Buscar

Princípios de Radioproteção e Blindagem Aula 2

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 47 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 47 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 47 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 1/47
Fundamentos de dosimetria
Profª. Nilséia A. Barbosa
Descrição
Compreensão dos coeficientes de interação que lidam com as grandezas relacionadas às interações da radiação eletromagnética com a matéria
(raios X e gama), e das grandezas radiológicas físicas e suas relações.
Propósito
A maneira que o profissional de radiologia tem para mensurar a interação da radiação com a matéria é por meio das grandezas radiológicas. Essas
grandezas são amplamente utilizadas em diversos campos, como radiodiagnóstico, proteção radiológica, medicina nuclear, dosimetria, cálculos de
blindagem e outros materiais dosimétricos.
Objetivos
Módulo 1
Grandezas radiológicas e coe�cientes mássicos
Analisar as grandezas radiológicas associadas aos coeficientes mássicos.
Módulo 2
Cálculos com as grandezas radiológicas
Aplicar cálculos para resolução de problemas práticos com as grandezas radiológicas estabelecidas pela ICRU.
01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 2/47
Módulo 3
Principais grandezas radiológicas físicas
Analisar as relações das principais grandezas radiológicas físicas.
Na interação dos fótons (raios X e gama) com a matéria, os coeficientes de interação e suas relações com outras grandezas radiométricas e
dosimétricas são essenciais para determinar a penetração desses fótons, bem como a energia transferida ou absorvida ao meio, entre
outros.
A Comissão Internacional de Unidades e Medições de Radiação (ICRU), em seu Relatório 33 (ICRU, 1980), revisado no de 85 (THOMAS, 2012),
recomenda uma extensa lista de grandezas e unidades para uso geral em ciências da radiação. Ênfase especial é dada aos feixes de fótons
que são descritos com três categorias distintas: grandezas radiométricas, coeficientes de interação e grandezas dosimétricas.
As grandezas radiométricas descrevem o feixe de radiação em termos do número e da energia das partículas que constituem o feixe de
radiação.
Os coeficientes de interação lidam com as grandezas relacionadas às interações dos fótons com a matéria (efeito fotoelétrico,
espalhamento Compton, produção de pares etc.).
As grandezas dosimétricas descrevem a quantidade de energia que o feixe de radiação deposita em determinado meio, como ar, água, tecido
etc. Para feixes de fótons, eles são dados como um produto de grandezas radiométricas e coeficientes de interação (WAMBERSIE, 2005).
Todas essas grandezas e as relações entre elas serão descritas neste conteúdo.
AVISO: orientações sobre unidades de medida.
Introdução
01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 3/47
rientações sobre unidades de medida
Em nosso material, unidades de medida e números são escritos juntos (ex.: 25km) por questões de tecnologia e didáticas. No entanto, o Inmetro
estabelece que deve existir um espaço entre o número e a unidade (ex.: 25 km). Logo, os relatórios técnicos e demais materiais escritos por você
devem seguir o padrão internacional de separação dos números e das unidades.
1 - Grandezas radiológicas e coe�cientes mássicos
Ao �nal deste módulo, você analisará as grandezas radiológicas associadas aos coe�cientes mássicos.
Coe�cientes mássicos
Quando fótons (raios X ou gama) passam por um material, há probabilidade de ocorrerem interações. Essas interações podem ser absorção dos
fótons ou espalhamento (mudança da direção dos fótons). Esse processo de absorção e espalhamento é denominado atenuação. Porém, alguns
fótons viajam completamente através do objeto sem interagir com nenhuma das partículas do material.
A probabilidade de os fótons interagirem, principalmente com o efeito fotoelétrico, está relacionada à sua energia. O aumento da energia do fóton
geralmente diminui a probabilidade de interações e, portanto, aumenta a penetração.
Como a probabilidade de uma interação aumenta com a distância percorrida, o número de fótons que atinge um ponto específico dentro do material
diminui exponencialmente com a distância percorrida.
O parâmetro que permite quantificar a quantidade de fótons interagindo em um material por unidade de comprimento deste material é o coeficiente
de atenuação linear, . Esse coeficiente, que depende da energia, hν, do fóton incidente e do número atômico do material atenuador, pode ser
descrito como a probabilidade, por unidade de comprimento, que o fóton sofra uma interação no absorvedor.
Esse coeficiente pode ser determinado empiricamente, utilizando um tipo de montagem experimental que se chama geometria de feixe estreito (boa
geometria). Nesse tipo de experimento, utiliza-se um feixe de radiação gama de uma fonte monoenergética e um detector bem colimado. As
imagens a seguir apresentam de forma esquemática esse tipo de geometria (MAQBOOL, 2017):
nergia do fóton
Normalmente, os fótons de alta energia são mais penetrantes do que os fótons de baixa energia.
μ
01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 4/47
Fonte
X
Colimador
Atenuador
Detector
Radiação
espalhada
Geometria de feixe estreito
Método de medição de fótons transmitidos através de um material de espessura x e coeficiente de atenuação linear .
X
Colimador
Detector
Fonte
Atenuador
Radiação
espalhada
Geometria de feixe largo
Método de medição de fótons transmitidos através de um material de espessura x e coeficiente de atenuação linear .
Exemplo
Quando um fóton de raios gama, na faixa de energia de 0,1 a 1 MeV, interage com um tecido, a interação predominante é o espalhamento Compton.
Durante esse processo, um fóton perde parte de sua energia toda vez que interage com uma célula de tecido. Como resultado, a energia do fóton
diminui continuamente e se reduz a uma faixa de energia em que a absorção fotoelétrica se torna dominante. Nesse estágio, o fóton é absorvido
pelo tecido mediante processo de absorção fotoelétrica.
A imagem a seguir ilustra a probabilidade de interação (coeficiente de atenuação linear) versus energia dos fótons para os três principais efeitos da
interação da radiação eletromagnética com o tecido biológico: efeito fotoelétrico, efeito Compton e produção de pares (MAQBOOL, 2017).
Gráfico: Probabilidade de interação versus energia de fótons para (1) o efeito fotoelétrico, (2) espalhamento de Compton e (3) produção de pares.
Extraído de: KELSEY et al., 2014, p. 65.
Coe�ciente total de atenuação linear : expressão matemática
Quando um fóton passa por um material atenuador, a probabilidade de ocorrer uma interação depende de sua energia e da composição e espessura
do atenuador (MA et al., 2001). Quanto mais espesso o material do atenuador, maior a probabilidade de ocorrer uma interação e menor a
intensidade do sinal no detector.
Considere um feixe incidente de fótons de intensidade (número de fótons por segundo). Esse feixe é direcionado para um atenuador de
espessura dx. Suponha, por enquanto, que o atenuador consista em um único elemento de número atômico Z e que o feixe seja monoenergético,
μ
μ
(μ)
I0
01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 5/47
com energia E. Um detector de fótons registra a intensidade do feixe transmitido. Apenas os fótons que passam pelo atenuador sem interação são
detectados. Para um atenuador fino, verifica-se que a diminuição fracionária na intensidade do feixe está relacionada à espessura do absorvedor
pela seguinte relação:
O sinal menos indica que a intensidade do feixe diminui com o aumento da espessura do atenuador, ou seja, a intensidade I do feixe emergente está
associada à intensidade do feixe incidente, pela relação:
Em que é a probabilidade de o feixe sofrer atenuação devido a eventos de espalhamento Compton, absorção fotoelétrica ou formação de pares,
sendo denominado de Coeficientede Atenuação Linear Total, expresso em e x a espessura do atenuador, expresso em [m,
cm ou mm].
Observe a imagem a seguir. Ela ilustra o processo de atenuação para um feixe de fótons de intensidade .
Gráfico: Atenuação de um feixe de fótons por um material de espessura x.
Elaborada por: Nilséia A. Barbosa.
A equação é válida apenas para geometria de feixe estreito quando um feixe colimado de radiação é
usado.
A intensidade I do feixe também pode ser substituída pelo número de fótons N no feixe, conforme equação abaixo:
O coeficiente de atenuação linear representa a absortividade do material atenuante. A quantidade aumenta linearmente com densidade do
atenuador .
Dica
Esse valor pode ser usado para calcular valores como a intensidade da energia transmitida por meio de um material atenuante, a intensidade do
feixe incidente ou a espessura do material. Também pode ser usado para identificar o material se os valores mencionados já forem conhecidos.
Para visualizar na prática os conceitos abordados, acompanhe a demonstração adiante.
Demonstração
− dII ≈ μ. dx
I0
I = I0e−μx
μ
[m−1,  cm−1,  mm−1]
I0
I/I0
In
te
ns
id
ad
e 
re
la
tiv
a
Espessura x
e-µx
I = I0e−μx
N = N0e
−μx
μ μ
ρ
01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 6/47
Os fótons de alta energia (raios X ou gama), ao interagirem com uma blindagem, diminuem por unidade de espessura da blindagem, sendo I a
intensidade da radiação que interage. Esse conceito pode ser exemplificado pela seguinte expressão:
Resolvendo essa expressão por meio de técnicas de cálculo diferencial, mostre que a solução da expressão é: é 
A seguir, acompanhe o passo a passo necessário para alcançar tal solução:
Intensidade transmitida
Dando continuidade a demonstração, no vídeo a seguir a especialista Nilséia Barbosa ensinará a resolver equações relacionadas ao coeficiente total
de atenuação linear.
Teoria na prática
Em um exame de diagnóstico, um feixe com fótons e uma energia média de 50keV atravessa uma região do corpo do paciente composta por
gordura e osso, conforme mostra a imagem a seguir.
dI/dx = −μI
dI
dx
= −μI I = I0e
−μx
Passo 1
Primeiramente, pode-se
reescrever a expressão
, da
seguinte maneira:
dI/dx = −μI(1)
dI/I = −μdx
Passo 2
Integrando ambos os lados da
expressão reescrita, temos:
∫ II0 dI/I = − ∫
x
0 μdx
Passo 3
Como (coeficiente de
atenuação linear) é uma
constante, a expressão
anterior pode ser rescrita
como: 
μ
∫ II0 dI/I = −μ ∫
x
0 dx
Passo 4
Resolvendo a expressão
 e
aplicando os limites de
integração, a equação se
resulta em:
∫ II0 dI/I = −μ ∫
x
0 dx
ln (I/I0) = −μx ∣

