Buscar

MICROSCÓPIO DE TUNELAMENTO POR VARREDURA (STM)-José Felipe Wavrik

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 59 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 59 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 59 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

MICROSCÓPIO DE TUNELAMENTO POR 
VARREDURA (STM)
Disciplina: Métodos Avançados de Caracterização 
Microestrutural
Professor: Oscar Olímpio de Araújo Filho
Aluno: José Felipe André Gomes Wavrik
12-Jan-21
RESUMO
O desenvolvimento das técnicas de microscopia de tunelamento por varredura
(conhecido também por STM, scanning tunneling microscope, sua sigla em inglês) é um
instrumento que permite obter imagens de átomos e moléculas, isto é, imagens a nível
atômico, foi inciado pelos pesquisadores Gerd Binnig e Heinrich Rohrer da IBM em
Zurich em 1978, com intuito de estudar a estrutura e as propriedades elétricas das
camadas de isolantes finas o suficiente para permitir passgem da corrente pelo
tunelamento. Seu desenvolvimento, em 1981, fez com que seus inventores, Binnig e
Rohrer recebessem o Prémio Nobel de Física em 1986. Para um STM, ser considerado
de uma boa resolução tem que apresentar 0,1 nm de resolução lateral e 0,01 nm de
resolução de profundidade. Com esta resolução, átomos individuais dentro dos materiais
são rotineiramente visualizados e manipulados. Um STM pode ser usado não apenas
em ultra-alto vácuo mas também no ar, água e múltiplos outros líquidos ou ambientes
gasosos, e em temperaturas que variam do zero absoluto a algumas centenas de graus
Celsius.
https://pt.wikipedia.org/wiki/Ingl%C3%AAs
https://pt.wikipedia.org/wiki/%C3%81tomo
https://pt.wikipedia.org/wiki/Mol%C3%A9cula
https://pt.wikipedia.org/wiki/Gerd_Binnig
https://pt.wikipedia.org/wiki/Heinrich_Rohrer
https://pt.wikipedia.org/wiki/1981
https://pt.wikipedia.org/wiki/Pr%C3%AAmio_Nobel_de_F%C3%ADsica
https://pt.wikipedia.org/wiki/1986
https://pt.wikipedia.org/wiki/Nan%C3%B3metro
https://pt.wikipedia.org/wiki/Ultra-alto_v%C3%A1cuo
https://pt.wikipedia.org/wiki/Zero_absoluto
https://pt.wikipedia.org/wiki/Grau_Celsius
RESUMO
Graças à invenção do microscópio de tunelamento (STM), passou a ser possível não só
ver mas medir e manipular átomos ou moléculas. A invenção do STM desencadeou o
desenvolvimento de uma grande variedade de microscópicos de varredura por sonda
(SPM) tais como o microscópio de força atômica (AFM), o microscópio de força
magnética (MFM), o microscópio de força eletrostática (EFM), o microscópio ótico de
campo próximo (SNOM), e todos os derivados. O principal componente de um SPM é o
sensor, com o qual consegue-se sondar as amostras e obter as imagens com
magnificações muito altas, de forma tal que podem ser medidas distâncias com
resolução de até 0,1 ângstrom (1Å=10-10 m). Os sensores usados neste tipo de
aparelhos são: para o microscópio de tunelamento, uma ponta metálica de dimensões
quase atômicas que é varrida muito próxima da superfície da amostra para fazer
tunelamento entre ela e a amostra; para o microscópio de força atômica, um sensor de
força em forma de ponta condutora ou isolante e para o SNOM uma fibra ótica.
INTRODUÇÃO
A compreensão da estrutura básica que é composta a matéria, tem se apresentado ao
longo do tempo como um desafio aos estudiosos. A partir do momento em que se
compreende a estrutura básica da matéria, pode-se compreender suas propriedades, e
assim, levar a uma mudança controlada de nosso ambiente.
Os primeiros instrumentos utilizados para elucidar a estrutura atômica foram os
microscópios ópticos, porém esses instrumentos ópticos possuem a limitação do
comprimento de onda da luz visível, dada pelo critério da difração de Rayleigh, ou seja,
ele descobriu que um sistema ótico, seja o olho, sejam as lentes de um microscópio, é
capaz de resolver duas fontes pontuais se os correspondentes diagramas de difração
estão suficientemente separados para serem distinguidos.
INTRODUÇÃO
Estudando os diagramas de duas fontes luminosas Rayleigh concluiu que elas podem
ser resolvidas se o máximo principal (ou central) de uma coincide com o primeiro mínimo
da outra. Isto é equivalente à condição de que a distância entre os centros dos
diagramas deve ser igual ao raio do disco central. Calculando numericamente chega-se
a que só podem ser resolvidos objetos de 200 a 350 nm, ou seja, da metade do
comprimento de onda da luz visível.
As primeiras imagens de átomos foram obtida com o microscópio iônico de campo,
inventado por Erwin Müller. Outro método pelo qual se pode obter imagens de átomos é
através do microscópio eletrônico de varredura(SEM), apenas capaz de trabalhar em
vácuo, pode resolver escalas nanométricas (1 nm = 10-9 m) mas, em geral, com efeitos
destrutivos para a amostra. Além disso, um SEM não é capaz de dar uma boa
informação sobre profundidade.
