Prévia do material em texto
POSSÍVEIS DE
CAIR NO BB
EX
CL
US
IVO
1.000 QUESTÕES +
SUMÁRIO
● ATUALIDADES DO MERCADO FINANCEIRO
GABARITO ..................................................................................................................... 17
GABARITO ..................................................................................................................... 23
● MATEMÁTICA
GABARITO ..................................................................................................................... 37
GABARITO ..................................................................................................................... 52
GABARITO ..................................................................................................................... 66
GABARITO ..................................................................................................................... 80
GABARITO ..................................................................................................................... 93
GABARITO ................................................................................................................... 107
GABARITO ................................................................................................................... 122
GABARITO ................................................................................................................... 136
GABARITO ................................................................................................................... 150
GABARITO ................................................................................................................... 163
● MATEMÁTICA FINANCEIRA
GABARITO ................................................................................................................... 176
GABARITO ................................................................................................................... 189
GABARITO ................................................................................................................... 203
GABARITO ................................................................................................................... 218
GABARITO ................................................................................................................... 228
● CONHECIMENTOS BANCÁRIOS
GABARITO ................................................................................................................... 244
GABARITO ................................................................................................................... 262
GABARITO ................................................................................................................... 278
GABARITO ................................................................................................................... 293
GABARITO ................................................................................................................... 307
● VENDAS E NEGOCIAÇÃO
GABARITO ................................................................................................................... 323
GABARITO ................................................................................................................... 340
GABARITO ................................................................................................................... 358
GABARITO ................................................................................................................... 374
GABARITO ................................................................................................................... 393
GABARITO ................................................................................................................... 404
● INFORMÁTICA
GABARITO ................................................................................................................... 414
● PORTUGUÊS
GABARITO ...................................................................................................................417
GABARITO .................................................................................................................. 419
GABARITO ................................................................................................................... 420
GABARITO ................................................................................................................... 421
GABARITO ....................................................................................................................421
GABARITO ................................................................................................................... 422
GABARITO ................................................................................................................... 428
GABARITO ................................................................................................................... 430
GABARITO ................................................................................................................... 435
GABARITO ................................................................................................................... 437
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
ATUALIDADES DO MERCADO FINANCEIRO
Questão 1
O banco Itaú lançou em 2015 uma campanha
para reforçar o seu posicionamento como
banco digital. Com objetivo de seguir a
tendência do uso de aplicativos móveis
em smartphones, abordou em sua campanha o
uso de emoticons, ícones de emoções
utilizados nos principais aplicativos de
conversas como WhatsApp, Messenger, Skype,
dentre outros. Segundo o superintendente de
marketing do Itaú Unibanco, Eduardo
Tracanella, "A tecnologia não é nada em
as pessoas. Por isso investimos em tecnologia
de ponta para construir um banco capaz de se
relacionar com as pessoas do jeito delas.
Nosso objetivo é atualizar e reforçar nosso
posicionamento digital, mostrando um banco
que quer estar cada vez mais disponível,
ouvindo, evoluindo e mudando sempre para
permanecer na escolha de nossos clientes
também neste novo tempo".
Considerando a importância da
SEGMENTAÇÃO, MERCADO-ALVO E
POSICIONAMENTO DE MERCADO como
estratégia de diferenciação do Itaú no
mercado, avalie as seguintes afirmações.
I - A segmentação utilizada pelo Itaú teve
como objetivo impactar um mercado-alvo que
está adepto ao uso de tecnologias e gosta de
se relacionar com uso de dispositivos móveis.
II - A estratégia de posicionamento é uma
ação para projetar a oferta e imagem da
empresa, para que ela ocupe um lugar
diferenciado na mente do público-alvo. No
caso do Itaú, leva-se em consideração a
mudança de pensamento de um banco que
antes era apenas físico e agora se tornou
digital.
III - Utilizando de atributos de diferenciação,
como uso de emoticons em suas campanhas, o
Itaú expos atributos diferentes de seus
concorrentes para criar um posicionamento
digital na mente do seu público-alvo.
É CORRETO o que se afirma em:
a) II, apenas.
b) I, II, apenas.
c) III, apenas.
d) I e III, apenas.
e) I, II, III.
Questão 2
O sistema bancário vem passando por um
processo acelerado de transformação digital.
Entretanto, o nível de maturidade digital varia
de banco para banco.
A respeito desse assunto, assinale a alternativa
correta.
a) Uma característica do banco digital é a
realização de processos não presenciais, como
o envio de informações e documentos por
meio digital e a coleta eletrônica de assinatura
para a abertura de contas.
b) Um banco digital é o mesmo que um banco
digitalizado, visto que ambos apresentam o
mesmo nívelde automação dos processos.
c) A oferta de canais de acesso virtual
representa o mais alto nível de maturidade
digital.
d) O banco digitalizado dispensa o
atendimento presencial e o fluxo físico de
documentos.
e) Por questão de segurança, o banco digital
permite a consulta de produtos e serviços
financeiros por meio de canais eletrônicos, mas
ainda não permite a contratação.
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-971
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 3
O Banco Central Brasileiro entrou para a era
dos bancos digitais e criou um meio de
realização de transações bancárias que
promete ser mais rápido e prático e pode ser
utilizado nas plataformas de qualquer
instituição bancária. A novidade do BC é
chamada de:
a) Bank-x.
b) Finanx.
c) Bits.
d) Pix.
e) Financis.
Questão 4
Um importante aspecto do planejamento tático
no segmento bancário é o mix de marketing,
composto por:
a) equipe bem treinada, produtos sólidos e
confiáveis, serviços oferecidos e reputação
corporativa da empresa.
b) localização das agências, acessibilidade ao
internet banking, rede de serviços e canais de
atendimento.
c) serviço oferecido, valor dos investimentos
pelo cliente, canais de atendimento ao público
e campanhas de comunicação.
d) rentabilidade nos investimentos, taxas de
juros adotadas, preços praticados e
lucratividade anual.
e) posicionamento estratégico da marca,
segmentação de mercado, concorrência ativa e
propaganda institucional.
Questão 5
Quando abrem uma conta bancária, os clientes
consideram uma série de benefícios funcionais.
A esse respeito, analise os seguintes aspectos
ligados a esse segmento no Brasil:
I – confiança transmitida pelo gerente;
II – solidez e garantia da marca;
III – cobertura em todos os estados;
IV – número de correntistas;
V – atendimento via internet banking;
VI – reconhecimento internacional.
Estão corretos APENAS os benefícios
a) I, II e III.
b) I, II e V.
c) II, III e VI.
d) III, IV e V.
e) IV, V e VI.
Questão 6
Quanto às diferenças entre bancos
digitalizados e bancos digitais, assinale a
alternativa correta.
a) Um banco digital pode permitir que o
próprio cliente ajuste o respectivo limite de
transferência ou do cartão de crédito e, por
medida de segurança, demandar que tal
cliente dirija-se a um caixa eletrônico ou
agência para concluir o processo.
b) Permitir que o cliente abra a própria conta
corrente sem precisar sair de casa e não
cobrar taxa de manutenção da conta são os
únicos requisitos obrigatórios que diferenciam
um banco digital de um banco digitalizado.
c) Para que um banco seja considerado
digital, basta que disponibilize um ambiente de
internet banking e aplicativos móveis, mesmo
que, por medida de segurança, seja necessário
instalar softwares de segurança adicionais que
possam comprometer a experiência do cliente.
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-972
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
d) Demandar que o cliente se dirija a um
caixa eletrônico para desbloquear o respectivo
cartão ou senha de internet é aceitável para
bancos digitalizados, mas não para bancos
digitais.
e) Disponibilizar serviços gratuitos e pacotes
padronizados de serviços, tais como os
exigidos pela Resolução nº 3.919, art. 2º,
inciso I, do Banco Central, é o que define um
banco como digital.
Questão 7
Nos dias de hoje, o uso do “dinheiro de
plástico” está superando cada vez mais outras
modalidades de pagamento, que, com o passar
dos anos, estão ficando obsoletas.
Um tipo de “dinheiro de plástico” muito
utilizado no comércio de rua é o
a) cartão cidadão
b) cartão de crédito
c) cartão de senhas
d) talão de cheques
e) internet banking
Questão 8
A pesquisa Febraban de Tecnologia Bancária
2019 revelou que, entre 2017 e 2018, as
transações realizadas por meio de canais
digitais cresceram 16%, totalizando 60% das
transações bancárias. A respeito do uso dos
canais digitais, assinale a alternativa correta.
a) O aumento das transações com
movimentação financeira nos canais digitais
evidencia o aumento da confiança do cliente
na segurança do canal.
b) A abertura de conta por meio de canal
digital somente pode ser efetuada pelo
internet banking.
c) O mobile banking somente pode ser usado
para transações sem movimentação financeira.
d) São considerados canais digitais o
internet banking, o mobile banking e os
correspondentes no País.
e) Internet banking e mobile banking são
canais digitais mutuamente excludentes, ou
seja, o cliente tem que informar ao banco qual
canal quer usar para acessar as transações
bancárias.
Questão 9
Com o crescente avanço tecnológico, está cada
vez mais fácil realizar operações bancárias sem
que se precise ir pessoalmente a uma agência.
Que nome se dá ao tipo de acesso bancário
realizado em terminais de computadores,
caixas eletrônicos e bancos 24 horas?
a) Banco de Dados
b) Débito Automático
c) Home Office Banking
d) Internet Banking
e) Remote Banking
Questão 10
Por meio do Comunicado nº 33.455/2019, o
Banco Central aprovou os requisitos
fundamentais para a implementação do
Sistema Financeiro Aberto (open banking) no
Brasil. De acordo com o modelo proposto, o
conceito de open banking refere-se à (ao)
a) integração de plataformas e infraestruturas
de sistemas de informação para fins de
compartilhamento de produtos e serviços entre
as instituições financeiras, sendo vedada a
identificação do cliente.
b) atribuição de uma nota de crédito ao
cliente (credit score), que poderá ser
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-973
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
consultada por qualquer instituição financeira,
mediante prévio consentimento.
c) compartilhamento de dados cadastrais,
produtos e serviços pelas instituições
financeiras, mediante prévia autorização, por
meio de sistemas de informações integrados
que garantam uma experiência simples e
segura ao cliente.
d) inclusão do nome do cliente em um
cadastro positivo para fins de
compartilhamento de dados, produtos e
serviços pelas instituições financeiras,
garantindo ao cliente acesso a taxas de juros
menores.
e) implementação de uma interface de
integração digital para compartilhamento de
dados entre instituições financeiras, com base
no princípio de que os dados pertencem às
instituições, e não aos usuários.
Questão 11
A respeito das definições de startups e dos
respectivos tipos e nichos de atuação, assinale
a alternativa correta.
a) Startups B2B são as que têm outras
empresas como consumidores finais e, para se
manterem competitivas, precisam evitar que o
respectivo modelo de negócio seja repetível.
b) Startups são empresas nascentes
escaláveis ou não, desde que atuem com
negócios digitais inovadores e em cenários
minimamente estáveis.
c) Toda empresa no respectivo estágio inicial
pode ser considerada uma startup, exceto
franqueadas, por se tratarem, na verdade, de
filiais de empresas cuja marca já é
consolidada.d) Fintechs são bancos digitais que
aproveitam o alcance da internet para
ofertarem serviços financeiros a um custo
menor e nos quais o foco está na experiência
do usuário.
e) Startups B2B2C são as que atuam com
modelos de negócio repetível e escalável em
parceria com outras empresas, visando à
realização de vendas para o cliente final.
Questão 12
Fintech que transforma celular em
"correspondente bancário" cresce 500% em
um ano Celcoin realizou 700 mil transações,
que superaram os R$ 25 milhões em 2017.
Disponível em:
https://epocanegocios.globo.com/Empreendedorismo/noticia/2018/05/
fintech-que-transformacelular-em-correspondente-bancario-cresce-
500-em-um-ano.html.
As fintechs são empresas do ramo bancário
que se apropriam de novas tecnologias para a
oferta de serviços financeiros. Sobre esta
junção de tecnologia e mercado financeiro,
avalie qual temática trabalhada pela Geografia
melhor se adequa para a análise deste
processo:
a) Meio técnico-científico-informacional.
b) Escala geográfica.
c) As crises do capitalismo e suas
reinvenções.
d) Desconcentração industrial.
e) A emergência do 4º setor da economia.
Questão 13
“Empreender no Brasil não é fácil, ainda mais
se o negócio nasceu há pouco tempo.
Entretanto, as nacionais estão recebendo mais
atenção a cada ano e, com a ajuda de
investidores, aceleradoras e incubadoras, o
cenário vem se abrindo aos novos
empreendedores. Em 2018, seis empresas
iniciantes conseguiram se firmar como
unicórnios, termo utilizado para se referir às
que alcançam valor de mercado avaliado em,
pelo menos, US$ 1 bilhão. Seja no setor
financeiro, de educação ou transporte urbano,
o cenário para as novas empresas tem se
expandido, segundo Rafael Ribeiro, diretor-
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-974
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
executivo” (Fonte: canaltech.com.br, de
28/12/2018).
A reportagem aborda um termo para designar
empresas recém-criadas e rentáveis, que
começou a ser popularizado nos anos 1990,
quando houve a primeira grande "bolha da
internet". Muitos empreendedores com ideias
inovadoras e promissoras, principalmente
associadas à tecnologia, encontraram
financiamento para os seus projetos, que se
mostraram extremamente lucrativos e
sustentáveis. O termo significa o ato de
começar algo, normalmente relacionado com
companhias e empresas que estão no início de
suas atividades e que buscam explorar
atividades inovadoras no mercado. Trata-se:
a) Do Bitcoin.
b) Do Crowd-Innovation.
c) Das Startups.
d) Do E-Commerce.
e) Do Online-to-Offline.
Questão 14
Trata-se de um ramo da ciência da
computação que se propõe a elaborar
dispositivos que simulem a capacidade humana
de raciocinar, perceber, tomar decisões e
resolver problemas. O objetivo central das
pesquisas relacionadas a esse ramo baseia-se
na ideia de fazer com que os computadores
possam "pensar" exatamente como os
humanos, criando análises, raciocinando,
compreendendo e obtendo respostas para
diferentes situações, como nos exemplos
abaixo:
Personalização do marketing – permite
que um produto pesquisado em uma loja
online apareça magicamente em várias páginas
da próxima navegação do internauta.
Financial Trading (Mercado Financeiro) –
o sistema prevê os movimentos do mercado de
ações. Um gigantesco volume de dados é
analisado de forma tão veloz que a capacidade
humana dos analistas não consegue
acompanhar.
Reconhecimento facial – permite encontrar
um rosto em meio à multidão. Ferramenta em
uso pelas agências de combate ao terrorismo.
Carros inteligentes – com o sistema
inteligente, os carros são capazes de identificar
os padrões de comportamento e os interesses
dos donos. Assim, o veículo ajusta sozinho a
temperatura e as posições da direção e dos
espelhos, sintoniza a rádio preferida etc. Se for
um carro sem motorista, ele pode ir até
sozinho. (Fonte: itforum365.com.br,
24/05/2017).
Qual o assunto abordado no texto acima?
a) Singularidade.
b) Inteligência artificial.
c) Startups.
d) Teoria do Caos.
e) Universos Paralelos.
Questão 15
As fontes privadas de financiamento de novos
negócios que captam recursos de investidores
de diferentes portes com o objetivo de
constituir capital destinado ao financiamento
de startups com expectativas de retorno
elevado são denominadas fundos
a) de capital de risco.
b) de financiamentos públicos.
c) de subsídios empresariais.
d) setoriais.
e) de cota de capitais.
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-975
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 16
Um empreendedor turístico é definido como
um indivíduo que cria um negócio com algum
componente de originalidade para prover um
produto, serviço ou experiência para os
turistas (KENSBOCK; JENNINGS, 2011). Acerca
desse assunto, assinale a alternativa incorreta.
a) A economia compartilhada, como por
exemplo as plataformas “Airbnb” e “Uber‟,
embora sejam utilizadas por viajantes do
mundo todo, apresentam queda na taxa de
crescimento e baixo impacto na indústria do
turismo
b) O turismo de experiência é uma
oportunidade para o empreendedorismo, pois
gera uma demanda em busca de novas
experiências, como por exemplo, conhecer a
rotina local, saborear pratos e bebidas típicas,
aprender a cozinhar pratos típicos, e fabricar
sua cerveja
c) O avanço tecnológico proporcionou
inovações no empreendedorismo turístico,
como por exemplo o desenvolvimento de
“startups” nacionais
d) O mercado turístico vem sendo fortemente
influenciado pelo digital, criando assim,
oportunidade para novos empreendedores,
inclusive, para “influencers” digitais
Questão 17
Em uma economia monetária, os agentes
efetuam trocas de forma indireta, sendo que a
moeda desempenha as funções precípuas de
unidade de conta, meio de troca e reserva de
valor. A respeito da origem e funções da
moeda e de sua conversibilidade, é correto
afirmar:
a) o conceito de meios de pagamento
caracteriza os meios eletrônicos de trocas, tais
como cartões de crédito e de débito,
usualmente conhecidos por "dinheiro de
plástico".
b) os meios de pagamento de uma economia
moderna envolvem mecanismos de engenharia
financeira que permitem trocas em tempo real,
aumentando a velocidade de circulação da
moeda e garantindo a conversibilidade das
moedas.
c) a moeda de uma economia moderna
engloba o papel-moeda em poder do público, a
senhoriagem de que se apropria o governo
para emitir moeda e os depósitos compulsórios
dos bancos junto ao Banco Central.
d) a moeda de uma economia moderna
engloba a totalidade dos meios de pagamento,
usualmente definida como o conjunto de ativos
em poder do público passível de ser utilizado
para a liquidação de compromissos a vista ou
no futuro.
e) a moeda de uma economia moderna
engloba o papel-moeda em poder do público,
os depósitos de estrangeiros em suas
respectivas moedas, desde que conversíveis e
retidas na conta de reservas internacionais, e
os depósitos compulsórios dos bancos junto ao
Banco Central.
Questão 18
São funções da moeda, EXCETO:
a) Meio de troca.
b) Estimular o capitalismo.
c) Unidade de conta ou denominador comum
de valor.
d) Reserva de valor.
Questão 19
A moeda está tão presente nas economias que
se torna difícil imaginar o funcionamento de
um sistemaeconômico sem a existência de
instrumentos monetários. Segundo Lopes e
Rosseti (2011), com relação às funções da
moeda e sua importância, assinale a opção
INCORRETA.
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-976
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
a) Ao funcionar como intermediária de trocas,
a moeda torna possível maior grau de
especialização e de divisão social do trabalho e
possibilita sensível redução do tempo
empregado em transações.
b) A utilização da moeda como medida de
valor tem como vantagem permitir a
construção de sistemas de contabilidade social
para cálculo de valores agregados e fluxos
macroeconômicos importantes no
planejamento e na administração da economia
como um todo.
c) Uma das principais razões que levam à
preferência pela utilização da moeda como
reserva de valor é a pronta e imediata
aceitação da moeda quando há a decisão de
convertê-la em outros ativos, sobretudo os não
financeiros.
d) As características mais relevantes da
moeda, estudadas desde Adam Smith, são:
indestrutibilidade e inalterabilidade,
homogeneidade, divisibilidade,
transferibilidade, facilidade de manuseio e
transporte.
e) Na versão Keynesiana, a moeda passou a
ser vista apenas como instrumento de
intermediação de trocas que não afetava
outras variáveis econômicas, como a taxa de
juros e o emprego.
Questão 20
Considere as seguintes afirmações sobre as
funções da moeda.
I. A função de reserva de valor da moeda
serve para comparar o valor dos bens e
serviços.
II. A utilização da moeda propiciou a
superação da necessidade de existência de
dupla coincidência de desejos entre dois
agentes econômicos, que era característica de
uma situação de escambo.
III. A função de unidade de conta da moeda
permite uma linguagem monetária comum em
contratos, garantindo o conhecimento sobre o
valor do que está sendo transacionado.
Está correto o que se afirma APENAS em
a) I e II.
b) II e III.
c) III.
d) I.
e) I e III.
Questão 21
São funções da moeda:
a) meio de pagamento e reservas
internacionais.
b) meio de pagamento, unidade de conta e
reserva de valor.
c) reserva de valor e seguro contra a inflação.
d) meio de pagamento e preço da moeda
estrangeira.
e) meio de pagamento e custo do dinheiro.
Questão 22
A respeito de macroeconomia, contabilidade
nacional e teoria monetária, julgue (C ou E) o
item seguinte.
Meio de troca, medida de valor e reserva de
valor são funções da moeda que em conjunto
a diferenciam de outros ativos financeiros.
Certo
Errado
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-977
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 23
Segundo Dornbush & Fisher (2010), assinale a
opção que apresenta as funções da moeda.
a) Durabilidade, facilidade de manuseio e
transporte.
b) Instrumento de troca, medida de valor e
homogeneidade.
c) Durabilidade, divisibilidade e
homogeneidade.
d) Meio de troca, reserva de valor e unidade
de conta.
e) Meio de troca, durabilidade e unidade de
conta.
Questão 24
A respeito do conceito, da evolução e das
funções da moeda, assinale a alternativa
correta:
a) Atualmente, em todos os países, a moeda é
lastreada em ouro.
b) Em países que apresentam altas taxas de
inflação por um prazo prolongado, a moeda vai
perdendo a função de reserva de valor.
c) A moeda é um ativo de baixa liquidez.
d) Cartões de Crédito são considerados
moeda.
Questão 25
As funções da moeda são a de servir de meio
de troca, unidade de conta e reserva de valor.
Sobre estas funções, analise as assertivas
abaixo.
I. A inflação brasileira no seu período mais
agudo, entre 1982 e 1994 não comprometeu a
função de meio de troca, não havendo, como
em outros casos conhecidos de hiperinflação, a
utilização de moeda estrangeira para
realização de pagamentos.
II. No período de 1982 a 1994, os agentes só
mantiveram ativos denominados em moeda
nacional graças aos mecanismos de indexação
presentes no mercado financeiro brasileiro
desde os anos 60.
III. A moeda nacional perdeu ao longo dos
anos 80 e 90 sua função de unidade de conta
sendo substituída nos contratos e, mesmo nas
tabelas de preço de fornecedores, pelo dólar
ou por moeda indexada.
É correto o que se afirma em
a) I, II e III.
b) I e II, apenas.
c) I e III, apenas.
d) II e III, apenas.
e) III, apenas.
Questão 26
Assinale a alternativa INCORRETA.
a) A moeda lubrifica as engrenagens do
comércio e possibilita que cada um de nós se
especialize na oferta de coisas que fazemos
melhor, de modo a comprarmos (e
consumirmos) uma variedade maior de bens e
serviços consistentes com as nossas
preferências individuais. A moeda permite que
todos na sociedade se livrem das
inconveniências do processo de escambo.
b) Uma das funções da moeda é ser um meio
de troca. Meio de troca é um ativo que é usado
na compra e na venda de bens e serviços.
c) A moeda tem uma grande vantagem sobre
outros ativos, tais como terras, produtos
alimentícios, casas, vestuários, obras de arte,
ações ou títulos financeiros que também
podem ser usados como reserva de valor para
uso futuro. Por seu uso como meio de troca, e
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-978
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
por sua aceitação quase que generalizada, a
moeda é o ativo mais líquido de todos os
ativos. O ativo mais líquido é aquele que pode
ser convertido, fácil e rapidamente, em poder
de compra sem perda de valor. O custo de
transformar um ativo em poder de compra
define seu grau de liquidez. Quanto maior o
custo, menor a liquidez.
d) Moeda é um ativo financeiro e, portanto,
uma forma de guardar valor, de modo a
transferir poder de compra de um período para
outro. Por isso, moeda, é considerada uma
reserva de valor.
Questão 27
A lógica da composição do mercado financeiro
tem como fundamento:
a) facilitar a transferência de riscos entre
agentes.
b) aumentar a poupança destinada a
investimentos de longo prazo.
c) mediar as relações entre agentes deficitários
e os superavitários visando o bem-estar geral.
d) preservar as funções da moeda.
e) garantir retornos aos aplicadores de
recursos financeiros.
Questão28
“Armazena informações de forma cronológica
em uma lista de blocos interligados que
possuem um número de identificação próprio e
outro de seu antecessor, visando identificar
sua origem. Cada bloco armazena um conjunto
de informações que também recebem um
identificador único e imutável” (LUCENA;
HENRIQUES, 2016). A definição acima se
refere a uma tecnologia que, na visão de Swan
(2015), tem a capacidade de modificar todos
os setores da sociedade. Tratase do
a) Blockchain.
b) SIGAD.
c) Altcoins.
d) Criptos.
Questão 29
"Bitcoin afunda para menor nível em 6 meses
com anúncio de fiscalização na China."
(Fonte: https//www.oliberal.com/economia/bitcoin-afunda-para-
menor-nivel-em-6-meses-com-anuncio-de-fiscalizacao-na-china-
1.215180)
Sobre a matéria noticiada, analise as assertivas
a seguir e marque a alternativacorreta:
I - O bitcoin despencou para o menor nível em
seis meses nesta sexta-feira (22) depois que o
banco central da China lançou uma nova
operação de fiscalização sobre operações com
criptomoedas, alertando sobre riscos ligados a
emissão ou negociação delas.
II - O banco central da China em Xangai
afirmou que vai combater crescentes casos de
ilegalidades envolvendo moedas digitais. A
autoridade monetária também alertou
investidores a não confundirem criptomoedas
com tecnologia blockchain.
III - O banco central chinês se prepara para
lançar sua própria moeda digital. O presidente
chinês, Xi Jinping, afirmou no mês passado
que a primeira maior economia do mundo deve
acelerar o desenvolvimento da tecnologia em
criptomoedas.
a) As assertivas I e II estão corretas.
b) As assertivas I e III estão corretas.
c) As assertivas II e III estão corretas.
d) Apenas a assertiva I está correta.
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-979
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 30
Leia a notícia para responder esta questão.
Se as altas cotações do bitcoin chamam a
atenção de gente sedenta por dinheiro, a
tecnologia que sustenta esta e outras
criptomoedas atrai o interesse de grandes
bancos, empresas e governos. Enquanto a
moeda virtual é apontada por entidades do
sistema financeiro como a nova bolha
especulativa, a "blockchain" (corrente de
blocos, em tradução literal), por outro lado, é
vista como a nova queridinha das mesmas
empresas que compõem esse setor.
Por Helton Simões Gomes e Taís Laporta, G1.
Acesso em 03/02/2018. Disponível em:
https://g1.globo.com/economia/noticia/entenda-o-
que-e-blockchain-a-tecnologia-por-tras-do-itcoin.ghtml.
O que é blockchain?
a) Uma espécie de “banco eletrônico”, que
registra vários tipos de transações, vinculado
ao Banco Central.
b) Uma espécie de “banco virtual” que opera
na Bolsa de Valores.
c) Uma espécie de grande “livro contábil”, que
registra vários tipos de transações e possui
seus registros espalhados por vários
computadores.
d) Uma espécie de “banco eletrônico” que
permite acesso pela rede de computadores.
Questão 31
“Um grupo de sete bancos que inclui o
Santander, o CIBC e o UniCredit anunciou um
grande avanço tecnológico. Eles estão entre as
primeiras instituições financeiras do planeta a
movimentar dinheiro real internacionalmente
usando tecnologia baseada no sistema
blockchain, uma base de dados com cópias
idênticas distribuídas por diferentes
computadores e controlada por diferentes
entidades, as partes envolvidas naquelas
transações, sem um órgão que sirva de
autoridade central.”
Disponível em: http://www1.folha.uol.com.br/mercado/
2016/07/1792668-grupo-de-bancos-adere-a-nova-tecnologia em-
transacoes.shtml. Adaptado.
Para essas transações é necessária uma
tecnologia digital que permite reproduzir em
pagamentos eletrônicos a eficiência dos
pagamentos com cédulas. Pagamentos assim
são rápidos, baratos e sem intermediários.
Utilizam uma espécie de Criptomoeda. Além
disso, eles podem ser feitos para qualquer
pessoa, que esteja em qualquer lugar do
planeta, sem limite mínimo ou máximo de
valor. Uma das moedas virtuais utilizadas
nessas transações comerciais é:
a) EURO.
b) SCRYPT.
c) BITCOIN.
d) DAGGER.
Questão 32
Com base nas características e nas possíveis
aplicações para a blockchain, assinale a
alternativa correta.
a) A blockchain é uma lista de tamanho fixo
de registros interligados a partir de
criptografia, em que cada bloco contém dados
relativos à transação, um timestamp e
um hash criptográfico do próximo bloco.
b) A blockchain é uma espécie de base de
dados pública e centralizada, que é usada para
registrar transações na nuvem, de forma que
qualquer registro envolvido não possa ser
alterado retroativamente sem a alteração de
todos os blocos subsequentes.
c) Mesmo que fosse possível atacar e
controlar mais de 50% de uma rede
verificadora de transações blockchain, não
seria possível reverter transações já realizadas
ou realizar gastos duplos.
d) A invenção da blockchain para uso
no bitcoin tornou-o a primeira moeda digital a
resolver o problema do gasto duplo sem a
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9710
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
necessidade de envolver uma autoridade
confiável ou servidor central como mediador.
A blockchain remove a característica de
reprodutibilidade infinita de um ativo digital.
e) A blockchain demonstrou potencial apenas
como base tecnológica para as criptomoedas,
sendo, portanto, improvável que outras
indústrias encontrem novas aplicações em
razão das diversas limitações que apresentam.
Questão 33
No contexto de moedas virtuais, o Bitcoin
mitiga o problema de gastar uma mesma
moeda mais de uma vez (o problema de
double-spending), empregando:
a) Blockchain.
b) Criptografia simétrica centralizada.
c) Criptografia assimétrica centralizada.
d) Autenticação do gasto e sua validação por
um comitê central.
e) Registro em tempo real no livro contábil
digital da entidade mantenedora do bitcoin.
Questão 34
Assunto: Tópicos Mesclados de Segurança da
Informação
Julgue o item a seguir, relativos
a blockchain e smart contracts.
Uma característica de blockchain é o fato de
que seus registros de dados são mantidos em
um banco de dados distribuído e são
protegidos contra adulteração e revisão até
mesmo dos operadores dos nós do
armazenamento de dados.
Certo
Errado
Questão 35
Logo no início de março, a Receita Federal
começa a receber as declarações do Imposto
de Renda 2020, relativo ao ano de 2019. E,
para quem gosta de sair na frente, até mesmo
para receber a restituição nos primeiros lotes,
já é hora de começar a separar os documentos
necessários para o preenchimento da
declaração.
(Disponível em:
https://www.jornalcontabil.com.br/imposto-de-renda- 2020.)
Os investimentos em bitcoins, apesar das
grandes oscilações, estão crescendo no Brasil
ao longo dos últimos anos. Em relação à
Declaração de Imposto de Renda e este tipo
específico de investimento, é correto afirmar
que:
a) A declaração é obrigatória, apenas para
instituições financeiras oficiais.
b) É preciso declarar, pois tais criptomoedas
possuem o mesmo valor que um ativo
financeiro.
c) Como estas moedas ainda não são
regulamentadas a ponto de serem
consideradas válidas, não são computadas
para Imposto de Renda.
d) Pelo fato do bitcoin não ser dinheiro igual o
Real, Dólar ou Euro, os seus rendimentos são
considerados propriedade e são passíveis de
isenção.