_black
1010
01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 7/47
Determine o número de fótons do feixe após atravessar essa região.
Dados: o coeficiente de atenuação do osso e o coeficiente de atenuação da gordura para a energia média em
questão.
Coe�ciente atenuação em massa 
O coeficiente de atenuação linear de um material para determinado tipo de interação varia com a energia da radiação, mas depende também da
densidade, ou seja, para um mesmo material, o coeficiente de atenuação vai depender do estado físico daquele material.
Exemplo
Considere a água como exemplo. O coeficiente de atenuação linear para a água no estado gasoso (vapor) é muito menor do que para a água no
estado sólido (gelo), porque as moléculas no estado de vapor estão mais espalhadas (menor agregação molecular), logo, a chance de um fóton
encontrar uma molécula de água é menor.
Para evitar esta dificuldade, costuma-se tabelar os valores dos coeficientes de atenuação divididos pela densidade do material, tornando-os
independentes de sua fase. Portanto, o coeficiente de atenuação em massa se torna mais útil.
O coeficiente de atenuação, assim tabelado, tem a denominação de Coeficiente Mássico de Atenuação ou
Coeficiente de Atenuação em Massa (TAUHATA, 2013).
Para obter o coeficiente de atenuação linear em massa de um material absorvente para fótons, o coeficiente de atenuação linear, , é dividido
pela densidade, 
 é então definido como a razão de dN/N sobre , em que dN/N é a fração de fótons que sofre interações ao percorrer uma distância dx em
um absorvedor de densidade de massa , escrita pela seguinte expressão:
Como a unidade de é [ ] ou no SI, a unidade do é: ou no SI.
Mais adiante observaremos uma imagem que exemplifica as diferenças entre os coeficientes lineares em massa para o osso e a água, em função
da energia do fóton. É nítida a diferença entre ambos para o intervalo de energias de aproximadamente de 2,0 keV a 0,1 MeV, em que predomina o
efeito fotoelétrico. Materiais mais densos, como o osso, absorvem mais fótons, apresentando valores altos de atenuação.
Todavia, para faixas de energias maiores que 0,1 MeV, em que predomina o espalhamento Compton, os coeficientes são muito similares. Isso se
explica pelo fato de que o espalhamento Compton envolve elétrons essencialmente livres no tecido absorvedor, independendo do número atômico.
Se a energia de um feixe de fótons situa-se na região onde o espalhamento Compton predomina, ou seja, da ordem de MeV, a absorção da energia
pelos tecidos ocorrerá de maneira semelhante, diferindo pouco, apenas devido à densidade mássica dos tecidos.
Osso
Gordura
2 cm
3 cm
= 0, 346 cm−1 0, 224 cm−1
Mostrar solução
(μ/ρ)
(μ/ρ)
(μ/ρ) μ
ρ [g/cm3]. ∣
(μ/ρ) ρdx
ρ
μ
ρ =
1
ρN
dN
dx
μ cm−1 [m−1] μ/ρ [cm2/g] [m2/kg]
01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 8/47
Efeitos mais importantes ocorrem em regiões de interface entre tecidos com elevadas diferenças nas densidades mássica e eletrônicas, em que
uma região de desequilíbrio eletrônico existe e a absorção da energia devido aos elétrons espalhados na primeira interação e elétrons secundários é
alterada. Observe:
Gráfico: Coeficiente de atenuação linear em massa para o osso e água, em função da energia do fóton.
Extraído de: NIST, adapatado por: Nilséia A. Barbosa.
Intensidade transmitida
Você sabe resolver equações radiológicas com a utilização dos coeficientes e log neperiano? É exatamente isso que a especialista Nilséia Barbosa
abordará no vídeo a seguir.
Teoria na prática
O coeficiente de atenuação em massa de raios X com energia de no chumbo é .
Encontre a espessura do tecido, cuja densidade é que reduzirá a intensidade da radiação em um fator 10.
Coe�ciente de transferência de energia em massa, 
O coeficiente de transferência de energia em massa desempenha um papel muito importante na dosimetria de radiação de feixes de fótons
(raios X ou gama), uma vez que essa grandeza é responsável pela obtenção da dose absorvida no meio.
Para aplicações de dosimetria, frequentemente estamos interessados na:
(μ/ρ)

_black
2, 5MeV 0, 0042m2/kg
11.300 kg/m3
Mostrar solução
(μtr/ρ)
(μtr/ρ)
01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 9/47
A energia total transferida pela interação com fótons é representada pela soma das energias cinéticas transferidas para o meio por todos os
processos envolvidos. Em radiologia, os possíveis processos para ocorrência da transferência da energia cinética para o meio são dados pelas
transferências de energia no efeito fotoelétrico , pelo espalhamento Compton e na produção de pares .
Matematicamente, o coeficiente de transferência de energia em massa , pode ser expresso pela seguinte soma:
O coeficiente de atenuação linear total está relacionado com o coeficiente de transferência de energia em massa por meio de seus
componentes:
Em que:
É a fração emitida pela radiação característica no processo de efeito fotoelétrico ( é a energia média emitida como radiação de fluorescência por
fóton absorvido, e hv é a energia do fóton incidente).
É a fração de energia do efeitoCompton que é efetivamente transferida, isto é, que não é levada pelo fóton espalhado.
É a fração que resta no efeito de formação de pares, subtraindo-se a energia dos dois fótons de aniquilação e é a energia do fóton incidente.
A unidade SI de coeficiente de transferência de energia de massa
é e a unidade tradicional, ainda em uso, é
, em que
Quantidade de energia transferida para o meio absorvedor 
Quantidade de energia transferida absorvida na blindagem 
(Etr)fotoe  (Etr)Compton  (Etr)pp
(μtr/ρ)
μtr
ρ
= ( τ
ρ
)
fotoe 
+ ( σ
ρ
)
Compton 
+ ( k
ρ
)
pp
(μ/ρ)
μtr
ρ
= ( τ
ρ
) [1 − δ
hn
] + ( σ
ρ
) + ( k
ρ
) [1 − 2mc2
hn
]
δ/hv
δ
σ/ρ
κ/ρ. (1 − 2mc2/hv)
hv
( μtrρ )
[m2/kg];
[cm2/g]
01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 10/47
 ou 
.
Coe�ciente de absorção de energia em massa 
A energia transferida dos fótons para a matéria, sob a forma de energia cinética de partículas carregadas, não é necessariamente toda absorvida.
Parte da energia cinética inicial das partículas carregadas convertida em fótons bremsstrahlung (radiação de freamento) é excluída da energia
absorvida.
Essa fração média de energia convertida novamente em energia de fótons pela radiação de freamento é denominada por g.
Logo, o coeficiente de absorção de energia em massa , de um material absorvedor de fótons, é o produto do coeficiente de transferência de
energia em massa por . Ou seja:
A unidade SI do coeficiente de absorção de energia de massa , é ; a unidade tradicional, ainda em uso, é [ ].
Em que ou 
Essa fração g de energia pode ser de um valor apreciável para interação de fótons de altas energias em material de número atômico elevado, mas
normalmente é muito pequena para material biológico.
Confira na tabela a seguir as diferenças entre os coeficientes para água e chumbo:
Energia do fóton (MeV) Água Chumbo
0,01 5,33 4,95 4,95 131,0 126,0
0,10 0,171 0,0255 0,0255 5,55 2,16
1,0 0,0708 0,0311 0,0310 0,0710 0,0389
10,0 0,0222 0,0163 0,0157 0,0497 0,0418
100 0,0173 0,0167 0,0122 0,0931 0,0918
Tabela: Coeficientes: atenuação em massa, transferência de energia em massa e de absorção de energia de massa para água e chumbo, em ( ).
Extraída de: Nikjoo et al, 2012, adaptada por: Nilséia Barbosa e Asafe Ferreira.
Resumidamente, podemos dizer que:
Água
Para energias menores que 10 MeV, é possível observar que os fótons bremsstrahlung para água são insignificantes.
[1 m2/kg] = [10 cm2/g] [1 cm2/g] = [0, 1 m2/kg]
(μen/ρ)
(μen/ρ)
(μtr/ρ) (1 − g)
μen
ρ
= μtr
ρ
(1 − g)
(μen/ρ) [m2/kg] cm2/g
[1 m2/kg] = [10 cm2/g] [1 cm2/g] = [0, 1 m2/kg]
μ/ρ
μtr
ρ
μen
ρ μ/ρ
μtr
ρ
cm2/g