INTRODUÇÃO
Os mais novos desenvolvimentos nesta área são microscópios de varredura por sonda,
ou SPM (Scanning Probe Microscope) que na realidade são grupos de instrumentos
compostos basicamente de sonda sensora, cerâmicas piezelétricas para posicionar o
objeto amostra e fazer varreduras, circuitos de realimentação para controlar a posição
vertical da sonda e um computador para mover os scanners de varredura, armazenar
dados e os converter em imagens por meio de softwares específicos para esse fim.
Há diversos tipos de microscópios de sonda: o de tunelamento ou STM (Scanning
Tunneling Microscope), o de força ou AFM (Atomic Force Microscope), o de campo
próximo ou SNOM (Scanning Near-Field Optical Microscope), entre outros.
INTRODUÇÃO
O STM foi inventado por Gerd Binnig e Heinrich Rohrer, da IBM de Zurich, em 1981 e foi
o primeiro instrumento capaz de gerar imagens reais de superfícies com resolução
atômica. Em 1986 seus inventores ganharam o Prêmio Nobel de Física.
Depois dos primeiros relatos, vários trabalhos sobre a técnica foram desenvolvidos,
registrando-se imagens atômicas de superfícies de semicondutores, assim como
moléculas adsorvidas quimicamente. Ainda mais, a espectroscopia de tunelamento com
varredura (STS : Scanning Tunneling Spectroscopy, a qual mede a condutância de
tunelamento versus a voltagem de polarização em uma posição específica da ponta,
proporciona informação estrutural eletrônica local da superfície, a qual é resolvida em
escala atômica.
INTRODUÇÃO
A partir de uma modificação do microscópio de tunelamento, combinado com um
profilômetro Stylus (aparelho para medir rugosidade em escala microscópica) Binnig,
Quate e Gerber, desenvolveram o AFM em 1986. Abaixo, alguns exemplos da
versatilidade dos meios de magnificação, de forma comparativa.
TÉCNICAS AUMENTO MEIO IMAGEM DANOS
MICROSC. ÓTICO 103 AR, LÍQUIDOS 2-D NENHUM
VARREDURA LASER 104 AR 2-D MÍNIMOS
FEIXE DE ÍONS 105 VÁCUO 2-D GRAVES
SEM 106 VÁCUO 2-D ALGUNS
SPM 109 LIQ.,AR, VÁCUO 3-D MÍNIMOS OU NENHUM
MICROSCÓPIO DE TUNELAMENTO COM 
VARREDURA (STM)
PRINCIPIOS FÍSICOS
Para se entender os princípios físicos envolvidos no STM, faz-se necessário entender a
mecânica quântica.
Existem muitos fenômenos quânticos que não se enquadram nos formalismos clássicos,
mas o efeito túnel ou tunelamento é talvez o mais impressionante.
O fenômeno de tunelamento é conhecido a mais de sessenta anos, desde a formulação
da mecânica quântica.
PRINCIPIOS FÍSICOS
A mecânica quântica prevê, que uma partícula como um elétron, pode ser descrito por
uma função de onda. Assim sendo, tem uma probabilidade finita de entrar em uma região
classicamente proibida e por conseguinte, essa partícula pode tunelar através de uma
barreira de potencial que separa duas regiões classicamente permitidas.
A probabilidade de tunelamento é exponencialmente dependente da largura da barreira
de potencial. Então a observação experimental dos eventos de tunelamento só é
mensurável para barreiras bastante finas, já para a mecânica clássica uma barreira é uma
barreira, ou seja, se uma partícula não tiver energia cinética suficiente, ela não conseguirá
ultrapassa-la.
PRINCIPIOS FÍSICOS
Em resumo, classicamente, uma partícula proveniente da esquerda deveria colidir com a
barreira e, no caso de colisão elástica, retornar para esquerda, com a mesma velocidade
(em módulo) na ausência de atrito, pois E < V0. O que a mecânica quântica prevê, é que a
matéria apresenta comportamentoondulatório e, portanto, existe uma probabilidade não
nula (|y (x)|²0 na barreira) da onda atravessar a barreira, fenômeno este conhecido
por efeito túnel ou tunelamento.
Esta probabilidade que um elétron apareça do outro lado da barreira, obtém-se
trabalhando com a equação de Schrödinger, independente do tempo.
PRINCIPIOS FÍSICOS
Neste caso (Fig. 1), a solução é específica para cada região
da energia potencial, dada por:
V(x) = 0, para x < 0 e x > a;
V0, para 0 < x < a;
A solução da equação diferencial (Eq. 1) é mostrada
analisando a Fig. 1.
Nas regiões classicamente permitidas x < 0 e x > a, a
energia total E de uma onda proveniente da esquerda é
maior do que a energia potencial V(x) e as autofunções são
oscilatórias; no interior da barreira (0 <x < a), E < V(x) = 0 e
a autofunção decresce exponencialmente.
Fig. 1.Tunelamento por uma
barreira de potencial finita
PRINCIPIOS FÍSICOS
O conceito de tunelamento de elétrons, foi primeiro teoricamente aplicado aos trabalhos
de Julius Robert Oppenheimer sobre a autoionização do hidrogênio atômico (1928) e os
de George Gamow (1928), R. W. Gurney e E. U. Condon (1929) sobre o decaimento alfa,
a emissão de campo por um elétron livre de um metal por Fowler e Nordheim (1928) e
outro fenômenos como a retificação de uma junção metal-semicondutor e o efeito Zener.