Questão 36
Assinalar a alternativa que preenche a lacuna
da notícia abaixo CORRETAMENTE:
O Bitcoin é um(a) entre os(as) vários(as)
_____________ que existem. E Bitcoin é
dinheiro, como o real ou o dólar. A principal
diferença é que não tem banco central ou
governo ligados ao Bitcoin e que é 100%
virtual, ou seja, só tem um jeito de comprar,
vender e transferir: pela internet.
http://g1.globo.com/... - adaptado.
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9711
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados/ Uso Individual. Cópia registrada para
a) cheques especiais
b) cartões de créditos
c) moedas virtuais
d) empréstimos consignados
Questão 37
Em 12 de janeiro, a Comissão de Valores
Mobiliários (CVM), órgão que regula o mercado
de capitais no Brasil, decidiu proibir a compra
direta de moedas como o Bitcoin, por fundos
de investimento regulados e registrados no
país.
(G1. goo.gl/zU5ZJN. Acesso em 28 jan.2018)
Um dos motivos alegados para a proibição da
Comissão é o fato de o Bitcoin
a) ser fruto de lavagem de dinheiro
proveniente dos carteis de droga.
b) ter sido, inicialmente, lançado por grupos
extremistas para financiar atos terroristas.
c) ser uma moeda virtual que não tem lastro
com as moedas que circulam pelo mundo.
d) estar sujeito à elevada tributação, o que
torna sua movimentação pouco competitiva.
e) sofrer grandes oscilações de valor porque
depende das políticas econômicas do FMI.
Questão 38
Leia a seguinte notícia: “O final de 2017 foi um
tempo de muita agitação para investidores e
entusiastas: a moeda alcançou em novembro
do ano passado a marca de US$ 10 mil, e o
recorde dobrou em questão de um mês,
chegando a quase US$ 20 mil perto do Natal.
Se 2017 foi o ano de ascensão meteórica, com
a cotação tendo estado em US$ 400 em
determinado momento antes da explosão que
a colocou na boca mesmo de quem não
acompanhava nem um pouco as criptomoedas,
2018 viu um movimento quase que
completamente inverso, perdendo mais de
80% do valor alcançado no ano passado.”
Fonte: gizmodo.uol.com.br, de 27/12/18
A notícia fala sobre uma moeda digital que
pode ser usada como meio de pagamento de
uma forma completamente inovadora,
produzida de forma descentralizada por
milhares de computadores, sem depender de
bancos centrais. Trata-se de:
a) Bitcoin.
b) Bolsa de valores.
c) Debêntures.
d) Dólar.
e) Letras de câmbio.
Questão 39
O bitcoin, moeda digital que surpreendeu o
mundo no ano passado (2017), quando passou
de um preço abaixo de US$ 400 para chegar a
US$ 19.000, tem preocupado seus
investidores. A criptomoeda já desvalorizou
80% em um ano, em relação ao seu valor
máximo alcançado em dezembro 2017.
https://oglobo.globo.com, 01.12.2018
Sobre a criptomoeda bitcoin, é correto afirmar:
a) trata-se de uma moeda digital que vem
ganhando muito espaço no mercado devido à
sua estabilidade e constância de valor.
b) é uma moeda digital desvinculada dos
bancos que mostrou-se com valor oscilante
nos últimos meses.
c) é uma moeda digital que foi lançada com
grandes promessas de destaque no cenário
financeiro, mas que atraiu poucos usuários.
d) apesar de valor oscilante, é uma moeda
digital que não é atingida diretamente pela
especulação financeira, e por isso é segura.
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9712
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
e) é uma das moedas digitais que já atingiu
maior aceitação no mercado financeiro devido
à sua estabilidade, mas atualmente
praticamente não possui usuários.
Questão 40
Considere a seguinte análise sobre um
interessante aspecto econômico e tecnológico
da atualidade e assinale a alternativa que lhe
corresponde.
“Trata-se de uma moeda, assim como o real
ou o dólar, mas bem diferente dos exemplos
citados. O primeiro motivo é que não é
possível mexer no bolso da calça e encontrar
uma delas esquecida. Ela não existe
fisicamente: é totalmente virtual. O outro
motivo é que sua emissão não é controlada
por um Banco Central. Ela é produzida de
forma descentralizada por milhares de
computadores, mantidos por pessoas que
„emprestam‟ a capacidade de suas máquinas
para criá-las e registrar todas as transações
feitas”.
Exame, 06/02/18, com adaptações
a) Bitcoin.
b) GPS.
c) Iene.
d) Wifi.
Questão 41
Bitcoin é considerada a primeira moeda digital
mundial descentralizada, responsável pelo
ressurgimento do sistema bancário livre. Em
2017, esta moeda digital valorizou 1400% (por
cento) e atingiu a maior cotação da história:
mais de 19 mil dólares.
Analise as afirmativas sobre Bitcoin e assinale
a alternativa correta.
I. É uma moeda que não existe fisicamente.
II. É uma moeda totalmente virtual.
III. A sua emissão é controlada por um Banco
Central.
IV. Ela é produzida por milhares de
computadores, através de um processo
chamado “mineração”.
Estão corretas as afirmativas:
a) I, II, III e IV
b) II e IV, apenas
c) I e II, apenas
d) I, II e IV, apenas
Questão 42
“Bitcoin é uma bolha envolta em misticismo
tecnológico e terminará em desastre.”
“Bitcoin recua 7% com reguladores colocando
contra a parede uma das maiores exchanges
do mundo.”
Recentemente, manchetes como as dispostas,
ganharam destaque no cenário internacional.
Sobre o assunto, assinale a
alternativa correta.
a) Bitcoin é a denominação da moeda de uso
oficial em diversos países, impressa pelo
Sistema de Reserva Federal dos Estados
Unidos, destacando-se por ter o maior nível de
moeda circulante no mundo.
b) Bitcoins são papéis que representam uma
pequena parte do capital social de uma
empresa, podendo ser classificados como
ordinários ou preferenciais.
c) A Bitcoin foi criada há 12 anos e sua origem
está associada à mineração de cálculos
matemáticos. No Brasil, sua emissão é
controlada pelo Banco Central.
d) Apesar da resistência de alguns países, a
Bitcoin é considerada um moeda digital, que
pode ser recebida e enviada pela internet. Sua
emissão é realizada de forma descentralizada,
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9713
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
ou seja, sem o controle de uma instituição
financeira ou de bancos.
e) Bitcoin é um sistema de crédito que ocorre
a partir da validação de um banco ou de uma
processadora de cartão de crédito.
Questão 43
Leia o trecho da matéria.
Na quinta-feira (11.01) o bitcoin, registrou
queda significativa após o Governo da Coreia
do Sul anunciar que discute um plano para
bani-lo do mercado local, um dos mais
importantes do mundo. Nesta sexta-feira
(12.01), foi a vez de instituições do Brasil
entrarem na lista das autoridades mundiais
que estão buscando formas para regulamentar
um ativo cujos preços dispararam no ano
passado.
goo.gl/n2hQWt. Adaptado
Bitcoin é
a) uma letra de câmbio emitida pelo governo
brasileiro.
b) uma ação comercializada nas bolsas de
valores da China.
c) um investimento baseado na cotação do
ouro no mercado internacional.
d) uma moeda digital, criada por
computadores e que circula apenas na
internet.
e) um fundo de ações controlado pelo Banco
Central alemão.
Questão 44
Sobre bitcoin, assinale a alternativa CORRETA:
a) É moeda eletrônica.
b) Não é regulada pelo Bacen (Banco Central
do Brasil).
c) As empresas que negociam ou guardam as
chamadas moedas virtuais em nome dos
usuários, pessoas naturais ou jurídicas, são
autorizadas a funcionar pelo Bacen.
d) É valor mobiliário.
Questão 45
Analise as seguintes definições e assinale
a INCORRETA:
a) A computação em nuvem refere-se a um
modelo de computação que fornece acesso a
um pool compartilhado de recursos de
computação (computadores, armazenamento,
aplicativos e serviços) em uma rede.
b) Moedas virtuais, como o Bitcoin, são
moedas criptografadas.Trata-se de uma forma
de dinheiro que existe apenas digitalmente. O
Banco Mundial define as regras e efetua o
monitoramento do comércio deste tipo de
moeda.
c) A Dark Web é uma parte não indexada e
restrita da Deep Web e é normalmente
utilizada para comércio ilegal e pornografia
infantil.
d) A Deep Web refere-se ao conteúdo da
World Wide Web que não é indexada pelos
mecanismos de busca padrão, ou seja, não faz
parte da Surface Web.
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9714
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 46
É um tipo de Malware que sequestra o
computador da vítima e cobra um valor em
dinheiro pelo resgate, geralmente usando a
moeda virtual bitcoin, que torna quase
impossível rastrear o criminoso que pode vir a
receber o valor. Este tipo de "vírus
sequestrador" age codificando os dados do
sistema operacional de forma com que o
usuário não tenham mais acesso.
Marque a alternativa CORRETA em relação ao
conceito descrito acima.
a) Worms.
b) Trojans.
c) Ransomware.
d) Spams.
e) Spyware.
Questão 47
“Brasil inicia oficialmente negociações de
acordo com os EUA.”
“Operações com criptomoedas feitas a partir
desta quinta terão que ser informadas à
Receita.”
“Governo libera saques do FGTS.”
As notícias anteriores se referem à área (da):
a) Cultura.
b) Educação.
c) Economia.
d) Institucional.
Questão 48
As criptomoedas são moedas virtuais,
utilizadas para a realização de pagamentos em
transações comerciais. Além de serem
completamente virtuais, existem três
características que as diferenciam das moedas
regulares:
descentralização, anonimato e baixo custo de
transação
Fonte: Politize!
Qual das moedas abaixo não é uma
criptomoeda?
a) peso
b) petro
c) bitcoin
d) monero
e) dogecoin
Questão 49
Leia o texto a seguir.
Moedas virtuais são o assunto do momento.
Muita gente está acompanhando a exuberância
da ascensão (e da queda) nos preços de várias
delas. O que pouca gente notou é a
popularização de um esquema sorrateiro para
“minerar” criptomoedas, utilizando o
computador de usuários comuns que não ficam
sequer sabendo disso.
LEMOS, R. Você minera criptomoedas sem saber? Folha de S. Paulo.
Folhainvest, 5 fev. 2017, p.14 A.
O texto apresenta uma nova moeda e destaca
a modalidade de uma prática considerada
a) econômica e inteligente, na medida em que
os mais espertos ganham dinheiro com a
desinformação dos demais.
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9715
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
b) ilegal e antiética, por fazer uso de
computadores sem o consentimento de seus
donos.
c) pública e legal, considerando que, na
Internet, não há mais restrição de privacidade.
d) sistêmica e impessoal, já que a
operacionalidade virtual da rede de
computadores funciona independentemente da
vontade das pessoas reais.
e) social e compartilhada, uma vez que as
redes sociais fomentam a socialização de
informações e de dados.
Questão 50
Acerca dos riscos ligados às chamadas
criptomoedas ou moedas virtuais, o Banco
Central do Brasil, em comunicado de novembro
de 2017, alertou para questões relacionadas à
conversibilidade e ao lastro de tais ativos,
destacando que não é responsável por regular,
autorizar ou supervisionar o seu uso.
Assim, é correto afirmar que seu valor:
a) decorre da garantia de conversão em
moedas soberanas;
b) decorre da emissão e garantia por conta de
autoridades monetárias;
c) decorre de um lastro em ativos reais;
d) é associado ao tamanho da base
monetária;
e) decorre exclusivamente da confiança
conferida pelos indivíduos ao seu emissor.
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9716
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
N° GAB
ATUALIDADES DO
MERCADO FINANCEIRO
01 e
FAU UNICENTRO - Ana (E-Paraná)/E-
Paraná/Marketing/2017
02 a IADES - Esc (BRB)/BRB/2019
03 d
IDCAP - Aux (SAAE Ibiraçu)/SAAE
Ibiraçu/Administrativo/2020
04 c CESGRANRIO - Esc BB/BB/Agente Comercial/2015
05 d CESGRANRIO - Esc BB/BB/Agente Comercial/2010
06 d IADES - Esc (BRB)/BRB/2019
07 b CESGRANRIO - Esc BB/BB/Agente Comercial/2012
08 a IADES - Esc (BRB)/BRB/2019
09 e CESGRANRIO - Esc BB/BB/Agente Comercial/2012
10 c IADES - Esc (BRB)/BRB/2019
11 e IADES - Esc (BRB)/BRB/2019
12 a
INSTITUTO ACESSO - Prof (SEDUC AM)/SEDUC
AM/Educação Especial/Geografia 20h/2018
13 c
FUNDATEC - Ass (Pref Campo Bom)/Pref Campo
Bom/Administrativo/2019
14 b FUNDATEC - ASoc (Pref Quaraí)/Pref Quaraí/2019
15 a
CEBRASPE (CESPE) - PEBTT
(IFF)/IFF/Administração Produção/2018
16 a
IBFC - Turi (Cruzeiro Sul)/Pref Cruzeiro do
Sul/2019
17 d ESAF - AFRFB/SRFB/Aduana/2003
18 b FAUEL - Eco (Pref Maringá)/Pref Maringá/2018
19 e
Marinha - Of Int (Marinha)/Marinha/Administração,
Ciências Contábeis e Economia/2017
20 b
FCC - TNS (ARSETE)/Pref
Teresina/Economista/2016
21 b FCC - Aud (TCE-AM)/TCE-AM/2015
22 certo CEBRASPE (CESPE) - Diplomata/IRBr/2014
23 d
Marinha - Of Int
(Marinha)/Marinha/Economia/2014
24 b IBFC - Eco (HEMOMINAS)/HEMOMINAS/2013
25 a
CETRO - Ana Mun (Manaus)/Pref
Manaus/Administrativa/Economia/2012
* *
N° GAB
ATUALIDADES DO
MERCADO FINANCEIRO
26 c
GPG Concursos - Per (IGP SC)/IGP
SC/Criminal/Geral/2008
27 d ESAF - Ana (CVM)/CVM/Mercado de Capitais/2010
28 a
IDIB - Ass Tec
(CREMEPE)/CREMEPE/Arquivos/2021
29 a CETAP - GCM (Ananindeua)/Pref Ananindeua/2019
30 c
MS CONCURSOS - Estag (CM POA)/CM POA/Ensino
Médio e Técnico/2018
31 c
CONSULPLAN - Eng (Venda NI)/Pref VN
Imigrante/Civil/2016
32 d IADES - Esc (BRB)/BRB/2019
33 a FEPESE - Ag Pol (PC SC)/PC SC/2017
34 certo
CEBRASPE (CESPE) - Ana
(SERPRO)/SERPRO/Desenvolvimento de
Sistemas/2021
35 b
Instituto Consulplan - Edu (Pref Colômbia)/Pref
Colômbia/2020
36 c
OBJETIVA CONCURSOS - CSoc (SA Patrulha)/Pref
Sto A Patrulha/2018
37 c VUNESP - Cuid (Pref Barretos)/Pref Barretos/2018
38 a
FUNDATEC - Nutri (N Horizonte)/Pref N
Horizonte/2019
39 b VUNESP - Zel (Osasco)/Pref Osasco/2019
40 a
FAUEL - Cont (CM P D'Oeste)/CM Pérola
D'Oeste/2018
41 c IBFC - Sold (PM SE)/PM SE/Combatente/2018
42 d
AOCP - Art Educ (FUNPAPA)/FUNPAPA/Instrutor de
Artes, Ofícios/2018
43 d
VUNESP - Aux SB (Sertãozinho)/Pref
Sertãozinho/2018
44 b Com. Exam. (TRF 3) - JF TRF3/TRF 3/2018
45 b IESES - Papilo (IGP SC)/IGP SC/2017
46 c IDCAP - TPD (Pref SR Canaã)/Pref SR Canaã/2020
47 c
Instituto Consulplan - Moto VLP
(CODESG)/CODESG/2019
48 a
CESC UFRR - Ass
(UFRR)/UFRR/Administrativo/2019
49 b
COPS UEL - Ass Adm (Fomento PR)/Fomento
Paraná/2018
50 e FGV - Tec B (BANESTES)/BANESTES/2018
* *
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9717
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento destearquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 51
Além de ser usado para verificar transações
com criptomoedas, como Bitcoin, a
função hash é usada em assinaturas digitais,
para
a) garantir a integridade do documento
assinado.
b) aumentar o tempo de autenticação da
assinatura.
c) gerar um valor aleatório de tamanho
variável.
d) garantir a autenticidade do documento
assinado.
e) gerar um resumo de 256 bits por meio do
algoritmo RSA.
Questão 52
Considere que em 2 de janeiro de 2018, Vinhal
Frodeno adquiriu veículo seminovo, mediante
financiamento bancário, intermediado por
correspondente bancário.
A respeito do contrato bancário e sua
interpretação dada pelos Tribunais Superiores,
analise as afirmativas a seguir.
I. É abusiva cláusula contratual que prevê a
cobrança de ressarcimento de serviços
prestados por terceiros, sem a especificação do
serviço a ser efetivamente prestado.
II. Não é abusiva cláusula contratual que
prevê o ressarcimento pelo consumidor da
comissão do correspondente bancário.
III. Tendo sido o bem dado em alienação
fiduciária em garantia, a cláusula contratual
que prevê a remuneração do agente financeiro
pela avaliação do bem não é abusiva.
IV. É abusiva cláusula contratual que imponha
a contratação de seguro de proteção
financeira.
Está correto o que se afirma em:
a) I, II e III, apenas.
b) I, II e IV, apenas.
c) I, III e IV, apenas.
d) II, III e IV, apenas.
Questão 53
De acordo com o Código de Defesa do
Consumidor, no que se refere aos serviços
bancários, assinale a alternativa correta.
a) É abusiva a cláusula que prevê o
ressarcimento pelo consumidor da comissão do
correspondente bancário, em contratos
celebrados a partir de 25/2/2011, data de
entrada em vigor da Resolução CMN nº
3.954/2011, sendo válida a cláusula no período
anterior a essa resolução, ressalvado o
controle da onerosidade excessiva.
b) Não existe abusividade da cláusula que
prevê a cobrança de ressarcimento de serviços
prestados por terceiros, sem a especificação do
serviço a ser efetivamente prestado.
c) Há invalidade da tarifa de avaliação do bem
dado em garantia, bem como da cláusula que
prevê o ressarcimento de despesa com o
registro do contrato, ressalvadas a abusividade
da cobrança por serviço não efetivamente
prestado e a possibilidade de controle da
onerosidade excessiva, em cada caso concreto.
d) São inválidas as tarifas de abertura de
crédito (TAC) e de emissão de carnê (TEC),
conforme o período em que tais tarifas
estiveram autorizadas ou vedadas pela
regulação bancária.
e) O Tribunal, quando declara, por decisão
interlocutória, por sentença, por decisão
monocrática ou por acórdão, a abusividade da
condição geral contratual que impute ao
consumidor o dever de adimplir os encargos
acessórios, impede a caracterização da mora
do consumidor.
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9718
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 54
A partir da década passada, o Sistema de
Pagamentos Brasileiro (SPB) passou por
profundas mudanças. Analise as afirmações a
seguir.
I. A Câmara de Câmbio processa as transações
do mercado interbancário de câmbio e a
Câmara de Derivativos opera sistema de
liquidação de operações com derivativos.
II. Na compensação de cheques, tem papel de
destaque o Banco do Brasil S.A., responsável
pela operação da Centralizadora da
Compensação de Cheques (Compe).
III. A Empresa Brasileira de Correios e
Telégrafos (ECT) figura na atualidade como
um ator importante no sistema de
pagamentos, considerando que, atuando como
correspondente bancário, atende a quase
todos os municípios brasileiros nos quais
inexistem agências bancárias.
Pode-se afirmar que:
a) todas estão corretas.
b) apenas uma esta correta.
c) apenas I e II estão corretas.
d) apenas II e III estão corretas.
e) todas estão incorretas.
Questão 55
Com base na legislação e nas práticas para
prevenção e combate à lavagem de dinheiro e
ao financiamento do terrorismo, julgue o item
subsecutivo.
Grandes instituições financeiras internacionais
estabelecem princípios de prevenção aos
crimes de lavagem de dinheiro para bancos
correspondentes, cujo objetivo final consiste
em evitar o uso de suas operações
internacionais para fins criminosos. Entre os
indicadores de risco, inclui-se o domicílio do
correspondente bancário. Certas jurisdições
são internacionalmente reconhecidas como
lugares onde se apresentam padrões
inadequados de prevenção à lavagem de
dinheiro, supervisão reguladora insuficiente ou
altos riscos de ocorrência de crimes, corrupção
ou financiamento ao terrorismo.
Certo
Errado
Questão 56
Ao final de 2012, o Banco Central do Brasil
divulgou, por meio da diretoria de fiscalização,
que vai passar a monitorar a conduta das
instituições financeiras para além dos temas de
liquidez e solvência. O objetivo será fazer a
chamada supervisão de conduta, com a missão
de verificar se as instituições estão seguindo as
regras atualmente existentes para uma série
de assuntos, que incluem
a) restrição ao funcionamento de entidades
controladas por capital estrangeiro.
b) popularização do investimento individual em
títulos públicos.
c) determinação de áreas de atuação
segregadas para bancos oficiais e privados.
d) monitoramento do relacionamento com
correspondentes bancários.
e) incentivos fiscais para abertura de novas
agências.
Questão 57
Dois importantes fenômenos têm chamado
atenção no setor financeiro nos anos recentes.
O primeiro corresponde ao desenvolvimento
dos mercados de microfinanças e ao crescente
número de operações de microcrédito. O
segundo está relacionado ao enorme
crescimento verificado no uso dos
correspondentes bancários como canal de
atendimento dos bancos.
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9719
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Adaptado de: DINIZ, E. Correspondentes bancários e microcrédito no
Brasil: tecnologia bancária e ampliação dos serviços financeiros para a
população de baixa renda. Relatório FGV Pesquisa. 2010.
O crescimento das operações de microcrédito e
dos correspondentes bancários no Brasil são
explicadas, respectivamente, pelo(a):
a) ampliação do acesso às redes de
telecomunicação e democratização do acesso a
serviços bancários;
b) crescimento extensivo das cidades e
diminuição da informalidade no mercado de
trabalho;
c) crescimento do número de bancos públicos
e aumento da renda média da população;
d) ampliação do número de agências
bancárias em cidades pequenas e ampliação
da inadimplência;
e) aumento do número de bancos
transnacionais e maior concentração da renda
pelos responsáveis por domicílios.
Questão 58
A condição regulamentar para uma pessoa
jurídica ser instituição financeira de pagamento
(IP), é viabilizar serviços de compra e venda e
de movimentação de recursos, no âmbito de
um arranjo de pagamento, SEM a
possibilidade de:
a) emitir moeda eletrônica.
b) emitir instrumento de pagamento pós-
pago.
c) conceder empréstimos e financiamentos a
seus clientes.
d) credenciar/habilitar estabelecimentos
comerciais para a aceitação de instrumento de
pagamento.
Questão 59
Instituição de pagamento é a pessoa jurídicaque viabiliza serviços de compra e venda e de
movimentação de recursos, no âmbito de um
arranjo de pagamento, que
a) tem a possibilidade de conceder
empréstimos, mediante garantias.
b) gerencia conta de pagamento do tipo pré-
paga.
c) financia seus clientes por meio de cartão de
crédito.
d) está dispensada da aplicação da
regulamentação sobre prevenção à lavagem de
dinheiro.
e) não está sujeita à supervisão do Banco
Central do Brasil.
Questão 60
A missão institucional do Banco Central do
Brasil - BCB é a estabilidade do poder de
compra da moeda e a solidez do sistema
financeiro. Seu funcionamento adequado é
essencial para a estabilidade financeira e
condição necessária para salvaguardar os
canais de transmissão da política monetária.
Assim, assinale a alternativa correta a
respeito do papel do BCB no sistema financeiro
nacional:
a) Compete ao BCB a definição de quais são
os sistemas de liquidação favorecem o
recebimento de impostos por parte da receita
federal.
b) É função do BCB executar as ordens de
transferência de fundos, observar os
requisitos, inclusive os de segurança, aplicáveis
às situações de pagamento e de recebimento
de mensagens observando índice de
confiabilidade mínimo de 99,8%.
c) Cabe ao BCB assegurar que as
infraestruturas e os arranjos de pagamentos
operados no Brasil sejam administrados
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9720
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
consistentemente com os objetivos de
interesse público.
d) É papel do Banco Central do Brasil,
seguindo diretrizes dadas pelo Conselho
Monetário Nacional, regulamentar, juntamente
com a receita federal, nas suas respectivas
esferas de competência, o funcionamento das
instituições financeiras no Brasil.
e) O Banco Central do Brasil, diferentemente
dos bancos comerciais, não pode conceder
crédito às instituições financeiras participantes
do STR, na forma de operações
compromissadas com títulos públicos federais,
sem custos financeiros.
Questão 61
A partir de 16/11/2020, o Pix estará
amplamente disponível para pagamentos e
transferências. Mas, desde 05/10/2020, os
consumidores já podem acessar sua conta pelo
aplicativo celular e fazer o registro das chaves
Pix para receber de forma mais fácil, ou seja,
associar às suas contas um método de
identificação (número de celular, e-mail, CPF,
CNPJ).
https://www.bcb.gov.br
No que se refere ao Pix, meio de pagamento
criado pelo Banco Central (BC), assinale a
alternativa INCORRETA:
a) O Pix foi criado para ser um meio de
pagamento bastante amplo. Qualquer
pagamento ou transferência que hoje é feito
usando diferentes meios (TED, cartão, boleto
etc.), poderá ser feito com o Pix, simplesmente
com o uso do aparelho celular.
b) As transferências tradicionais no Brasil são
entre contas da mesma instituição
(transferência simples) ou entre contas de
instituições diferentes (TED e DOC). O Pix é
mais uma opção disponível à população que
convive com os tipos tradicionais. A diferença é
que, com o Pix, não é necessário saber onde a
outra pessoa tem conta.
c) As transações de pagamento por meio de
boleto exigem a leitura de código de barras,
enquanto o Pix pode fazer a leitura de um QR
Code.
d) No Pix a liquidação é em tempo real, o
pagador e o recebedor são notificados a
respeito da conclusão da transação, porém o
pagamento não pode ser feito em qualquer dia
ou horário.
e) As transações de pagamento utilizando
cartão de débito exigem uso de maquininhas
ou instrumento similar. Com Pix, as transações
podem ser iniciadas por meio do telefone
celular, sem a necessidade de qualquer outro
instrumento.
Questão 62
O Banco Central Brasileiro entrou para a era
dos bancos digitais e criou um meio de
realização de transações bancárias que
promete ser mais rápido e prático e pode ser
utilizado nas plataformas de qualquer
instituição bancária. A novidade do BC é
chamada de:
a) Bank-x.
b) Finanx.
c) Bits.
d) Pix.
e) Financis.
Questão 63
Está programada para o dia 16 de novembro
de 2020 a entrada em vigor do Pix, o novo
sistema de pagamentos e transferências
desenvolvido pelo Banco Central. A respeito
das características e vantagens dessa
modalidade de pagamento, assinale a
alternativa correta.
a) Para enviar recursos para uma pessoa, o
emissor do Pix deverá ter acesso à chave
pública e à chave privada do destinatário do
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9721
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
crédito, o que garantirá mais segurança às
transações financeiras e evitará fraudes.
b) A principal vantagem do Pix é a
possibilidade de transferir recursos entre
contas de bancos diferentes de modo
instantâneo, em qualquer dia e horário,
incluindo finais de semana e feriados.
c) O Pix eliminará, já na sua fase inicial, o uso
dos cartões de débito e crédito e a
necessidade dos lojistas de manter contratos
com as administradoras de cartões, diminuindo
sensivelmente as despesas de vendas.
d) Uma das formas de receber recursos via
Pix será por meio do envio do código de barras
pessoal para a pessoa que deverá efetuar o
pagamento, o que irá reduzir os erros de
digitação e as devoluções que tanto acontecem
com as Teds e os Docs.
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9722
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
N° GAB
ATUALIDADES DO
MERCADO FINANCEIRO
51 a
FCC - Ana TI (SANASA)/SANASA/Suporte de
Infraestrutura TI/2019
52 c FUNDEP - DP MG/DPE MG/2019
53 a IADES - Esc (BRB)/BRB/2019
54 a
QUADRIX - ADI (ABDI)/ABDI/Nível Superior
Pleno/Finanças/2013
55 certo
CEBRASPE (CESPE) - EPC
(PREVIC)/PREVIC/Finanças e Contábil/2011
56 d FCC - Esc BB/BB/Agente Comercial/2013
57 a FGV - Tecno (IBGE)/IBGE/Geografia/2016
58 c CAE CFC - CNAI (CFC)/CFC/BCB/2017
59 b FCC - Esc (BANRISUL)/BANRISUL/2019
60 c EXATUS - Tec Ban (BANPARÁ)/BANPARÁ/2015
61 d
EDUCA PB - PJ (S Francisco PB)/Pref S Francisco
PB/2020
62 d
IDCAP - Aux (SAAE Ibiraçu)/SAAE
Ibiraçu/Administrativo/2020
63 b IDIB - ALeg (CM Condado)/CM Condado/2020
* *
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9723
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
MATEMÁTICA
Questão 1
Assunto: Definição, subconjuntos, inclusão e
pertinência, operações, conjunto das partes
Os conjuntos P e Q têm p e q elementos,
respectivamente, com p + q = 13.
Sabendo-se que a razão entre o número de
subconjuntos de P e o número de
subconjuntos de Q é 32, quanto vale o produto
pq?a) 16
b) 32
c) 36
d) 42
e) 46
Questão 2
Assunto: Número de elementos da união, da
intersecção, do complemento e da diferença
Em uma central de telemarketing com 42
funcionários, todos são atenciosos ou
pacientes. Sabe-se que apenas 10% dos
funcionários atenciosos são pacientes e que
apenas 20% dos funcionários pacientes são
atenciosos.
Quantos funcionários são atenciosos e
pacientes?
a) 1
b) 3
c) 9
d) 12
e) 27
Questão 3
Assunto: Adição, subtração, multiplicação e
divisão de números naturais
A capacidade máxima de carga de um
caminhão é de 2,670 toneladas (t). Duas
cargas de grãos estão destinadas a esse
caminhão: a primeira, de 2,500 t e, a segunda,
de 0,720 t.
A soma das massas das duas cargas
destinadas ao caminhão excede a sua
capacidade máxima em
a) 0,100 t
b) 0,550 t
c) 0,593 t
d) 1,450 t
e) 1,648 t
Questão 4
Assunto: Adição, subtração, multiplicação e
divisão de números naturais
Pouca gente sabe, mas uma volta completa no
planeta Terra, no perímetro do Equador,
corresponde a cerca de 40.000 km.
Observe, na imagem, a quilometragem
indicada no hodômetro de um veículo.
Considerando-se os dados do texto e a
imagem acima, quantos quilômetros esse
veículo ainda terá que percorrer para
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9724
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
completar o equivalente a três voltas no
perímetro do Equador da Terra?
a) 51.308
b) 38.602
c) 31.308
d) 28.692
e) 28.620
Questão 5
Assunto: Adição, subtração, multiplicação e
divisão de números naturais
Considere cinco punhados idênticos de feijões,
ou seja, com a mesma quantidade de feijão.
Tais punhados estão enfileirados e numerados
do primeiro ao quinto. Uma pessoa retira de
cada punhado, exceto do terceiro, três feijões
e os coloca no terceiro punhado. Em seguida,
essa pessoa retira do terceiro punhado tantos
feijões quantos restaram no segundo e os
coloca no primeiro punhado.