01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 11/47
Chumbo
Para o chumbo, as diferenças entre os coeficientes de transferência de energia em massa e os coeficientes de absorção de energia em massa
podem ser explicadas pela emissão de fótons bremsstrahlung.
Recomendação
Nas estimativas da dose absorvida nos materiais e tecidos, deve-se utilizar o coeficiente de absorção de energia e não o coeficiente de atenuação
total.
Tabelas e gráficos do coeficiente de atenuação linear em massa e coeficiente de absorção de energia em massa para fótons são
apresentados para todos os elementos a 92 e para 48 compostos e misturas de interesse radiológico. As tabelas cobrem as energias dos
fótons (raios X e gama e bremsstrahlung) de a .
Os valores são retirados do banco de dados de interação de fótons no National Institute of Standards and Technology (NIST), e os valores
 são baseados nos cálculos de Seltzer. (NIST, 2021).
Coe�cientes e suas relações com a dose
No vídeo a seguir, a especialista Nilséia Barbosa diferenciará os coeficientes (total, absorção e transferência) utilizando exemplos.
Mão na massa
(μ/ρ) (μen/ρ)
Z = 1
1keV 20MeV
μ/ρ
(μen/ρ)

Questão 1
Em uma unidade de terapia superficial, foram gerados fótons a , filtrados com (Al), com energia efetiva de . O
número de fótons que atravessará uma região composta por de osso e de músculo é igual a:
Dados: e 
105 80kV 2mm 40, 6KeV
1, 0cm 3, 0cm
μ(músculo) = 0, 28  cm−1 μ(osso) = 0, 95 cm−1
A 1, 18 × 104
01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 12/47
Parabéns! A alternativa E está correta.
undefined
Parabéns! A alternativa C está correta.
undefined
B 1, 67 × 103
C 6, 00 × 104
D 6, 93 × 10
E 1, 67 × 104
Questão 2
Para fótons de incidindo em chumbo, o coeficiente de transferência de energia em massa é e o coeficiente de
absorção de energia em massa é . A fração de bremsstrahlung é aproximadamente:
10, 0MeV 0, 0418 cm2/g
0, 0325 cm2/g
A 25,2%
B 0,222%
C 22,2%
D 22,3%
E 100%
01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 13/47
Parabéns! A alternativa A está correta.
undefined
Questão 3
O coeficiente de absorção de energia em massa da água para espalhamento Compton para fótons de 0,5 MeV é . A energia
média dos fótons espalhados é de 0,329 MeV. Calcule o coeficiente de transferência de energia de massa para espalhamento Compton para
fótons de .
0, 0329 cm2/g
0, 5MeV
A 0, 05 cm2/g
B 0, 04 cm2/g
C 0, 50 cm2/g
D 0, 03 cm2/g
E 0, 40 cm2/g
Questão 4
O coeficiente de atenuação em massa de raios X com energia de no chumbo é . Encontre a espessura do osso, cuja
densidade é , que reduzirá a intensidade da radiação pela metade.
1, 0MeV 0, 071 cm2/g
1, 85 g/cm3
A 5, 29m
B 5, 29cm
C 5, 29mm
01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 14/47
Parabéns! A alternativa B está correta.
undefined
D 9, 76cm
E 9, 76mm
Questão 5
A imagem a seguir mostra o gráfico com os coeficientes de atenuação mássicos para o osso e para a água, em função da energia do
fóton.
Gráfico: Coeficiente de atenuação linear em massa (μ/ρ) para o osso e água, em função da energia do fóton.
Extraído de: NIST, adapatado por: Nilséia A. Barbosa.
A respeito da dependência dessas grandezas com a composição do meio e com a energia do fóton incidente, é correto afirmar que
(μ/ρ)
A o coeficiente de atenuação em massa do osso é menor que o da água em todo o intervalo de energia do fóton.
B
os coeficientes de atenuação em massa para a água e o osso são numericamente similares em baixas energias, devido à
maior probabilidade de ocorrência do espalhamento Compton.
C
as maiores diferenças entre coeficientes de atenuação em massa para a água e o osso são observadas na faixa de energia
em que o efeito fotoelétrico é mais provável.
D
para energias entre 0,1 e 1 MeV, em que a ocorrência do efeito fotoelétrico é mais provável, os coeficientes de atenuação em
massa para a água e para o osso são similares.
01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 15/47
Parabéns! A alternativa C está correta.
undefined
Parabéns! A alternativa B está correta.
undefined
Teoria na prática
Os coeficientes de transferência de energia em massa e de absorção de energia em massa são 0,0271 e 0,0270 , respectivamente. Calcule a
fração média de energia emitida por bremsstrahlung.
E
as diferenças entre os coeficientes de atenuação em massa para a água e para o osso diminuem para energias maiores que 1
MeV devido à alta probabilidade de ocorrência do efeito fotoelétrico.
Questão 6
As radiações, ao interagirem com a matéria, são atenuadas. O fator de atenuação depende da densidade do material. Em relação aos materiais
a seguir, assinale a alternativa que apresenta o menor coeficiente de atenuação linear para uma energia de 50 KeV.
Dados: ρgelo  = 0, 92 g/cm3, ρar seco  = 0, 0012 g/cm3, ρagua  = 1, 00 g/cm3, ρtecido  = 1, 00 g/cm3, ρosso  = 1, 85 g/cm3.
A Gelo
B Ar seco
C Água líquida
D Tecido mole
E Ossos
_black
cm2/g
01/03/2023,15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 16/47
Aplicações: contrastes na formação das imagens radiográ�cas
A função de qualquer equipamento em radiodiagnóstico é a de detectar características específicas do interior do corpo e transformá-las em
imagens. Se o contraste na imagem for adequado, o objeto será visível. Imagens com contraste muito baixo, em geral, não têm utilidade. O nível de
contraste na imagem médica depende do tipo de objeto e da técnica utilizada.
Na radiografia, por exemplo, os objetos em uma imagem sobressaem-se em relação aos tecidos circundantes somente se houver uma diferença
adequada na densidade , na composição química dos tecidos envolvidos, ou, ainda, se o objeto for suficientemente espesso.
O contraste do objeto é proporcional ao produto entre a densidade e o número atômico. Esse produto é representado pelo coeficiente de atenuação
em massa , ou seja, a massa do objeto por unidade de área da imagem .
Ao atravessar a região do corpo de interesse, o feixe de raios X é atenuado de diferentes maneiras, de acordo com a espessura, a densidade e os
números atômicos daquela região do corpo. Essa atenuação diferenciada é que constitui o chamado contraste do objeto, que será posteriormente
transferido para a imagem a ser visualizada pelo médico que analisa o exame (OKUNO, 2010).
Aplicações na radiologia dos coe�cientes de interação
Neste vídeo, a partir de demonstrações e exemplos que aproximam a teoria da prática, a especialista refletirá sobre a importância dos coeficientes
de interação quando a matéria, como tecido biológico por exemplo, é exposta aos raios X ou gama.
Podcast
Com uma breve explicação, a especialista Nilséia Barbosa demonstrará a relação entre os coeficientes de interação e a qualidade das imagens.
Mostrar solução
(g/cm3)
(μ/ρ) (g/cm2)