A primeira aplicação prática instrumental, todavia foi o topografiner, de Russel e Young et
al. um instrumento de levantamento microtopográfico de superfície, em muito semelhante
ao STM, mas incapaz de atingir resolução atômica, provavelmente devido ao isolamento
insuficiente de vibrações e ao grande espaçamento entre a ponta e a amostra (100 Å –
1000 Å, enquanto no STM é de aproximadamente 10 Å).
PRINCIPIOS FÍSICOS
Um ponto crítico no projeto de qualquer STM é o isolamento da vibrações. Os primeiros
experimentos constituíam em demonstrar a exequibilidade do tunelamento através de uma barreira
de vácuo, porém inúmeros destes experimentos falharam devido a “problemas com vibrações”.
Os primeiros STM´s eram compostos por um sistema de isolamento de vibrações por levitação a
supercondutores, combinado com amortecimento por corrente Foucault, além de exigir bombas de
ultravácuo (UHV), trabalhando em temperaturas criogênicas, etc.
Seguiu-se uma profusão de trabalhos na direção de instrumentos mais simples, que começou
com o abandono da levitação supercondutora, substituindo-a por um sistema de molas de estagio
duplo, terminadas com amortecedores de viton (as molas usadas tendiam a amortecer vibrações
maiores que 1 Hz), não valendo para as vibrações que se propagavam através das molas.
Subseqüentemente, aperfeiçoamentos culminaram em um STM, que possuía apenas
amortecedores de viton como sistema de amortecimento de vibrações.
PRINCIPIOS FÍSICOS
Recentemente, um modelo simples é o STM
com micrômetro motorizado, como o de
Gary W. Stupian e Martin S. Leung conforme
Fig. 2. STIM do DSIF.
MODELAMENTO DA CORRENTE DE 
TUNELAMENTO
Desde sua invenção, o STM encontrou uma imediata aceitação como uma poderosa
ferramenta de análise superficial. As atuais e futuras aplicações desta tecnologia
dependem de nossa compreensão da técnica de medida.
A conceituação básica de STM é o princípio físico do tunelamento eletrônico. A maior
parte da literatura sobre tunelamento é voltada para este efeito quântico, previsto na
década de 20, que ocorre entre dois eletrodos planos ou rugosos, separados por uma
camada isolante suficientemente fina (como óxidos ou mesmo vácuo), ou seja, na
presença de uma barreira de potencial; existem tratamentos para eletrodos metálicos e/ou
semicondutores, etc.
MODELAMENTO DA CORRENTE DE 
TUNELAMENTO
Inicialmente, Binning e Rohrer, aceitaram resultados prévios teóricos da dependência
exponencial da corrente de tunelamento I com a distância d.
MODELAMENTO DA CORRENTE DE 
TUNELAMENTO
No STM, o sensor de tunelamento mede a corrente I que passa entre a amostra e a sonda
metálica, posicionada quase tocando a superfície da amostra (que deve ser condutora). Quando a
distância sonda-amostra é aproximadamente de 10Å, os elétrons da amostra começam a tunelar
na direção da sonda ou vice versa, dependendo da polaridade de uma voltagem aplicada entre a
sonda e a amostra. A corrente varia com a distância entre elas, sendo diretamente proporcional à
voltagem V aplicada (alguns milivolts de contínua) e exponencialmente proporcional à distância d
de separação entre a amostra e a sonda, ou seja, a resolução do STM reduz com o aumento de d.
Fundamental para a operação do STM é a extrema sensibilidade da corrente de tunelamento à
separação entre os eletrodos. No STM, uma sonda muito fina, e muito próxima da amostra, varre a
sua superfície, retirando elétrons, levantando assim a topografia dos átomos na superfície da
amostra, ou seja, registrando o seu relevo (potencial).
MODELAMENTO DA CORRENTE DE 
TUNELAMENTO
Sua realização, simples em princípio, depende de considerável astúcia experimental. O
STM é aplicável a amostras condutoras podendo ser utilizado tanto no vácuo como na
atmosfera. Porém quando usado no ar, tem-se uma “contaminação” da superfície da
amostra, fazendo com que a imagem obtida não seja uma imagem pura.
O INSTRUMENTO
A combinação bem sucedida de tunelamento no
vácuo com um sistema de cerâmicas
piezoelétricas, formam um microscópio de
tunelamento com varredura (primeira
demonstração em 1981 por Binning). Uma
amostra condutora e uma ponta de metal muito
fina que age como uma sonda local, é
posicionada dentro de uma distância de alguns
angstrons da superfície da amostra condutora,
resultando numa significante sobreposição das
funções eletrônicas de ondas.