Após os procedimentos realizados por essa
pessoa, quantos feijões sobraram no terceiro
punhado?
a) 7
b) 15
c) 9
d) 12
e) 10
Questão 6
Assunto: Adição, subtração, multiplicação e
divisão de números naturais
A Figura a seguir mostra as flores de um
canteiro, e o número abaixo de cada flor
representa a quantidade, em mg, de pólen de
cada uma das flores.
Uma abelha visita esse canteiro para colher
pólen, mas consegue carregar, no máximo, 8
mg de pólen por viagem. Sabe-se ainda que,
em cada viagem, a abelha colhe o pólen de
uma única flor, que pode ser revisitada em
outras viagens.
Qual a quantidade máxima de pólen, em mg,
que essa abelha consegue colher em 24
viagens?
a) 180
b) 192
c) 184
d) 191
e) 190
Questão 7
Assunto: Adição, subtração, multiplicação e
divisão de números naturais
Observe a adição:
Sendo E e U dois algarismos não nulos e
distintos, a soma E + U é igual a
a) 13
b) 14
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9725
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
c) 15
d) 16
e) 17
Questão 8
Assunto: Adição, subtração, multiplicação e
divisão de números naturais
Na multiplicação por 2 mostrada abaixo, que
foi feita corretamente, cada letra representa
um algarismo; letras iguais representam o
mesmo algarismo e letras diferentes
representam algarismos diferentes. A palavra
GENTE representa um número de 5 algarismos
e IBGE representa um número de 4
algarismos. G e I, portanto, são diferentes de
zero.
I B G E
×2
--------------------
GENTE
O valor da expressão G+E+I+T⋅B−N é
a) 6
b) 8
c) 13
d) 18
e) 21
Questão 9
Assunto: Adição, subtração, multiplicação e
divisão de números naturais
Durante 185 dias úteis, 5 funcionários de uma
agência bancária participaram de um rodízio.
Nesse rodízio, a cada dia, exatamente 4 dos 5
funcionários foram designados para trabalhar
no setor X, e cada um dos 5 funcionários
trabalhou no setor X o mesmo número N de
dias úteis.
O resto de N na divisão por 5 é
a) 4
b) 3
c) 0
d) 1
e) 2
Questão 10
Assunto: Adição, subtração, multiplicação e
divisão de números naturais
Apenas três equipes participaram de uma
olimpíada estudantil: as equipes X, Y e Z.
A Tabela a seguir apresenta o número de
medalhas de ouro, de prata e de bronze
obtidas por essas equipes.
ouro prata bronze total
Equipe X 3 4 2 9
Equipe Y 1 6 8 15
Equipe Z 0 9 5 14
De acordo com os critérios adotados nessa
competição, cada medalha dá a equipe uma
pontuação diferente: 4 pontos por cada
medalha de ouro, 3 pontos por cada medalha
de prata e 1 ponto por cada medalha de
bronze. A classificação final das equipes é dada
pela ordem decrescente da soma dos pontos
de cada equipe, e a equipe que somar mais
pontos ocupa o primeiro lugar.
Qual foi a diferença entre as pontuações
obtidas pelas equipes que ficaram
em segundo e em terceiro lugares?
a) 6
b) 5
c) 1
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9726
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
d) 2
e) 4
Questão 11
Assunto: Adição, subtração, multiplicação e
divisão de números naturais
Ariovaldo escolheu um número natural de 5
algarismos e retirou dele um de seus
algarismos, obtendo assim um número de 4
algarismos (por exemplo, se o número
escolhido é 56.787 e o algarismo retirado é o
8, então o número obtido é 5.677).
A soma do número inicial de 5 algarismos,
escolhido por Ariovaldo, com o de 4
algarismos, obtido retirando-se um dos
algarismos do número escolhido, é 81.937. O
algarismo retirado do número inicial de 5
algarismos foi o algarismo das
a) dezenas de milhares
b) unidades de milhares
c) centenas
d) dezenas
e) unidades
Questão 12
Assunto: Adição, subtração, multiplicação e
divisão de números naturais
Renato vai preencher cada quadrado da fila
abaixo com um número, de forma que a soma
de quaisquer três números consecutivos na fila
(vizinhos) sempre seja 2.014.
O número que Renato terá de colocar no lugar
de N é
a) 287
b) 745
c) 982
d) 1.012
e) 1.032
Questão 13
Assunto: Adição, subtração, multiplicação e
divisão de números naturais
Material Quantidade de Paletes
V 13
X 19
Y 21
Z 16
Uma das características importantes a ser
considerada num projeto de um armazém é a
acessibilidade aos produtos nele armazenados.
Suponha um armazém que dispõe de uma
ponte rolante e que estoca 4 tipos de materiais
que são empilhados em um máximo de três
estrados ou paletes. Um carregamento com os
materiais apresentados no quadro chegou a
esse armazém.
Qual é o número de pilhas necessárias para
armazenar o carregamento, considerando que
uma pilha não pode conter diferentes
materiais?
a) 21
b) 22
c) 23
d) 25
e) 69
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9727
Lei 9610/98. Proibidaa reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 14
Assunto: Adição, subtração, multiplicação e
divisão de números naturais
Arthur administra um pequeno negócio de
cópias. Atualmente ele possui apenas uma
máquina, que é capaz de fazer 50 cópias por
minuto, mas pretende comprar mais uma
máquina para que possa fazer um total de
7.500 cópias por hora.
Qual a capacidade da máquina que será
comprada, em cópias por minuto, para que
Arthur alcance o que pretende?
a) 175
b) 125
c) 100
d) 80
e) 75
Questão 15
Assunto: Adição, subtração, multiplicação e
divisão de números naturais
Um bazar de títulos de videogames troca três
jogos de ação por 4 jogos de tiro em primeira
pessoa ou 5 jogos de tiro em primeira pessoa
por 3 jogos de esportes. O mesmo bazar
vende um jogo de esporte por 40 reais.
Mantendo as proporções observadas nas
trocas para determinar o preço de cada tipo de
jogo, por quantos reais o bazar deveria vender
um jogo de ação?
a) 32
b) 28
c) 25
d) 24
e) 20
Questão 16
Assunto: Adição, subtração, multiplicação e
divisão de números naturais
Ao serem divididos por 5, dois números
inteiros, x e y, deixam restos iguais a 3 e 4,
respectivamente.
Qual é o resto da divisão de x . y por 5?
a) 4
b) 3
c) 2
d) 1
e) 0
Questão 17
Assunto: Adição, subtração, multiplicação e
divisão de números naturais
A produção mundial de alimentos vem
aumentando, mas o consumo per capita (por
pessoa) também. Há 20 anos, uma pessoa
consumia, em média, 33 kg de carne por ano.
Hoje, consome 42 kg.
A quantidade anual média de carne
consumida, há 20 anos, por 280 pessoas seria
suficiente, nos dias atuais, para suprir o
consumo anual de quantas pessoas?
a) 110
b) 156
c) 220
d) 234
e) 356
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9728
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 18
Assunto: Divisibilidade, números primos,
fatores primos, divisor e múltiplo comum
(MMC)
Com os elementos de A = {1, 2, 3, 4, 5, 6},
podemos montar numerais de 3 algarismos
distintos.
Quantos desses numerais representam
números múltiplos de 4?
a) 16
b) 20
c) 24
d) 28
e) 32
Questão 19
Assunto: Divisibilidade, números primos,
fatores primos, divisor e múltiplo comum
(MMC)
O produto de dois números naturais, x e y, é
igual a 765. Se x é um número primo maior
que 5, então a diferença y – x é igual a
a) 6
b) 17
c) 19
d) 28
e) 45
Questão 20
Assunto: Divisibilidade, números primos,
fatores primos, divisor e múltiplo comum
(MMC)
Cinco candidatos, Aldo, Baldo, Caldo, Delcio e
Elcio participam da última etapa de um
processo seletivo no qual o avaliador entrevista
cada um deles, atribuindo-lhes notas de 0 a
100. As notas atribuídas aos cinco candidatos
foram 71, 76, 80, 82 e 91, não
necessariamente nessa ordem.
Em uma planilha de cálculo, os nomes dos
candidatos estavam em ordem alfabética. Ao
inserir as notas de cada candidato ao lado de
seu nome, a planilha calculava
automaticamente a média das notas já
inseridas. O avaliador percebeu que a média,
após cada inserção, não se mantinha
constante, mas era sempre um número inteiro.
Nessas condições, o candidato que obteve a
maior nota foi
a) Aldo
b) Baldo
c) Caldo
d) Delcio
e) Elcio
Questão 21
Assunto: Divisibilidade, números primos,
fatores primos, divisor e múltiplo comum
(MMC)
Seja x um número natural tal que o mínimo
múltiplo comum entre x e 36 é 360, e o
máximo divisor comum entre x e 36 é 12.
Então, a soma dos algarismos do número x é
a) 3
b) 5
c) 9
d) 16
e) 21
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9729
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 22
Assunto: Divisibilidade, números primos,
fatores primos, divisor e múltiplo comum
(MMC)
Em uma caixa há cartões. Em cada um dos
cartões está escrito um múltiplo de 4
compreendido entre 22 e 82. Não há dois
cartões com o mesmo número escrito, e a
quantidade de cartões é a maior possível. Se
forem retirados dessa caixa todos os cartões
nos quais está escrito um múltiplo de 6 menor
que 60, quantos cartões restarão na caixa?
a) 12
b) 11
c) 3
d) 5
e) 10
Questão 23
Assunto: Divisibilidade, números primos,
fatores primos, divisor e múltiplo comum
(MMC)
Seja x um número natural que, dividido por 6,
deixa resto 2. Então, (x + 1) é
necessariamente múltiplo de
a) 2
b) 3
c) 4
d) 5
e) 6
Questão 24
Assunto: Números inteiros (propriedades,
operações, módulo etc)
Considere o conjunto A cujos 5 elementos são
números inteiros, e o conjunto B formado por
todos os possíveis produtos de três elementos
de A.
Se B = {–30, –20, –12, 0, 30}, qual o valor da
soma de todos os elementos de A?
a) 5
b) 3
c) 12
d) 8
e) –12
Questão 25
Assunto: Números inteiros (propriedades,
operações, módulo etc)
Um menino escreveu todos os números
inteiros de 10 até 80. Depois trocou cada um
desses números pela soma de seus algarismos,
formando, de acordo com esse processo, uma
lista. Por exemplo, o número 23 foi trocado
pelo número 5, pois 2 + 3 = 5, e o número 68
foi trocado pelo número 14, pois 6 + 8 = 14.
Ao final do processo, quantas vezes o número
9 figurava na lista criada pelo menino?
a) 3
b) 5
c) 6
d) 7
e) 8
Questão 26
Assunto: Números inteiros (propriedades,
operações, módulo etc)
Em certo concurso, a pontuação de cada
candidato é obtida da seguinte forma: por
cada acerto o candidato recebe 3 pontos e, por
cada erro, perde 1 ponto. Os candidatos A e B
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9730
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
fizeram a mesma prova, porém A acertou 5
questões a mais do que B.
Qual foi a diferença entre as pontuações
obtidas pelos dois candidatos?
a) 15
b) 25
c) 5
d) 10
e) 20
Questão 27
Assunto: Números inteiros (propriedades,
operações, módulo etc)
Considere x um número inteiro tal que 0 < x <
2.
O valor de x + 3 é
a) 0
b) 2
c) 3
d) 4
e) 5
Questão 28
Assunto: Números inteiros (propriedades,
operações, módulo etc)
Multiplicando-se o maior número inteiro menor
do que 8 pelo menor número inteiro maior do
que − 8, o resultado encontrado será
a) − 72
b) − 63
c) − 56
d) − 49
e) − 42
Questão 29
Assunto: Frações e dízimas periódicas
Considere o produto 6·0,2.
Esse produto pode ser escrito como a fração
a) 6/5
b) 5/6
c) 1/2
d) 12/100
e) 100/12
Questão 30
Assunto: Frações e dízimas periódicas
Colocar uma barra sobre o período é uma das
formas de representar uma dízima periódica:
0,3¯ = 0,333... A expressão 0,4¯+ 0,16¯ é
igual a
a) 51/100
b) 511/1000
c) 11/18
d) 14/15
e) 5/9
Questão 31
Assunto: Frações e dízimas periódicas
Baldo usa uma calculadora que ignora todos os
valores após a primeira casa decimalno
resultado de cada operação realizada. Desse
modo, quando Baldo faz 4/3×6/5 , a
calculadora mostra o resultado de 1,3 x 1,2 =
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9731
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
1,5. Portanto, há um erro no valor final de 0,1,
pois 4/3×6/5=24/15=1,6.
Qual o erro da calculadora de Baldo para a
expressão ((10/3×10/3))×9
a) 0
b) 1,3
c) 1,5
d) 2,8
e) 3,3
Questão 32
Assunto: Frações e dízimas periódicas
Uma pesquisa feita em uma empresa
constatou que apenas 1/6 de seus funcionários
são mulheres, e que exatamente 1/4 delas são
casadas.
De acordo com a pesquisa, nessa empresa, as
mulheres que não são casadas correspondem
a que fração de todos os seus funcionários?
a) 1/3
b) 1/4
c) 1/8
d) 15/24
e) 23/24
Questão 33
Assunto: Frações e dízimas periódicas
Um grupo de jovens participou de uma
pesquisa sobre tabagismo. Cinco em cada 7
jovens entrevistados declararam- se não
fumantes. Dentre os jovens restantes, 3 em
cada 4 afirmaram que fumam diariamente. Se
84 jovens entrevistados afirmaram fumar todos
os dias, quantos jovens participaram da
pesquisa?
a) 112
b) 280
c) 294
d) 392
e) 420
Questão 34
Assunto: Frações e dízimas periódicas
A mãe de João decidiu ajudá-lo a pagar uma
das prestações referentes a uma compra
parcelada. Ela solicitou a antecipação do
pagamento e, por isso, a financeira lhe
concedeu um desconto de 6,25% sobre o valor
original daquela prestação. João pagou um
terço do novo valor, e sua mãe pagou o
restante.
A parte paga pela mãe de João corresponde a
que fração do valor original da prestação?
a) 29/48
b) 1/24
c) 15/16
d) 5/8
e) 4/25
Questão 35
Assunto: Frações e dízimas periódicas
Uma empresa substituiu seus monitores
antigos no formato fullscreen, cuja proporção
entre a largura e a altura da tela é de 4:3, por
monitores novos no formato widescreen, com
proporção entre largura e altura dada por
16:9. Os monitores novos e antigos têm a
mesma altura.
A razão entre a largura do modelo novo e a
largura domodelo antigo é dada por
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9732
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
a) 1:4
b) 3:4
c) 4:3
d) 4:9
e) 9:4
Questão 36
Assunto: Frações e dízimas periódicas
Os irmãos Ana e Luís ganharam de seus pais
quantias iguais. Ana guardou 1/6 do que
recebeu e gastou o restante, enquanto seu
irmão gastou 1/4 do valor recebido, mais R$
84,00. Se Ana e Luís gastaram a mesma
quantia, quantos reais Ana guardou?
a) 12,00
b) 24,00
c) 72,00
d) 132,00
e) 144,00
Questão 37
Assunto: Frações e dízimas periódicas
O Parque Estadual Serra do Conduru,
localizado no Sul da Bahia, ocupa uma área de
aproximadamente 9.270 hectares. Dessa área,
7 em cada 9 hectares são ocupados por
florestas.
Qual é, em hectares, a área desse
Parque NÃO ocupada por florestas?
a) 2.060
b) 2.640
c) 3.210
d) 5.100
e) 7.210
Questão 38
Assunto: Frações e dízimas periódicas
Numa pesquisa sobre acesso à internet, três
em cada quatro homens e duas em cada três
mulheres responderam que acessam a rede
diariamente. A razão entre o número de
mulheres e de homens participantes dessa
pesquisa é, nessa ordem, igual a 1/2.
Que fração do total de entrevistados
corresponde àqueles que responderam que
acessam a rede todos os dias?
a) 5/7
b) 8/11
c) 13/18
d) 17/24
e) 25/36
Questão 39
Assunto: Operações com números decimais
Em uma rede de distribuição de gás verificou-
se haver três vazamentos. As medidas
estimadas do volumes de gás perdidos em
cada vazamento, até os reparos, foram 1,398
dam3, 1,45 dam3 e 1,6 dam3.
Em decâmetros cúbicos (dam3), a medida do
maior vazamento excede a medida do menor
vazamento em
a) 0,520
b) 0,392
c) 0,390
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9733
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
d) 0,444
e) 0,202
Questão 40
Assunto: Operações com números decimais
Um veículo está transportando uma carga de
sabonetes.
A massa de cada sabonete mede 0,1 kg, e a
massa total da carga mede 120 kg.
Quantos sabonetes compõem a carga?
a) 12
b) 120
c) 1.200
d) 12.000
e) 120.000
Questão 41
Assunto: Operações com números decimais
João tinha R$ 3,20 e queria comprar dois pães
doces. Ao chegar à padaria, percebeu que seu
dinheiro não era suficiente: faltavam
exatamente R$ 2,40. João, então, utilizou o
dinheiro que tinha para comprar apenas um
pão doce.
Após pagar o pão doce, João ficou com
a) R$ 0,40
b) R$ 0,60
c) R$ 0,80
d) R$ 0,90
e) R$ 1,60
Questão 42
Assunto: Operações com números decimais
Cada vez que o caixa de um banco precisa de
moedas para troco, pede ao gerente um saco
de moedas. Em cada saco, o número de
moedas de R$ 0,10 é o triplo do número de
moedas de R$ 0,25; o número de moedas de
R$ 0,50 é a metade do número de moedas de
R$ 0,10.
Para cada R$ 75,00 em moedas de R$ 0,50 no
saco de moedas, quantos reais haverá em
moedas de R$ 0,25?
a) 20
b) 25
c) 30
d) 10
e) 15
Questão 43
Assunto: Operações com números decimais
Gilberto levava no bolso três moedas de R$
0,50, cinco de R$ 0,10 e quatro de R$ 0,25.
Gilberto retirou do bolso oito dessas moedas,
dando quatro para cada filho.
A diferença entre as quantias recebidas pelos
dois filhos de Gilberto é de, no máximo,
a) R$ 0,45
b) R$ 0,90
c) R$ 1,10
d) R$ 1,15
e) R$ 1,35
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9734
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 44
Assunto: Operações com números decimais
Ao decidir formar uma torcida organizada, um
grupo de pessoas encomendou camisetas com
logotipo. A confecção que realizará o serviço
cobrou R$ 12,00 por peça e mais R$ 40,00
pela impressão dos logotipos.
Se o preço final de cada camiseta é R$ 13,60,
quantas peças foram encomendadas?
a) 16
b) 18
c) 20
d) 23
e) 25
Questão 45
Assunto: Operações com números decimais
Ao contrário de 2009 e 2010, o preço do
açúcar chegou a dezembro de 2011 em valores
mais baixos que os observados em janeiro do
mesmo ano. A saca de 50 kg de açúcar cristal
terminou o ano cotada a R$ 63,57, o que
significa uma redução de aproximadamente
16,6% sobre os R$ 76,27 de janeiro.
Disponível em: <http://www.epe.gov.br>. Acesso em: 29 maio
2012. Adaptado.
De acordo com as informações acima, de
janeiro a dezembro de 2011, o preço do
quilograma de açúcar cristal foi reduzido em,
aproximadamente,
a) R$ 0,12
b) R$ 0,16
c) R$ 0,20
d) R$ 0,25
e) R$ 0,29
Questão 46
Assunto: Radiciação e potenciação
O número natural (2103 + 2102 + 2101 - 2100) é
divisível por
a) 6
b) 10
c)14
d) 22
e) 26
Questão 47
Assunto: Radiciação e potenciação
Quantos são os números inteiros maiores
que e menores que ?
a) 0
b) 1
c) 2
d) 3
e) 4
Questão 48
Assunto: Radiciação e potenciação
Uma empresa gera números que são
chamados de protocolos de atendimento a
clientes. Cada protocolo é formado por uma
sequência de sete algarismos, sendo o último,
que aparece separado dos seis primeiros por
um hífen, chamado de dígito controlador. Se a
sequência dos seis primeiros algarismos forma
o número n, então o dígito controlador é o
algarismo das unidades de n3 – n2.
Assim, no protocolo 897687-d, o valor do
dígito controlador d é o algarismo das
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9735
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
unidades do número natural que é resultado
da expressão 8976873 - 8976872, ou seja, d é
igual a
a) 0
b) 1
c) 4
d) 3
e) 2
Questão 49
Assunto: Números reais (propriedades e
operações; intervalos)
Um professor de Matemática escreveu no
quadro a seguinte expressão:
5 + 7 = 12
Tal como foi apresentada, essa expressão é
um exemplo direto de que é FALSA a
afirmação:
a) A soma de dois números é maior ou igual
ao dobro do menor número.
b) A soma de dois números negativos é um
número positivo.
c) A soma de dois números ímpares é par.
d) A soma de dois números ímpares é ímpar.
e) A soma de dois números menores que dez
pode ser maior que vinte.
Questão 50
Assunto: Números reais (propriedades e
operações; intervalos)
Seja y um número real compreendido
entre 1/4 e 1/2 . Qualquer que seja o valor de
y, ele pertencerá ao conjunto
a) {x∈Z|x≤1}{x∈Z|x≤1}
b) {x∈Q|1/4<x<1/2}{x∈Q|1/4<x<1/2}
c) {x∈R|−1<x≤2}{x∈R|−1<x≤2}
d) {x∈R|x<1/2}{x∈R|x<1/2}
e) {x∈R|x≥1/2}{x∈R|x≥1/2}
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9736
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
N° GAB MATEMÁTICA
01 c
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Segurança Júnior/2017
02 b CESGRANRIO - Ag PT (IBGE)/IBGE/2014
03 b
CESGRANRIO - Aju
(LIQUIGÁS)/LIQUIGÁS/Motorista Granel I/2018
04 d
CESGRANRIO - Moto
(LIQUIGÁS)/LIQUIGÁS/Caminhão Granel I/2018
05 b CESGRANRIO - Ag PM (IBGE)/IBGE/2016
06 d CESGRANRIO - Ag PM (IBGE)/IBGE/2016
07 d CESGRANRIO - Esc BB/BB/"Sem Área"/2015
08 a CESGRANRIO - Ag PT (IBGE)/IBGE/2014
09 b
CESGRANRIO - Esc BB/BB/Tecnologia da
Informação/2013
10 e
CESGRANRIO - Esc BB/BB/Tecnologia da
Informação/2013
11 e CESGRANRIO - Tec IGE (IBGE)/IBGE/2013
12 a CESGRANRIO - Tec IGE (IBGE)/IBGE/2013
13 d
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Administração e Controle
Júnior/2012
14 e
CESGRANRIO - Tec (BR)/BR/Administração e
Controle Júnior/2012
15 a
CESGRANRIO - Tec (BR)/BR/Administração e
Controle Júnior/2012
16 c
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Contabilidade Júnior/2012
17 c
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Estabilidade Júnior/2012
18 e
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Administração e Controle
Júnior/2018
19 d
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Suprimento de Bens e
Serviços Júnior/Administração/2014
20 c CESGRANRIO - Ag PT (IBGE)/IBGE/2014
21 a CESGRANRIO - Tec Adm (BNDES)/BNDES/2013
22 a
CESGRANRIO - Esc BB/BB/Tecnologia da
Informação/2013
23 b
CESGRANRIO - Tec (PETRO)/PETROBRAS/Químico
Petróleo Júnior/2012
24 d CESGRANRIO - Esc BB/BB/"Sem Área"/2018
25 d
CESGRANRIO - Ass
(LIQUIGÁS)/LIQUIGÁS/Administrativo I/2018
* *
N° GAB MATEMÁTICA
26 e CESGRANRIO - Esc BB/BB/"Sem Área"/2015
27 d
CESGRANRIO - Tec
(LIQUIGÁS)/LIQUIGÁS/Químico I/2014
28 d CESGRANRIO - Tec Adm (BNDES)/BNDES/2013
29 a
CESGRANRIO - Aju
(LIQUIGÁS)/LIQUIGÁS/Motorista Granel I/2018
30 c
CESGRANRIO - Ass
(LIQUIGÁS)/LIQUIGÁS/Administrativo I/2018
31 d
CESGRANRIO - Ass
(LIQUIGÁS)/LIQUIGÁS/Administrativo I/2018
32 c
CESGRANRIO - Ass
(LIQUIGÁS)/LIQUIGÁS/Administrativo I/2018
33 d CESGRANRIO - TA (ANP)/ANP/2016
34 d CESGRANRIO - Esc BB/BB/"Sem Área"/2015
35 c
CESGRANRIO - Tec
(BR)/BR/Administração/Controle Júnior/2015
36 b
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Suprimento de Bens e
Serviços Júnior/Administração/2014
37 a CESGRANRIO - Tec Adm (BNDES)/BNDES/2013
38 c CESGRANRIO - Esc BB/BB/"Sem Área"/2012
39 e
CESGRANRIO - Aju
(LIQUIGÁS)/LIQUIGÁS/Motorista Granel I/2018
40 c
CESGRANRIO - Aju
(LIQUIGÁS)/LIQUIGÁS/Motorista Granel I/2018
41 a
CESGRANRIO - Moto
(LIQUIGÁS)/LIQUIGÁS/Caminhão Granel I/2018
42 b CESGRANRIO - Esc BB/BB/"Sem Área"/2015
43 e CESGRANRIO - Tec Adm (BNDES)/BNDES/2013
44 e
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Estabilidade Júnior/2012
45 d
CESGRANRIO - Ass Adm (EPE)/EPE/Apoio
Administrativo/2012
46 e CESGRANRIO - Esc BB/BB/"Sem Área"/2015
47 c
CESGRANRIO - Ass (FINEP)/FINEP/Apoio
Administrativo/2014
48 c
CESGRANRIO - Esc BB/BB/Tecnologia da
Informação/2013
49 d
CESGRANRIO - Ass
(LIQUIGÁS)/LIQUIGÁS/Logística/2018
50 c
CESGRANRIO - Ass (FINEP)/FINEP/Apoio
Administrativo/2014
* *
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9737
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 51
Assunto: Números reais (propriedades e
operações; intervalos)
Sobre uma grandeza x, um aluno faz a
afirmação ―x + 2 = 4 ou x > 2‖. Seu professor
diz que essa afirmação é falsa. O aluno, então,
reformula, corretamente, enunciando uma
negação da afirmação que fizera.
Uma negação de ―x + 2 = 4 ou x > 2‖ é
a) x < 2
b) x + 2 ≠ 4
c) x + 2 = 4 e x > 2
d) x + 2 ≠ 4 ou x < 2
e) x + 2 ≠ 4 ou x < 2
Questão 52
Assunto: Análise combinatória (princípio
fundamental da contagem, arranjos,
combinações, permutações)
Num conjunto há 5 elementos positivos e 5
elementos negativos. Escolhem-se 5 números
desse conjunto e se efetua a multiplicação
desses 5 números escolhidos.
Em quantos casos tal multiplicação terá
resultado negativo?
a) 25
b) 120
c) 125
d) 126
e) 128
Questão 53
Assunto: Análise combinatória (princípio
fundamental da contagem, arranjos,
combinações, permutações)
Uma professora do jardim da infância entregou
um mesmo desenho para cada um de seus 10
alunos e distribuiu vários lápis de cor entre
eles. A tarefa era pintar o desenho, que
possuía diversas regiões. Cada uma dessas
regiões apresentava a cor com a qual deveria
ser pintada. Todos os alunos receberam a
mesma quantidade de lápis de cor, mas
nenhum aluno recebeu todas as cores
necessárias para pintar todo o desenho e,
portanto, eles precisavam se agrupar para
conseguir completar a tarefa. Formando
qualquer grupo de 6 alunos, uma região não
poderia ser pintada, mas qualquer grupo de 7
alunos conseguiria completar a tarefa. Todas
as regiões deveriam receber cores diferentes, e
a professora distribuiu o menor número de
lápis de cor para cada aluno.
Quantos lápis de cor cada aluno recebeu?
a) 42
b) 63
c) 210
d) 105
e) 84Questão 54
Assunto: Análise combinatória (princípio
fundamental da contagem, arranjos,
combinações, permutações)
Um professor elaborou 10 questões diferentes
para uma prova, das quais 2 são fáceis, 5 são
de dificuldade média, e 3 são difíceis. No
momento, o professor está na fase de
montagem da prova. A montagem da prova é
a ordem segundo a qual as 10 questões serão
apresentadas. O professor estabeleceu o
seguinte critério de distribuição das
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9738
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
dificuldades das questões, para ser seguido na
montagem da prova:
De quantas formas diferentes o professor pode
montar a prova seguindo o critério
estabelecido?
a) 2520
b) 128
c) 6
d) 1440
e) 252
Questão 55
Assunto: Análise combinatória (princípio
fundamental da contagem, arranjos,
combinações, permutações)
Uma loja de departamento colocou 11 calças
distintas em uma prateleira de promoção,
sendo 3 calças de R$ 50,00, 4 calças de R$
100,00 e 4 calças de R$ 200,00. Um freguês
vai comprar exatamente três dessas calças
gastando, no máximo, R$ 400,00.
De quantos modos diferentes ele pode efetuar
a compra?
a) 46
b) 96
c) 110
d) 119
e) 165
Questão 56
Assunto: Análise combinatória (princípio
fundamental da contagem, arranjos,
combinações, permutações)
Dois grupos de funcionários de uma empresa
vão participar de um processo de triagem. O
grupo 1 é formado por 15 homens e 10
mulheres, e o Grupo 2 é formado
exclusivamente por 12 mulheres. A
coordenação decidiu que uma equipe de 4
pessoas deverá ser formada, sendo ela
composta por um homem e uma mulher do
grupo 1 e por duas mulheres do grupo 2. Um
computador listará todas as possíveis equipes
que poderão ser formadas, em acordo com as
exigências da coordenação.
O número de equipes presentes na lista gerada
pelo computador será
a) 66.045
b) 19.800
c) 9.900
d) 282
e) 216
Questão 57
Assunto: Análise combinatória (princípio
fundamental da contagem, arranjos,
combinações, permutações)
O algoritmo de ordenação por flutuação é um
método para colocar em ordem crescente uma
lista de números dada. O algoritmo consiste
em comparar o primeiro elemento da lista com
o segundo. Em seguida, o menor dos dois é
comparado com o terceiro. O menor dessa
última comparação é comparado com o quarto,
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9739
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
e assim sucessivamente até que todos os
elementos da lista sejam usados. Dessa forma,
o menor elemento da lista é obtido, retirado da
lista original e posto como primeiro elemento
da ordenação. O segundo elemento da
ordenação é obtido de forma análoga, usando
a lista atualizada, sem o primeiro da
ordenação. O processo se repete até que a
ordenação se complete.
Quantas comparações, pelo algoritmo de
ordenação por flutuação, são necessárias para
ordenar uma lista com 5 números?
a) 10
b) 6
c) 9
d) 7
e) 8
Questão 58
Assunto: Análise combinatória (princípio
fundamental da contagem, arranjos,
combinações, permutações)
Um torneio de futebol foi disputado por apenas
cinco times, de modo que cada time jogou com
cada um dos outros uma única vez. Nesse
torneio, cada vitória deu ao vencedor 3 pontos,
cada empate deu 1 ponto para cada um dos
dois times, e cada time derrotado não ganhou
nem perdeu ponto. A Tabela abaixo mostra a
pontuação de cada time, após o término do
torneio.