01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 17/47
Falta pouco para atingir seus objetivos.
Vamos praticar alguns conceitos?
Parabéns! A alternativa E está correta.
%0A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3Cp%20class%3D'c-
paragraph'%3E%20A%20lei%20que%20descreve%20a%20atenua%C3%A7%C3%A3o%20linear%20%C3%A9%3A%20%24%24%24%20I%3DI_%7B0%7D%
Questão 1
Em um exame de diagnóstico, um feixe com fótons e uma energia média de atravessa uma região do corpo do paciente
composta por tecido e osso, conforme mostra a imagem a seguir. Determine o número de fótons do feixe após atravessar essa região.
Dados: o coeficiente de atenuação do osso é , e o coeficiente de atenuação do tecido é para a
energia média em questão.
1010 0, 05MeV
μosso  = 0, 346 cm
−1 μtecido  = 0, 226 cm
−1
A fótons.2, 03 × 1010
B fótons.2, 3 × 109
C fótons.2, 6 × 108
D fótons.1, 015 × 108
E fótons.2, 03 × 109
01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 18/47
%5Cmu%20x%7D%20%24%24%24%2C%20em%20que%20a%20intensidade%20I%20do%20feixe%20tamb%C3%A9m%20pode%20ser%20substitu%C3%
paragraph%20c-table'%3E%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%24%24N%3DN_%7B0%7D%20e%5E%7B-
%5Cmu%20x%7D%2C%20%5Ctext%20%7B%20em%20que%20%7D%20N_%7B0%7D%3D10%5E%7B10%7D%20%5Ctext%20%7B%20f%C3%B3tons%20%
%5Cmu%20x%7D%5Cright)_%7B%5Ctext%20%7Bosso%20%7D%7D%2B%5Cleft(e%5E%7B-
%5Cmu%20x%7D%5Cright)_%7B%5Ctext%20%7Btecido%20%7D%7D%5Cright%5D%20%5C%0A%0A%20%20%20%20%20%20%20%20%20%20%20%20%
%5Cleft%5B%5Cleft(0%2C346%20%5Cmathrm%7B~cm%7D%5E%7B-1%7D%5Cright)
(2%20%5Cmathrm%7B~cm%7D)%2B%5Cleft(0%2C226%20%5Cmathrm%7B~cm%7D%5E%7B-1%7D%5Cright)
(4%20%5Cmathrm%7B~cm%7D)%5Cright%5D%7D%5Cright)%20%24%24%0A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%
1%2C596%7D%5Cright)%20%24%24%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%0A%0A%20%20%20%20%20%20
1%7D%20%5Ctimes%2010%5E%7B10%7D%3D2%2C03%20%5Ctimes%2010%5E%7B9%7D%20%5Ctext%20%7B%20f%C3%B3tons%20%7D%20%24%24
Parabéns! A alternativa B está correta.
%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3Cp%20class%3D'c-
paragraph'%3E%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20A%20energia%20transferida%20dos%20f%C3%
g)%20%24%24%24.%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3C%2Fp%3E%0A%20%20%20%20%20%20%20%2
paragraph%20c-
table'%3E%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Isolando%20g%20na%20equa%C3%A7%C3%A3o%2
%5Cfrac%7B%5Cleft(%5Cmu_%7Be%20n%7D%20%2F%20%5Crho%5Cright)%7D%7B%5Cleft(%5Cfrac%7B%5Cmu_%7Bt%20r%7D%7D%7B%5Crho%7D%
%5Cfrac%7B0%2C0379%7D%7B0%2C0389%7D%3D0%2C026%20%24%24%24.%20A%20fra%C3%A7%C3%A3o%20de%20%3Ci%3Ebremsstrahlung%3C
Questão 2
Para fótons de 1 MeV incidindo em chumbo, o coeficiente de transferência de energia em massa é e o coeficiente de absorção
de energia em massa é . A fração de bremsstrahlung é aproximadamente:
0, 0389 cm2/g
0, 0379 cm2/g
A 0,025
B 0,026
C 0,25
D 0,26
E 1,00
01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 19/47
2 - Cálculos com as grandezas radiológicas
Ao �nal deste módulo, você aplicará cálculos para resolução de problemas práticos com as grandezas radiológicas estabelecidas
pela ICRU.
Normas da Comissão Internacional de Unidades e Medições de Radiação
Historicamente, medição da ionização produzida pela radiação foi a primeira escolha para quantificar a passagem da radiação pela matéria.
De fato, a grandeza de exposição ou, mais precisamente, a dose de exposição, conforme definida pela Comissão Internacional de Unidades e
Medições de Radiação (ICRU) em 1957, está relacionada à capacidade de um feixe de fótons de ionizar o ar.
Comentário
Nos últimos anos, o uso dessa grandeza foi substituído pelo KERMA, uma grandeza mais geral, recomendada para fins de calibração dos
dosímetros e que veremos mais adiante. No entanto, a grandeza da dose absorvida é a que melhor indica os efeitos da radiação sobre os materiais
ou sobre o ser humano e, portanto, todas as grandezas relacionadas à proteção se baseiam nela (WAMBERSIE, 2005).
O uso de grandezas físicas, radiométricas e dosimétricas são importantes em um amplo campo das aplicações das
radiações ionizantes: em radiodiagnóstico, na proteção radiológica de profissionais e pacientes, em tratamentos
com radiação, entre outros.
Este módulo apresenta e discute as principais grandezas radiométricas e dosimétricas.
Grandezas radiométricas importantes
As definições neste módulo são válidas para todas as radiações ionizantes:
Radiações diretamente ionizantes
Partículas carregadas, tais como: elétrons, pósitrons, prótons etc.
01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 20/47
Radiações indiretamente ionizantes
Como, por exemplo, fótons e nêutrons.
A seguir estão elencadas as unidades de fluência e as unidades de taxa de fluência:
Grandezas dosimétricas importantes
Exposição (X)
Definida como a razão dQ/dm, em que dQ representa o valor absoluto da carga total dos íons de um sinal produzido no ar quando todas as
partículas carregadas (elétrons e pósitrons) liberadas pelos fótons no ar de massa dm são completamente freados no ar.
A unidade SI de exposição (X) é ; no entanto, a antiga unidade de exposição, o Roentgen R, ainda é frequentemente usado e corresponde a:
 ou 
O número de pares de íons formados em um volume de ar com massa de quando expostos aos raios X ou gama, calculado no valor de
 equivale à pares de ions.
Demonstração
Para entender por meio de exemplos, acompanhe as duas demonstrações a seguir:
Demonstração 1
Mostre que
Fluência de partículas ( )∅ 
Taxa de fluência de partículas ( )dϕ/dt 
Fluência de energia ( )ψ 
Taxa de fluência de energia ( )dψ/dt 
X = dQdm
[C/kg]
[1R = 2, 58 × 10−4C/kgar  1C/kg = 3.876R]
(Np) 1kg
1R 1, 6125 × 1015
01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html#21/47
pares de ions.
Sabemos que a carga de um elétron tem o valor de
.
Como
carga total de íons de um mesmo sinal/ carga do elétron, então, para 1R:
A escolha aparentemente arbitrária de
remonta à definição original de um Roentgen (1R) como sendo igual a uma "unidade eletrostática de carga elétrica" (1 e.s.u), de carga coletada em
de ar nas condições de NTP (Condições Normais de Temperatura e Pressão: temperatura padrão de
e pressão padrão de
 ).
Demonstração 2
Mostre que
Uma vez que
e.s.u ou 1 e.s.u
e a densidade de massa do ar nas CNPT é
Np = 1, 6125 × 10
15
1, 6 × 10−19C
Np =
Np = (2, 58 × 10−4C)/ (1, 6 × 10−19C) = 1, 6125 × 1015 pares de ions
1R = 2, 58 × 10−4C/kg
1 cm3
T = 0∘C = 273, 15 K
p = 760 torr = 101, 3kPa––
1R = 1R = 2, 58 × 10−4C/kgaar
1C = 2, 99729 × 109
= 3, 3336 × 10−10C
1, 293 × 10−3 g/cm3
01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 22/47
ou
de ar nas CNPT contém
de ar, obtemos então:
A grandeza exposição (X) é uma medida da capacidade dos fótons de ionizar o ar, e o meio absorvente escolhido tem algumas justificativas:
• É muito mais fácil coletar íons produzidos em gases do que em meio líquido ou sólido.
• O ar pode ser considerado equivalente à água e ao tecido mole, em termos de absorção de energia da radiação, porque os números atômicos
efetivos do ar, da água, do tecido mole e do músculo estriado são, respectivamente, 7,64, 7,42, 7,22 e 7,46, e, de certo modo, resolveria a
pressão dos médicos, que queriam correlacionar exposição à radiação com os efeitos biológicos (OKUNO, 2010).
Além disso, a grandeza exposição é definida apenas para fótons em uma faixa de energia hn relativamente estreita de 1 keV <hv <3 MeV. Não pode
ser usado para nêutrons e feixes de partículas carregadas, e isso se deve a:
Limitações técnicas de detecção de “todas” as cargas do mesmo sinal produzidas, uma vez que seriam necessários equipamentos mais robustos
com garantia de uniformidade de campo elétrico entre os eletrodos que coletam as cargas. Logo, a medição de exposição só é factível em uma
câmara de ionização a ar, a câmara de ar livre (free air).
Atenção!
Vale lembrar que o alcance (distância percorrida por uma partícula carregada em um meio até parar) de elétrons de no ar é de . Esse
elétron pode ser produzido em um tipo de interação com um fóton de com um átomo do ar.
Mão na massa
1 cm3
1, 293 × 10−6 kg
1R = 1e. s ⋅ u/cm3 = [(3, 3336 × 10−10C)/ (1, 293 × 10−6 kg)] = 2.58 × 10−4C/kg
3MeV 1, 26m
3MeV
Questão 1
A razão do somatório das energias cinéticas iniciais (dE) de todas as partículas ionizantes carregadas, liberadas por partículas não carregadas
em um material de massa (dm) é conhecida como
A exposição.
B KERMA.
01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 23/47
Parabéns! A alternativa B está correta.
undefined
Parabéns! A alternativa A está correta.
undefined
C dose.
D dose equivalente.
E fluência.
Questão 2
"Grandeza representada pela expressão dN/dA, em que dN é o número de partículas incidentes sobre uma esfera de secção de área da medida,
em unidades de , e o número de partículas pode corresponder a partículas emitidas, transferidas ou recebidas. Muito utilizada na
medição de nêutrons." Trata-se da
m−2 N
A fluência.
B dose absorvida.
C atividade.
D dose equivalente.
E exposição.
Questão 3
Assinale a alternativa correta:
01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 24/47
Parabéns! A alternativa E está correta.
undefined
A
A dose absorvida por um meio corresponde à energia líquida transferida no meio por unidade de massa, enquanto o KERMA
corresponde à energia depositada no meio por unidade de massa.
B
A dose absorvida por um meio corresponde à energia transferida ao meio por unidade de massa, enquanto o KERMA
corresponde à energia depositada no meio por unidade de massa.
C
A dose absorvida por um meio corresponde à energia líquida transferida ao meio por unidade de massa, enquanto o KERMA
corresponde à energia transferida ao meio por unidade de massa.
D
A dose absorvida por um meio corresponde à energia depositada no meio por unidade de massa, enquanto o KERMA
corresponde à energia líquida transferida ao meio por unidade de massa.
E
A dose absorvida por um meio corresponde à energia média depositada no meio por unidade de massa, enquanto o KERMA
corresponde à energia média transferida ao meio por unidade de massa.
Questão 4
A dose absorvida (D) é uma grandeza física relacionada aos danos biológicos causados pela radiação e é definida como a razão entre a energia
média depositada pela radiação (dE) em um volume elementar de massa dm. Para qual ou quais tipos de radiação a grandeza dose absorvida
pode ser utilizada?
A Qualquer tipo de radiação.
B Para radiações ionizantes de baixas energias.
C Somente para partículas alfa.
01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 25/47
Parabéns! A alternativa A está correta.
undefined
Parabéns! A alternativa A está correta.
undefined
D Somente para raios X e raios gama.
E Somente para partículas beta e elétrons.
Questão 5
Um feixe de raios X produz 6 e.s.u de carga por segundo em de ar. Calcule a exposição, em 1 segundo, nas unidades do SI e ,
respectivamente.
1, 0 g mR
A e 2, 0μC/kg 7, 75mR
B e .20, 0μC/kg 7, 75mR
C e 2μC/kg 77, 5mR
D e 0, 2μC/kg 7, 75mR
E e 2, 0μC/kg 0, 775mR
Questão 6
Uma pessoa de recebe uma dose de radiação de corpo inteiro de (1 ). Calcule a energia absorvida em
Joules.
100 kg 25mrad rad = 10−2 J/kg
A 25 × 10−2
01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 26/47
Parabéns! A alternativa C está correta.
undefined
Teoria na prática
Um feixe de raios X produz 4 e.s.u de carga por segundo em 0,08 g de ar. Qual é a exposição, em 1 segundo para:
a) as unidades do SI;
b) as unidades do mR.
KERMA (K)
KERMA é abreviação para "Energia Cinética Liberada na Matéria" (do inglês: Kinetic Energy Released in Matter) e é dado pela razão sobre dm,
em que é a energia média transferida da radiação indiretamente ionizante (fótons e nêutrons) para partículas carregadas secundárias,
liberadas pelos fótons e nêutrons, em meio absorvedor de massa .
A unidade de KERMA no SI é [J/kg] e a unidade especial é Gray [Gy], com [ ].
A energia cinética transferida para partículas carregadas pode ser gasta de duas maneiras diferentes:
B 2, 5 × 10−2
C 25 × 10−3
D 25 × 10−1
E 25,0
_black
Mostrar solução
dEtr
dEtr
dm
K = dEtr
dm
1Gy = 1J/kg
01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 27/47
KERMA de colisão
É caracterizada pela dissipação local da energia na ionização ou excitação como resultado das interações coulombianas com os elétrons
atômicos no meio.
KERMA de radiação
É determinada pela perda radiativa de energia devido à interação coulombiana de partículas carregadas com os núcleos atômicos do meio. Os
raios X bremsstrahlung produzidos são mais penetrantes e, portanto, depositam sua energia longe do ponto de interação.
O KERMA pode ser expresso, então, como:
Taxa de KERMA
A taxa de KERMA, definida como a razão dK/dt, em que dK é o acréscimo de KERMA no intervalo de tempo dt.
A unidade SI da taxa de KERMA é [J/kg·s] ou [Gy/s].
Dose absorvida (D)
É a grandeza mais importante na dosimetria de radiação, aplicável para radiações direta e indiretamente ionizantes. É definida como a razão
, em que é a energia média transmitida na vizinhança de um ponto de massa dm, em um meio exposto à radiação ionizante.
A unidade de dose absorvida no SI é [J/kg] e a unidade especial é Gray [Gy], com .
A energia transmitida da radiação indiretamente ionizante para o meio é um processo que ocorre em duasetapas. São elas:
Etapa 1
Em primeiro lugar, a energia é transferida para as partículas carregadas primárias (principalmente elétrons). Esse processo é descrito como KERMA.