O INSTRUMENTO
Esquemático do princípio físico e técnica inicial para
realização do STM. (a) visualização do ápice da
ponta (esquerda) e da superfície da amostra (direita)
a uma ampliação de cerca de 108. Os círculos sólidos
indicam átomos e as linhas pontilhadas os contornos
da densidade dos elétrons. O caminho da corrente de
tunelamento é mostrado pela seta. (b) escala
reduzida por um fator de 104. A ponta (esquerda)
parece tocar a superfície (direita). (c) STM com
sistema de cerâmicas piezoelétricas X, Y, Z com a
ponta de tunelamento a esquerda e L (motor
eletrostático) para posicionamento superficial
(irregular) da amostra
O INSTRUMENTO
Com a aplicação de uma voltagem (tipicamente entre 1 mV e 4 V), uma corrente de
tunelamento (tipicamente entre 0,1 nA e 10 nA) pode fluir dos estados eletrônicos
ocupados perto do nível de Fermi de um eletrodo com os estados desocupados para o
outro eletrodo. Usando um sistema de cerâmicas piezoelétricas para controlar o
movimento da ponta e uma realimentação, podendo assim, obter um mapa da topografia
de superfície
A dependência exponencial da corrente tunelamento com o espaçamento da ponta para
amostra provou ser a chave para a alta resolução espacial que pode ser alcançada com
o STM, ou seja, diminuindo este espaçamento (ponta amostra) em somente 1 Å
tipicamente, resulta em um aumento da magnitude na corrente tunelamento. A corrente
de tunelamento, diminui até aproximadamente um-décimo de seu valor inicial para cada
0,1nm que se diminua a distância d .
O INSTRUMENTO
Princípio de operação do STM. (Esquemático:
distâncias e tamanhos fora de escala). O
sistema piezoelétrico Px e Py varrem com a
ponta de metal M sobre uma superfície. A
unidade de controle (CU) aplica uma voltagem
apropriada Vp no sistema piezoelétrico Pz,
fazendo com que uma corrente de tunelamento
constante JT varra a superfície da amostra, por
meio de uma tensão constante de tunelamento
VT aplicada entre a ponta e a amostra. A linha
tracejada indica o deslocamento em z de uma
varredura passando por um degrau (A) e por
uma não homogeneidade química (B)
O INSTRUMENTO
Resumidamente, neste microscópio uma ponta de tungstênio muito fina é posicionada
quase tocando a superfície da amostra condutora. Quando a distância d de separação
entreponta-amostra se aproxima de 10Å, os elétrons da superfície da mostra começam
a tunelar para a ponta e vice versa, dependendo da polaridade de voltagem aplica entre
as mesmas, com isso gerando uma corrente (corrente de tunelamento).
Geralmente a imagem não representa necessariamente a topografia pura. Por exemplo,
a imagem STM de uma superfície de ouro, representa uma imagem muito próxima de
sua topografia, enquanto que uma imagem de uma superfície de um cristal de arseneto
de gálio, em geral não, devido às variações na probabilidade de tunelamento de átomo
para átomo em sua superfície.
Há muitos casos em que a interpretação dos dados do STM (ou STS) não são triviais, as
imagens STM, algumas vezes mudam de um modo drástico dependendo da estrutura da
ponta. Têm-se desenvolvido explicações teóricas usando modelos simples.
O INSTRUMENTO
No método de análise quantitativa, não se tem discutido muito a maneira de obter
informações mais profundas dos dados STM/STS; isto é crucial para acelerar
correlações entre o estado da ponta e os dados STM/STS. Estas topologias são,
evidentemente, fortemente dependentes da natureza do tunelamento na ponta. Graças
aos desenvolvimentos dos primeiros princípios da teoria de estados eletrônicos, usando
aproximações da densidade local tornou possível calcular quantitativamente os estados
eletrônicos da superfície varrida e da ponta Estas teorias permitem explicar os
fenômenos das bordas e as anomalias na periodicidade em grande escala relatados.
O STM opera basicamente de dois modos: corrente constante e altura constante ou
voltagem constante .
O INSTRUMENTO
Modo corrente constante: Ë o mais comum, onde a distância relativa ponta-amostra
permanece constante (Fig. 5a), gerando-se o levantamento topográfico propriamente
dito.
• Modo de altura constante ou voltagem constante: A ponta de prova varre a amostra
nas direções x, y e mantém fixo o eixo z (z é a posição vertical da ponta enquanto x e y
são coordenadas no plano da mostra) permitindo varreduras rápidas, com algum
sacrifício da resolução vertical, o que o torna inadequado ao tratamento de superfícies
condutoras, embora permita uma razoável aproximação espectroscópica local (Fig. 5b).
O INSTRUMENTO
O INSTRUMENTO
Os ajustes mecânicos grossos e finos, em quase todos os casos, são feitos por
cerâmicas com propriedades piezoelétricas, em que obtém o deslocamento mecânico
aproximadamente proporcional á diferença de potencial aplicada entre dois eletrodos da
cerâmica.
MICROSCÓPIO DE FORÇA ATÔMICA 
(AFM)
PRINCIPIOS FÍSICOS
O AFM, ou microscópio de força atômica, ou ainda, SFM (Scanning Force Microscope), foi
inventado por Binning, Quate e Gerber, após observação que a ponta do STM exerce
forças sobre a superfície da amostra na mesma ordem das forças interatômicas, ou seja,
o AFM usa interação entre as forças sonda-amostra para traçar o mapa da superfície.
O microscópio de foça atômica pode ser operado de diversos modos. Entretanto, seu
princípio fundamental é a medida das deflexões de um suporte em cuja extremidade livre
está montada a sonda. Estas deflexões são causadas pelas forças que agem entre a
sonda e a amostra.