Time Pontuação Final
Urubulense 7
Colorista 6
Sporteará 5
Furacaço 4
Raposão 3
Quantos empates houve nesse torneio?
a) 3
b) 4
c) 5
d) 6
e) 7
Questão 59
Assunto: Análise combinatória (princípio
fundamental da contagem, arranjos,
combinações, permutações)
Mauro nasceu em 26/05/1984. Suponha que,
ao criar uma senha de quatro dígitos, distintos
ou não, Mauro resolva utilizar somente
algarismos que compõem o dia e o ano de seu
nascimento: 2, 6, 1, 9, 8 e 4.
Quantas são as senhas possíveis nas quais o
primeiro e o último dígitos são pares?
a) 64
b) 144
c) 256
d) 576
e) 864
Questão 60
Assunto: Análise combinatória (princípio
fundamental da contagem, arranjos,
combinações, permutações)
Uma empresa de propaganda pretende criar
panfletos coloridos para divulgar certo produto.
O papel pode ser laranja, azul, preto, amarelo,
vermelho ou roxo, enquanto o texto é escrito
no panfleto em preto, vermelho ou branco.
De quantos modos distintos é possível escolher
uma cor para o fundo e uma cor para o texto
se, por uma questão de contraste, as cores do
fundo e do texto não podem ser iguais?
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9740
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
a) 13
b) 14
c) 16
d) 17
e) 18
Questão 61
Assunto: Análise combinatória (princípio
fundamental da contagem, arranjos,
combinações, permutações)
Para cadastrar-se em um site de compras
coletivas, Guilherme precisará criar uma senha
numérica com, no mínimo, 4 e, no máximo, 6
dígitos. Ele utilizará apenas algarismos de sua
data de nascimento: 26/03/1980.
Quantas senhas diferentes Guilherme poderá
criar se optar por uma senha sem algarismos
repetidos?
a) 5.040
b) 8.400
c) 16.870
d) 20.160
e) 28.560
Questão 62
Assunto: Análise combinatória (princípio
fundamental da contagem, arranjos,
combinações, permutações)
Uma pessoa dispõe de balas de hortelã, de
caramelo e de coco e pretende ―montar‖
saquinhos com 13 balas cada, de modo que,
em cada saquinho, haja, no mínimo, três balas
de cada sabor. Um saquinho diferencia-se de
outro pela quantidade de balas de cada sabor.
Por exemplo, seis balas de hortelã, quatro de
coco e três de caramelo compõem um
saquinho diferente de outro que contenha seis
balas de coco, quatro de hortelã e três de
caramelo.
Sendo assim, quantos saquinhos diferentes
podem ser ―montados‖?
a) 4
b) 6
c) 9
d) 12
e) 15
Questão 63
Assunto: Análise combinatória (princípio
fundamental da contagem, arranjos,
combinações, permutações)
Marcelo vai passar quatro dias na praia e leva
em sua bagagem sete camisetas (três
camisetas brancas diferentes, uma preta, uma
amarela, uma vermelha e uma laranja) e
quatro bermudas (uma preta, uma cinza, uma
branca e uma azul).
De quantos modos distintos Marcelo poderá
escolher uma camiseta e uma bermuda para
vestir-se, de modo que as peças escolhidas
sejam de cores diferentes?
a) 14
b) 17
c) 24
d) 26
e) 28
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9741
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 64
Assunto: Análise combinatória (princípio
fundamental da contagem, arranjos,
combinações, permutações)
Se todos os anagramas da palavra BRASIL
forem dispostos em ordem alfabética, o
primeiroanagrama cuja última letra é ―B‖
ocupará que posição?
a) 5a
b) 25a
c) 34a
d) 49a
e) 121a
Questão 65
Assunto: Análise combinatória (princípio
fundamental da contagem, arranjos,
combinações, permutações)
João deseja abrir um cadeado cujo segredo é
uma sequência de quatro algarismos. Ele sabe
que todos os algarismos da sequência são
menores que 7 e que o primeiro algarismo é
igual ao segundo, porém, diferente dos
demais.
Se João testar todas as sequências que
satisfazem essas condições, sem qualquer
repetição, ele abrirá o cadeado em, no
máximo, quantas tentativas?
a) 150
b) 210
c) 252
d) 576
e) 1.470
Questão 66
Assunto: Análise combinatória (princípio
fundamental da contagem, arranjos,
combinações, permutações)
Certa empresa identifica as diferentes peças
que produz, utilizando códigos numéricos
compostos de 5 dígitos, mantendo, sempre, o
seguinte padrão: os dois últimos dígitos de
cada código são iguais entre si, mas diferentes
dos demais. Por exemplo, o código ―03344‖ é
válido, já o código ―34544‖, não.
Quantos códigos diferentes podem ser criados?
a) 3.312
b) 4.608
c) 5.040
d) 7.000
e) 7.290
Questão 67
Assunto: Análise combinatória (princípio
fundamental da contagem, arranjos,
combinações, permutações)
Dois adultos e seis crianças aguardavam um
táxi. Quando o táxi chegou, o motorista
informou-lhes que o carro só pode transportar
5 pessoas e, portanto, só poderiam viajar ele,
o motorista, e mais 4 passageiros. Os adultos
decidiram que um deles embarcaria no táxi,
levando consigo o maior número possível de
crianças, e que o outro ficaria com as crianças
restantes, aguardando outro táxi.
De quantos modos distintos é possível escolher
os passageiros que embarcarão nesse táxi?
a) 12
b) 15
c) 20
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9742
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
d) 40
e) 70
Questão 68
Assunto: Análise combinatória (princípio
fundamental da contagem, arranjos,
combinações, permutações)
A vitrinista de uma loja de roupas femininas
dispõe de 9 vestidos de modelos diferentes e
deverá escolher 3 para serem exibidos na
vitrine.
Quantas são as escolhas possíveis?
a) 84
b) 96
c) 168
d) 243
e) 504
Questão 69
Assunto: Análise combinatória (princípio
fundamental da contagem, arranjos,
combinações, permutações)
Para montar a senha de segurança de sua
conta bancária, que deve ser formada por seis
dígitos, João escolheu 1, 2, 5, 5, 7 e 8. Os
dígitos escolhidos não serão dispostos na
ordem apresentada, pois, para João, é
importante que a senha seja um número maior
do que 500.000.
Com os dígitos escolhidos por João, quantas
senhas maiores do que 500.000 podem ser
formadas?
a) 720
b) 600
c) 360
d) 240
e) 120
Questão 70
Assunto: Análise combinatória (princípio
fundamental da contagem, arranjos,
combinações, permutações)
Uma empresa de cadeados resolveu construir
cadeados com segredos de seis símbolos. Os
três primeiros símbolos retirados de um
conjunto A de 10 letras, e os dois últimos
símbolos retirados do conjunto B = {1, 2, 3, 4,
5}. O quarto símbolo pode ser uma letra do
conjunto A ou um número do conjunto B. Há
um sistema mecânico que não permite
repetição de números.
Quantas senhas diferentes podem ser
construídas?
a) 2.400
b) 5.005
c) 103.680
d) 260.000
e) 600.000
Questão 71
Assunto: Porcentagem
Para que seja possível administrar as vendas
de uma empresa, é necessário estimar a
demanda do mercado. Considere que uma
cidade tenha 300.000 habitantes que
consomem dois sabonetes por mês e que a
participação da empresa X no mercado de
sabonetes é de 30%. A demanda mensal por
sabonetes da empresa X é de
a) 60.000 unidades
b) 90.000 unidades
c) 120.000 unidades
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9743
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
d) 180.000 unidades
e) 240.000 unidades
Questão 72
Assunto: Porcentagem
Um artesão vende suas pulseiras com 60% de
lucro sobre o seu custo. Normalmente, seus
fregueses pedem descontos na hora da
compra.
Qual o maior percentual de desconto sobre o
preço de venda que ele pode oferecer para
não ter prejuízo?
a) 22,5%
b) 37,5%
c) 10%
d) 40%
e) 60%
Questão 73
Assunto: Porcentagem
O Gráfico a seguir mostra a evolução do
volume movimentado em terminais e
oleodutos pela Transpetro, em milhões de
metros cúbitos, de 2012 a 2016.
Relatório de Administração do Ano 2016. Transpetro. Disponível
em: <http://www.transpetro.com.br/pt_br/acesso-a-
informacao/institucional/relatorios.html>.
Acesso em: mar. 2018.
A maior variação percentual anual absoluta,
ocorrida de um ano para o seguinte, do
volume movimentado em terminais e
oleodutos no período apresentado, foi de
aproximadamente
a) 2,6%
b) 3,8%
c) 5,5%
d) 6,6%
e) 7,4%
Questão 74
Assunto: Porcentagem
O dono de uma loja deu um desconto de 20%
sobre o preço de venda (preço original) de um
de seus produtos e, ainda assim, obteve um
lucro de 4% sobre o preço de custo desse
produto.
Se vendesse pelo preço original, qual seria o
lucro obtido sobre o preço de custo?
a) 40%
b) 30%
c) 10%
d) 20%
e) 25%
Questão 75
Assunto: Porcentagem
Uma empresa cria uma campanha que consiste
no sorteio de cupons premiados. O sorteio será
realizado em duas etapas. Primeiramente, o
cliente lança uma moeda honesta:
se o resultado for ―cara‖, o cliente seleciona,
aleatoriamente, um cupom da urna 1;
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9744
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
se o resultado for ―coroa‖, o cliente seleciona,
aleatoriamente, um cupom da urna 2.
Sabe-se que 30% dos cupons da urna 1 são
premiados, e que 40% de todos os cupons são
premiados.
Antes de começar o sorteio, a proporção de
cupons premiados na urna 2 é de
a) 50%
b) 25%
c) 5%
d) 10%
e) 15%
Questão 76
Assunto: Porcentagem
Após receber um desconto de 20%, o preço de
um produto passou a ser igual a R$ 72,00.
Se o desconto dado tivesse sido de 30%,
então o preço do produto passaria a ser igual a
a) R$ 48,00
b) R$ 62,00
c) R$ 108,00
d) R$ 82,00
e) R$ 63,00
Questão 77
Assunto: Porcentagem
Um jogador de futebol profissional treina
cobrança de pênaltis após o treino coletivo,
visando a alcançar uma meta de 96% de
aproveitamento. Ele cobrou 20 penalidades
com aproveitamento de 95%.
Quantos pênaltis deve cobrar ainda, no
mínimo, para que atinja exatamente a meta
desejada?
a) 1
b) 3
c) 4
d) 5
e) 10
Questão 78
Assunto: Porcentagem
Num curso de utilização de um software que
edita imagens, todos os alunos abrem uma
mesma imagem, e o professor pede que
apliquem uma ampliação de 25% como
primeiro exercício. Como o resultado não foi o
satisfatório, o professor pediu que todos
aplicassem uma redução de 20% na imagem
ampliada. Como Aldo tinha certa experiência
com o programa, desfez aampliação de 25%.
Para obter o mesmo resultado que os demais
alunos, após desfazer a ampliação, Aldo deve
a) fazer uma ampliação de 5%
b) fazer uma redução de 5%
c) fazer uma ampliação de 10%
d) fazer uma redução de 10%
e) deixar a imagem como está.
Questão 79
Assunto: Porcentagem
Num laboratório de testes de combustível, uma
mistura de X gramas a y% de álcool significa
que y% dos X gramas da mistura é de álcool, e
o restante, de gasolina. Um engenheiro está
trabalhando com 3 misturas:
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9745
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
• Mistura A: 40g a 10% de álcool
• Mistura B: 50g a 20% de álcool
• Mistura C: 50g a 30% de álcool
Usando porções dessas misturas, ele elabora
uma mistura de 60g a 25% de álcool, e o
restante das misturas ele junta em um frasco.
A taxa percentual de álcool da mistura formada
no frasco onde ele despejou os restos é de
a) 16,5%
b) 17,5%
c) 18%
d) 22,5%
e) 25%
Questão 80
Assunto: Porcentagem
A Tabela abaixo apresenta o relatório
sintetizado, com a discriminação das despesas
de uma empresa nos anos de 2012 e 2013.
Considere que a última linha da Tabela
expressa o total das despesas, em cada ano.
Despesas por natureza 2013 2012
Despesas com pessoal (346.154) (314.742)
Depreciação e amortização (69.592) (63.000)
Serviços de fretes, aluguéis (267.996) (240.825)
Materiais aplicados no
engarrafamento e requalificação
(21.245) (23.473)
Publicidade e propaganda (13.675) (10.112)
Outros (76.986) (78.318)
(795.648) (730.470)
Disponível em:
<https://www.liquigas.com.br/wps/wcm/connect/db53a880443c0a4d8
711ef8691413afc/orcamento_investimento.pdf?MOD=AJPERES&CACH
EID=ROOTWORKSPACE-db53a880443c0a4d8711ef8691413afc
kpHXXCY>. Acesso em: 8 abr. 2018. Adaptado.
O valor mais próximo do aumento percentual
das despesas totais em 2013, na comparação
com 2012, é igual a
a) 8,9%
b) 9,1%
c) 9,3%
d) 9,5%
e) 9,7%
Questão 81
Assunto: Porcentagem
Os estagiários de uma empresa combinaram
fazer uma salada de frutas para seu lanche. A
salada de frutas foi feita apenas com frutas de
que todos gostam, o que levou à decisão de
usarem apenas maçã, laranja e banana. No dia
combinado, 20% dos estagiários levaram
maçãs, 35% dos estagiários levaram laranjas e
os 9 estagiários restantes levaram bananas.
Se todos levaram apenas um tipo de fruta,
quantos estagiários há na empresa?
a) 18
b) 20
c) 35
d) 40
e) 45
Questão 82
Assunto: Porcentagem
Uma determinada empresa vem adotando uma
política de reajustes de preços, de modo que o
preço de seu principal produto sofreu um
reajuste de 10% em Set/2017. Em outubro do
mesmo ano, o produto sofreu novo reajuste,
agora de 5% sobre o valor do mês anterior e,
um mês depois, um terceiro reajuste de 6% foi
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9746
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
aplicado sobre o preço de outubro, de modo
que os três reajustes foram sucessivos.
O valor mais próximo da variação percentual
acumulada nesse período, considerando
exatamente os três reajustes apresentados, é
a) 21,0%
b) 21,5%
c) 22,4%
d) 22,8%
e) 23,2%
Questão 83
Assunto: Porcentagem
Um bar reajustou o preço de vários produtos.
Pode-se ver, nas Figuras a seguir, como variou
o preço do cafezinho, nos meses de maio e
junho deste ano.
O reajuste no preço do cafezinho, mostrado
acima, corresponde a um aumento de:
a) 0,50%
b) 20%
c) 25%
d) 30%
e) 50%
Questão 84
Assunto: Porcentagem
Em uma malha quadriculada composta por 100
quadradinhos idênticos, foi desenhada e
pintada uma figura de 5 lados, como se pode
ver a seguir.
Assim, verifica-se que a região pintada
corresponde a x% de toda a malha.
O valor de x é
a) 34
b) 35
c) 36
d) 37
e) 38
Questão 85
Assunto: Porcentagem
Um feirante sabe que consegue vender seus
produtos a preços mais caros, conforme o
horário da feira, mas, na última hora, ele deve
vender suas frutas pela metade do preço
inicial. Inicialmente, ele vende o lote de uma
fruta a R$ 10,00. Passado algum tempo,
aumenta em 25% o preço das frutas. Passado
mais algum tempo, o novo preço sofreu um
aumento de 20%. Na última hora da feira, o
lote da fruta custa R$ 5,00.
O desconto, em reais, que ele deve dar sobre
o preço mais alto para atingir o preço da
última hora da feira deve ser de
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9747
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
a) 12,50
b) 10,00
c) 7,50
d) 5,00
e) 2,50
Questão 86
Assunto: Porcentagem
―No 45º Leilão de Biodiesel da ANP foram
arrematados 657,8 milhões de litros de
biodiesel, sendo 100,0% deste volume
oriundos de produtores detentores do selo
Combustível Social. O preço médio foi de R$
2,40 por litro (...).‖
Disponível em:
<http://www.anp.gov.br/?pg=77916&m=&t1=&t2=&t3=&t4=&ar
=&ps=&1446491789898>. Acesso em: 02 nov. 2015. Adaptado.
Um comprador que adquiriu, no 45º Leilão de
Biodiesel da ANP, 10% da quantidade total de
litros arrematados nesse leilão, pagando o
preço médio por litro, gastou, em reais,
a) menos de 100 milhões
b) entre 100 milhões e 400 milhões
c) entre 400 milhões e 700 milhões
d) entre 700 milhões e um bilhão
e) mais de um bilhão
Questão 87
Assunto: Porcentagem
Por 3 anos seguidos, a taxa de inflação de
certo país foi de 5% ao ano. Nesse período, o
aluguel de um imóvel foi reajustado,
anualmente, pelo índice de inflação, o que fez
com que tal aluguel passasse a ser de p
unidades monetárias.
Para saber o valor do mesmo aluguel antes
desses reajustes, basta dividir p por
a) 4,50
b) 1,50
c) 1,05
d) (1,50)3
e) (1,05)3
Questão 88
Assunto: Porcentagem
Um grande tanque estava vazio e foi cheio de
óleo após receber todo o conteúdo de 12
tanques menores, idênticos e cheios.
Se a capacidade de cada tanque menor fosse
50% maior do que a sua capacidade original, o
grande tanque seria cheio, sem excessos, após
receber todo o conteúdo de
a) 4 tanques menores
b) 6 tanques menores
c) 7 tanques menores
d) 8 tanques menores
e) 10 tanques menores
Questão 89
Assunto: Porcentagem
Amanda e Belinha são amigas e possuem
assinaturas de TV a cabo de empresas
diferentes. A empresa de TV a cabo de
Amanda dá descontos de 25% na compra dos
ingressos de cinema de um shopping. A
empresa de TV a cabo de Belinha dá desconto
de 30% na compra de ingressos do mesmo
cinema. O preço do ingresso de cinema, sem
desconto, é de R$ 20,00. Em um passeio em
família, Amanda compra 4 ingressos, e Belinha
compra 5 ingressos de cinema no shopping,
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9748
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registradapara
ambas utilizando-se dos descontos oferecidos
por suas respectivas empresas de TV a cabo.
Quantos reais Belinha gasta a mais que
Amanda na compra dos ingressos?
a) 10
b) 15
c) 20
d) 25
e) 30
Questão 90
Assunto: Porcentagem
Joana foi ao mercado e comprou uma
embalagem de amaciante e 2,5 kg de batata.
Por tudo, pagou R$ 18,00. Se Joana tivesse
comprado, além da embalagem de amaciante,
apenas 1,25 kg de batatas, ela teria pago um
total de R$14,25. O mercado em que Joana fez
as compras está fazendo uma promoção, na
qual é dado um desconto de 20% no preço do
quilograma de batatas, para o cliente que
comprar mais do que 3 kg. Esse desconto
incide sobre o preço das batatas, mas não
sobre o preço de outros produtos.
Se a compra de Joana tivesse sido a
embalagem de amaciante e 4 kg de batatas,
então o total a ser pago seria de
a) R$ 20,10
b) R$ 36,60
c) R$ 19,25
d) R$ 12,00
e) R$ 22,40
Questão 91
Assunto: Porcentagem
Durante o período de três meses, o preço de
um determinado produto sofreu três aumentos
consecutivos de 8%, dados em regime
composto. Em um evento comercial, foi dado
um desconto único sobre o preço obtido ao
final dos três aumentos, de modo que o
mesmo fosse reduzido ao preço que o produto
possuía antes dos três aumentos.
O desconto único dado sobre o preço do
produto foi mais próximo de
a) 24%
b) 76%
c) 20%
d) 14%
e) 51%
Questão 92
Assunto: Porcentagem
Uma montadora necessita de 5 peças idênticas
para efetuar o reparo de suas máquinas. As
peças são vendidas em duas lojas. A primeira
loja tem apenas 3 peças disponíveis no
momento e oferece um desconto de 20%
sobre o preço sugerido pelo fabricante. A
segunda loja tem apenas 2 peças disponíveis e
oferece um desconto de 15% sobre o preço
sugerido pelo fabricante.
Comprando-se todas as peças disponíveis
nessas duas lojas, o preço pago, em relação ao
preço sugerido pelo fabricante para as 5 peças,
corresponderá a um desconto de
a) 25%
b) 22%
c) 20%
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9749
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
d) 18%
e) 15%
Questão 93
Assunto: Porcentagem
Após as lâmpadas eletrônicas que permitem
economia de 80% de energia quando
comparadas às lâmpadas incandescentes,
agora fala-se em lâmpadas LED que permitem
economia de 85% de energia em relação às
lâmpadas incandescentes.
A economia de uma lâmpada LED, em relação
às eletrônicas, é de
a) 5%
b) 6,25%
c) 12,5%
d) 20%
e) 25%
Questão 94
Assunto: Porcentagem
A promoção ―na compra de duas embalagens
de biscoito, uma delas tem 75% de desconto‖
é equivalente a ―leve x embalagens e pague y
embalagens de biscoito‖. O menor valor
possível para a soma x + y, sendo x e y
números inteiros distintos é
a) 7
b) 10
c) 13
d) 14
e) 18
Questão 95
Assunto: Porcentagem
Ao receber seu 13o salário, Fábio depositou
70% do que recebeu na poupança e gastou o
restante comprando, à vista, um forno de
micro-ondas e um fogão. A razão entre os
preços do micro-ondas e do fogão, nessa
ordem, é 2/3 .
A que percentual do 13o salário de Fábio
corresponde o preço do fogão?
a) 12%
b) 18%
c) 20%
d) 28%
e) 42%
Questão 96
Assunto: Porcentagem
Durante uma semana, todos os produtos de
uma loja de departamentos foram remarcados
com 30% de desconto sobre os preços
cobrados na semana anterior. Durante essa
promoção, um liquidificador era vendido por
R$ 73,50.
Qual o valor, em reais, do desconto oferecido
na compra desse liquidificador?
a) 105,00
b) 95,55
c) 48,00
d) 31,50
e) 22,05
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9750
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 97
Assunto: Porcentagem
Um investidor dividiu em duas partes os R$
200.000,00 dos quais dispunha, aplicando,
durante um ano, uma das partes em um fundo
de ações e a outra, em um fundo de renda
fixa. Ao final desse período, o rendimento
líquido do fundo de ações foi de 9% e o do
fundo de renda fixa, de 5%, o que deu ao
investidor um total de R$ 13.200,00.
Qual foi, em reais, a quantia aplicada no fundo
de renda fixa?
a) 40.000,00
b) 80.000,00
c) 120.000,00
d) 150.000,00
e) 180.000,00
Questão 98
Assunto: Porcentagem
O preço de catálogo de um produto foi
modificado equivocadamente pelo funcionário
de uma loja. Em vez de o funcionário
aumentá-lo em 20%, como previsto, dele
descontou 20%.
O funcionário poderá obter o preço do
catálogo acrescido de 20% se ele multiplicar o
preço com desconto por
a) 2,2
b) 1,5
c) 1,4
d) 0,5
e) 0,4
Questão 99
Assunto: Porcentagem
Edu foi ao shopping no sábado e gastou 20%
da mesada que recebeu. No domingo, Edu
voltou ao shopping e gastou 20% do restante
da mesada.
Se, após a segunda ida de Edu ao shopping,
sobraram R$ 96,00, qual é, em reais, a
mesada de Edu?
a) 100
b) 200
c) 120
d) 160
e) 150
Questão 100
Assunto: Porcentagem
Quatrocentas pessoas foram convidadas para
uma festa. Dessas pessoas, 62% eram
mulheres. No dia da festa, os organizadores
constataram que apenas 88% dos convidados
compareceram.
Se 25% dos homens convidados não foram,
quantas mulheres compareceram a essa festa?
a) 38
b) 62
c) 114
d) 210
e) 238
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9751
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
N° GAB MATEMÁTICA
51 a CESGRANRIO - Ag PT (IBGE)/IBGE/2014
52 d
CESGRANRIO - Tec Jr
(TRANSPETRO)/TRANSPETRO/Ambiental/2018
53 e CESGRANRIO - Esc BB/BB/"Sem Área"/2018
54 d CESGRANRIO - Esc BB/BB/"Sem Área"/2018
55 d
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Segurança Júnior/2017
56 c
CESGRANRIO - Aju
(LIQUIGÁS)/LIQUIGÁS/Motorista Granel I/2014
57 a CESGRANRIO - Ag PM (IBGE)/IBGE/2014
58 c CESGRANRIO - Ag PT (IBGE)/IBGE/2014
59 d
CESGRANRIO - Ass Adm (EPE)/EPE/Apoio
Administrativo/2014
60 c CESGRANRIO - Tec Adm (BNDES)/BNDES/2013
61 b CESGRANRIO - Esc BB/BB/"Sem Área"/2012
62 e CESGRANRIO - Esc BB/BB/"Sem Área"/2012
63 c CESGRANRIO - Esc BB/BB/"Sem Área"/2012
64 c CESGRANRIO - Esc BB/BB/"Sem Área"/2012
65 c CESGRANRIO - CTA (DECEA)/DECEA/2012
66 e
CESGRANRIO - Tec (PETRO)/PETROBRAS/Químico
Petróleo Júnior/2012
67 d
CESGRANRIO - Ass Adm (EPE)/EPE/Apoio
Administrativo/2012
68 a
CESGRANRIO - Tec Jr
(TRANSPETRO)/TRANSPETRO/Administração e
Controle/2012
69 d
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Contabilidade Júnior/2012
70 d
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Exploração de Petróleo
Júnior/Informática/2012
71 d CESGRANRIO - Tec Ban (BASA)/BASA/2018
72 b
CESGRANRIO - Tec Jr
(TRANSPETRO)/TRANSPETRO/Ambiental/2018
73 d
CESGRANRIO - Tec Jr
(TRANSPETRO)/TRANSPETRO/Administração e
Controle Júnior/2018
74 b CESGRANRIO - Esc BB/BB/"Sem Área"/2018
75 a CESGRANRIO - Esc BB/BB/"Sem Área"/2018
* *
N° GAB MATEMÁTICA
76 e
CESGRANRIO - Aju
(LIQUIGÁS)/LIQUIGÁS/MotoristaGranel I/2018
77 d
CESGRANRIO - Ass
(LIQUIGÁS)/LIQUIGÁS/Administrativo I/2018
78 e
CESGRANRIO - Ass
(LIQUIGÁS)/LIQUIGÁS/Administrativo I/2018
79 b
CESGRANRIO - Ass
(LIQUIGÁS)/LIQUIGÁS/Administrativo I/2018
80 a
CESGRANRIO - Ass
(LIQUIGÁS)/LIQUIGÁS/Administrativo I/2018
81 b
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Administração e Controle
Júnior/2018
82 c
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Administração e Controle
Júnior/2018
83 b
CESGRANRIO - Ass
(LIQUIGÁS)/LIQUIGÁS/Administrativo I/2018
84 c
CESGRANRIO - Ass
(LIQUIGÁS)/LIQUIGÁS/Administrativo I/2018
85 b
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Segurança Júnior/2017
86 b CESGRANRIO - TA (ANP)/ANP/2016
87 e CESGRANRIO - TA (ANP)/ANP/2016
88 d
CESGRANRIO - TRPDACGN
(ANP)/ANP/Geral/2016
89 a CESGRANRIO - Esc BB/BB/"Sem Área"/2015
90 a CESGRANRIO - Tec Ban (BASA)/BASA/2015
91 c CESGRANRIO - Tec Ban (BASA)/BASA/2015
92 d
CESGRANRIO - Tec
(BR)/BR/Administração/Controle Júnior/2015
93 e
CESGRANRIO - Tec
(BR)/BR/Administração/Controle Júnior/2015
94 c
CESGRANRIO - Tec
(BR)/BR/Administração/Controle Júnior/2015
95 b
CESGRANRIO - Ass (FINEP)/FINEP/Apoio
Administrativo/2014
96 d
CESGRANRIO - Ass (FINEP)/FINEP/Apoio
Administrativo/2014
97 c
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Suprimento de Bens e
Serviços Júnior/Administração/2014
98 b
CESGRANRIO - Aju
(LIQUIGÁS)/LIQUIGÁS/Motorista Granel I/2014
99 e CESGRANRIO - Ag PM (IBGE)/IBGE/2014
100 e
CESGRANRIO - Ass Adm (EPE)/EPE/Apoio
Administrativo/2014
* *
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9752
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 101
Assunto: Porcentagem
Em um supermercado, uma embalagem com
12 picolés custa R$ 21,60 e cada picolé,
vendido separadamente, custa R$ 2,40.
Ao optar pela compra da embalagem, o cliente
recebe um desconto, em relação ao preço de
venda por unidade, de
a) 15%
b) 20%
c) 25%
d) 30%
e) 60%
Questão 102
Assunto: Porcentagem
Mariana e Laura compraram um saco com 120
balas que custava R$ 7,50. Laura contribuiu
com R$ 4,50, e Mariana, com o restante.
Se as balas forem divididas em partes
diretamente proporcionais ao valor pago por
cada menina, com quantas balas Mariana
ficará?
a) 36
b) 48
c) 54
d) 72
e) 96
Questão 103
Assunto: Porcentagem
Mauro precisava resolver alguns exercícios de
Matemática. Ele resolveu 1/5 dos exercícios no
primeiro dia. No segundo
dia, resolveu 2/3 dos exercícios restantes e,
no terceiro dia, os 12 últimos exercícios.
Ao todo, quantos exercícios Mauro resolveu?
a) 30
b) 40
c) 45
d) 75
e) 90
Questão 104
Assunto: Porcentagem
Em certa cidade, a tarifa do metrô é R$ 2,80, e
a dos ônibus, R$ 2,40. Mas os passageiros que
utilizam os dois meios de transporte podem
optar por um bilhete único, que dá direito a
uma viagem de ônibus e uma de metrô, e
custa R$ 3,80.
Em relação ao valor total gasto com uma
viagem de ônibus e uma de metrô pagas
separadamente, o bilhete único oferece um
desconto de, aproximadamente,
a) 27%
b) 30%
c) 32%
d) 34%
e) 37%
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9753
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 105
Assunto: Porcentagem
A força da água limpa
As novas tecnologias e o empenho dos
organismos públicos, associados aos interesses
e boas práticas da iniciativa privada,
ampliaram a rede de esgotos.
Considere que, em 1990, a população
brasileira era de 145 milhões de habitantes e,
em 2010, de 190 milhões.
Com base nos percentuais apresentados na
reportagem, o número de habitantes, no
Brasil, que contam com saneamento básico
aumentou, de 1990 para 2010, em,
aproximadamente,
a) 65 milhões
b) 50 milhões
c) 45 milhões
d) 25 milhões
e) 10 milhões
Questão 106
Assunto: Porcentagem
Em uma faculdade, uma amostra de 120
alunos foi coletada, tendo-se verificado a idade
e o sexo desses alunos. Na amostra, apurou-se
que 45 estão na faixa de 16 a 20 anos, 60, na
faixa de 21 a 25 anos, e 15 na faixa de 26 a 30
anos. Os resultados obtidos encontram-se na
Tabela abaixo.
Idade (em anos)
Número de alunos
Sexo feminino Sexo masculino
n % n %
16 – 20 ? P 10 20
21 – 25 Q 40 ? R
26 – 30 S ? ? 16
Total 70 100 50 100
Quais são, respectivamente, os valores
indicados pelas letras P, Q, R e S?
a) 40 ; 28 ; 64 e 0
b) 50 ; 28 ; 64 e 7
c) 50 ; 40 ; 53,3 e 7
d) 77,8 ; 28 ; 53,3 e 7
e) 77,8 ; 40 ; 64 e 0
Questão 107
Assunto: Porcentagem
Numa empresa, todos os seus clientes
aderiram a apenas um dos seus dois planos,
Alfa ou Beta. O total de clientes é de 1.260,
dos quais apenas 15% são do Plano Beta. Se x
clientes do plano Beta deixarem a empresa,
apenas 10% dos clientes que nela
permanecerem estarão no plano Beta.