K = Kcolisão  + Kradiação 
dK
dt =
dEtr/dm
dt
(dĒ/dm) dĒ
D = dĒ
dm
[1Gy = 1J/kg]
01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 28/47
Etapa 2
Na segunda etapa, parte da energia cinética das partículas carregadas (isto é, KERMA) é transferida para o meio por várias interações (ou seja,
excitações atômicas, ionizações etc.) dentro do meio (resultando em dose absorvida), e a energia cinética restante é perdida na forma de perdas
radioativas (ou seja, bremsstrahlung e aniquilação).
Teoria na prática
Qual é a dose absorvida média em uma região de de um órgão do corpo (densidade = ) que absorve de um
campo de radiação?
Taxa de dose absorvida (dD/dt)
Definida como a razão dD/dt, em que dD é o acréscimo da dose absorvida num intervalo de tempo dt.
A unidade SI de taxa de dose absorvida (dD/dt) é ou .
CEMA (C)
CEMA é a sigla para energia convertida por unidade de massa (do inglês: Converted Energy per unit Mass). É análogo ao KERMA, porém, definido
para radiação diretamente ionizante. É uma medida da energia perdida pela radiação diretamente ionizante (ou seja, elétrons, prótons, feixe de íons
pesados etc.), exceto partículas carregadas secundárias para um meio, sem a preocupação com o que acontece após essa transferência.
O CEMA (C) é matematicamente definido pela razão entre , em que é a energia perdida pelas partículas carregadas em um volume de
massa dm:
A unidade de CEMA é joule por quilograma [J / kg]. O nome da unidade de CEMA é Gray [Gy].
Aplicações em radiologia
_black
40 cm3 0, 93 g/cm3 3 × 105MeV
Mostrar solução
dD
dt =
dĒ/dm
dt
[J/kg ⋅ s] [Gy/s]
dEc
dm dEc
C = dEc
dm
01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 29/47
As exposições de pacientes decorrentes de procedimentos radiológicos constituem a maior parte da exposição da população a fontes artificiais de
radiação.
Devido ao risco associado de detrimento da radiação para o paciente, há uma necessidade clara de monitorar e controlar essas exposições e
otimizar o design e o uso do equipamento de imagem de raios X, de modo que a dose do paciente seja reduzida tanto quanto possível, consistente
com a obtenção da qualidade de imagem clínica necessária.
As grandezas dosimétricas usadas em radiologia diagnóstica podem ser divididas em dois grandes grupos:
Grandezas especí�cas de aplicação
São grandezas dosimétricas práticas, que podem ser medidas diretamente e ser adaptadas a situações ou modalidades específicas, o que inclui a
grandeza KERMA no ar.
Grandezas relacionadas ao risco
São as grandezas dosimétricas, que podem ser usadas para estimar o risco ou detrimento de radiação e são, portanto, medições de dose absorvida.
Grandezas radiométricas e dosimétricas mais utilizadas em radiologia
Com a ajuda da especialista Nilséia Barbosa, no vídeo a seguir entenda a importância das grandezas radiológicas amplamente utilizadas na rotina
dos trabalhadores em radiologia, por meio de demonstrações e exemplos que aproximam a teoria da prática.
Podcast
Para concluir os estudos desse módulo, a especialista se dedicará a diferenciar as grandezas radiométricas das dosimétricas.