Os modos de fazer as imagens, também chamados modos de varredura ou de operação,
referem-se fundamentalmente à distância mantida entre a sonda (ponteira) e a amostra,
no momento da varredura, e às formas de movimentar a ponteira sobre a superfície a ser
estudada.
Estes modos de fazer imagens podem ser classificados em dois tipos: modo contato e
modo não-contato, dependendo das forças líquidas entre a ponteira e a amostra. Quando
o aparelho é operado na região atrativa, o método chama-se não-contato. Nesta região, o
cantilever de AFM se enverga na direção da amostra. A operação na região repulsiva
chama- se contato e o cantilever se dobra, afastando-se da amostra.
PRINCÍPIOS FÍSICOS
A figura abaixo mostra a deflexão do cantilever em ambos modos. No modo de não-
contato ele é atraído pelas forças de capilaridade da camada de contaminação ou pelas
forças de van der Waals, quando a amostra é limpa. No modo de contato, vê-se como a
deflexão do cantilever é na direção oposta à da amostra.
Deflexão do cantilever operando em não-contato e em contato.
PRINCÍPIOS FÍSICOS
Forças entre a ponteira e a
amostra em função da distância
entre elas, com os respectivos
regimes de operação. Estando
representadas as duas regiões que
determinam os modos de
operação do AFM, onde, a área
abaixo da linha de força nula, as
forças são atrativas e acima da
linha do zero, as forças são
repulsivas.
PRINCÍPIOS FÍSICOS
Os efeitos de uma variedade de forças atuando entre ponta-amostra podem ser
analisados, essas forças incluem as forças atrativas de van der Waals, forças
magnéticas, e forças Coulombianas, de média para grandes distâncias, tipicamente 
100 Å. Em resumo, quando a ponteira se aproxima da amostra, é primeiramente atraída
pela superfície, devido a uma ampla gama de forças atrativas existentes na região, como
as forças de van der Waals. Esta atração aumenta até que, quando a ponteira aproxima-
se muito da amostra, os átomos de ambas estão tão próximos que seus orbitais
eletrônicos começam a se repelir. Esta repulsão eletrostática enfraquece a força atrativa
à medida que a distância diminui. A força anula-se quando a distância entre os átomos é
da ordem de alguns angstroms (da ordem da distância característica de uma união
química). Quando as forças se tornam positivas, podemos dizer que os átomos da
ponteira e da amostra estão em contato e as forças repulsivas acabam por dominar.
PRINCÍPIOS FÍSICOS
No AFM, a ponta de prova é varrida sobre a superfície de uma amostra, onde esta ponta 
esta acoplada a um cantilever flexível, forças entre a ponteira e a amostra causam 
deflexões muito pequenas deste suporte (cantilever), que são detectados e apresentados 
como imagens. 
O AFM usa muitos dos elementos originalmente desenvolvidos para o STM. Esses 
equipamentos comuns são: os sistemas de varredura, de aproximação ponta-amostra, 
de controle e de aquisição e processamento de dados, por esse motivo, as vezes, é 
considerado como um modo de operação, e em alguns casos uma simples troca de 
cabeças (de tunelamento ou força atômica) irá caracterizar um ou outro equipamento.
O INSTRUMENTO 
A ponteira é apoiada num suporte chamado cantilever que pode ter forma de V ou de
haste, em geral retangular. A força que a amostra exerce sobre a ponteira é determinada
pela deflexão do cantilever, dada pela lei de Hooke F = -k x , sendo x o deslocamento do
cantilever e k a sua constante de mola própria, determinada pelas características de
construção. O cantilever possui duas propriedades importantes: a constante de mola e
sua freqüência de ressonância. A primeira determina a força entre a ponteira e a amostra
quando estão próximas e é determinada pela geometria e pelo material utilizado na
construção do cantilever. O componente mais importante do AFM é, sem dúvida, o
cantilever. São necessárias grandes deflexões para atingir alta sensibilidade. Portanto, a
mola deve ser tão macia quanto possível. Por outro lado, é preciso uma alta freqüência
de ressonância para minimizar a sensibilidade a vibrações mecânicas, especialmente
quando se está fazendo a varredura. Como a freqüência de ressonância do sistema da
mola é dada por
O INSTRUMENTO 
onde m é a massa efetiva que carrega a mola, é claro
que um grande valor de w0 para uma mola relativamente
mole (k pequeno) pode ser conseguido mantendo
pequena a massa m e, portanto, a dimensão do sensor
deve ser tão pequena quanto possível. Estas
considerações levam diretamente à idéia de utilização
de técnicas de micro fabricação para produção de
cantilevers. Abaixo, a fig.8 mostra a imagem de um
cantilever obtida com um SEM da COPPE (UFRJ).
Trata-se de um cantilever de Si3N4 (nitreto de silício) de
aproximadamente 210 mm de comprimento no eixo
maior, com ponteira piramidal integrada.
Fig. 8.. Cantilever com ponteira
O INSTRUMENTO 
Imagensobtidas por um SEM de microcantilevers de SiO2
(a) cantilever retangular.
(b) cantilever em forma de V.