O valor de x é um múltiplo de
a) 3
b) 8
c) 13
d) 11
e) 10
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9754
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 108
Assunto: Porcentagem
Durante uma liquidação, uma loja de roupas
vendeu 85% das 120 camisetas que havia no
estoque. Quantas camisetas sobraram?
a) 18
b) 22
c) 24
d) 28
e) 32
Questão 109
Assunto: Porcentagem
Considere que o valor pago pela energia
elétrica (conta de luz) sofra uma redução de
16%. Desse modo, uma família que gasta, em
média, R$ 165,00 mensais em energia elétrica
terá essa despesa mensal reduzida em
a) R$ 16,50
b) R$ 18,80
c) R$ 20,40
d) R$ 26,40
e) R$ 27,80
Questão 110
Assunto: Porcentagem
Em um supermercado, durante uma promoção,
todos os produtos de limpeza estavam sendo
vendidos com 15% desconto. Aproveitando a
promoção, Fátima comprou vários produtos de
limpeza, obtendo um desconto total de R$
2,40.
Quanto Fátima teria gasto se tivesse comprado
os produtos fora da promoção?
a) R$ 12,00
b) R$ 13,60
c) R$ 16,00
d) R$ 18,00
e) R$ 20,40
Questão 111
Assunto: Porcentagem
Numa empresa trabalham 80 funcionários, dos
quais 20 são mulheres. Se forem contratadas
mais 10 mulheres, sem que nenhum
funcionário antigo seja demitido, o percentual
de mulheres nessa empresa passará a ser,
aproximadamente, de
a) 37%
b) 33%
c) 30%
d) 25%
e) 11%
Questão 112
Assunto: Porcentagem
Dois pintores, João e José, foram contratados
para pintar uma área de 240 m2. João pintou
45% dessa área, e José, a área restante.
Quantos metros quadrados foram pintados por
José?
a) 108
b) 120
c) 132
d) 144
e) 156
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9755
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 113
Assunto: Porcentagem
Marcos foi ao mercado comprar leite. Cada
litro custava R$ 2,00, mas, nesse dia, havia
uma promoção: comprando dois litros, seria
dado um desconto de 15%.Ele aproveitou a
promoção e comprou dois litros de leite.
Qual o valor do desconto na compra dos dois
litros de leite?
a) R$ 0,15
b) R$ 0,20
c) R$ 0,30
d) R$ 0,45
e) R$ 0,60
Questão 114
Assunto: Porcentagem
Os gráficos acima apresentam dados sobre a
produção e a reciclagem de lixo em algumas
regiões do planeta.
Baseando-se nos dados apresentados, qual é,
em milhões de toneladas, a diferença entre as
quantidades de lixo recicladas na China e nos
EUA em um ano?
a) 9,08
b) 10,92
c) 12,60
d) 21,68
e) 24,80
Questão 115
Assunto: Porcentagem
5,1 bilhões de moedas, que representam 27%
do total cunhado no Brasil, desde o início do
Plano Real, estão ―entesouradas‖, ou seja,
esquecidas em gavetas ou guardadas em
cofrinhos.
Revista Veja. São Paulo: Abril. Ed. 2267. 02 maio 2012, p. 57.
A partir dos dados apresentados na
reportagem, verifica-se que o número total de
moedas cunhadas no Brasil, desde o início do
Plano Real, corresponde, em bilhões, a,
aproximadamente,
a) 13,7
b) 14,2
c) 16,6
d) 18,9
e) 19,8
Questão 116
Assunto: Porcentagem
Fábio contratou um empréstimo bancário que
deveria ser quitado em 30 de março de 2012.
Como conseguiu o dinheiro necessário 30 dias
antes dessa data, Fábio negociou com o
gerente e conseguiu 5% de desconto. Assim,
quitou o empréstimo antecipadamente,
pagando R$ 4.940,00.
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9756
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Qual era, em reais, o valor a ser pago por
Fábio em 30 de março de 2012?
a) 5.187,00
b) 5.200,00
c) 5.871,00
d) 6.300,00
e) 7.410,00
Questão 117
Assunto: Porcentagem
Uma determinada sala comercial teve seu
condomínio corrigido no mês de março de
2012 em 10%. No mês de abril, em razão de
uma ordem judicial resultante de ação que
julgou abusiva a correção, a administradora do
condomínio foi obrigada a cobrar o valor
equivalente a fevereiro de 2012.
Com base no mês de março, qual foi o
percentual de redução necessário para que se
chegasse ao valor do mês de fevereiro?
a) 9%
b) 9,09%
c) 10%
d) 11%
e) 11,11%
Questão 118
Assunto: Porcentagem
Uma empresa de marketing realizou, durante
trinta dias, uma pesquisa sobre a utilização por
seus clientes de celulares em postos de
combustíveis.
Foram coletados os seguintes dados:
Perfil Entrevistas Utilizam
Não
utilizam
Homens até
25 anos
42 38 4
Homens
acima de 25
anos
65 35 30
Mulheres
até 25 anos
37 35 2
Mulheres
acima de 25
anos
17 10 7
Os homens acima de 25 anos que afirmam
utilizar o celular durante o abastecimento
representam um percentual de
a) 10%
b) 35%
c) 46%
d) 54%
e) 90%
Questão 119
Assunto: Porcentagem
A disponibilidade da frota de veículos de uma
empresa de transportes rodoviários é peça
fundamental na sua lucratividade. Considere
que um ano tem 52 semanas de 5 dias úteis
(dias de entrega) e que uma empresa teve 20
dias úteis perdidos em manutenção, no ano,
por veículo utilizado na entrega de seus
produtos.
A disponibilidade da frota dessa empresa é,
aproximadamente, de
a) 90,35%
b) 92,30%
c) 94,44%
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9757
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
d) 94,52%
e) 98,72%
Questão 120
Assunto: Porcentagem
Um reservatório de água estava cheio até 70%
de sua capacidade quando uma chuva forte
aumentou em 20% a quantidade de água em
seu interior. Ainda assim, para enchê-lo
completamente, seriam necessários mais
16.800 L de água.
Qual é, em litros, a capacidade desse
reservatório?
a) 70.000
b) 105.000
c) 126.000
d) 150.000
e) 168.000
Questão 121
Assunto: Porcentagem
João aplicou metade de seu décimo terceiro
salário em um fundo de investimentos. Um ano
mais tarde, ele resgatou um montante (valor
aplicado acrescido de juros) de R$ 1.522,50.
Se a taxa anual de juros dessa aplicação foi de
5%, qual é, em reais, o valor do décimo
terceiro salário de João?
a) 1.450,00
b) 1.600,00
c) 2.124,00
d) 2.892,00
e) 2.900,00
Questão 122
Assunto: Porcentagem
Dezoito pessoas saíram de uma sala. Com isso,
apenas 60% do número de pessoas
inicialmente presentes permaneceram na sala.
Quantas pessoas havia na sala inicialmente?
a) 63
b) 54
c) 48
d) 45
e) 30
Questão 123
Assunto: Porcentagem
Para evitar a falta de etanol no mercado, o
governo decidiu diminuir o teor de etanol na
gasolina de 25% para 20%. Um carro, cujo
tanque está com três quartos da sua
capacidade ocupados por gasolina com o teor
antigo, terá seu tanque completado com
gasolina no teor novo, definido pelo governo.
Após ser abastecido, o teor de etanol do
composto no tanque desse carro será de
a) 45%
b) 25%
c) 23,75%
d) 22,5%
e) 20%
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9758
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 124
Assunto: Porcentagem
Numa pizzaria, cada pizza comprada dá direito
a um selo, e 7 selos dão direito a uma pizza
grátis, que não dá direito a selo. Para uma
reunião, uma pessoa encomenda 8 pizzas e
utiliza os selos das pizzas como parte do
pagamento.
Qual o desconto percentual obtido na utilização
dos selos?
a) 14%
b) 13%
c) 12,5%
d) 12%
e) 11,5%
Questão 125
Assunto: Porcentagem
A etiqueta com o preço de um computador
registra R$ 2.062,50. Esse valor é tal que,
mesmo dando um desconto de 20% ao
consumidor, ainda há um lucro de 10% sobre
o preço de custo.
Qual o preço de custo, em reais, desse
computador?
a) 1.687,50
b) 1.650,00
c) 1.546,88
d) 1.500,00
e) 1.375,00
Questão 126
Assunto: Porcentagem
Uma churrascaria oferece desconto de 10%
nos jantares em relação ao preço do almoço.
Nessa churrascaria, aniversariantes têm
desconto de 20% no almoço ou jantar. Fábio
foi comemorar seu aniversário no fim de
semana seguinte ao seu aniversário com um
almoço nessa churrascaria e, como não era o
dia do seu aniversário, pagou o preço integral.
Se Fábio tivesse comemorado no dia de seu
aniversário com um jantar nessa churrascaria,
teria economizado quantos por cento do preço
que pagou?
a) 32
b) 30
c) 28
d) 18
e) 15
Questão 127
Assunto: Porcentagem
Considere que carros novos, 0 km,
desvalorizam 20% no primeiro ano e 10% nos
anos seguintes. Uma pessoa comprou dois
carros, um básico 0 km e um completo com 1
ano de uso. Daqui a dois anos, ela deve
vender os dois carros pelo mesmo preço.
Qual a razão entre o preço do carro 0 km e o
preço do carro usado comprado por essa
pessoa?
a) 8/9.
b) 9/8.
c) 7/8.
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9759
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
d) 8/7.
e) 13/12.Questão 128
Assunto: Porcentagem
João solicitou a uma instituição financeira a
liquidação antecipada de um empréstimo e foi
informado que, se a quitação do mesmo fosse
feita até o final do mês em curso, o valor pago
seria R$ 7.350,00, o que representaria um
desconto de 12,5% sobre o valor a ser pago
na data combinada inicialmente.
Qual foi, em reais, o valor do desconto
oferecido para a liquidação antecipada?
a) 882,00
b) 918,75
c) 1.044,05
d) 1.050,00
e) 1.368,50
Questão 129
Assunto: Porcentagem
Uma dona de casa comprou um novo botijão
de gás pelo valor de R$ 75,00, à vista.
Sabendo-se que o valor inicial do produto era
R$ 80,00, qual foi o percentual de desconto
concedido à dona de casa?
a) 5%
b) 6,25%
c) 6,67%
d) 75%
e) 80%
Questão 130
Assunto: Porcentagem
A empresa Show de Bola Ltda. produz
mensalmente 8.000 bolas de futebol, 3.000
bolas de vôlei e 1.500 bolas de basquete. No
mês de junho de 2014, está previsto um
aumento na produção de bolas de futebol,
equivalente a 12%.
O percentual de aumento na produção total da
empresa, no mês de junho de 2014, é de
a) 7,13%
b) 7,68%
c) 12%
d) 36%
e) 64%
Questão 131
Assunto: Porcentagem
Com o objetivo de identificar a necessidade da
criação de uma creche, uma empresa de
combustíveis realizou um levantamento entre
seus funcionários, por setor e sexo, com o
seguinte resultado:
Empresa XY
Produção Administrativo
Homens 32 Homens 17
Mulheres 15 Mulheres 8
Com base nas informações apresentadas,
conclui-se que o número total de homens é
superior ao total de mulheres em,
aproximadamente,
a) 26%
b) 32%
c) 53%
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9760
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
d) 68%
e) 113%
Questão 132
Assunto: Porcentagem
O preço de um produto sofreu exatamente três
alterações ao longo do primeiro trimestre de
2011. A primeira alteração foi devida a um
aumento de 10%, dado em janeiro, sobre o
preço inicial do produto. Em fevereiro, um
novo aumento, agora de 20%, foi dado sobre
o preço que o produto possuía no final de
janeiro. A última alteração sofrida pelo preço
do produto foi, novamente, devida a um
aumento, de 10%, dado em março sobre o
preço do final de fevereiro.
A variação do preço do produto acumulada no
primeiro trimestre de 2011, relativamente ao
seu preço inicial, foi de
a) 58,4%
b) 45,2%
c) 40%
d) 35,2%
e) 13,2%
Questão 133
Assunto: Proporções. Grandezas
proporcionais. Divisão em partes proporcionais
Considere um gás ideal que passa por uma
transformação durante a qual sua pressão e o
volume que ocupa podem variar, mas sua
temperatura é sempre mantida constante. A
Lei de Boyle-Mariotte garante que, nessas
circunstâncias, o produto entre a pressão P e o
volume V ocupado pelo gás é constante.
Quando o gás considerado ocupa o volume
correspondente a 18ml, a sua pressão é de 3
atm (atmosferas).
Se a medida do volume ocupado pelo gás for
de 2,25ml, então, sua pressão, em atmosferas,
medirá
a) 33,75
b) 31,50
c) 24,00
d) 13,50
e) 12,00
Questão 134
Assunto: Proporções. Grandezas
proporcionais. Divisão em partes proporcionais
Uma determinada solução é a mistura de 3
substâncias, representadas pelas letras P, Q e
R. Uma certa quantidade dessa solução foi
produzida, e sua massa é igual à soma das
massas das três substâncias P, Q e R, usadas
para compô-la. As massas das substâncias P,
Q e R dividem a massa da solução em partes
diretamente proporcionais a 3, 5 e 7,
respectivamente.
A que fração da massa da solução produzida
corresponde a soma das massas das
substâncias P e Q utilizadas na produção?
a) 12
b) 23
c) 1235
d) 815
e) 1021
Questão 135
Assunto: Proporções. Grandezas
proporcionais. Divisão em partes proporcionais
Aldo, Baldo e Caldo resolvem fazer um bolão
para um concurso da Mega-Sena. Aldo
contribui com 12 bilhetes, Baldo, com 15
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9761
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
bilhetes e Caldo, com 9 bilhetes. Eles
combinaram que, se um dos bilhetes do bolão
fosse sorteado, o prêmio seria dividido entre
os três proporcionalmente à quantidade de
bilhetes com que cada um contribuiu. Caldo
também fez uma aposta fora do bolão e, na
data do sorteio, houve 2 bilhetes ganhadores,
sendo um deles o da aposta individual de
Caldo, e o outro, um dos bilhetes do bolão.
Qual a razão entre a quantia total que Caldo
recebeu e a quantia que Baldo recebeu?
a) 0,8
b) 1,5
c) 2
d) 2,5
e) 3
Questão 136
Assunto: Proporções. Grandezas
proporcionais. Divisão em partes proporcionais
Em uma empresa, o total de descontos que
incidem sobre o salário bruto de cada
funcionário é proporcional ao valor desse
mesmo salário bruto. Um funcionário F1 tem
salário líquido igual a S1, calculado após a
incidência do total de descontos igual a
x1 reais. Um funcionário F2 tem salário líquido
igual a S2, calculado após a incidência do total
de descontos igual a x2 reais.
O total de descontos x2 é tal que
a)
b)
c)
d)
e)
Questão 137
Assunto: Proporções. Grandezas
proporcionais. Divisão em partes proporcionais
Maria tinha 450 mL de tinta vermelha e 750
mL de tinta branca. Para fazer tinta rosa, ela
misturou certa quantidade de tinta branca com
os 450 mL de tinta vermelha na proporção de
duas partes de tinta vermelha para três partes
de tinta branca.
Feita a mistura, quantos mL de tinta branca
sobraram?
a) 75
b) 125
c) 175
d) 375
e) 675
Questão 138
Assunto: Proporções. Grandezas
proporcionais. Divisão em partes proporcionais
Em um certo país, cada aposentado ganha
uma quantia diretamente proporcional à raiz
quadrada do número de anos que trabalhou.
Urbano aposentou-se hoje nesse país e
receberá uma aposentadoria de X unidades
monetárias. Se trabalhasse mais 13 anos, sua
aposentadoria aumentaria em 1000 unidades
monetárias e, no entanto, se tivesse se
aposentado há 11 anos, receberia 1000
unidades monetárias a menos.
Para que as afirmações acima estejam todas
corretas, o valor de X deve ser
a) 2000
b) 3000
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9762
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
c) 4000
d) 5000
e) 6000
Questão 139
Assunto: Proporções. Grandezas
proporcionais. Divisão em partes proporcionais
Os catadores de uma cooperativa recolheram
14.000 latas de alumínio. Essas latas eram,
exclusivamente, de cerveja, de sucos ou de
refrigerantes. De cada 5 latas recolhidas, 2
eram de cerveja e, para cada 7 latas de
refrigerantes, havia 3 latas de suco.
Do total de latas recolhidas pelos catadores,
quantas eram de suco?
a) 2.000
b) 2.520
c) 2.800
d) 5.600
e) 5.880
Questão 140
Assunto: Proporções. Grandezas
proporcionais. Divisão em partes proporcionais
Em uma caixa há n fichas, todas pretas, e, em
um saco opaco há 144 fichas, todas
vermelhas. Todas as fichas têm o mesmo
formato e são indistinguíveis pelo tato. Metadedas fichas pretas é retirada da caixa e colocada
no saco. Desse modo, se uma ficha for retirada
do saco, a probabilidade de que ela seja
vermelha é 8/9.
Qual é o valor de n?
a) 36
b) 44
c) 72
d) 126
e) 180
Questão 141
Assunto: Proporções. Grandezas
proporcionais. Divisão em partes proporcionais
Um pipoqueiro observou que, de cada 12
saquinhos de pipoca que vendia, 5 eram de
pipoca salgada e os restantes, de pipoca doce.
Considerando-se essa proporção, se ele vender
96 saquinhos de pipoca, quantos serão de
pipoca doce?
a) 8
b) 20
c) 40
d) 48
e) 56
Questão 142
Assunto: Proporções. Grandezas
proporcionais. Divisão em partes proporcionais
Carlos foi de ônibus de casa para o trabalho, e
a viagem demorou 54 minutos. Na volta,
pegou o metrô, e o tempo de viagem foi
reduzido em 12 minutos. Nesse dia, qual foi a
razão entre os tempos gastos por Carlos para
ir ao trabalho e dele voltar, nessa ordem?
a) 9/7
b) 8/7
c) 4/3
d) 3/2
e) 9/2
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9763
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 143
Assunto: Proporções. Grandezas
proporcionais. Divisão em partes proporcionais
Com a expansão do setor hoteleiro no Rio de
Janeiro, novos postos de trabalho serão
criados. Estima-se que, de cada 7 novas vagas,
4 serão no setor de alimentação (garçons,
copeiras, cozinheiros, por exemplo), e 3, para
camareiras.
Considerando-se essa proporção, um hotel que
contratar 24 camareiras contratará, também,
quantos profissionais para o setor de
alimentação?
a) 18
b) 26
c) 30
d) 32
e) 36
Questão 144
Assunto: Proporções. Grandezas
proporcionais. Divisão em partes proporcionais
Para fazer determinado tipo de biscoitos,
utilizam-se 100 g de manteiga para cada 250 g
de farinha de trigo.
Mantendo-se essa proporção, se uma
cozinheira utilizar 500 g de manteiga, quantos
gramas de farinha ela precisará utilizar?
a) 1.250
b) 750
c) 650
d) 400
e) 200
Questão 145
Assunto: Proporções. Grandezas
proporcionais. Divisão em partes proporcionais
A razão entre as idades de Joana e de Sergio é
igual a 7/8. Sergio, que é mais velho que
Joana, tem 56 anos.
Qual é a idade de Joana?
a) 36
b) 45
c) 49
d) 54
e) 64
Questão 146
Assunto: Proporções. Grandezas
proporcionais. Divisão em partes proporcionais
Ao receber certa quantia, Fábio guardou R$
252,00 e gastou o restante. Se a razão entre a
quantia gasta e a recebida por Fábio é 7/9,
quanto ele gastou?
a) R$ 196,00
b) R$ 324,00
c) R$ 882,00
d) R$ 1.134,00
e) R$ 1.764,00
Questão 147
Assunto: Regra de três simples
Em uma lanchonete, foram produzidos 120
litros de refresco de laranja, adicionando-se 30
litros de água a 90 litros de suco de laranja.
Em um restaurante, foi produzida uma
quantidade menor de refresco de laranja,
segundo a mesma proporção usada na
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9764
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
lanchonete, gastando- se apenas 15 litros de
suco de laranja.
Quantos litros de refresco de laranja foram
produzidos no total por ambos os
estabelecimentos?
a) 140
b) 150
c) 165
d) 180
e) 210
Questão 148
Assunto: Regra de três simples
Em certa empresa, 5 em cada 7 funcionários
completaram o Ensino Médio, e há 210
funcionários com Ensino Médio completo.
O número de funcionários dessa empresa é
a) 150
b) 280
c) 294
d) 304
e) 320
Questão 149
Assunto: Regra de três simples
O preço da Placa Solar no mundo todo é
negociado em dólares (U$) por watt. Mesmo
que o painel solar seja fabricado no Brasil, a
célula ainda não é. (...)
Em janeiro de 2018, uma placa solar
fotovoltaica de 330 watts, no Brasil, era
vendida, no varejo, por R$ 858,00 (...).
Disponível em:<https://www.portalsolar.com.br/placa-solar-preco.
html>. Acesso em: 01 abr. 2018. Adaptado.
Considerando que, em janeiro de 2018, 1 dólar
estava cotado a R$ 3,20, o preço aproximado
dessa placa, em dólares por watt, era
a) 0,81
b) 0,92
c) 1,16
d) 1,40
e) 2,60
Questão 150
Assunto: Regra de três simples
No Brasil utilizamos o quilômetro (km) para
medir as distâncias nas estradas, mas nem
todos os países adotam o mesmo sistema de
medidas. Nos EUA, por exemplo, as distâncias
rodoviárias são medidas em milhas, e uma
milha equivale a, aproximadamente, 1,6 km. A
maior rodovia brasileira totalmente
pavimentada é a BR-116, que tem cerca de
4.510 km de extensão.
Qual é a extensão aproximada, em milhas, da
BR-116?
a) 2.818
b) 4.780
c) 5.116
d) 6.210
e) 7.216
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9765
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
N° GAB MATEMÁTICA
101 c
CESGRANRIO - Ass Adm (EPE)/EPE/Apoio
Administrativo/2014
102 b CESGRANRIO - Tec Adm (BNDES)/BNDES/2013
103 c CESGRANRIO - Tec Adm (BNDES)/BNDES/2013
104 a CESGRANRIO - Tec Adm (BNDES)/BNDES/2013
105 b CESGRANRIO - Tec Adm (BNDES)/BNDES/2013
106 b CESGRANRIO - Tec Adm (BNDES)/BNDES/2013
107 e
CESGRANRIO - Esc BB/BB/Tecnologia da
Informação/2013
108 a
CESGRANRIO - Tec (BR)/BR/Administração e
Controle Júnior/2013
109 d
CESGRANRIO - Tec (BR)/BR/Administração e
Controle Júnior/2013
110 c
CESGRANRIO - Tec (BR)/BR/Administração e
Controle Júnior/2013
111 b
CESGRANRIO - Tec (BR)/BR/Administração e
Controle Júnior/2013
112 c
CESGRANRIO - Tec (BR)/BR/Contabilidade
Júnior/2013
113 e
CESGRANRIO - Tec (BR)/BR/Contabilidade
Júnior/2013
114 a CESGRANRIO - Esc BB/BB/"Sem Área"/2012
115 d CESGRANRIO - CTA (DECEA)/DECEA/2012
116 b
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Químico Petróleo
Júnior/2012
117 b
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Administração e Controle
Júnior/2012
118 d
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Administração e Controle
Júnior/2012
119 b
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Suprimento de Bens e
Serviços Júnior/Administração/2012
120 b
CESGRANRIO - Ass Adm (EPE)/EPE/Apoio
Administrativo/2012
121 e
CESGRANRIO - Ass Adm (EPE)/EPE/Apoio
Administrativo/2012
122 d
CESGRANRIO - Tec (BR)/BR/Administração e
Controle Júnior/2012
123 c
CESGRANRIO - Tec (BR)/BR/Administração e
Controle Júnior/2012
124 c
CESGRANRIO - Tec (BR)/BR/Administração e
Controle Júnior/2012
125 d
CESGRANRIO - Tec (BR)/BR/Administração e
Controle Júnior/2012
* *
N° GAB MATEMÁTICA
126 c
CESGRANRIO - Tec (BR)/BR/Administração e
Controle Júnior/2012
127 b
CESGRANRIO - Tec (BR)/BR/Administração e
Controle Júnior/2012
128 d
CESGRANRIO - Tec Jr
(TRANSPETRO)/TRANSPETRO/Administração e
Controle/2012
129 b
CESGRANRIO - Tec Jr
(TRANSPETRO)/TRANSPETRO/Administração e
Controle/2012
130 b
CESGRANRIO - Tec Jr
(TRANSPETRO)/TRANSPETRO/Administração e
Controle/2012
131 e
CESGRANRIO - Tec Jr
(TRANSPETRO)/TRANSPETRO/Administração e
Controle/2012
132 b
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Contabilidade Júnior/2012
133 c
CESGRANRIO- TRPDACGN
(ANP)/ANP/Geral/2016
134 d
CESGRANRIO - TRPDACGN
(ANP)/ANP/Geral/2016
135 e CESGRANRIO - Esc BB/BB/"Sem Área"/2015
136 d CESGRANRIO - Tec Ban (BASA)/BASA/2015
137 a
CESGRANRIO - Ass (FINEP)/FINEP/Apoio
Administrativo/2014
138 e CESGRANRIO - Ag PT (IBGE)/IBGE/2014
139 b
CESGRANRIO - Ass Adm (EPE)/EPE/Apoio
Administrativo/2014
140 a
CESGRANRIO - Ass Adm (EPE)/EPE/Apoio
Administrativo/2014
141 e
CESGRANRIO - Tec (BR)/BR/Administração e
Controle Júnior/2013
142 a
CESGRANRIO - Tec (BR)/BR/Administração e
Controle Júnior/2013
143 d
CESGRANRIO - Tec (BR)/BR/Administração e
Controle Júnior/2013
144 a
CESGRANRIO - Tec (BR)/BR/Contabilidade
Júnior/2013
145 c
CESGRANRIO - Tec (BR)/BR/Contabilidade
Júnior/2013
146 c
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Estabilidade Júnior/2012
147 a
CESGRANRIO - Aju
(LIQUIGÁS)/LIQUIGÁS/Motorista Granel I/2018
148 c
CESGRANRIO - Moto
(LIQUIGÁS)/LIQUIGÁS/Caminhão Granel I/2018
149 a
CESGRANRIO - Moto
(LIQUIGÁS)/LIQUIGÁS/Caminhão Granel I/2018
150 a
CESGRANRIO - Moto
(LIQUIGÁS)/LIQUIGÁS/Caminhão Granel I/2018
* *
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9766
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 151
Assunto: Regra de três simples
Certo modelo de automóvel percorre 100 km
com 8,1 litros de gasolina. Outro modelo,
menos econômico, consome mais 0,03 litro de
gasolina por quilômetro rodado.
Aproximadamente quantos quilômetros, em
média, o automóvel menos econômico
percorre com 1 litro de gasolina?
a) 9,0
b) 8,4
c) 8,2
d) 8,0
e) 7,8
Questão 152
Assunto: Regra de três simples
A final da Copa do mundo de 2014 foi
disputada entre Alemanha e Argentina no
Maracanã, que tem capacidade para 80 mil
espectadores.
Supondo-se que o estádio estivesse lotado,
que exatamente 26 mil espectadores não
fossem argentinos nem alemães, e que, para
cada 5 alemães houvesse 7 argentinos, qual o
total de argentinos presentes no estádio?
a) 22.500
b) 24.000
c) 26.000
d) 30.000
e) 31.500
Questão 153
Assunto: Regra de três simples
O gráfico abaixo apresenta o consumo médio
de oxigênio, em função do tempo, de um
atleta de 70 kg ao praticar natação.
Considere que o consumo médio de oxigênio
seja diretamente proporcional à massa do
atleta.
Qual será, em litros, o consumo médio de
oxigênio de um atleta de 80 kg, durante 10
minutos de prática de natação?
a) 50,0
b) 52,5
c) 55,0
d) 57,5
e) 60,0
Questão 154
Assunto: Regra de três simples
No Brasil, quase toda a produção de latas de
alumínio é reciclada. As empresas de
reciclagem pagam R$ 320,00 por 100 kg de
latas usadas, sendo que um quilograma
corresponde a 74 latas.
De acordo com essas informações, quantos
reais receberá um catador ao vender 703 latas
de alumínio?
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9767
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
a) 23,15
b) 23,98
c) 28,80
d) 28,96
e) 30,40
Questão 155
Assunto: Regra de três simples
Dois corredores, M e N, partem juntos do
ponto P de uma pista de corrida retilínea, em
direção a um ponto Q, situado a 240 m de P. O
corredor M é mais rápido e percorre 25 m,
enquanto o corredor N percorre 15 m.
Se essa proporção for mantida durante todo o
percurso, a quantos metros do ponto Q o
corredor N estará no momento em que o
corredor M passar por esse mesmo ponto?
a) 96
b) 104
c) 106
d) 128
e) 144
Questão 156
Assunto: Regra de três simples
Um senhor possui uma fazenda com cabras e
coelhos e deseja iniciar uma nova fazenda
transferindo parte de seus animais para lá.
Para isso, ele contrata um caminhão que pode
levar 20 jaulas de cabras ou 300 gaiolas de
coelhos. Em cada jaula de cabras, cabem 3
cabras para transporte, e, em cada gaiola de
coelhos, cabem 6 coelhos para transporte. O
dono da fazenda deseja transferir 1.080
coelhos e tantas cabras quanto puder no
mesmo caminhão.
Qual o maior número de cabras que poderá ser
levado para a nova fazenda?
a) 60
b) 36
c) 30
d) 24
e) 18
Questão 157
Assunto: Regra de três simples
Se H homens conseguem fazer um trabalho
em d dias, então, H + r homens farão o
mesmo trabalho em quantos dias?
a)
b)
c)
d)
e)
Questão 158
Assunto: Regra de três composta
Uma empresa possui uma frota de 8 carros
iguais. A empresa verificou que sua frota leva
3 dias para distribuir 126 produtos para seus
clientes, o que foi julgado como sendo
insuficiente. Por isso, ela ampliará a sua frota
adquirindo o menor número possível de carros
adicionais, iguais aos 8 de sua frota atual, que
lhe permita distribuir, com a frota ampliada,
630 produtos para seus clientes em apenas 4
dias.
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9768
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
O número de carros que devem ser adquiridos
na ampliação da frota é
a) 8
b) 14
c) 16
d) 22
e) 35
Questão 159
Assunto: Regra de três composta
No auge da crise hídrica de São Paulo, em
fevereiro de 2014, a Sabesp, empresa de água
e saneamento da região (...), ofereceu um
benefício àqueles que poupassem água. (...) a
companhia daria um desconto na conta a
quem reduzisse o consumo (...). A estratégia
foi um sucesso: contribuiu para economizar
330 bilhões de litros, volume suficiente para
abastecer 20 milhões de pessoas na região
metropolitana por quatro meses.
Revista Veja, 21 mar. 2018, p. 82.
Considerando-se as informações do texto,
quantos bilhões de litros de água são
suficientes para abastecer 30 milhões de
pessoas durante 8 meses?
a) 495
b) 615
c) 660
d) 900
e) 990
Questão 160
Assunto: Regra de três composta
Se 8 máquinas, de mesma capacidade,
produzem um total de 8 peças idênticas,
funcionando simultaneamente por 8 horas,
então, apenas uma dessas máquinas, para
produzir duas dessas peças, levará um total de
x horas.