01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 30/47
Falta pouco para atingir seus objetivos.
Vamos praticar alguns conceitos?
Parabéns! A alternativa A está correta.
%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3Cp%20class%3D'c-paragraph%20c-
table'%3E%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20A%20flu%C3%AAncia%2C%20%24%24%24%20%5CP
2%7D%20%24%24%24.%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20O%20n%C3%BAmero%20de%20part%C
se%20um%20sistema%20conhecido%20como%20banho%20de%20sulfato%20de%20mangan%C3%AAs.%0A%20%20%20%20%20%20%20%20%20%2
Questão 1
"Grandeza representada pela expressão dN/dA, em que dN é o número de partículas incidentes sobre uma esfera de secção de área da medida,
em unidades de , e o número de partículas pode corresponder a partículas emitidas, transferidas ou recebidas. Muito utilizada na
medição de nêutrons." Trata-se da
m−2 N
A fluência de energia.
B dose absorvida.
C atividade.
D dose equivalente.
E exposição.
Questão 2
Em relação às grandezas radiológicas, assinale a alternativa correta:
A Dose absorvida é definida pela relação entre energia absorvida e o volume de material atingido.
01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 31/47
Parabéns! A alternativa C está correta.
%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3Cp%20class%3D'c-paragraph%20c-
table'%3E%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Dose%20absorvida%20%C3%A9%20definida%20com
3 - Principais grandezas radiológicas físicas
Ao �nal deste módulo, você analisará as relações das principais grandezas radiológicas físicas.
Principais grandezas e suas relações
A ICRU desenvolveu e recomendou um conjunto de grandezas e unidades fundamentais, no que tange às radiações ionizantes, que têm sido
amplamente utilizadas por décadas, sendo vitais para o sucesso da troca de informações e comparação de resultados. As grandezas radiométricas
B
KERMA é definido pela soma de todas as cargas produzidas em um volume de massa dm, quando todos os elétrons liberados
pelos fótons nesse volume são completamente freados.
C Exposição é uma grandeza que só pode ser definida para o ar e para fótons X ou gama com energias inferiores a .3MeV
D A fluência é considerada uma grandeza de radioatividade.
E A unidade no SI de Dose absorvida é o joule por quilograma (J/kg), denominada sievert (Sv).
01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 32/47
e dosimétricas, ou seja, aquelas que caracterizam um campo de radiação em um ponto do espaço e as que estão associadas com a energia média e
carga total dos íons transferidos ao meio, foram discutidas anteriormente. Entretanto, várias das grandezas discutidas aqui estão intimamente
relacionadas. Veja um exemplo:
Exemplo
O termo dosimetria pode ser considerado uma referência apenas às determinações da dose absorvida (D), isto é, à energia absorvida por unidade
de massa na vizinhança de um ponto em um meio exposto à radiação ionizante. Mas em seu sentido mais amplo, a dosimetria trata dos processos
que vinculam a energia transferida à matéria com a fluência da radiação.
A relação entre dose absorvida e KERMA de colisão, pode fornecer também uma proporcionalidade adequada entre ambas, desde que haja
equilíbrio eletrônico das partículas carregadas; no entanto, elas podem diferir substancialmente perto dos limites do receptor ou, em geral, quando o
material exposto ou o campo de radiação não é uniforme. Considerações análogas se aplicam a outras grandezas, que serão discutidas nas
próximas seções.
A inter-relação entre as grandezas será referida como igualdade em média, que implica igualdade no caso trivial de completo equilíbrio, ou seja,
de um campo de radiação uniforme em um meio uniforme.
Relação entre �uência de energia e �uência de partículas 
A fluência de energia pode ser calculada a partir da fluência de partícula, usando a seguinte relação:
Em que E é a energia da partícula, e dN o número de partículas com energia E, e o produto dN. E representa a energia total das partículas incidentes.
Uma vez que , a equação anterior pode ser reescrita como:
Relação entre kerma de colisão ( ) e �uência de partículas 
Quando um feixe monoenergético de fótons de energia E interage com um material homogêneo, o coeficiente de absorção de energia em massa
 apresenta um valor único.
Como a fluência, ,é a relação entre o número de partículas ou fótons incidentes dN sobre uma esfera de secção de área dA, o produto dN. E
representa a energia total das partículas incidentes. Isso dividido pela densidade fornece:
Em que é a fluência de energia.
Lembre-se do que foi estudado a respeito das principais grandezas e suas relações e acompanhe o raciocínio utilizado para encontrar o valor de
KERMA no ar, produzido pelo feixe de fótons, no exemplo seguinte.
(ψ) (∅)
ψ = dNdA E
dN
dA
= ∅
ψ = ∅E
Kc  (∅)
(μen/ρ)
(∅)
Kcolisão  = ∅E ( μenρ ) = ψ(
μen
ρ )
ψ
01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 33/47
Teoria na prática
Para um de fótons no ar, a fluência de fótons é de . Qual é o KERMA no ar produzido pelo feixe de fótons?
Dados: .
Relação entre dose absorvida (D) e KERMA (K)
A relação matemática entre KERMA e a dose absorvida para fótons e nêutrons pode ser derivada da relação fluência-KERMA. Como discutido
anteriormente, KERMA é a transferência de energia para partículas carregadas secundárias, e a dose absorvida em um meio é responsável pelo valor
médio da energia absorvida em um volume elementar, ou seja, a diferença entre ambas é que o KERMA depende da energia total transferida,
enquanto a dose absorvida depende da energia média absorvida na região de interação.
Para se estabelecer uma relação entre KERMA e dose absorvida é preciso que haja equilíbrio de partículas carregadas (EPC) ou equilíbrio eletrônico,
que ocorre quando:
Nessas condições, a dose absorvida D é igual ao KERMA de colisão , ou seja:
Relação entre dose absorvida (D) e �uência
_black
1MeV 109 cm−2
μen
ρ =
0,02789 cm2
g
Mostrar solução
A composição atômica do meio é homogênea.
A densidade do meio é homogênea.
Existe um campo uniforme de radiação indiretamente ionizante.
Não existem campos elétricos ou magnéticos não homogêneos.
Kcolisão 
D
EPC
⟺ Kcolisão 
01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 34/47
A dose absorvida (D) em um meio pode ser representada pelo produto da fluência de energia e o coeficiente de absorção de energia , desde
que haja equilíbrio de partículas carregadas (EPC) ou equilíbrio eletrônico, como:
Ainda sobre a relação entre a dose absorvida e a fluência, observe a simulação a seguir e compreenda como alcançar a solução.
Teoria na prática
O coeficiente de absorção de energia em massa do Al para fótons de 80 keV é . Se a fluência for de , qual
será a dose absorvida?
Relação entre exposição (X) e dose absorvida (D) no ar
A dose absorvida no ar é expressa pela razão entre a energia média depositada pela radiação) para cada de massa de ar, representada
por:
Na qual:
W
É a energia média necessária para formar um par de íons no ar seco, que, no caso de a radiação incidente ser constituída de elétrons ou fótons, vale:
Np
Representa o número de pares de íons produzidos no volume de ar cuja massa vale 1kg, que equivale a pares de íons.
Para exemplificar tais conceitos, acompanhe a explicação a seguir.
Demonstração
Mostre que a dose absorvida no ar vale , para X = , da seguinte maneira:
(ψ)
μen
ρ
D
EPC
⟺ ∅E ( μenρ ) = ψ(
μen
ρ )
_black
(μen/ρ) 0, 05511 cm2/g 1 × 10
6 cm−2
Mostrar solução
Dar 1kg
Dar =
WNp
(1kg)ar
= X ⋅ (W/e)ar = 0, 876 ⋅ X
W = 33, 97eV = 33, 97 × 1, 6 × 10−19 J = 54, 352 × 10−19 J
1, 6125 × 1015
Dar 0, 876rad 1R
01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 35/47
Conversão entre grandezas
Agora, a especialista Nilséia Barbosa se dedicará a esclarecer, matematicamente, como equivale a , passando pela energia mínima
necessária para gerar um par de íons no ar.
Primeiramente, como a dose absorvida no ar é dada pela relação:
Dar =
WNp
(1kg)ar
Deve-se substituir e pares de íons na equação, para, então, termos:W = 54, 35210 × 10−19 J Np = 1, 6125 × 1015
Dar =
(54, 35210 × 10−19 J) (1, 6125 × 1015)
(1 kg)ar
= 87, 6426 × 10−4
J
kg
= 8, 764 ×
10−3 J
 kg
 ou 8, 764mGy
Isso significa que uma exposição de no ar equivale a uma deposição de energia de de dose absorvida.
Como 
Portanto, aproximando, podemos escrever que: rad, para X = 
1R 8, 764mGy
1R = 0, 01Gy ↔ 1Gy = 100rad
Dar = 0, 876 1R
Sob condições de equilíbrio eletrônico, a Exposição X, medida no ar, relaciona-se com a Dose Absorvida D no ar pela expressão:
Dar = X ⋅ (W/e)ar = 0, 876.X
Em que é a energia média para formação de um par de íons no ar/carga do elétron , ou seja, para .(W/e)ar = 0, 876rad X = 1R