O INSTRUMENTO 
A ponteira pode ser colada ou solidária, isto é, o
cantilever pode ser diretamente fabricado com
uma ponteira aguçada em sua extremidade. Fig
10. cantilever de SiO2 com ponta de diamante. (b)
cantilever de Si com ponta integrada.
O INSTRUMENTO 
Fig. 11 – Imagens SEM de
cantilevers de Si3N4 com pontas
piramidais integradas.
(a) imagem de quatro cantilevers
em forma de V acoplados em um
bloco.
(b) quatro pontas piramidais no
cantilever em formato V.
(c) as pontas piramidais são ocas
vistas por cima. (d) visão de uma
ponta individual, com
aproximadamente 30 nm de raio
O INSTRUMENTO 
As imagens de SPM derivam da combinação da superfície da amostra e da ponteira
utilizada. Um bom entendimento da interação amostra-ponteira é importante para saber
avaliar as imagens resultantes. Para isto, não é apenas necessário conhecer o material
do qual a amostra é feita, mas também a geometria e a composição da ponteira.
1. Ponteiras piramidais. A ponteira mais comum em AFM é uma pirâmide de nitreto de
silício, cuja base é um quadrado de aproximadamente 5 m de lado. O aspect ratio é
aproximadamente 1:1 e o raio da ponteira da ordem de 1000 Å. Existem também
ponteiras piramidais de base triangular.
2. Ponteiras por deposição química de vapor. Ponteiras muito finas e de alto aspect ratio
podem ser feitas com um feixe de elétrons combinado com deposição química de vapor.
Estas ponteiras são crescidas na extremidade de uma ponteira standard piramidal e
possuem diamante em sua composição, o que as torna muito rígidas. Dimensões típicas
são: 1,5 a 2 m de comprimento, aspect ratio > 10:1 e raio de 100 Å.
O INSTRUMENTO 
3. Ponteiras piramidais gravadas. São vendidas comercialmente, no feitio piramidal, mas
trabalhadas com ácido de forma que suas extremidades fiquem muito agudas. O aspect
ratio delas é de 2 a 3:1.
4. Ponteiras cônicas de silício. O silício é freqüentemente utilizado para fazer ponteiras
sobre cantilevers ressonantes, isto é, para usar com modulação em não contato. Em
contato, as ponteiras cônicas quebram mais facilmente que as piramidais. As ponteiras
assim feitas possuem raios na base do cone de 3 a 6 m e alturas de 10 a 20 m,
resultando em aspect ratios de 3:1. Os raios das extremidades são de aproximadamente
200 Å. Estas ponteiras feitas de silício têm a vantagem ainda de que podem ser dopadas
para fazê-las condutoras tornado-as mais versáteis. Elas podem ser utilizadas, por
exemplo, para fazer microscopia de força elétrica ou para prevenir cargas não desejadas
na ponteira e/ou na amostra.
O INSTRUMENTO 
Onde Aspect ratio é a relação entre comprimento e raio ou diâmetro.
As deflexões do cantilever são usualmente medidas de três maneiras: detecção pela
corrente de tunelamento, detecção por capacitância e detecção óptica.
A detecção por corrente de tunelamento usa uma segunda ponta sensora que monitora
as deflexões no cantilever, para isso, o cantilever deve ser de material condutor ou
possuir cobertura condutora.
Na detecção por capacitância, o sistema é sensível a mudanças fraccionais na
capacitância entre o cantilever e uma placa detectora.
No caso da detecção óptica, utiliza-se um feixe de laser incidindo sobre o cantilever e
refletindo em fotodetectores.
O INSTRUMENTO 
A figura abaixo, mostra os métodos de detecção das deflexões do cantilever. Métodos de
detecção de deflexão de cantilevers em AFM. (a) por tunelamento. (b) por capacitância.
(c) óptica por feixe de laser.
O INSTRUMENTO 
O AFM opera basicamente de dois modos: Força constante e Altura constante. Como no
STM, no modo Força constante o circuito de realimentação move a ponta (ou amostra),
de maneira que a aproxima ou a afasta, para tentar manter constante o espaçamento
ponta- amostra. No modo Altura constante, a ponta move-se somente sobre o plano xy e
mantém constante o eixo z.
O INSTRUMENTO 
A primeira e mais importante aplicação para o STM e AFM, está relacionada com o
estudo de superfícies de metais e semicondutores, através da qual pode-se observar a
geometria da estrutura atômica, bem como a estrutura eletrônica das superfícies.
O STM pode também ser usado para investigar processos físicos e químicos que
ocorrem nas superfícies, dentre esses processos está a adsorvição em superfície de
metais e semicondutores, a adsorvição molecular, a observação de formação de
aglomerados sobre superfícies (aglomerados de metais e aglomerados de
semicondutores), nucleação e crescimento de filmes (por exemplo crescimento de filmes
metálicos, crescimento de Si sobre Si (001)), reações químicas nas superfícies de metais
e semicondutores (estudo das reações químicas que ocorrem nas superfícies, são
importantes, pois algumas aplicações tecnológicas utilizam corrosões e catálises).
APLICAÇÕES
Pode-se utilizar o STM para criar uma técnica de análise superficial para o estudo das 
propriedades das superfícies, podendo assim modificar ou fazer gravações em algumas 
superfícies em escala nanométrica. Vide figura abaixo do Xenônio sobre superfície de Ni 
(110).