O valor de x é
a) 0,25
b) 2
c) 4
d) 8
e) 16
Questão 161
Assunto: Regra de três composta
O setor de uma empresa enviou os seus 10
funcionários para participarem de um curso
sobre a utilização de um sistema de
preenchimento de relatórios. Ao final do curso,
todos os funcionários passaram a utilizar o
sistema no mesmo ritmo, isto é, cada um
passou a preencher a mesma quantidade de
relatórios por hora: cada 4 funcionários
preenchem 48 relatórios em 6 horas.
Após o curso, em quantas horas 8 funcionários
preencheriam 96 relatórios?
a) 3
b) 12
c) 4
d) 8
e) 6
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9769
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 162
Assunto: Exercícios envolvendo velocidade,
espaço, tempo
Certo reservatório continha 1.000 L de água
quando foi aberta uma torneirade vazão
constante. Cinquenta minutos mais tarde, sem
que a torneira fosse fechada, um ralo foi
destampado acidentalmente, permitindo o
escoamento parcial da água. O Gráfico abaixo
mostra a variação do volume de água dentro
do reservatório, em função do tempo.
Qual era, em litros por minuto, a capacidade
de escoamento do ralo?
a) 20
b) 12
c) 6
d) 4
e) 2
Questão 163
Assunto: Unidades de Medida (distância,
massa, volume, tempo, etc)
O comprimento de um grande fio corresponde
à soma dos comprimentos de 24 fios menores.
São eles:
• 12 fios, cada um dos quais com comprimento
que mede 14,7 cm;
• 4 fios, cada um dos quais com comprimento
que mede 0,3765 km;
• 8 fios, cada um dos quais com comprimento
que mede 13,125 dam.
Esse grande fio foi dividido em 3 fios de igual
comprimento, chamados de unidade modelo.
Qual é a medida, em metros, do comprimento
de uma unidade modelo?
a) 6385,500
b) 2557,764
c) 852,588
d) 94,302
e) 31,434
Questão 164
Assunto: Unidades de Medida (distância,
massa, volume, tempo, etc)
Às 5 da tarde de sexta-feira, Aldo desligou seu
computador, que já estava ligado há 100
horas.
A que horas de que dia Aldo havia ligado o
computador anteriormente?
a) 1 da tarde de segunda-feira
b) 9 da noite de segunda-feira
c) 1 da tarde de terça-feira
d) 2 da tarde de terça-feira
e) 9 da noite de quarta-feira
Questão 165
Assunto: Unidades de Medida (distância,
massa, volume, tempo, etc)
Para se encher por completo um reservatório
de água com uma bomba de vazão constante
igual a 12,5 litros por segundo, gastam-se 13
horas e 45 minutos. Uma nova bomba foi
comprada, e sua vazão, também constante, é
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9770
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
maior que a vazão da bomba anterior em 25
litros por segundo.
Quanto tempo seria gasto para se encher, por
completo, o mesmo reservatório de água com
a bomba nova?
a) 4 h 15 min
b) 4 h 35 min
c) 4 h 55 min
d) 6 h 53 min
e) 7 h 27 min
Questão 166
Assunto: Unidades de Medida (distância,
massa, volume, tempo, etc)
Um caminhão-tanque chega a um posto de
abastecimento com 36.000 litros de gasolina
em seu reservatório. Parte dessa gasolina é
transferida para dois tanques de
armazenamento, enchendo-os completamente.
Um desses tanques tem 12,5 m³, e o outro,
15,3 m³, e estavam, inicialmente, vazios.
Após a transferência, quantos litros de gasolina
restaram no caminhão-tanque?
a) 35.722,00
b) 8.200,00
c) 3.577,20
d) 357,72
e) 332,20
Questão 167
Assunto: Unidades de Medida (distância,
massa, volume, tempo, etc)
Um voo direto, do Rio de Janeiro a Paris, tem
11 horas e 5 minutos de duração. Existem
outros voos, com escala, cuja duração é bem
maior. Por exemplo, a duração de certo voo
Rio-Paris, com escala em Amsterdã, é 40%
maior do que a do voo direto.
Qual é a duração desse voo que faz escala em
Amsterdã?
a) 15h 4 min
b) 15h 15 min
c) 15 h 24 min
d) 15h 29 min
e) 15 h 31 min
Questão 168
Assunto: Unidades de Medida (distância,
massa, volume, tempo, etc)
Considere que a medida do comprimento de
um arco seja de hectômetros.
A medida do comprimento do referido arco,
em quilômetros, é mais próxima de
a) 11,20
b) 125,0
c) 10,00
d) 1,120
e) 12,50
Questão 169
Assunto: Unidades de Medida (distância,
massa, volume, tempo, etc)
Certa praça tem 720 m² de área. Nessa praça
será construído um chafariz que ocupará 600
dm².
Que fração da área da praça será ocupada
pelo chafariz?
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9771
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
a) 1/600
b) 1/120
c) 1/90
d) 1/60
e) 1/12
Questão 170
Assunto: Unidades de Medida (distância,
massa, volume, tempo, etc)
Um professor de ginástica estava escolhendo
músicas para uma aula. As quatro primeiras
músicas que ele escolheu totalizavam 15
minutos, sendo que a primeira tinha 3 minutos
e 28 segundos de duração, a segunda, 4
minutos e 30 segundos, e as duas últimas,
exatamente a mesma duração.
Qual era a duração da terceira música?
a) 3 min 1 s
b) 3 min 31 s
c) 3 min 51 s
d) 4 min 1 s
e) 4 min 11 s
Questão 171
Assunto: Unidades de Medida (distância,
massa, volume, tempo, etc)
Sebastião caminhou 680 m de sua casa até a
farmácia.
Depois, caminhou mais 560 m da farmácia até
o banco.
Ao todo, Sebastião caminhou quantos
quilômetros?
a) 1,14
b) 1,24
c) 1,33
d) 1,42
e) 1,51
Questão 172
Assunto: Unidades de Medida (distância,
massa, volume, tempo, etc)
Certo pedaço de pano, com 2 m2 de área, será
partido em 8 pedaços do mesmo tamanho, ou
seja, com a mesma área.
Qual será, em cm2, a área de cada pedaço?
a) 250
b) 500
c) 1.250
d) 2.500
e) 4.000
Questão 173
Assunto: Unidades de Medida (distância,
massa, volume, tempo, etc)
Os comprimentos de uma mesa e de uma
bancada são, respectivamente, iguais a 204
centímetros e 7,5 metros.
A razão entre o comprimento da mesa e o
comprimento da bancada, quando ambos são
escritos em uma mesma unidade, é
a) 17/625.
b) 5/136.
c) 68/125.
d) 34/125.
e) 136/5.
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9772
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 174
Assunto: Unidades de Medida (distância,
massa, volume, tempo, etc)
As luzes de um semáforo alternam entre
amarelo (atenção), vermelho (fechado) e
verde (aberto), nessa ordem. Os tempos de
cada etapa são respectivamente iguais a 3 s,
30 s e 45 s.
Se o semáforo fechou exatamente às 9h 36min
12s, ele esteve aberto quando eram
a) 9h 33 min 55 s
b) 9h 34 min 2 s
c) 9h 34 min 12 s
d) 9h 35 min 15 s
e) 9h 35 min 20 s
Questão 175
Assunto: Logaritmo
Sejam M = log 30 e N = log 300.
Na igualdade x + N = M, qual é o valor de x?
a) –2
b) –1
c) 0
d) +1
e) +2
Questão 176
Assunto: Logaritmo
A sequência {an}nEN é uma progressão
geométrica de termos positivos cuja razão
é 1/64.
Considere {bn}nEN a sequência definida
por bn=log2((an)3).
A sequência {bn}nEN é uma progressão
a) aritmética de razão −18.
b) aritmética de razão −6.
c) aritmética de razão 32.
d) geométrica de razão 1/6.
e) geométrica de razão 1/2.
Questão 177
Assunto: Logaritmo
Sabe-se que x e y são números reais tais que y
= 53x.
Conclui-se que x é igual a
a) log5(y
3).
b) log5(y/3).
c) log5(
3√y)
d) −log5(3y).
e) 1 / 3.log5(y).
Questão 178
Assunto: Progressão aritmética
O quarto, o quinto e o sexto termos de uma
progressão aritmética são expressos por x + 1,
x 2 + 4 e 2x 2 + 3, respectivamente.
A soma dos dez primeiros termos dessa
progressão aritmética é igual a
a) 260
b) 265
c) 270
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9773
Lei 9610/98. Proibida a reprodução, vendaou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
d) 275
e) 280
Questão 179
Assunto: Progressão aritmética
Uma sequência numérica tem seu termo geral
representado por an, para n ≥ 1. Sabe-se que
a1 = 0 e que a sequência cujo termo geral é
bn = an+1 – an, n ≥ 1, é uma progressão
aritmética cujo primeiro termo é b1 = 9 e cuja
razão é igual a 4.
O termo a1000 é igual a
a) 2.002.991
b) 2.002.995
c) 4.000.009
d) 4.009.000
e) 2.003.000
Questão 180
Assunto: Progressão aritmética
Para obter uma amostra de tamanho 1.000
dentre uma população de tamanho 20.000,
organizada em um cadastro em que cada
elemento está numerado sequencialmente de
1 a 20.000, um pesquisador utilizou o seguinte
procedimento:
I - calculou um intervalo de seleção da
amostra, dividindo o total da população pelo
tamanho da amostra: 20.000/1.000 = 20;
II - sorteou aleatoriamente um número inteiro,
do intervalo [1, 20]. O número sorteado foi 15;
desse modo, o primeiro elemento selecionado
é o 15º;
III - a partir desse ponto, aplica-se o intervalo
de seleção da amostra: o segundo elemento
selecionado é o 35º (15+20), o terceiro é o
55º (15+40), o quarto é o 75º (15+60), e
assim sucessivamente.
O último elemento selecionado nessa amostra
é o
a) 19.997º
b) 19.995º
c) 19.965º
d) 19.975º
e) 19.980º
Questão 181
Assunto: Progressão aritmética
Em uma progressão aritmética de 5 termos e
primeiro termo 5, a soma dos quadrados dos
três primeiros termos é igual à soma dos
quadrados dos dois últimos termos.
O maior valor possível para o último termo
dessa progressão aritmética é
a) 5,5
b) 6
c) 6,5
d) 7
e) 7,5
Questão 182
Assunto: Progressão aritmética
Os números naturais m, w e p constituem,
nessa ordem, uma progressão aritmética de
razão 4, enquanto que os números m, (p + 8)
e (w + 60) são, respectivamente, os três
termos iniciais de uma progressão geométrica
de razão q.
Qual é o valor de q?
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9774
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
a) 2
b) 3
c) 4
d) 6
e) 8
Questão 183
Assunto: Progressão aritmética
A sequência (a1, a2, a3, ..., a20) é uma
progressão aritmética de 20 termos, na qual
a8 + a9 = a5 + a3 + 189.
A diferença entre o último e o primeiro termo
dessa progressão, nessa ordem, é igual a
a) 19
b) 21
c) 91
d) 171
e) 399
Questão 184
Assunto: Progressão aritmética
Progressões aritméticas são sequências
numéricas nas quais a diferença entre dois
termos consecutivos é constante.
A sequência (5, 8, 11, 14, 17, ..., 68, 71) é
uma progressão aritmética finita que possui
a) 67 termos
b) 33 termos
c) 28 termos
d) 23 termos
e) 21 termos
Questão 185
Assunto: Progressão aritmética
Um cientista distribuiu 46,0 mL de álcool em
quatro tubos de ensaio dispostos lado a lado,
tendo as quantidades de álcool neles colocadas
formado uma progressão aritmética crescente.
Se, no último tubo, o cientista colocou 6,0 mL
a mais do que no segundo, quantos mililitros
de álcool ele colocou no primeiro tubo?
a) 2,5
b) 3,0
c) 4,5
d) 7,0
e) 10,0
Questão 186
Assunto: Progressão aritmética
Álvaro, Bento, Carlos e Danilo trabalham em
uma mesma empresa, e os valores de seus
salários mensais formam, nessa ordem, uma
progressão aritmética. Danilo ganha
mensalmente R$ 1.200,00 a mais que Álvaro,
enquanto Bento e Carlos recebem, juntos, R$
3.400,00 por mês.
Qual é, em reais, o salário mensal de Carlos?
a) 1.500,00
b) 1.550,00
c) 1.700,00
d) 1.850,00
e) 1.900,00
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9775
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 187
Assunto: Progressão aritmética
Os irmãos Antônio, Beatriz e Carlos comeram,
juntos, as 36 balas que havia em um pacote.
Mas Antônio achou a divisão injusta, já que
Beatriz comeu 4 balas a mais que ele, e Carlos
comeu mais balas do que Beatriz.
Se as quantidades de balas que os três irmãos
comeram formavam uma progressão
aritmética, quantas balas Antônio comeu?
a) 4
b) 6
c) 8
d) 10
e) 12
Questão 188
Assunto: Progressão aritmética
Durante os meses de agosto e setembro de
2011, o dólar apresentou grande valorização
frente ao real. Suponha que, em 24 de agosto,
o valor de um dólar fosse R$ 1,60 e, em 23 de
setembro, R$ 1,84.
Se o aumento diário, de 24 de agosto a 23 de
setembro, tivesse ocorrido linearmente,
formando uma progressão aritmética, qual
seria, em reais, o valor do dólar em 8 de
setembro?
a) 1,70
b) 1,71
c) 1,72
d) 1,73
e) 1,74
Questão 189
Assunto: Progressão aritmética
Parlamentares alemães visitam a Transpetro
para conhecer logística de biocombustível.
―o presidente Sergio Machado mostrou o
quanto o Sistema Petrobras está crescendo.
Com a descoberta do pré-sal, o Brasil se
transformará, em 2020, no quarto maior
produtor de petróleo do mundo. ‗Em 2003, a
Petrobras produzia cerca de 1,5 milhão de
barris. Atualmente (2011), são 2,5 milhões. A
perspectiva é de que esse número aumente
ainda mais‘.‖
Disponível em: <http://www.transpetro.com.br/TranspetroSite/
appmanager/transpPortal/transpInternet?_nfpb=true&_windowLabel=barra
Menu_3&_nffvid=%2FTranspetroSite%2Fportlets%2FbarraMenu%2Fbarra
Menu.faces&_ pageLabel=pagina_base&formConteudo:codigo=1749>.
Acesso em: 07 abr. 2012. Adaptado.
Suponha que o aumento na produção anual de
barris tenha sido linear, formando uma
progressão aritmética. Se o mesmo padrão for
mantido por mais alguns anos, qual será, em
milhões de barris, a produção da Petrobras em
2013?
a) 2,625
b) 2,750
c) 2,950
d) 3,000
e) 3,125
Questão 190
Assunto: Progressão geométrica
Considere a sequência numérica cujo termo
geral é dado por a n=2
1-3n, para n ≥ 1. Essa
sequência numérica é uma progressão
a) geométrica, cuja razão é 1/8
b) geométrica, cuja razão é -6.
c) geométrica, cuja razão é -3.
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9776
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
d) aritmética, cuja razão é -3.
e) aritmética, cuja razão é 1/8
Questão 191
Assunto: Progressão geométrica
Para x > 0, seja Sx a soma
O número real x para o qual se tem Sx=1/4
a) 4
b) log25
c) 3/2
d) 5/2
e) log23
Questão 192
Assunto: Progressão geométrica
A soma dos n primeiros termos de uma
progressão geométrica é dada
por Sn=3n+4−81
2x3n
Quanto vale o quarto termo dessa progressão
geométrica?
a) 1
b) 3
c) 27
d) 39
e) 40
Questão 193
Assunto: Progressão geométrica
Uma sequência de números reais tem seu
termo geral, an , dado por an = 4.2
3n+1, para n
≥ 1. Essa sequência é uma progressão
a) geométrica, cuja razão é igual a 2.
b) geométrica, cuja razão é igual a 32.
c) aritmética, cuja razão é igual a 3.
d) aritmética, cuja razão é igual a 1.
e) geométrica, cuja razão é igual a 8.
Questão194
Assunto: Progressão geométrica
Considere a progressão geométrica finita (a1,
a2, a3,...,a11, a12), na qual o primeiro termo
vale metade da razão e a7 = 64 . a4. O último
termo dessa progressão é igual a
a) 212
b) 216
c) 222
d) 223
e) 234
Questão 195
Assunto: Progressão geométrica
A sequência an, n∈N é uma progressão
aritmética cujo primeiro termo é a1=−2 e cuja
razão é r=3. Uma progressão geométrica, bn,
é obtida a partir da primeira, por meio da
relação
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9777
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Se b1 e q indicam o primeiro termo e a razão
dessa progressão geométrica, então q/b1 vale
a) 243.
b) 3.
c) 1/243.
d) −2/3.
e) −27/6.
Questão 196
Assunto: Função de primeiro grau
O gráfico de uma função f: R → R, definida
por f(x) = ax + b, contém o ponto (2,3) e um
outro ponto que pertence ao segmento de reta
que liga os pontos (4,7) e (4,10).
O maior valor possível de b é
a) -4
b) -1
c) 3
d) 7
e) 10
Questão 197
Assunto: Função de segundo grau
O gráfico de uma função quadrática, mostrado
na Figura a seguir, intersecta o eixo y no ponto
(0,9), e o eixo x, nos pontos (-2, 0) e (13, 0).
Se o ponto P(11,k) é um ponto da parábola, o
valor de k será
a) 5,5
b) 6,5
c) 7
d) 7,5
e) 9
Questão 198
Assunto: Função de segundo grau
Um estagiário de engenharia recebeu a
incumbência de resolver o seguinte problema:
ele precisava achar uma posição para o
ponto P (x,y), restrito ao primeiro quadrante
do plano xy, conforme mostrado na Figura
abaixo.
Trata-se de uma superfície plana e
perfeitamente circular, com diâmetro de 100
metros. O problema consiste em achar a
posição exata para o ponto P que garante a
máxima área para o triângulo sombreado da
Figura.
Após um estudo do problema, o estagiário
encontrou a posição exata do ponto P, para o
qual a área máxima do triângulo, em m2, é de
a) 1.250
b) 825
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9778
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
c) 625
d) 525
e) 485
Questão 199
Assunto: Função de segundo grau
Sejam
funções quadráticas de domínio real, cujos
gráficos estão representados acima. A função
f(x) intercepta o eixo das abscissas nos pontos
P(xp, 0) e M(xM, 0), e g(x), nos pontos (1, 0) e
Q(xQ, 0).
Se g(x) assume valor máximo quando x = xM,
conclui-se que xQ é igual a
a) 3
b) 7
c) 9
d) 11
e) 13
Questão 200
Assunto: Função de segundo grau
A raiz da função f(x) = 2x − 8 é também raiz
da função quadrática g(x) = ax2 + bx + c.
Se o vértice da parábola, gráfico da função
g(x), é o ponto V(−1, −25), a soma a + b + c
é igual a
a) − 25
b) − 24
c) − 23
d) − 22
e) − 21
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9779
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
N° GAB MATEMÁTICA
151 a CESGRANRIO - TA (ANP)/ANP/2016
152 e
CESGRANRIO - Tec
(BR)/BR/Administração/Controle Júnior/2015
153 e CESGRANRIO - Tec Adm (BNDES)/BNDES/2013
154 e CESGRANRIO - Esc BB/BB/"Sem Área"/2012
155 a
CESGRANRIO - Ass Adm (EPE)/EPE/Apoio
Administrativo/2012
156 d
CESGRANRIO - Tec (BR)/BR/Administração e
Controle Júnior/2012
157 e
CESGRANRIO - Tec (BR)/BR/Administração e
Controle Júnior/2012
158 d
CESGRANRIO - Aju
(LIQUIGÁS)/LIQUIGÁS/Motorista Granel I/2018
159 e
CESGRANRIO - Moto
(LIQUIGÁS)/LIQUIGÁS/Caminhão Granel I/2018
160 e
CESGRANRIO - Ass
(LIQUIGÁS)/LIQUIGÁS/Administrativo I/2018
161 e CESGRANRIO - Ag PM (IBGE)/IBGE/2016
162 d
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Suprimento de Bens e
Serviços Júnior/Administração/2014
163 c CESGRANRIO - Tec Ban (BASA)/BASA/2018
164 a
CESGRANRIO - Tec Jr
(TRANSPETRO)/TRANSPETRO/Ambiental/2018
165 b
CESGRANRIO - Aju
(LIQUIGÁS)/LIQUIGÁS/Motorista Granel I/2018
166 b CESGRANRIO - TA (ANP)/ANP/2016
167 e CESGRANRIO - TA (ANP)/ANP/2016
168 a CESGRANRIO - Tec Ban (BASA)/BASA/2015
169 b
CESGRANRIO - Ass (FINEP)/FINEP/Apoio
Administrativo/2014
170 b CESGRANRIO - Tec Adm (BNDES)/BNDES/2013
171 b
CESGRANRIO - Tec (BR)/BR/Operação
Júnior/2013
172 d
CESGRANRIO - Tec (BR)/BR/Operação
Júnior/2013
173 d CESGRANRIO - Tec Ban (BASA)/BASA/2013
174 c
CESGRANRIO - Ass Adm (EPE)/EPE/Apoio
Administrativo/2012
175 b CESGRANRIO - Tec (BR)/BR/Química Júnior/2015
* *
N° GAB MATEMÁTICA
176 a
CESGRANRIO - Aju
(LIQUIGÁS)/LIQUIGÁS/Motorista Granel I/2014
177 c CESGRANRIO - Tec Ban (BASA)/BASA/2013
178 d
CESGRANRIO - Tec Jr
(TRANSPETRO)/TRANSPETRO/Ambiental/2018
179 b CESGRANRIO - Esc BB/BB/"Sem Área"/2018
180 b CESGRANRIO - Esc BB/BB/"Sem Área"/2018
181 d
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Administração e Controle
Júnior/2018
182 b
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Suprimento de Bens e
Serviços Júnior/Administração/2014
183 e
CESGRANRIO - Ass Adm (EPE)/EPE/Apoio
Administrativo/2014
184 d CESGRANRIO - Tec Adm (BNDES)/BNDES/2013
185 d CESGRANRIO - CTA (DECEA)/DECEA/2012
186 e
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Químico Petróleo
Júnior/2012
187 c
CESGRANRIO - Ass Adm (EPE)/EPE/Apoio
Administrativo/2012
188 c
CESGRANRIO - Tec (BR)/BR/Administração e
Controle Júnior/2012
189 b
CESGRANRIO - Tec Jr
(TRANSPETRO)/TRANSPETRO/Administração e
Controle/2012
190 a CESGRANRIO - Tec Ban (BASA)/BASA/2018
191 b CESGRANRIO - Esc BB/BB/"Sem Área"/2018
192 a
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Segurança Júnior/2017
193 e CESGRANRIO - Tec Ban (BASA)/BASA/2015
194 d CESGRANRIO - Tec (BR)/BR/Química Júnior/2015
195 a CESGRANRIO - Tec Ban (BASA)/BASA/2013
196 b
CESGRANRIO - Aju
(LIQUIGÁS)/LIQUIGÁS/Motorista Granel I/2014
197 e
CESGRANRIO - Tec Jr
(TRANSPETRO)/TRANSPETRO/Ambiental/2018
198 c
CESGRANRIO - Tec
(LIQUIGÁS)/LIQUIGÁS/Instalações I/2018
199 b
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Químico Petróleo
Júnior/2012
200 e
CESGRANRIO - Tec Jr
(TRANSPETRO)/TRANSPETRO/Administração e
Controle/2012
* *
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9780
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 201
Assunto: Função exponencial e inequações
exponenciais
Quanto maior for a profundidade de um lago,
menor será a luminosidade em seu fundo, pois
a luz que incide em sua superfície vai
perdendo a intensidade em função da
profundidade do mesmo. Considere que, em
determinado lago, a intensidade y da luz a x
cm de profundidade seja dada pela
função , onde i0 representa a
intensidade da luz na sua superfície. No ponto
mais profundo desse lago, a intensidade da luz
corresponde a i0/3.
A profundidade desse lago, em cm, está entre
a) 150 e 160
b) 160 e 170
c) 170 e 180
d)180 e 190
e) 190 e 200
Questão 202
Assunto: Função logarítmica e inequações
logarítmicas
Considerem-se as funções logarítmicas f(x) =
log4 x e g(x) = log2 x, ambas de domínio .
Calculando-se f(72) − g(3), o valor encontrado
será de
a) 1,0
b) 1,5
c) 2,0
d) 2,5
e) 3,0
Questão 203
Assunto: Função logarítmica e inequações
logarítmicas
Considere as funções g(x)= log2 x e h(x)
=logb x , ambas de domínio .
Se h(5)=1/2, então g(b + 9) é um número real
compreendido entre
a) 5 e 6
b) 4 e 5
c) 3 e 4
d) 2 e 3
e) 1 e 2
Questão 204
Assunto: Função logarítmica e inequações
logarítmicas
Se y=log81(1/27) e x ∈ R+ são tais que x
y=8,
então x é igual a
a) 1/16
b) 1/2
c) log38
d) 2
e) 16
Dados
log 2 = 0,30
log 3 = 0,48
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9781
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 205
Assunto: Outras questões sobre funções
Sabe-se que g é uma função par e está
definida em todo domínio da função f, e a
função f pode ser expressa por f(x) = x 2 + k .
x . g(x).
Se f(1) = 7, qual o valor de f(–1)?
a) 7
b) 5
c) –7
d) –6
e) –5
Questão 206
Assunto: Determinantes
Sejam A uma matriz quadrada de ordem 2 e B
uma matriz quadrada de ordem 3, tais que
detA . detB = 1.
O valor de det(3A) . det(2B) é
a) 5
b) 6
c) 36
d) 72
e) 108
Questão 207
Assunto: Determinantes
Na matriz , m, n e p são
números inteiros ímpares consecutivos tais que
m < n < p.
O valor de é
a) 2
b) 8
c) 16
d) 20
e) 22
Questão 208
Assunto: Determinantes
A matriz
O determinante da matriz A3×3 é igual a
a) − 6
b) 0
c) 6
d) 10
e) 42
Questão 209
Assunto: Sistemas lineares
Sistemas lineares homogêneos possuem, pelo
menos, uma solução e, portanto, nunca serão
considerados impossíveis. O sistema linear
dado abaixo possui infinitas soluções.
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9782
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Qual o maior valor possível para α?
a) 0
b) 1
c) 2
d) 3
e) 4
Questão 210
Assunto: Sistemas lineares
Maria comprou 30 balas e 18 chocolates para
distribuir entre seus três filhos, mas não os
distribuiu igualmente. O filho mais velho
recebeu igual número de balas e chocolates,
enquanto que o filho do meio ganhou 5 balas a
mais do que chocolates. O número de balas
que o filho caçula ganhou correspondeu ao
dobro do número de chocolates.
Sabendo-se que os dois filhos mais novos de
Maria ganharam a mesma quantidade de
chocolates, quantas balas couberam ao filho
mais velho?
a) 4
b) 7
c) 8
d) 11
e) 12
Questão 211
Assunto: Sistemas lineares
―A Diretoria de Terminais e Oleodutos da
Transpetro opera uma malha de 7.179 km de
oleodutos. Em 2010, [...] os 28 terminais
aquaviários operaram uma média mensal de
869 embarcações (navios e barcaças).‖
Disponível em:<http://www.transpetro.com.br/portugues/
relatorio_anual/2010/pt-en/index.html> Relatório anual 2010, p. 42.
Acesso em: 07 abr. 2012. Adaptado.
Se a diferença entre o número médio de
barcaças e o de navios operados mensalmente
nos terminais aquaviários em 2010 foi 23, qual
a média de barcaças operadas mensalmente?
a) 423
b) 432
c) 446
d) 464
e) 472
Questão 212
Assunto: Polinômios e equações polinomiais.
Expansão de binômios. Triângulo de Pascal
Se n é um número inteiro positivo, quantos
valores de n fazem com que a expressão
seja um número inteiro?
a) 4
b) 5
c) 6
d) 8
e) 12
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9783
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 213
Assunto: Tabela verdade das proposições
compostas
p q F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14
V V V V V V V V V F F F F F F F
F V V V V V F F F V V V F F F F
V F V V F F V V F V F F V V F F
F F V F V F V F V F V F V F V F
Da análise da tabela verdade associada às
fórmulas Fi,1 ≤ i ≤ 14, formadas a partir das
proposições p e q, onde V significa
interpretação verdadeira e F interpretação
falsa, conclui-se que
a) F4 ∩ F13 é uma tautologia.
b) F9 implica F3.
c) F3 e F12 são equivalentes.
d) F1 é uma contradição.
e) {F2, F5, F10, F14 } é um conjunto de fórmulas
satisfatível.
Questão 214
Assunto: Equivalências lógicas (inclui negação
de proposições compostas)
No dia 15 de janeiro, Carlos disse:
— Se a data de entrega do trabalho fosse
amanhã, em vez de ter sido ontem, então eu
conseguiria concluí-lo.
De forma logicamente equivalente, no dia
seguinte, dia 16 de janeiro, Carlos poderia
substituir sua fala original por:
a) Se a data de entrega do trabalho tivesse
sido hoje, em vez de ontem, então eu
conseguiria concluí-lo.
b) Se a data de entrega do trabalho tivesse
sido anteontem, em vez de hoje, então eu
conseguiria concluí-lo.
c) Se eu não consegui concluir o trabalho,
então é porque a data de entrega não foi
anteontem, foi hoje.
d) Se eu não consegui concluir o trabalho,
então é porque a data de entrega não foi
amanhã, foi ontem.
e) Se eu não consegui concluir o trabalho,
então é porque a data de entrega não foi hoje,
foi anteontem.
Questão 215
Assunto: Equivalências lógicas (inclui negação
de proposições compostas)
João disse:
— Das duas, pelo menos uma: o depósito é
amplo e claro, ou ele não se localiza em
Albuquerque.
O que João disse é falso se, e somente se, o
depósito
a) fica em Albuquerque e não é amplo ou não
é claro.
b) fica em Albuquerque, não é amplo, nem é
claro.
c) não é amplo, não é claro e não fica em
Albuquerque.
d) é amplo ou é claro e fica em Albuquerque.
e) é amplo e claro e fica em Albuquerque.
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9784
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 216
Assunto: Equivalências lógicas (inclui negação
de proposições compostas)
É dada a seguinte proposição:
João não foi trabalhar, mas saiu com amigos.
A negação dessa proposição é logicamente
equivalente a
a) João foi trabalhar ou não saiu com amigos.
b) João foi trabalhar e não saiu com amigos.
c) João foi trabalhar e não saiu com inimigos.
d) João não foi trabalhar ou não saiu com
inimigos.
e) João não foi trabalhar e não saiu com
amigos.
Questão 217
Assunto: Equivalências lógicas (inclui negação
de proposições compostas)
João disse que, se chovesse, então o show não
seria cancelado. Infelizmente, os
acontecimentos revelaram que aquilo que João
falou não era verdade.
Portanto,
a) o show não foi cancelado porque choveu.
b) o show foi cancelado porque não choveu.
c) não choveu, e o show não foi cancelado.
d) não choveu,e o show foi cancelado.
e) choveu, e o show foi cancelado.
Questão 218
Assunto: Equivalências lógicas (inclui negação
de proposições compostas)
Se filho de pai estatístico sempre é estatístico,
então
a) pai de estatístico sempre é estatístico.
b) pai de estatístico nunca é estatístico.
c) pai de estatístico quase sempre é
estatístico.
d) pai de não estatístico sempre é estatístico.
e) pai de não estatístico nunca é estatístico.