1R 0, 00876Gy

01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 36/47
Relação entre as grandezas
A especialista ainda resolverá equações visando encontrar o KERMA, o KERMA de colisão e o KERMA radiativo por meio das tabelas dos respectivos
coeficientes.
Teoria na prática
A medição de uma fonte radioativa apresenta uma taxa de exposição de . Qual o valor da taxa de dose em rad e no sistema internacional
de unidades (SI)?
Relação entre KERMA (K) no ar e exposição (X)
O KERMA é definido para radiação indiretamente ionizante e para qualquer meio. A relação entre KERMA de colisão no ar e exposição para fótons
pode ser expressa da seguinte forma:
Atenção!
Essa relação vale mesmo quando não há equilíbrio eletrônico (EPC).
Relação entre dose no ar ( ) e em outro meio ( )
Determinada a dose no ar, , pode-se obter a dose em um meio material qualquer, para a mesma exposição, por meio de um fator de conversão.
Para a mesma condição de irradiação, a relação entre os valores da dose absorvida no material m e no ar pode ser expressa por:
Em que é o coeficiente de absorção de energia em massa do ar ou do material m. Portanto:
_black
23mR/h
Mostrar solução
Kcolisão (Gy) = 0, 00876X(R)
Dar Dm
Dar
Dm
Dar
=
(μen/ρ)m
(μen/ρ)ar
μen
ρ
01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 37/47
Em que o fator f representa a razão dos coeficientes mássicos.
O valor do coeficiente de atenuação em massa varia com a energia do fóton, mas como a exposição é definida apenas para fótons, não há relação
entre a dose e a exposição para outros tipos de radiação.
Essas relações são importantes porque, muitas vezes, a determinação de dose no ar ou de exposição é efetuada com facilidade com uma câmara
de ionização preenchida de ar, obtendo-se relações simples para a dose em outros meios.
Por exemplo, observe as diferenças entre as duas equações:
A equação apresentada exige fluências de energia iguais nos dois meios; ela só pode ser utilizada se as dimensões do meio forem pequenas.
Essa, por sua vez, vale inclusive no interior de um meio extenso irradiado, mas a fluência de energia no local deve ser conhecida, o que é muito
difícil de ocorrer.
nergia no local
Espectro de energias dos fótons.
A tabela a seguir ilustra os valores de f em função da energia do fóton, para água e ar, bem como alguns meios importantes do corpo humano na
dosimetria. A partir de de energia dos fótons, os fatores de f se tornam próximos de 1; o que se pode concluir, em primeira aproximação,
que a dose absorvida para esses meios (tecido e osso) é praticamente igual para água e ar.
Porém, para energias na faixa de imagens radiológicas, o osso chega a absorver em média cinco vezes mais energia por unidade de massa do que o
tecido mole (OKUNO, 2010).
Dm = Dar
(μen/ρ)m
(μen/ρ)ar
= 0, 876 ⋅ X ⋅
(μen/ρ)m
(μen/ρ)ar
Dm(Gy) = 0, 876.X ⋅
(μen/ρ)m
(μen/ρ)ar
= 0, 876.X. f
f =
(μen/ρ)m
(μen/ρ)ar
Dm(Gy) = 0, 876.X ⋅
(μen/ρ)m
(μen/ρ)ar
= 0, 876.X. f

Dm
Dar
=
(μen/ρ)m
(μen/ρ)ar
0, 2MeV
01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 38/47
Energia do fóton (MeV f (água/ar) f (tecido/ar) f (osso/ar)
0,01 1,04 1,05 5,65
0,03 1,01 1,05 6,96
0,05 1,03 1,06 5,70
0,10 1,101,09 1,97
0,20 1,11 1,10 1,12
0,60 1,11 1,10 1,03
1,25 1,11 1,10 1,03
1,50 1,11 1,10 1,03
2,00 1,11 1,10 1,03
4,00 1,10 1,09 1,06
6,00 1,10 1,08 1,09
8,00 1,09 1,07 1,11
10,00 1,08 1,07 1,13
Tabela: Fator f para alguns meios em função da energia do fóton.
Extraído de: NIST, adaptada por: Nilséia A. Barbosa.
Teoria na prática
A radiação gama emitida por uma fonte de Co-60 com atividade é usada para irradiar um tumor na superfície do paciente durante 2 minutos,
posicionando-o a da fonte. A meia-vida física do Co-60 é de 5,26 anos. A energia da radiação gama emitida pelo Co-60 é de . A
exposição (X), para 2 minutos, a uma distância de da fonte foi de .
Considerando o tumor como tecido, calcule a dose absorvida no tumor.
Relação entre taxa de exposição (dx/dt) e atividade da fonte (A)
A Taxa de Exposição pode ser associada à atividade gama de uma fonte pela expressão:
_black
5kCi
100cm 1, 25MeV
100cm 216, 2R
Mostrar solução
01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 39/47
Onde:
Taxa de exposição é inversamente proporcional ao quadrado da distância.
A
Atividade da fonte (em curie).
d
Distância entre fonte e ponto de medição .
Constante de taxa de exposição em . Característica de um radionuclídeo e é função da energia e da abundância dos fótons
emitidos e do coeficiente e absorção de energia em massa do ar.
Essa relação vale para as seguintes condições:
A fonte é suficientemente pequena (puntiforme), de modo que a fluência varie com o inverso do quadrado da distância. Esse fato é conhecido como
lei do inverso do quadrado da distância.
A atenuação na camada de ar intermediária entre a fonte e o ponto de medição é desprezível ou corrigida pelo fator de atenuação.
Somente fótons provenientes da fonte contribuem para o ponto de medição, ou seja, que não haja espalhamento nos materiais circunvizinhos
(TAUHATA, 2013).
A tabela abaixo apresenta valores de para alguns radionuclídeos.
Radionuclídeo Meia-vida Energia do fóton (MeV)
Cs-137 0,33 30 anos 0,6616
Co-60 1,30 5,26 anos 1,173; 1,322
dX
dt
= Γ A
d2
Ẋ
 (em R/h ) 
 (em m ) 
Γ
(R ⋅ m2)/(h.Ci)
Γ
Γ (R ⋅ m2)/(h.Ci)
01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 40/47
Radionuclídeo Meia-vida Energia do fóton (MeV)
Ir-192 0,40 74,2 dias 0,1363 – 1,062
Ra-226 1,07 1.602 anos 0,0465 -2,440
I-125 0,13 60,25 dias 0,03548
Au-198 0,24 2,70 dias 0,4118 -1,088
Ta-182 0,78 115 dias 0,0427- 1,453
Tabela: Valores de para alguns radionuclídeos emissores gama.
Extraido de: ATTIX, adaptada por: Nilséia Barbosa.
Gamão
No vídeo a seguir, a specialista resolverá um cálculo de taxa de exposição a partir da atividade de uma fonte. Veja:
Mão na massa
Γ (R ⋅ m2)/(h.Ci)
Γ

