych.nmsu.edu/~jkroger/lab/eegprinciples.htm>. Acesso em 13 de Julho de 
2011. 
37-Cipra B. The FFT: Making Technology Fly. SIAM News, Vol. 26, No. 3, 
May 1993. 
38-Dement, W.C. (1978). Some must watch while some must sleep. New 
York: W. W. Norton.

Mais conteúdos dessa disciplina