Questão 219
Assunto: Equivalências lógicas (inclui negação
de proposições compostas)
Certo dia, João afirmou:
Se eu tivesse ido ao banco ontem, eu não
precisaria ir ao banco amanhã.
No dia seguinte, não tendo ido ao banco ainda,
João diria algo logicamente equivalente ao que
dissera no dia anterior, se tivesse dito:
a) Como não fui ao banco hoje, fui ao banco
anteontem.
b) Como não fui ao banco ontem, irei ao banco
hoje.
c) Como não fui ao banco hoje, fui ao banco
ontem.
d) Como preciso ir ao banco hoje, não fui ao
banco anteontem.
e) Como preciso ir ao banco hoje, eu fui ao
banco ontem.
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9785
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 220
Assunto: Argumentos - métodos decorrentes
da tabela verdade
Sabe-se que:
- Se João anda de navio ou não anda de trem,
então João se perde.
- Se João anda de trem, então João é paulista.
- Se João não poupa, então João anda de
navio.
Assim, se João não se perde, então João
a) é paulista e poupa.
b) é paulista, mas não poupa.
c) não é paulista e não poupa.
d) não é paulista, mas poupa.
e) ou não é paulista, ou não poupa.
Questão 221
Assunto: Argumentos - métodos decorrentes
da tabela verdade
O turista perdeu o voo ou a agência de viagens
se enganou. Se o turista perdeu o voo, então a
agência de viagens não se enganou. Se a
agência de viagens não se enganou, então o
turista não foi para o hotel. Se o turista não foi
para o hotel, então o avião atrasou. Se o
turista não perdeu o voo, então foi para o
hotel. O avião não atrasou. Logo,
a) o turista foi para o hotel e a agência de
viagens se enganou.
b) o turista perdeu o voo e a agência de
viagens se enganou.
c) o turista perdeu o voo e a agência de
viagens não se enganou.
d) o turista não foi para o hotel e não perdeu
o voo.
e) o turista não foi para o hotel e perdeu o
voo.
Questão 222
Assunto: Argumentos - métodos decorrentes
da tabela verdade
Sabe-se que as proposições
- Se Aristides faz gols então o GFC é campeão.
- O Aristides faz gols ou o Leandro faz gols.
- Leandro faz gols.
são, respectivamente, verdadeira, verdadeira e
falsa.
Daí, conclui-se que
a) Aristides não faz gols ou o GFC não é
campeão.
b) Aristides faz gols e o GFC não é campeão.
c) Aristides não faz gols e o GFC é campeão.
d) Aristides faz gols e o GFC é campeão.
e) Aristides não faz gols e o GFC não é
campeão.
Questão 223
Assunto: Diagramas lógicos, Proposições
categóricas, Negação de quantificadores
Considere a afirmação:
―Houve um momento em que todos não
falavam coisa alguma‖.
A negação dessa afirmação é logicamente
equivalente a
a) Em algum momento, todos falavam alguma
coisa.
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9786
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
b) Em algum momento, alguém não falava
coisa alguma.
c) Em nenhum momento todos falavam
alguma coisa.
d) Em cada momento, havia alguém que
falava alguma coisa.
e) Em cada momento, todos falavam alguma
coisa.
Questão 224
Assunto: Diagramas lógicos, Proposições
categóricas, Negação de quantificadores
Américo disse para seu filho:
— Se alguém chegasse à garagem, em
qualquer sexta- feira, então veria que todos os
carros estavam limpos. Ontem foi a primeira
exceção!
A fala de Américo para seu filho revela que
ontem
a) ou foi uma sexta-feira, ou todos os carros
da garagem estavam sujos.
b) ou foi uma sexta-feira, ou algum carro da
garagem estava sujo.
c) foi sexta-feira, e algum carro na garagem
não estava limpo.
d) havia mais de um carro sujo na garagem,
pois era sexta-feira.
e) foi sexta-feira, e todos os carros na
garagem não estavam limpos.
Questão 225
Assunto: Diagramas lógicos, Proposições
categóricas, Negação de quantificadores
Considere a seguinte argumentação:
Se alguém tivesse faltado à festa, então todos
teriam passado por interesseiros.
No entanto, alguém não passou por
interesseiro.
Conclui-se que
a) alguém foi à festa, mas não todos.
b) não houve festa.
c) quem faltou à festa é interesseiro.
d) todos faltaram à festa.
e) ninguém faltou à festa.
Questão 226
Assunto: Diagramas lógicos, Proposições
categóricas, Negação de quantificadores
A respeito de um pequeno grupo indígena, um
repórter afirmou: ―todos os indivíduos do
grupo têm pelo menos 18 anos de idade‖.
Logo depois, descobriu-se que a afirmação a
respeito da idade dos indivíduos desse grupo
não era verdadeira.
Isso significa que
a) todos os indivíduos do grupo têm mais de
18 anos de idade.
b) pelo menos um indivíduo do grupo tem
menos de 17 anos de idade.
c) todos os indivíduos do grupo têm menos de
18 anos de idade.
d) pelo menos um indivíduo do grupo tem
mais de 18 anos de idade.
e) pelo menos um indivíduo do grupo tem
menos de 18 anos de idade.
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9787
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 227
Assunto: Diagramas lógicos, Proposições
categóricas, Negação de quantificadores
Considere a afirmação feita sobre o setor de
uma empresa no qual há funcionários lotados:
―No setor de uma empresa, há algum
funcionário com, no mínimo, 32 anos de
idade.‖
A fim de se negar logicamente essa afirmação,
argumenta-se que
a) nenhum funcionário do setor tem 32 anos.
b) há apenas um funcionário do setor com 32
anos.
c) todos os funcionários do setor têm, no
mínimo, 33 anos.
d) todos os funcionários do setor têm, no
máximo, 32 anos.
e) todos os funcionários do setor têm, no
máximo, 31 anos.
Questão 228
Assunto: Diagramas lógicos, Proposições
categóricas, Negação de quantificadores
Considere verdadeiras as seguintes premissas:
- Todas as pessoas que andam de trem moram
longe do centro.
- Todas as pessoas que andam de carro não
andam de ônibus.
- Algumas pessoas andam de ônibus e de
trem.
Portanto,
a) algumas pessoas que moram próximo do
centro andam de carro ou de ônibus.
b) algumas pessoas que moram longe do
centro não andam de carro.
c) todas as pessoas que moram próximo do
centro andam de trem.
d) algumas pessoas que andam de carro
moram longe do centro.
e) todas as pessoas que andam de carro
moram longe do centro.
Questão 229
Assunto: Associação de informações
Uma liga de futebol do interior de um estado
brasileiro possui um banco de dados para
controlar os contratos entre os clubes e seus
técnicos e jogadores. Esse banco de dados
está armazenado em planilhas Excel.As três primeiras Figuras exibem,
respectivamente, parte dos cadastros de
jogadores, técnicos e clubes. Jogadores e
técnicos são identificados pelo número do CPF,
enquanto os clubes são identificados pelo
número de inscrição na liga.
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9788
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
As duas Figuras seguintes exibem,
respectivamente, parte dos dados sobre
contratos entre clubes e jogadores e entre
clubes e técnicos.
Tomando por base as Tabelas acima, qual
jogador trabalhou durante mais tempo sob o
comando do técnico Joel Santamaria?
a) Jessé dos Santos
b) Orlando Casagrande
c) Paulo Roberto
d) Vanderlei Bastos
e) Wilson Mendes
Questão 230
Assunto: Associação de informações
Os aniversários de Alberto, Delson, Gilberto,
Nelson e Roberto são em 15 de março, 23 de
agosto, 28 de agosto e 23 de novembro, não
necessariamente nessa ordem. Esses cinco
rapazes nasceram em um mesmo ano, sendo
dois deles irmãos gêmeos que, naturalmente,
aniversariam no mesmo dia.
Delson e Alberto aniversariam em dias
diferentes do mesmo mês. Nelson e Alberto
aniversariam no mesmo dia de meses
diferentes. Desses rapazes, o mais novo é
a) Roberto
b) Alberto
c) Nelson
d) Delson
e) Gilberto
Questão 231
Assunto: Associação de informações
Ana, Beatriz e Clara namoram, cada uma
delas, um dos rapazes: Rui, Samuel ou Túlio,
não necessariamente nessa ordem.
Ana perguntou a Beatriz: ―Seu namorado foi
com o Túlio ao jogo de futebol?‖
Beatriz respondeu: ―Não, o seu namorado é
quem foi com o Túlio.‖
Se Rui não foi ao jogo de futebol, conclui-se
que
a) Ana é namorada de Rui.
b) Ana é namorada de Samuel.
c) Beatriz é namorada de Samuel.
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9789
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
d) Beatriz é namorada de Túlio.
e) Clara é namorada de Rui.
Questão 232
Assunto: Associação de informações
Um professor escolheu três alunos de sua
turma para fazerem seminários sobre medidas
de tendência central: João, Carlos e Maria. A
média aritmética, a mediana e a moda foram
as medidas escolhidas pelo professor para
serem os temas dos seminários. Cada um dos
alunos abordou apenas uma das três medidas
de tendência central, sendo que, ao final, cada
uma delas foi tema de algum seminário.
Sabe-se que:
Sobre a mediana, falou João ou Maria;
Sobre a moda, falou Maria ou Carlos;
Sobre a média aritmética, falou Carlos
ou Maria;
Ou João falou sobre a média aritmética,
ou Carlos falou sobre a moda.
A média aritmética, a mediana e a moda
foram, respectivamente, os temas dos
seminários de
a) Carlos, João e Maria
b) Carlos, Maria e João
c) Maria, João e Carlos
d) Maria, Carlos e João
e) João, Maria e Carlos
Questão 233
Assunto: Associação de informações
Três homens, Ari, Beto e Ciro, e três mulheres,
Laura, Marília e Patrícia, formam três casais
(marido e mulher). Dentre as mulheres, há
uma médica, uma professora e uma advogada.
A mulher de Ari não se chama Patrícia e não é
professora. Beto é casado com a advogada, e
Ciro é casado com Laura.
As profissões de Laura, Marília e Patrícia são,
respectivamente,
a) advogada, médica e professora
b) advogada, professora e médica
c) professora, médica e advogada
d) professora, advogada e médica
e) médica, professora e advogada
Questão 234
Assunto: Sequências de números, figuras,
letras e palavras
Laura tem 6 caixas, numeradas de 1 a 6, cada
uma contendo alguns cartões. Em cada cartão
está escrita uma das seis letras da palavra
BRASIL. A Figura ilustra a situação:
Laura retirou cartões das caixas, um de cada
vez, de modo que, no final, sobrou apenas um
cartão em cada caixa, sendo que, em caixas
diferentes, sobraram cartões com letras
diferentes.
O cartão que sobrou na caixa de número 4 foi
o que contém a letra
a) L
b) B
c) S
d) R
e) A
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9790
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 235
Assunto: Sequências de números, figuras,
letras e palavras
Juninho brinca com uma folha de papel da
seguinte forma: corta-a em 6 pedaços, depois
apanha um desses pedaços e o corta em 6
pedaços menores; em seguida, apanha
qualquer um dos pedaços e o corta,
transformando-o em 6 pedaços menores.
Juninho repete diversas vezes a operação:
apanhar um pedaço qualquer e cortá-lo em 6
pedaços. Imediatamente após uma dessas
operações, ele resolve contar os pedaços de
papel existentes.
Um resultado possível para essa quantidade de
pedaços de papel é
a) 177
b) 181
c) 178
d) 180
e) 179
Questão 236
Assunto: Sequências de números, figuras,
letras e palavras
Na Figura abaixo, em cada um dos pontos
destacados, será escrito um número, de modo
que, para qualquer segmento desenhado
(lados dos hexágonos), a soma dos números
escritos em suas extremidades seja a mesma.
Já estão escritos dois dos números.
Sendo assim, o valor de x é
a) 84
b) 51
c) 42
d) 36
e) 15
Questão 237
Assunto: Sequências de números, figuras,
letras e palavras
Considere dois triângulos equiláteros tais que o
menor tem o lado medindo a metade da
medida do lado do maior. O triângulo menor
gira, no sentido horário, em torno do maior. Os
giros são feitos sempre mantendo algum
contato (sem deslizamento) entre os dois
triângulos. Cada passo consiste no giro que
termina com um vértice do triângulo pequeno
coincidindo com um vértice do triângulo
grande, e um lado do triângulo pequeno
apoiado em um lado do grande, como mostra
a Figura abaixo.
A Figura correspondente ao fim do 2.014º
passo é
a)
b)
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9791
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
c)
d)
e)
Questão 238
Assunto: Sequências de números, figuras,
letras e palavras
Uma sequência numérica infinita (e1, e2, e3,...,
en,...) é tal que a soma dos n termos iniciais é
igual a
n2 + 6n
O quarto termo dessa sequência é igual a
a) 9
b) 13
c) 17
d) 32
e) 40
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9792
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
N° GAB MATEMÁTICA
201 e
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Suprimento de Bens e
Serviços Júnior/Administração/2014202 b CESGRANRIO - CTA (DECEA)/DECEA/2012
203 a
CESGRANRIO - Tec (PETRO)/PETROBRAS/Químico
Petróleo Júnior/2012
204 a
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Contabilidade Júnior/2012
205 e CESGRANRIO - Esc BB/BB/"Sem Área"/2018
206 d
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Administração e Controle
Júnior/2018
207 e
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Segurança Júnior/2017
208 b
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Contabilidade Júnior/2012
209 c
CESGRANRIO - Tec Jr
(TRANSPETRO)/TRANSPETRO/Ambiental/2018
210 a
CESGRANRIO - Tec (BR)/BR/Administração e
Controle Júnior/2012
211 c
CESGRANRIO - Tec Jr
(TRANSPETRO)/TRANSPETRO/Administração e
Controle/2012
212 b
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Administração e Controle
Júnior/2018
213 b
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Informática Júnior/2012
214 e
CESGRANRIO - Ass
(LIQUIGÁS)/LIQUIGÁS/Logística/2018
215 a
CESGRANRIO - Ass
(LIQUIGÁS)/LIQUIGÁS/Logística/2018
216 a
CESGRANRIO - Ass
(LIQUIGÁS)/LIQUIGÁS/Logística/2018
217 e
CESGRANRIO - Ass
(LIQUIGÁS)/LIQUIGÁS/Logística/2018
218 e CESGRANRIO - Ag PT (IBGE)/IBGE/2014
219 d CESGRANRIO - Tec IGE (IBGE)/IBGE/2013
220 a CESGRANRIO - Tec IGE (IBGE)/IBGE/2013
221 a
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Exploração de Petróleo
Júnior/Informática/2012
222 d
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Exploração de Petróleo
Júnior/Informática/2012
223 d
CESGRANRIO - Ass
(LIQUIGÁS)/LIQUIGÁS/Logística/2018
224 c
CESGRANRIO - Ass
(LIQUIGÁS)/LIQUIGÁS/Logística/2018
225 e CESGRANRIO - Ag PM (IBGE)/IBGE/2016
* *
N° GAB MATEMÁTICA
226 e CESGRANRIO - Ag PM (IBGE)/IBGE/2014
227 e CESGRANRIO - Tec IGE (IBGE)/IBGE/2013
228 b CESGRANRIO - Tec IGE (IBGE)/IBGE/2013
229 a
CESGRANRIO - TRPDACGN (ANP)/ANP/Técnico
em Química/2016
230 c CESGRANRIO - Ag PM (IBGE)/IBGE/2014
231 b
CESGRANRIO - Tec (BR)/BR/Administração e
Controle Júnior/2013
232 c CESGRANRIO - Tec IGE (IBGE)/IBGE/2013
233 c CESGRANRIO - Tec IGE (IBGE)/IBGE/2013
234 a CESGRANRIO - Ag PM (IBGE)/IBGE/2014
235 b CESGRANRIO - Ag PM (IBGE)/IBGE/2014
236 b CESGRANRIO - Ag PT (IBGE)/IBGE/2014
237 d CESGRANRIO - Ag PT (IBGE)/IBGE/2014
238 b CESGRANRIO - Esc BB/BB/"Sem Área"/2012
* *
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9793
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
MATEMÁTICA
Questão 1
Assunto: Definição, subconjuntos, inclusão e
pertinência, operações, conjunto das partes
Os conjuntos P e Q têm p e q elementos,
respectivamente, com p + q = 13.
Sabendo-se que a razão entre o número de
subconjuntos de P e o número de
subconjuntos de Q é 32, quanto vale o produto
pq?
a) 16
b) 32
c) 36
d) 42
e) 46
Questão 2
Assunto: Número de elementos da união, da
intersecção, do complemento e da diferença
Em uma central de telemarketing com 42
funcionários, todos são atenciosos ou
pacientes. Sabe-se que apenas 10% dos
funcionários atenciosos são pacientes e que
apenas 20% dos funcionários pacientes são
atenciosos.
Quantos funcionários são atenciosos e
pacientes?
a) 1
b) 3
c) 9
d) 12
e) 27
Questão 3
Assunto: Adição, subtração, multiplicação e
divisão de números naturais
A capacidade máxima de carga de um
caminhão é de 2,670 toneladas (t). Duas
cargas de grãos estão destinadas a esse
caminhão: a primeira, de 2,500 t e, a segunda,
de 0,720 t.
A soma das massas das duas cargas
destinadas ao caminhão excede a sua
capacidade máxima em
a) 0,100 t
b) 0,550 t
c) 0,593 t
d) 1,450 t
e) 1,648 t
Questão 4
Assunto: Adição, subtração, multiplicação e
divisão de números naturais
Pouca gente sabe, mas uma volta completa no
planeta Terra, no perímetro do Equador,
corresponde a cerca de 40.000 km.
Observe, na imagem, a quilometragem
indicada no hodômetro de um veículo.
Considerando-se os dados do texto e a
imagem acima, quantos quilômetros esse
veículo ainda terá que percorrer para
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9794
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
completar o equivalente a três voltas no
perímetro do Equador da Terra?
a) 51.308
b) 38.602
c) 31.308
d) 28.692
e) 28.620
Questão 5
Assunto: Adição, subtração, multiplicação e
divisão de números naturais
Considere cinco punhados idênticos de feijões,
ou seja, com a mesma quantidade de feijão.
Tais punhados estão enfileirados e numerados
do primeiro ao quinto. Uma pessoa retira de
cada punhado, exceto do terceiro, três feijões
e os coloca no terceiro punhado. Em seguida,
essa pessoa retira do terceiro punhado tantos
feijões quantos restaram no segundo e os
coloca no primeiro punhado.
Após os procedimentos realizados por essa
pessoa, quantos feijões sobraram no terceiro
punhado?
a) 7
b) 15
c) 9
d) 12
e) 10
Questão 6
Assunto: Adição, subtração, multiplicação e
divisão de números naturais
A Figura a seguir mostra as flores de um
canteiro, e o número abaixo de cada flor
representa a quantidade, em mg, de pólen de
cada uma das flores.
Uma abelha visita esse canteiro para colher
pólen, mas consegue carregar, no máximo, 8
mg de pólen por viagem. Sabe-se ainda que,
em cada viagem, a abelha colhe o pólen de
uma única flor, que pode ser revisitada em
outras viagens.
Qual a quantidade máxima de pólen, em mg,
que essa abelha consegue colher em 24
viagens?
a) 180
b) 192
c) 184
d) 191
e) 190
Questão 7
Assunto: Adição, subtração, multiplicação e
divisão de números naturais
Observe a adição:
Sendo E e U dois algarismos não nulos e
distintos, a soma E + U é igual a
a) 13
b) 14
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9795
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
c) 15
d) 16
e) 17
Questão 8
Assunto: Adição, subtração, multiplicação e
divisão de números naturais
Na multiplicação por 2 mostrada abaixo, que
foi feita corretamente, cada letra representa
um algarismo; letras iguais representam o
mesmo algarismo e letras diferentes
representam algarismos diferentes. A palavra
GENTE representa um número de 5 algarismos
e IBGE representa um número de 4
algarismos. G e I, portanto, são diferentes de
zero.
I B G E
×2
--------------------
GENTE
O valor da expressão G+E+I+T⋅B−N é
a) 6
b) 8
c) 13
d) 18
e) 21
Questão 9
Assunto: Adição, subtração, multiplicação e
divisão de números naturais
Durante 185 dias úteis, 5 funcionários de uma
agência bancária participaram de um rodízio.
Nesse rodízio, a cada dia, exatamente 4 dos 5
funcionários foram designados para trabalhar
no setor X, e cada um dos 5 funcionários
trabalhou no setor X o mesmo número N de
dias úteis.
O resto de N na divisão por 5 é
a) 4
b) 3
c) 0
d) 1
e) 2
Questão 10
Assunto: Adição, subtração, multiplicação e
divisão de números naturais
Apenas três equipes participaram de uma
olimpíada estudantil: as equipes X, Y e Z.
A Tabela a seguir apresenta o número de
medalhas de ouro, de prata e de bronze
obtidas por essas equipes.
ouro prata bronze total
Equipe X3 4 2 9
Equipe Y 1 6 8 15
Equipe Z 0 9 5 14
De acordo com os critérios adotados nessa
competição, cada medalha dá a equipe uma
pontuação diferente: 4 pontos por cada
medalha de ouro, 3 pontos por cada medalha
de prata e 1 ponto por cada medalha de
bronze. A classificação final das equipes é dada
pela ordem decrescente da soma dos pontos
de cada equipe, e a equipe que somar mais
pontos ocupa o primeiro lugar.
Qual foi a diferença entre as pontuações
obtidas pelas equipes que ficaram
em segundo e em terceiro lugares?
a) 6
b) 5
c) 1
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9796
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
d) 2
e) 4
Questão 11
Assunto: Adição, subtração, multiplicação e
divisão de números naturais
Ariovaldo escolheu um número natural de 5
algarismos e retirou dele um de seus
algarismos, obtendo assim um número de 4
algarismos (por exemplo, se o número
escolhido é 56.787 e o algarismo retirado é o
8, então o número obtido é 5.677).
A soma do número inicial de 5 algarismos,
escolhido por Ariovaldo, com o de 4
algarismos, obtido retirando-se um dos
algarismos do número escolhido, é 81.937. O
algarismo retirado do número inicial de 5
algarismos foi o algarismo das
a) dezenas de milhares
b) unidades de milhares
c) centenas
d) dezenas
e) unidades
Questão 12
Assunto: Adição, subtração, multiplicação e
divisão de números naturais
Renato vai preencher cada quadrado da fila
abaixo com um número, de forma que a soma
de quaisquer três números consecutivos na fila
(vizinhos) sempre seja 2.014.
O número que Renato terá de colocar no lugar
de N é
a) 287
b) 745
c) 982
d) 1.012
e) 1.032
Questão 13
Assunto: Adição, subtração, multiplicação e
divisão de números naturais
Material Quantidade de Paletes
V 13
X 19
Y 21
Z 16
Uma das características importantes a ser
considerada num projeto de um armazém é a
acessibilidade aos produtos nele armazenados.
Suponha um armazém que dispõe de uma
ponte rolante e que estoca 4 tipos de materiais
que são empilhados em um máximo de três
estrados ou paletes. Um carregamento com os
materiais apresentados no quadro chegou a
esse armazém.
Qual é o número de pilhas necessárias para
armazenar o carregamento, considerando que
uma pilha não pode conter diferentes
materiais?
a) 21
b) 22
c) 23
d) 25
e) 69
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9797
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 14
Assunto: Adição, subtração, multiplicação e
divisão de números naturais
Arthur administra um pequeno negócio de
cópias. Atualmente ele possui apenas uma
máquina, que é capaz de fazer 50 cópias por
minuto, mas pretende comprar mais uma
máquina para que possa fazer um total de
7.500 cópias por hora.
Qual a capacidade da máquina que será
comprada, em cópias por minuto, para que
Arthur alcance o que pretende?
a) 175
b) 125
c) 100
d) 80
e) 75
Questão 15
Assunto: Adição, subtração, multiplicação e
divisão de números naturais
Um bazar de títulos de videogames troca três
jogos de ação por 4 jogos de tiro em primeira
pessoa ou 5 jogos de tiro em primeira pessoa
por 3 jogos de esportes. O mesmo bazar
vende um jogo de esporte por 40 reais.
Mantendo as proporções observadas nas
trocas para determinar o preço de cada tipo de
jogo, por quantos reais o bazar deveria vender
um jogo de ação?
a) 32
b) 28
c) 25
d) 24
e) 20
Questão 16
Assunto: Adição, subtração, multiplicação e
divisão de números naturais
Ao serem divididos por 5, dois números
inteiros, x e y, deixam restos iguais a 3 e 4,
respectivamente.
Qual é o resto da divisão de x . y por 5?
a) 4
b) 3
c) 2
d) 1
e) 0
Questão 17
Assunto: Adição, subtração, multiplicação e
divisão de números naturais
A produção mundial de alimentos vem
aumentando, mas o consumo per capita (por
pessoa) também. Há 20 anos, uma pessoa
consumia, em média, 33 kg de carne por ano.
Hoje, consome 42 kg.
A quantidade anual média de carne
consumida, há 20 anos, por 280 pessoas seria
suficiente, nos dias atuais, para suprir o
consumo anual de quantas pessoas?
a) 110
b) 156
c) 220
d) 234
e) 356
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9798
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 18
Assunto: Divisibilidade, números primos,
fatores primos, divisor e múltiplo comum
(MMC)
Com os elementos de A = {1, 2, 3, 4, 5, 6},
podemos montar numerais de 3 algarismos
distintos.
Quantos desses numerais representam
números múltiplos de 4?
a) 16
b) 20
c) 24
d) 28
e) 32
Questão 19
Assunto: Divisibilidade, números primos,
fatores primos, divisor e múltiplo comum
(MMC)
O produto de dois números naturais, x e y, é
igual a 765. Se x é um número primo maior
que 5, então a diferença y – x é igual a
a) 6
b) 17
c) 19
d) 28
e) 45
Questão 20
Assunto: Divisibilidade, números primos,
fatores primos, divisor e múltiplo comum
(MMC)
Cinco candidatos, Aldo, Baldo, Caldo, Delcio e
Elcio participam da última etapa de um
processo seletivo no qual o avaliador entrevista
cada um deles, atribuindo-lhes notas de 0 a
100. As notas atribuídas aos cinco candidatos
foram 71, 76, 80, 82 e 91, não
necessariamente nessa ordem.
Em uma planilha de cálculo, os nomes dos
candidatos estavam em ordem alfabética. Ao
inserir as notas de cada candidato ao lado de
seu nome, a planilha calculava
automaticamente a média das notas já
inseridas. O avaliador percebeu que a média,
após cada inserção, não se mantinha
constante, mas era sempre um número inteiro.
Nessas condições, o candidato que obteve a
maior nota foi
a) Aldo
b) Baldo
c) Caldo
d) Delcio
e) Elcio
Questão 21
Assunto: Divisibilidade, números primos,
fatores primos, divisor e múltiplo comum
(MMC)
Seja x um número natural tal que o mínimo
múltiplo comum entre x e 36 é 360, e o
máximo divisor comum entre x e 36 é 12.
Então, a soma dos algarismos do número x é
a) 3
b) 5
c) 9
d) 16
e) 21
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-9799
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 22
Assunto: Divisibilidade, números primos,
fatores primos, divisor e múltiplo comum
(MMC)
Em uma caixa há cartões. Em cada um dos
cartões está escrito um múltiplo de 4
compreendido entre 22 e 82. Não há dois
cartões com o mesmo número escrito, e a
quantidade de cartões é a maior possível. Se
forem retirados dessa caixa todos os cartões
nos quais está escrito um múltiplo de 6 menor
que 60, quantos cartões restarão na caixa?
a) 12
b) 11
c) 3
d) 5
e) 10
Questão 23
Assunto: Divisibilidade, números primos,
fatores primos, divisor e múltiplo comum
(MMC)
Seja x um númeronatural que, dividido por 6,
deixa resto 2. Então, (x + 1) é
necessariamente múltiplo de
a) 2
b) 3
c) 4
d) 5
e) 6
Questão 24
Assunto: Números inteiros (propriedades,
operações, módulo etc)
Considere o conjunto A cujos 5 elementos são
números inteiros, e o conjunto B formado por
todos os possíveis produtos de três elementos
de A.
Se B = {–30, –20, –12, 0, 30}, qual o valor da
soma de todos os elementos de A?
a) 5
b) 3
c) 12
d) 8
e) –12
Questão 25
Assunto: Números inteiros (propriedades,
operações, módulo etc)
Um menino escreveu todos os números
inteiros de 10 até 80. Depois trocou cada um
desses números pela soma de seus algarismos,
formando, de acordo com esse processo, uma
lista. Por exemplo, o número 23 foi trocado
pelo número 5, pois 2 + 3 = 5, e o número 68
foi trocado pelo número 14, pois 6 + 8 = 14.
Ao final do processo, quantas vezes o número
9 figurava na lista criada pelo menino?
a) 3
b) 5
c) 6
d) 7
e) 8
Questão 26
Assunto: Números inteiros (propriedades,
operações, módulo etc)
Em certo concurso, a pontuação de cada
candidato é obtida da seguinte forma: por
cada acerto o candidato recebe 3 pontos e, por
cada erro, perde 1 ponto. Os candidatos A e B
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97100
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
fizeram a mesma prova, porém A acertou 5
questões a mais do que B.
Qual foi a diferença entre as pontuações
obtidas pelos dois candidatos?
a) 15
b) 25
c) 5
d) 10
e) 20
Questão 27
Assunto: Números inteiros (propriedades,
operações, módulo etc)
Considere x um número inteiro tal que 0 < x <
2.
O valor de x + 3 é
a) 0
b) 2
c) 3
d) 4
e) 5
Questão 28
Assunto: Números inteiros (propriedades,
operações, módulo etc)
Multiplicando-se o maior número inteiro menor
do que 8 pelo menor número inteiro maior do
que − 8, o resultado encontrado será
a) − 72
b) − 63
c) − 56
d) − 49
e) − 42
Questão 29
Assunto: Frações e dízimas periódicas
Considere o produto 6·0,2.
Esse produto pode ser escrito como a fração
a) 6/5
b) 5/6
c) 1/2
d) 12/100
e) 100/12
Questão 30
Assunto: Frações e dízimas periódicas
Colocar uma barra sobre o período é uma das
formas de representar uma dízima periódica:
0,3¯ = 0,333... A expressão 0,4¯+ 0,16¯ é
igual a
a) 51/100
b) 511/1000
c) 11/18
d) 14/15
e) 5/9
Questão 31
Assunto: Frações e dízimas periódicas
Baldo usa uma calculadora que ignora todos os
valores após a primeira casa decimal no
resultado de cada operação realizada. Desse
modo, quando Baldo faz 4/3×6/5 , a
calculadora mostra o resultado de 1,3 x 1,2 =
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97101
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
1,5. Portanto, há um erro no valor final de 0,1,
pois 4/3×6/5=24/15=1,6.
Qual o erro da calculadora de Baldo para a
expressão ((10/3×10/3))×9
a) 0
b) 1,3
c) 1,5
d) 2,8
e) 3,3
Questão 32
Assunto: Frações e dízimas periódicas
Uma pesquisa feita em uma empresa
constatou que apenas 1/6 de seus funcionários
são mulheres, e que exatamente 1/4 delas são
casadas.