Questão 1
A respeito da taxa de exposição (dX/dt) é correto afirmar que
A diminui com inverso da distância à fonte.
B aumenta com inverso do quadrado da distância à fonte.
01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 41/47
Parabéns! A alternativa D está correta.
undefined
Parabéns! A alternativa B está correta.
undefined
C independe da distância à fonte.
D diminui com inverso do quadrado da distância à fonte.
E diminui linearmente com a distância à fonte.
Questão 2
Uma fonte de Cs-137 está armazenada em um laboratório. A taxa de fluência de fótons emitidos pela fonte no ar é aproximadamente
. Sabendo-se que o fóton emitido possui energia cinética, , a taxa de fluência de energia é de:108 m−2/s E = 0, 662MeV
A .6, 62 × 1013MeV ⋅ m−2/s
B .6, 62 × 1013eV.m−2/s
C .6, 62 × 1014eV.m−2/s
D .6, 62 × 1014MeV ⋅ m−2/s
E .6, 62 × 107eV.m−2/s
Questão 3
Considere as seguintes afirmações a seguir relativas à relação entre grandezas:
01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 42/47
Parabéns! A alternativa A está correta.
undefined
I. A unidade de exposição foi definida como Roentgen (com o símbolo R), sendo a nova unidade no SI o coulomb por quilograma de ar (C/kg), de
modo que é igual a 
II. Uma exposição de no ar equivale a uma deposição de de dose absorvida.
III. Originalmente, a grandeza dose absorvida foi definida em termos da unidade rad (radiation absorbed dose), que foi substituída a partir de
1975 pelo Gray (Gy) no Sistema Internacional, sendo que 
Assinale a alternativa que apresenta a resposta correta:
1C/kg 3.876R.
1mR 8, 76mGy
1Gy = 100rad = 1J/kg;
A Somente a afirmação II é incorreta.
B As afirmações I e III são incorretas.
C As afirmações I e II são incorretas.
D As afirmações II e III são incorretas.
E Somente a afirmação III é incorreta.
Questão 4
A taxa de exposição a de uma fonte radioativa de emissão gama com atividade de , considerando que a constante de taxa de
exposição para fótons com a energia dessa fonte seja de , vale:
1m 10mCi
5R. cm2/mCi ⋅ h−1
A .50R/h
B .1μR/h
C .10mR/h
01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 43/47
Parabéns! A alternativa D está correta.
undefined
Parabéns! A alternativa B está correta.
undefined
D .5 m/h
E .0, 5μR/h
Questão 5
Em que condições a grandeza KERMA é igual à grandeza Dose Absorvida?
A Quando as perdas por bremsstrahlung não são desprezíveis.
B Quando há equilíbrio de partículas carregadas, em número e energia, que entram e saem de uma região ou ponto de interesse.
C Somente para o ar e para qualquer tipo de radiação em qualquer geometria de irradiação.
D Quando consideramos radiações diretamente ionizantes, como partícula beta ou alfa.
E Quando a atenuação da radiação primária deve ser considerada.
Questão 6
Uma fonte pontual emissora de radiação gama, na qual se mede a uma distância de , terá sua intensidade reduzida à metade a
uma distância, em metros, de:
36mR/h 0, 5m
A 0,50
01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 44/47
Parabéns! A alternativa E está correta.
undefined
Teoria na prática
Um tecnólogo entrou em uma sala de irradiação e não percebeu que uma fonte de Cs-137 com atividade de 0,5 Ci estava exposta. Foi estimado que
o tecnólogo permaneceu a da fonte durante 10 minutos. Qual o valor da exposição na entrada da pele do tecnólogo?
Relação entre as grandezas radiológicas
No vídeo a seguir, a especialista Nilséia Barbosa refletirá, a partir de demonstrações e exemplos que aproximam a teoria da prática, sobre a
importância das relações entre as grandezas radiológicas amplamente utilizadas na rotina dos trabalhadores em radiologia.
B 1,50
C 2,20
D 7,10
E 0,71
_black
3 m
Mostrar solução

01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 45/47
Falta pouco para atingir seus objetivos.
Vamos praticar alguns conceitos?
Parabéns! A alternativa B está correta.
%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3Cp%20class%3D'c-
paragraph'%3EA%20rela%C3%A7%C3%A3o%20entre%20dose%20no%20meio%20(tumor)%20e%20ar%20%C3%A9%20dada%20pela%20seguinte%20re
paragraph%20c-
table'%3E%24%24%24%20D_%7Bm%7D(G%20y)%3D0%2C876%20%5Ccdot%20X%20%5Ccdot%20%5Cfrac%7B%5Cleft(%5Cmu_%7Be%20n%7D%20%2
paragraph%20c-
table'%3EA%20rela%C3%A7%C3%A3o%20entre%20exposi%C3%A7%C3%A3o%20e%20atividade%20de%20uma%20fonte%20%C3%A9%20dada%20por
paragraph%20c-
table'%3EVamos%20primeiro%20calcular%20a%20exposi%C3%A7%C3%A3o%3A%20%24%24%24%20%5Cquad%20X%3D0%2C33%20%5Cfrac%7B%5C
paragraph%20c-
table'%3E%24%24%24%20D_%7B%5Ctext%20%7Btumor%20%7D%7D%3D0%2C876%20.%20X%20.%20f%20%24%24%24%20ou%20%24%24%24%200%
Questão 1
Uma fonte de radiação gama de Cs-137 com atividade de é usada para irradiar um tumor na superfície de um paciente durante 4
minutos, posicionando-o a da fonte. A energia média da radiação gama emitida pelo Cs-137 é de . Considere o tumor como tendoa
mesma densidade do tecido. Assinale a alternativa que corresponda corretamente à dose absorvida no tumor pela fonte de Cs-137.
3, 0kCi
1m 660keV
A .6, 4Gy
B .0, 64Gy
C .0, 64mGy
D .64Gy
E .64mGy
Questão 2
Para estabelecer uma relação entre duas grandezas, KERMA e dose absorvida, é necessário que haja equilíbrio das partículas carregadas ou
equilíbrio eletrônico. Esse equilíbrio ocorre quando
01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 46/47
Parabéns! A alternativa D está correta.
%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3Cp%20class%3D'c-
paragraph'%3EA%20densidade%20e%20a%20composi%C3%A7%C3%A3o%20do%20meio%20precisam%20ser%20homog%C3%AAneas%3B%20%C3%
Considerações �nais
Descrevemos as grandezas radiológicas essenciais para cálculos precisos no que tange aos campos de radiações ionizantes e de dosimetria.
Coeficientes de interação, como coeficiente de atenuação em massa, de transferência de energia em massa e de absorção de energia em massa
exemplificam a importância desses parâmetros quando fótons de raios X ou gama interagem com a matéria. Eles fornecem a medição da fração da
intensidade da radiação dispersada ou absorvida pelas estruturas por meio dos diversos tipos de interação e relacionam-se com sua densidade e
seu número atômico.
Discutimos, também, outras grandezas associadas aos campos de radiação, relacionadas às grandezas do sistema de medição tradicional, como
tempo e área, essenciais para definição de grandezas como fluência e taxa de fluência de partículas e de energia foram apresentadas e discutidas.
Por fim, exemplificamos o uso prático das grandezas radiométricas e a relação com as grandezas dosimétricas, levando em conta as condições em
que as medições são realizadas (livre no ar, no paciente ou no simulador) e o meio em que são expressos os valores da grandeza (no ar, na pele, ou
no tecido mole).
A a densidade do meio é heterogênea.
B a composição do meio é heterogênea.
C não existem campos elétricos homogêneos.
D não existem campos magnéticos não homogêneos.
E existe um campo uniforme de radiação diretamente ionizante.
01/03/2023, 15:39 Fundamentos de dosimetria
https://stecine.azureedge.net/repositorio/00212sa/02982/index.html# 47/47
Podcast
Neste podcast, a especialista Nilséia Barbosa demonstrará a relação entre teoria e prática no uso das relações entre as grandezas radiológicas.


Continue navegando