APLICAÇÕES
Outra aplicação para o STM e AFM, está no estudo da estrutura superficial de materiais 
biológicos, dentre eles: ácidos nucleicos (RNA e DNA), as proteínas e membranas 
biológicas (membranas celulares e células) [27].
O AFM possui varias aplicações, dentre as quais a grande maioria se iguala às 
aplicações para o STM, porém para análises de materiais biológicos, o AFM apresenta 
algumas vantagens, pois se trabalha em ar ou meio líquido e utiliza a força atômica ao 
invés de corrente tunelamento para gerar imagens, pode ser usado em baixas 
temperaturas para a observação de estruturas biológicas congeladas, entre outras 
Algumas aplicações tecnológicas adicionais para o AFM incluem imagens de circuitos 
integrados, componentes ópticos e de raio-x, elementos armazenados em meios de 
comunicação e outras superfícies críticas 
APLICAÇÕES
Para a microeletrônica o STM foi e é de grande importância, pois foi possível a 
caracterização de defeitos, inclusive pontuais em estruturas, deixando de ser apenas 
uma mera análise estatística.
A fig. 14 mostra a superfície do Si (111) 7x7 feita por um STM operando no modo 
corrente constante, que foi um segredo por mais de vinte anos, derrubando assim quase 
todos os modelos previstos desta estrutura. Fig. 14 - (a) Perspectiva STM da imagem de 
uma área (320Å x 360Å) da superfície Si(111)7x7, obtida através do modo de operação 
por corrente constante. (b) Correspondente da visão aérea. 
APLICAÇÕES
A fig. 15 mostra uma imagem obtida pelo STM operando no modo altura constante. Vista
aérea de uma imagem STM de área (70Å x 70Å) com intercalação superficiais
compostas por C8Cs-grafite, obtidas através do modo de operação altura constante
A fig. 16, mostra uma imagem 3D de um crescimento de InP (Fosfeto de Ìndio) sobre um
substrato de InP .
APLICAÇÕES
A figura mostra uma análise do perfil 
de uma linha sobre a superfície de InP 
crescido sobre InP, onde a análise 
mostra um gráfico da altura do 
crescimento na superfície, da 
proporção de crescimento, do perfil de 
crescimento e do espectro de 
freqüência. Fig. 17 – Análise feita por 
software do perfil de uma linha sobre 
uma amostra de InP crescido sobre 
InP.
APLICAÇÕES
Um aspecto interessante do STM é sua natureza de análise não destrutiva, não
provocando danos irreversíveis na amostra. Trocas locais reversíveis provocadas na
superfície devido ao campo elétrico gerado pela ponta de prova não podem ser tomados
como regra. Por outro lado o STM pode ser usado como para indução permanente
intencional na estrutura local ou na modificação química , possibilita estimular
seletivamente o processo químico pela escolha apropriada da energia do elétron ou força
de campo, a fim de produzir alteração estrutural causada pelo impacto da ponta sobre a
superfície, ou alta diferença de potencial aplicado à junção ponta-amostra. Tanto oSTM
como o AFM podem ser operados em ar ou em meio líquido.
Pode-se considerar um AFM simplesmente como um modo de operação, pois
transformar um STM num AFM pode se restringir apenas a uma troca de pontas.
Ambas as técnicas de microscopia, possuem uma infinidade de aplicações, porém certos
materiais são mais apropriadas à análise em um microscópio do que em outro.
CONCLUSÃO
Na análise de materiais biológicos o AFM apresenta uma série de vantagens em relação
ao STM, pois se trabalha em ar ou meio líquido e utiliza a força atômica ao invés de
corrente tunelamento para gerar imagens.
Entretanto, relatos de sucesso na obtenção de imagens pelo STM sem metalização da
amostra e sob algumas circunstâncias, mostraram que algumas biomoléculas conduzem
corrente elétrica.
Outra vantagem do AFM sobre o STM é que permite estudar não apenas materiais
condutores, mas também todo tipo de material isolante, já que o método não utiliza
corrente de tunelamento para produção de imagens.
CONCLUSÃO
Quanto a resolução, o STM, que consegue verdadeira resolução atômica. A corrente de
tunelamento é uma exponencial da distância entre a ponteira e a amostra; portanto, só
interagem os átomos mais próximos. No AFM, a dependência da deflexão do cantilever,
com a distância ponteira-amostra é mais fraca (não é exponencial) e portanto, vários
átomos da ponteira interagem simultaneamente com vários átomos da amostra. No AFM
cada átomo da ponteira que participa na imagem "vê" a amostra como uma rede
periódica. Devido a que os átomos da ponteira estão localizados lateralmente em forma
diferente, a rede vista por cada átomo é diferente. E mais, cada átomo da ponteira está a
uma altura diferente com relação a amostra e a grandeza do sinal visto por cada átomo
enfraquece com a distância.
CONCLUSÃO
Quando todas as contribuições de todos os átomos participantes na ponteira são
combinadas instantaneamente e o resultado é somado durante o tempo em que a
ponteira varre a superfície periódica, a imagem resultante é periódica, tendo a simetria e
o espaçamento corretos. Entretanto, se estiver faltando um átomo, o lugar em que está
faltando não será detectado pois a imagem é uma superposição de muitas imagens.
Para ter uma real resolução atômica deveríamos poder detectar um átomo. Portanto,
gerar uma imagem em escala atômica com um AFM não significa que obtivemos
resolução atômica.
As imagens obtidas pelo STM representam somente a densidade de cargas próximas ao 
nível de Fermi, as imagens obtidas pelo AFM correspondem a densidade de cargas total 
na região de contato.
CONCLUSÃO
No AFM, a ponta permanece fixa e a amostra que se move com uso de cerâmicas
piezoelétricas nas direções dos três eixos ortogonais, enquanto no STM a amostra fica
fixa e a ponta que se move sobre a superfície da amostra e utiliza também um sistema
de cerâmicas piezoelétricas para se mover.
Estes dois equipamentos são duas poderosas ferramentas na análise de superfícies,
pois com elas pode-se acompanhar processos de reações, caracterização de processos
e uma infinidade de outras atividades.
CONCLUSÃO
Gerd Binning and Heinrich Rohrer, Rev. Mod. Phys. 59, 615 (1987).
G. Binning, H. Rohrer, Ch. Gerber, E. Weibel, Phys. Rev. Lett. 49, 57 (1982).
G. Binning, H. Rohrer, Ch. Gerber, E. Weibel, Phys. Rev. Lett. 50, 120 (1983).
R. J. Hamers, R. M. Tromp, J. E. Demuth, Phys. Rev. B 34, 5343 (1986).
H. Ohtani, R. J. Wilson, S. Chiang, E. M. Nate, Phys. Rev. Lett. 60, 2398 (1988).
R. Wolkow, Ph. Avoiris, Phys. Rev. Lett. 60, 2398 (1985).
G. Binning, K. H. Frank, H Fuchs, N. Garcia, B. Reihl, H. Rohrer, F. Salvan, A. R. Williams, Phys. Rev. Lett. 
55, 991 (1985).
G. Binnig, C. F. Quate, Ch. Gerber, Phys. Rev. Lett. 56, 9 (1986.)
R. Eisberg, R. Resnick, “Física Quântica”, 4ª ed. Trad., Rio de Janeiro, 1988.
BIBLIOGRAFIA
C.B. Duke, “Tunneling in Solids”, Academic, New York, 1969.
P. A. Tipler, “Física Moderna”, 1ª ed. Trad., Guanabara Dois, rio de Janeiro, 1981.
Y. Kuk, P. J. Silverman, Rev. Sci. Instrm. 60, 165 (1989).
P. K. Hansma, J. Tersoff, J. Appl. Phys. 61, R1 (1987).
G. Binning, H. Rohrer, Helv. Phis. Acta 55, 726 (1982).
D. Sarid, V. Elings, J. Vac. Sci. Tech. B9(2), 431 (1991).
H. Kumar Wickramasinghe, J. Vav. Sci. Tech. 8, 177 (1990).
R. M. Feenstra, A. Stroscio, J. Tersoff, A. P. Fein, Phys. Rev. Lett. 58, 1192 (1987).
J. Tersoff, D. R. Haman, Phys. Ver. B 31, 805 (1985).
E. J. Shyder, E. A. Eklund, R. S. Willians, Surf. Sci. 239, 1990.
J. M. Gómez-Rodríguez, L. Vásquez, A. M. Baró, Surf. Inst. Analisys 16, 97 (1990).
BIBLIOGRAFIA
M. Tsukada, K. Kobayashi, J. Vac. Sci. Tech. 8, 177 (1990).
M. Tsukada, N. Shina, S. Ohnishi, Y. Chiba, J. de Phys, Colloque C6, C6-91 (1987). [24] D. Keller, Surf. Sci. 253, 
353 (1991)
J. F. Womelsdorf, M. Sqwarora, W. C. Ermler, Surf. Sci. 241, L11 (1991).
G. Binning, H. Rohrer, Ch. Gerber, E. Weibel, Appl. Phys. Lett. 40, 178 (1981); Physica
109&110B, 275 (1982).
C. Bay, “Scanning Tunneling Microscopy and its Application”, Springer Series in Surface Sciences 32, Feb 1995.
G. Binning, H. Rohrer, IBM J. Res. Develop. 30, 355 (1986).
G. W. Stupian, M. S. Leung, Rev. Sci. Instrum. 60, 181 (1989).
M. Fukui, “Técnicas de Microscopia de Tunelamento de Elétrons (MTE) e Microscopia de Força Atômica (MFA) 
aplicadas ao estudo de superfícies de grafite e diamante”, BAE/22623, T/UNICAMP, Apr 1992.
H.-J. Güntherodt, R. Wiesendanger (Eds.), “Scanning Tunneling Microscopy I”, Second Edition, Spring-Verlag, Jul 
1994.
BIBLIOGRAFIA
E. Eisenschitz and F. London, Zs.Phys. 60, 491 (1930) : Teoria Quântica para as Forças de van der Waals.
L. Esaki, “Highlights in Condensed Matter Physics and Future Prospets”, Series B: Physics Vol. 285, ASI Science 
Forum.
H.-J. Güntherodt, R. Wiesendanger (Eds.), “Scanning Tunneling Microscopy II”, Second Edition, Spring-Verlag, Feb 
1995
BIBLIOGRAFIA

Continue navegando