De acordo com a pesquisa, nessa empresa, as
mulheres que não são casadas correspondem
a que fração de todos os seus funcionários?
a) 1/3
b) 1/4
c) 1/8
d) 15/24
e) 23/24
Questão 33
Assunto: Frações e dízimas periódicas
Um grupo de jovens participou de uma
pesquisa sobre tabagismo. Cinco em cada 7
jovens entrevistados declararam- se não
fumantes. Dentre os jovens restantes, 3 em
cada 4 afirmaram que fumam diariamente. Se
84 jovens entrevistados afirmaram fumar todos
os dias, quantos jovens participaram da
pesquisa?
a) 112
b) 280
c) 294
d) 392
e) 420
Questão 34
Assunto: Frações e dízimas periódicas
A mãe de João decidiu ajudá-lo a pagar uma
das prestações referentes a uma compra
parcelada. Ela solicitou a antecipação do
pagamento e, por isso, a financeira lhe
concedeu um desconto de 6,25% sobre o valor
original daquela prestação. João pagou um
terço do novo valor, e sua mãe pagou o
restante.
A parte paga pela mãe de João corresponde a
que fração do valor original da prestação?
a) 29/48
b) 1/24
c) 15/16
d) 5/8
e) 4/25
Questão 35
Assunto: Frações e dízimas periódicas
Uma empresa substituiu seus monitores
antigos no formato fullscreen, cuja proporção
entre a largura e a altura da tela é de 4:3, por
monitores novos no formato widescreen, com
proporção entre largura e altura dada por
16:9. Os monitores novos e antigos têm a
mesma altura.
A razão entre a largura do modelo novo e a
largura domodelo antigo é dada por
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97102
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
a) 1:4
b) 3:4
c) 4:3
d) 4:9
e) 9:4
Questão 36
Assunto: Frações e dízimas periódicas
Os irmãos Ana e Luís ganharam de seus pais
quantias iguais. Ana guardou 1/6 do que
recebeu e gastou o restante, enquanto seu
irmão gastou 1/4 do valor recebido, mais R$
84,00. Se Ana e Luís gastaram a mesma
quantia, quantos reais Ana guardou?
a) 12,00
b) 24,00
c) 72,00
d) 132,00
e) 144,00
Questão 37
Assunto: Frações e dízimas periódicas
O Parque Estadual Serra do Conduru,
localizado no Sul da Bahia, ocupa uma área de
aproximadamente 9.270 hectares. Dessa área,
7 em cada 9 hectares são ocupados por
florestas.
Qual é, em hectares, a área desse
Parque NÃO ocupada por florestas?
a) 2.060
b) 2.640
c) 3.210
d) 5.100
e) 7.210
Questão 38
Assunto: Frações e dízimas periódicas
Numa pesquisa sobre acesso à internet, três
em cada quatro homens e duas em cada três
mulheres responderam que acessam a rede
diariamente. A razão entre o número de
mulheres e de homens participantes dessa
pesquisa é, nessa ordem, igual a 1/2.
Que fração do total de entrevistados
corresponde àqueles que responderam que
acessam a rede todos os dias?
a) 5/7
b) 8/11
c) 13/18
d) 17/24
e) 25/36
Questão 39
Assunto: Operações com números decimais
Em uma rede de distribuição de gás verificou-
se haver três vazamentos. As medidas
estimadas do volumes de gás perdidos em
cada vazamento, até os reparos, foram 1,398
dam3, 1,45 dam3 e 1,6 dam3.
Em decâmetros cúbicos (dam3), a medida do
maior vazamento excede a medida do menor
vazamento em
a) 0,520
b) 0,392
c) 0,390
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97103
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
d) 0,444
e) 0,202
Questão 40
Assunto: Operações com números decimais
Um veículo está transportando uma carga de
sabonetes.
A massa de cada sabonete mede 0,1 kg, e a
massa total da carga mede 120 kg.
Quantos sabonetescompõem a carga?
a) 12
b) 120
c) 1.200
d) 12.000
e) 120.000
Questão 41
Assunto: Operações com números decimais
João tinha R$ 3,20 e queria comprar dois pães
doces. Ao chegar à padaria, percebeu que seu
dinheiro não era suficiente: faltavam
exatamente R$ 2,40. João, então, utilizou o
dinheiro que tinha para comprar apenas um
pão doce.
Após pagar o pão doce, João ficou com
a) R$ 0,40
b) R$ 0,60
c) R$ 0,80
d) R$ 0,90
e) R$ 1,60
Questão 42
Assunto: Operações com números decimais
Cada vez que o caixa de um banco precisa de
moedas para troco, pede ao gerente um saco
de moedas. Em cada saco, o número de
moedas de R$ 0,10 é o triplo do número de
moedas de R$ 0,25; o número de moedas de
R$ 0,50 é a metade do número de moedas de
R$ 0,10.
Para cada R$ 75,00 em moedas de R$ 0,50 no
saco de moedas, quantos reais haverá em
moedas de R$ 0,25?
a) 20
b) 25
c) 30
d) 10
e) 15
Questão 43
Assunto: Operações com números decimais
Gilberto levava no bolso três moedas de R$
0,50, cinco de R$ 0,10 e quatro de R$ 0,25.
Gilberto retirou do bolso oito dessas moedas,
dando quatro para cada filho.
A diferença entre as quantias recebidas pelos
dois filhos de Gilberto é de, no máximo,
a) R$ 0,45
b) R$ 0,90
c) R$ 1,10
d) R$ 1,15
e) R$ 1,35
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97104
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 44
Assunto: Operações com números decimais
Ao decidir formar uma torcida organizada, um
grupo de pessoas encomendou camisetas com
logotipo. A confecção que realizará o serviço
cobrou R$ 12,00 por peça e mais R$ 40,00
pela impressão dos logotipos.
Se o preço final de cada camiseta é R$ 13,60,
quantas peças foram encomendadas?
a) 16
b) 18
c) 20
d) 23
e) 25
Questão 45
Assunto: Operações com números decimais
Ao contrário de 2009 e 2010, o preço do
açúcar chegou a dezembro de 2011 em valores
mais baixos que os observados em janeiro do
mesmo ano. A saca de 50 kg de açúcar cristal
terminou o ano cotada a R$ 63,57, o que
significa uma redução de aproximadamente
16,6% sobre os R$ 76,27 de janeiro.
Disponível em: <http://www.epe.gov.br>. Acesso em: 29 maio
2012. Adaptado.
De acordo com as informações acima, de
janeiro a dezembro de 2011, o preço do
quilograma de açúcar cristal foi reduzido em,
aproximadamente,
a) R$ 0,12
b) R$ 0,16
c) R$ 0,20
d) R$ 0,25
e) R$ 0,29
Questão 46
Assunto: Radiciação e potenciação
O número natural (2103 + 2102 + 2101 - 2100) é
divisível por
a) 6
b) 10
c) 14
d) 22
e) 26
Questão 47
Assunto: Radiciação e potenciação
Quantos são os números inteiros maiores
que e menores que ?
a) 0
b) 1
c) 2
d) 3
e) 4
Questão 48
Assunto: Radiciação e potenciação
Uma empresa gera números que são
chamados de protocolos de atendimento a
clientes. Cada protocolo é formado por uma
sequência de sete algarismos, sendo o último,
que aparece separado dos seis primeiros por
um hífen, chamado de dígito controlador. Se a
sequência dos seis primeiros algarismos forma
o número n, então o dígito controlador é o
algarismo das unidades de n3 – n2.
Assim, no protocolo 897687-d, o valor do
dígito controlador d é o algarismo das
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97105
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
unidades do número natural que é resultado
da expressão 8976873 - 8976872, ou seja, d é
igual a
a) 0
b) 1
c) 4
d) 3
e) 2
Questão 49
Assunto: Números reais (propriedades e
operações; intervalos)
Um professor de Matemática escreveu no
quadro a seguinte expressão:
5 + 7 = 12
Tal como foi apresentada, essa expressão é
um exemplo direto de que é FALSA a
afirmação:
a) A soma de dois números é maior ou igual
ao dobro do menor número.
b) A soma de dois números negativos é um
número positivo.
c) A soma de dois números ímpares é par.
d) A soma de dois números ímpares é ímpar.
e) A soma de dois números menores que dez
pode ser maior que vinte.
Questão 50
Assunto: Números reais (propriedades e
operações; intervalos)
Seja y um número real compreendido
entre 1/4 e 1/2 . Qualquer que seja o valor de
y, ele pertencerá ao conjunto
a) {x∈Z|x≤1}{x∈Z|x≤1}
b) {x∈Q|1/4<x<1/2}{x∈Q|1/4<x<1/2}
c) {x∈R|−1<x≤2}{x∈R|−1<x≤2}
d) {x∈R|x<1/2}{x∈R|x<1/2}
e) {x∈R|x≥1/2}{x∈R|x≥1/2}
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97106
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
N° GAB MATEMÁTICA
01 c
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Segurança Júnior/2017
02 b CESGRANRIO - Ag PT (IBGE)/IBGE/2014
03 b
CESGRANRIO - Aju
(LIQUIGÁS)/LIQUIGÁS/Motorista Granel I/2018
04 d
CESGRANRIO - Moto
(LIQUIGÁS)/LIQUIGÁS/Caminhão Granel I/2018
05 b CESGRANRIO - Ag PM (IBGE)/IBGE/2016
06 d CESGRANRIO - Ag PM (IBGE)/IBGE/2016
07 d CESGRANRIO - Esc BB/BB/"Sem Área"/2015
08 a CESGRANRIO - Ag PT (IBGE)/IBGE/2014
09 b
CESGRANRIO - Esc BB/BB/Tecnologia da
Informação/2013
10 e
CESGRANRIO - Esc BB/BB/Tecnologia da
Informação/2013
11 e CESGRANRIO - Tec IGE (IBGE)/IBGE/2013
12 a CESGRANRIO - Tec IGE (IBGE)/IBGE/2013
13 d
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Administração e Controle
Júnior/2012
14 e
CESGRANRIO - Tec (BR)/BR/Administração e
Controle Júnior/2012
15 a
CESGRANRIO - Tec (BR)/BR/Administração e
Controle Júnior/2012
16 c
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Contabilidade Júnior/2012
17 c
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Estabilidade Júnior/2012
18 e
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Administração e Controle
Júnior/2018
19 d
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Suprimento de Bens e
Serviços Júnior/Administração/2014
20 c CESGRANRIO - Ag PT (IBGE)/IBGE/2014
21 a CESGRANRIO - Tec Adm (BNDES)/BNDES/2013
22 a
CESGRANRIO - Esc BB/BB/Tecnologia da
Informação/2013
23 b
CESGRANRIO - Tec (PETRO)/PETROBRAS/Químico
Petróleo Júnior/2012
24 d CESGRANRIO - Esc BB/BB/"Sem Área"/2018
25 d
CESGRANRIO - Ass
(LIQUIGÁS)/LIQUIGÁS/Administrativo I/2018
* *
N° GAB MATEMÁTICA
26 e CESGRANRIO - Esc BB/BB/"Sem Área"/2015
27 d
CESGRANRIO - Tec
(LIQUIGÁS)/LIQUIGÁS/Químico I/2014
28 d CESGRANRIO - Tec Adm (BNDES)/BNDES/2013
29 a
CESGRANRIO - Aju
(LIQUIGÁS)/LIQUIGÁS/Motorista Granel I/2018
30 c
CESGRANRIO - Ass
(LIQUIGÁS)/LIQUIGÁS/Administrativo I/2018
31 d
CESGRANRIO - Ass
(LIQUIGÁS)/LIQUIGÁS/Administrativo I/2018
32 c
CESGRANRIO - Ass
(LIQUIGÁS)/LIQUIGÁS/Administrativo I/2018
33 d CESGRANRIO - TA (ANP)/ANP/2016
34 d CESGRANRIO - Esc BB/BB/"Sem Área"/2015
35 c
CESGRANRIO - Tec
(BR)/BR/Administração/Controle Júnior/2015
36 b
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Suprimento de Bens e
Serviços Júnior/Administração/2014
37 a CESGRANRIO - Tec Adm (BNDES)/BNDES/2013
38 c CESGRANRIO - Esc BB/BB/"Sem Área"/2012
39 e
CESGRANRIO- Aju
(LIQUIGÁS)/LIQUIGÁS/Motorista Granel I/2018
40 c
CESGRANRIO - Aju
(LIQUIGÁS)/LIQUIGÁS/Motorista Granel I/2018
41 a
CESGRANRIO - Moto
(LIQUIGÁS)/LIQUIGÁS/Caminhão Granel I/2018
42 b CESGRANRIO - Esc BB/BB/"Sem Área"/2015
43 e CESGRANRIO - Tec Adm (BNDES)/BNDES/2013
44 e
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Estabilidade Júnior/2012
45 d
CESGRANRIO - Ass Adm (EPE)/EPE/Apoio
Administrativo/2012
46 e CESGRANRIO - Esc BB/BB/"Sem Área"/2015
47 c
CESGRANRIO - Ass (FINEP)/FINEP/Apoio
Administrativo/2014
48 c
CESGRANRIO - Esc BB/BB/Tecnologia da
Informação/2013
49 d
CESGRANRIO - Ass
(LIQUIGÁS)/LIQUIGÁS/Logística/2018
50 c
CESGRANRIO - Ass (FINEP)/FINEP/Apoio
Administrativo/2014
* *
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97107
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 51
Assunto: Números reais (propriedades e
operações; intervalos)
Sobre uma grandeza x, um aluno faz a
afirmação ―x + 2 = 4 ou x > 2‖. Seu professor
diz que essa afirmação é falsa. O aluno, então,
reformula, corretamente, enunciando uma
negação da afirmação que fizera.
Uma negação de ―x + 2 = 4 ou x > 2‖ é
a) x < 2
b) x + 2 ≠ 4
c) x + 2 = 4 e x > 2
d) x + 2 ≠ 4 ou x < 2
e) x + 2 ≠ 4 ou x < 2
Questão 52
Assunto: Análise combinatória (princípio
fundamental da contagem, arranjos,
combinações, permutações)
Num conjunto há 5 elementos positivos e 5
elementos negativos. Escolhem-se 5 números
desse conjunto e se efetua a multiplicação
desses 5 números escolhidos.
Em quantos casos tal multiplicação terá
resultado negativo?
a) 25
b) 120
c) 125
d) 126
e) 128
Questão 53
Assunto: Análise combinatória (princípio
fundamental da contagem, arranjos,
combinações, permutações)
Uma professora do jardim da infância entregou
um mesmo desenho para cada um de seus 10
alunos e distribuiu vários lápis de cor entre
eles. A tarefa era pintar o desenho, que
possuía diversas regiões. Cada uma dessas
regiões apresentava a cor com a qual deveria
ser pintada. Todos os alunos receberam a
mesma quantidade de lápis de cor, mas
nenhum aluno recebeu todas as cores
necessárias para pintar todo o desenho e,
portanto, eles precisavam se agrupar para
conseguir completar a tarefa. Formando
qualquer grupo de 6 alunos, uma região não
poderia ser pintada, mas qualquer grupo de 7
alunos conseguiria completar a tarefa. Todas
as regiões deveriam receber cores diferentes, e
a professora distribuiu o menor número de
lápis de cor para cada aluno.
Quantos lápis de cor cada aluno recebeu?
a) 42
b) 63
c) 210
d) 105
e) 84
Questão 54
Assunto: Análise combinatória (princípio
fundamental da contagem, arranjos,
combinações, permutações)
Um professor elaborou 10 questões diferentes
para uma prova, das quais 2 são fáceis, 5 são
de dificuldade média, e 3 são difíceis. No
momento, o professor está na fase de
montagem da prova. A montagem da prova é
a ordem segundo a qual as 10 questões serão
apresentadas. O professor estabeleceu o
seguinte critério de distribuição das
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97108
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
dificuldades das questões, para ser seguido na
montagem da prova:
De quantas formas diferentes o professor pode
montar a prova seguindo o critério
estabelecido?
a) 2520
b) 128
c) 6
d) 1440
e) 252
Questão 55
Assunto: Análise combinatória (princípio
fundamental da contagem, arranjos,
combinações, permutações)
Uma loja de departamento colocou 11 calças
distintas em uma prateleira de promoção,
sendo 3 calças de R$ 50,00, 4 calças de R$
100,00 e 4 calças de R$ 200,00. Um freguês
vai comprar exatamente três dessas calças
gastando, no máximo, R$ 400,00.
De quantos modos diferentes ele pode efetuar
a compra?
a) 46
b) 96
c) 110
d) 119
e) 165
Questão 56
Assunto: Análise combinatória (princípio
fundamental da contagem, arranjos,
combinações, permutações)
Dois grupos de funcionários de uma empresa
vão participar de um processo de triagem. O
grupo 1 é formado por 15 homens e 10
mulheres, e o Grupo 2 é formado
exclusivamente por 12 mulheres. A
coordenação decidiu que uma equipe de 4
pessoas deverá ser formada, sendo ela
composta por um homem e uma mulher do
grupo 1 e por duas mulheres do grupo 2. Um
computador listará todas as possíveis equipes
que poderão ser formadas, em acordo com as
exigências da coordenação.
O número de equipes presentes na lista gerada
pelo computador será
a) 66.045
b) 19.800
c) 9.900
d) 282
e) 216
Questão 57
Assunto: Análise combinatória (princípio
fundamental da contagem, arranjos,
combinações, permutações)
O algoritmo de ordenação por flutuação é um
método para colocar em ordem crescente uma
lista de números dada. O algoritmo consiste
em comparar o primeiro elemento da lista com
o segundo. Em seguida, o menor dos dois é
comparado com o terceiro. O menor dessa
última comparação é comparado com o quarto,
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97109
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
e assim sucessivamente até que todos os
elementos da lista sejam usados. Dessa forma,
o menor elemento da lista é obtido, retirado da
lista original e posto como primeiro elemento
da ordenação. O segundo elemento da
ordenação é obtido de forma análoga, usando
a lista atualizada, sem o primeiro da
ordenação. O processo se repete até que a
ordenação se complete.
Quantas comparações, pelo algoritmo de
ordenação por flutuação, são necessárias para
ordenar uma lista com 5 números?
a) 10
b) 6
c) 9
d) 7
e) 8
Questão 58
Assunto: Análise combinatória (princípio
fundamental da contagem, arranjos,
combinações, permutações)
Um torneio de futebol foi disputado por apenas
cinco times, de modo que cada time jogou com
cada um dos outros uma única vez. Nesse
torneio, cada vitória deu ao vencedor 3 pontos,
cada empate deu 1 ponto para cada um dos
dois times, e cada time derrotado não ganhou
nem perdeu ponto. A Tabela abaixo mostra a
pontuação de cada time, após o término do
torneio.
Time Pontuação Final
Urubulense 7
Colorista 6
Sporteará 5
Furacaço 4
Raposão 3
Quantos empates houve nesse torneio?
a) 3
b) 4
c) 5
d) 6
e) 7
Questão 59
Assunto: Análise combinatória (princípio
fundamental da contagem, arranjos,
combinações, permutações)
Mauro nasceu em 26/05/1984. Suponha que,
ao criar uma senha de quatro dígitos, distintos
ou não, Mauro resolva utilizar somente
algarismos que compõem o dia e o ano de seu
nascimento: 2, 6, 1, 9, 8 e 4.
Quantas são as senhas possíveis nas quais o
primeiro e o último dígitos são pares?
a) 64
b) 144
c) 256
d) 576
e) 864
Questão 60
Assunto: Análise combinatória (princípio
fundamental da contagem, arranjos,
combinações, permutações)
Uma empresa de propaganda pretende criar
panfletos coloridos para divulgar certo produto.
O papel pode ser laranja, azul, preto, amarelo,
vermelho ou roxo, enquanto o texto é escrito
no panfleto em preto, vermelhoou branco.
De quantos modos distintos é possível escolher
uma cor para o fundo e uma cor para o texto
se, por uma questão de contraste, as cores do
fundo e do texto não podem ser iguais?
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97110
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
a) 13
b) 14
c) 16
d) 17
e) 18
Questão 61
Assunto: Análise combinatória (princípio
fundamental da contagem, arranjos,
combinações, permutações)
Para cadastrar-se em um site de compras
coletivas, Guilherme precisará criar uma senha
numérica com, no mínimo, 4 e, no máximo, 6
dígitos. Ele utilizará apenas algarismos de sua
data de nascimento: 26/03/1980.
Quantas senhas diferentes Guilherme poderá
criar se optar por uma senha sem algarismos
repetidos?
a) 5.040
b) 8.400
c) 16.870
d) 20.160
e) 28.560
Questão 62
Assunto: Análise combinatória (princípio
fundamental da contagem, arranjos,
combinações, permutações)
Uma pessoa dispõe de balas de hortelã, de
caramelo e de coco e pretende ―montar‖
saquinhos com 13 balas cada, de modo que,
em cada saquinho, haja, no mínimo, três balas
de cada sabor. Um saquinho diferencia-se de
outro pela quantidade de balas de cada sabor.
Por exemplo, seis balas de hortelã, quatro de
coco e três de caramelo compõem um
saquinho diferente de outro que contenha seis
balas de coco, quatro de hortelã e três de
caramelo.
Sendo assim, quantos saquinhos diferentes
podem ser ―montados‖?
a) 4
b) 6
c) 9
d) 12
e) 15
Questão 63
Assunto: Análise combinatória (princípio
fundamental da contagem, arranjos,
combinações, permutações)
Marcelo vai passar quatro dias na praia e leva
em sua bagagem sete camisetas (três
camisetas brancas diferentes, uma preta, uma
amarela, uma vermelha e uma laranja) e
quatro bermudas (uma preta, uma cinza, uma
branca e uma azul).
De quantos modos distintos Marcelo poderá
escolher uma camiseta e uma bermuda para
vestir-se, de modo que as peças escolhidas
sejam de cores diferentes?
a) 14
b) 17
c) 24
d) 26
e) 28
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97111
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 64
Assunto: Análise combinatória (princípio
fundamental da contagem, arranjos,
combinações, permutações)
Se todos os anagramas da palavra BRASIL
forem dispostos em ordem alfabética, o
primeiro anagrama cuja última letra é ―B‖
ocupará que posição?
a) 5a
b) 25a
c) 34a
d) 49a
e) 121a
Questão 65
Assunto: Análise combinatória (princípio
fundamental da contagem, arranjos,
combinações, permutações)
João deseja abrir um cadeado cujo segredo é
uma sequência de quatro algarismos. Ele sabe
que todos os algarismos da sequência são
menores que 7 e que o primeiro algarismo é
igual ao segundo, porém, diferente dos
demais.
Se João testar todas as sequências que
satisfazem essas condições, sem qualquer
repetição, ele abrirá o cadeado em, no
máximo, quantas tentativas?
a) 150
b) 210
c) 252
d) 576
e) 1.470
Questão 66
Assunto: Análise combinatória (princípio
fundamental da contagem, arranjos,
combinações, permutações)
Certa empresa identifica as diferentes peças
que produz, utilizando códigos numéricos
compostos de 5 dígitos, mantendo, sempre, o
seguinte padrão: os dois últimos dígitos de
cada código são iguais entre si, mas diferentes
dos demais. Por exemplo, o código ―03344‖ é
válido, já o código ―34544‖, não.
Quantos códigos diferentes podem ser criados?
a) 3.312
b) 4.608
c) 5.040
d) 7.000
e) 7.290
Questão 67
Assunto: Análise combinatória (princípio
fundamental da contagem, arranjos,
combinações, permutações)
Dois adultos e seis crianças aguardavam um
táxi. Quando o táxi chegou, o motorista
informou-lhes que o carro só pode transportar
5 pessoas e, portanto, só poderiam viajar ele,
o motorista, e mais 4 passageiros. Os adultos
decidiram que um deles embarcaria no táxi,
levando consigo o maior número possível de
crianças, e que o outro ficaria com as crianças
restantes, aguardando outro táxi.
De quantos modos distintos é possível escolher
os passageiros que embarcarão nesse táxi?
a) 12
b) 15
c) 20
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97112
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
d) 40
e) 70
Questão 68
Assunto: Análise combinatória (princípio
fundamental da contagem, arranjos,
combinações, permutações)
A vitrinista de uma loja de roupas femininas
dispõe de 9 vestidos de modelos diferentes e
deverá escolher 3 para serem exibidos na
vitrine.
Quantas são as escolhas possíveis?
a) 84
b) 96
c) 168
d) 243
e) 504
Questão 69
Assunto: Análise combinatória (princípio
fundamental da contagem, arranjos,
combinações, permutações)
Para montar a senha de segurança de sua
conta bancária, que deve ser formada por seis
dígitos, João escolheu 1, 2, 5, 5, 7 e 8. Os
dígitos escolhidos não serão dispostos na
ordem apresentada, pois, para João, é
importante que a senha seja um número maior
do que 500.000.
Com os dígitos escolhidos por João, quantas
senhas maiores do que 500.000 podem ser
formadas?
a) 720
b) 600
c) 360
d) 240
e) 120
Questão 70
Assunto: Análise combinatória (princípio
fundamental da contagem, arranjos,
combinações, permutações)
Uma empresa de cadeados resolveu construir
cadeados com segredos de seis símbolos. Os
três primeiros símbolos retirados de um
conjunto A de 10 letras, e os dois últimos
símbolos retirados do conjunto B = {1, 2, 3, 4,
5}. O quarto símbolo pode ser uma letra do
conjunto A ou um número do conjunto B. Há
um sistema mecânico que não permite
repetição de números.
Quantas senhas diferentes podem ser
construídas?
a) 2.400
b) 5.005
c) 103.680
d) 260.000
e) 600.000
Questão 71
Assunto: Porcentagem
Para que seja possível administrar as vendas
de uma empresa, é necessário estimar a
demanda do mercado. Considere que uma
cidade tenha 300.000 habitantes que
consomem dois sabonetes por mês e que a
participação da empresa X no mercado de
sabonetes é de 30%. A demanda mensal por
sabonetes da empresa X é de
a) 60.000 unidades
b) 90.000 unidades
c) 120.000 unidades
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97113
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
d) 180.000 unidades
e) 240.000 unidades
Questão 72
Assunto: Porcentagem
Um artesão vende suas pulseiras com 60% de
lucro sobre o seu custo. Normalmente, seus
fregueses pedem descontos na hora da
compra.
Qual o maior percentual de desconto sobre o
preço de venda que ele pode oferecer para
não ter prejuízo?
a) 22,5%
b) 37,5%
c) 10%
d) 40%
e) 60%
Questão 73
Assunto: Porcentagem
O Gráfico a seguir mostra a evolução do
volume movimentado em terminais e
oleodutos pelaTranspetro, em milhões de
metros cúbitos, de 2012 a 2016.
Relatório de Administração do Ano 2016. Transpetro. Disponível
em: <http://www.transpetro.com.br/pt_br/acesso-a-
informacao/institucional/relatorios.html>.
Acesso em: mar. 2018.
A maior variação percentual anual absoluta,
ocorrida de um ano para o seguinte, do
volume movimentado em terminais e
oleodutos no período apresentado, foi de
aproximadamente
a) 2,6%
b) 3,8%
c) 5,5%
d) 6,6%
e) 7,4%
Questão 74
Assunto: Porcentagem
O dono de uma loja deu um desconto de 20%
sobre o preço de venda (preço original) de um
de seus produtos e, ainda assim, obteve um
lucro de 4% sobre o preço de custo desse
produto.
Se vendesse pelo preço original, qual seria o
lucro obtido sobre o preço de custo?
a) 40%
b) 30%
c) 10%
d) 20%
e) 25%
Questão 75
Assunto: Porcentagem
Uma empresa cria uma campanha que consiste
no sorteio de cupons premiados. O sorteio será
realizado em duas etapas. Primeiramente, o
cliente lança uma moeda honesta:
se o resultado for ―cara‖, o cliente seleciona,
aleatoriamente, um cupom da urna 1;
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97114
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
se o resultado for ―coroa‖, o cliente seleciona,
aleatoriamente, um cupom da urna 2.
Sabe-se que 30% dos cupons da urna 1 são
premiados, e que 40% de todos os cupons são
premiados.
Antes de começar o sorteio, a proporção de
cupons premiados na urna 2 é de
a) 50%
b) 25%
c) 5%
d) 10%
e) 15%
Questão 76
Assunto: Porcentagem
Após receber um desconto de 20%, o preço de
um produto passou a ser igual a R$ 72,00.
Se o desconto dado tivesse sido de 30%,
então o preço do produto passaria a ser igual a
a) R$ 48,00
b) R$ 62,00
c) R$ 108,00
d) R$ 82,00
e) R$ 63,00
Questão 77
Assunto: Porcentagem
Um jogador de futebol profissional treina
cobrança de pênaltis após o treino coletivo,
visando a alcançar uma meta de 96% de
aproveitamento. Ele cobrou 20 penalidades
com aproveitamento de 95%.
Quantos pênaltis deve cobrar ainda, no
mínimo, para que atinja exatamente a meta
desejada?
a) 1
b) 3
c) 4
d) 5
e) 10
Questão 78
Assunto: Porcentagem
Num curso de utilização de um software que
edita imagens, todos os alunos abrem uma
mesma imagem, e o professor pede que
apliquem uma ampliação de 25% como
primeiro exercício. Como o resultado não foi o
satisfatório, o professor pediu que todos
aplicassem uma redução de 20% na imagem
ampliada. Como Aldo tinha certa experiência
com o programa, desfez a ampliação de 25%.
Para obter o mesmo resultado que os demais
alunos, após desfazer a ampliação, Aldo deve
a) fazer uma ampliação de 5%
b) fazer uma redução de 5%
c) fazer uma ampliação de 10%
d) fazer uma redução de 10%
e) deixar a imagem como está.
Questão 79
Assunto: Porcentagem
Num laboratório de testes de combustível, uma
mistura de X gramas a y% de álcool significa
que y% dos X gramas da mistura é de álcool, e
o restante, de gasolina. Um engenheiro está
trabalhando com 3 misturas:
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97115
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
• Mistura A: 40g a 10% de álcool
• Mistura B: 50g a 20% de álcool
• Mistura C: 50g a 30% de álcool
Usando porções dessas misturas, ele elabora
uma mistura de 60g a 25% de álcool, e o
restante das misturas ele junta em um frasco.
A taxa percentual de álcool da mistura formada
no frasco onde ele despejou os restos é de
a) 16,5%
b) 17,5%
c) 18%
d) 22,5%
e) 25%
Questão 80
Assunto: Porcentagem
A Tabela abaixo apresenta o relatório
sintetizado, com a discriminação das despesas
de uma empresa nos anos de 2012 e 2013.
Considere que a última linha da Tabela
expressa o total das despesas, em cada ano.
Despesas por natureza 2013 2012
Despesas com pessoal (346.154) (314.742)
Depreciação e amortização (69.592) (63.000)
Serviços de fretes, aluguéis (267.996) (240.825)
Materiais aplicados no
engarrafamento e requalificação
(21.245) (23.473)
Publicidade e propaganda (13.675) (10.112)
Outros (76.986) (78.318)
(795.648) (730.470)
Disponível em:
<https://www.liquigas.com.br/wps/wcm/connect/db53a880443c0a4d8
711ef8691413afc/orcamento_investimento.pdf?MOD=AJPERES&CACH
EID=ROOTWORKSPACE-db53a880443c0a4d8711ef8691413afc
kpHXXCY>. Acesso em: 8 abr. 2018. Adaptado.
O valor mais próximo do aumento percentual
das despesas totais em 2013, na comparação
com 2012, é igual a
a) 8,9%
b) 9,1%
c) 9,3%
d) 9,5%
e) 9,7%
Questão 81
Assunto: Porcentagem
Os estagiários de uma empresa combinaram
fazer uma salada de frutas para seu lanche. A
salada de frutas foi feita apenas com frutas de
que todos gostam, o que levou à decisão de
usarem apenas maçã, laranja e banana. No dia
combinado, 20% dos estagiários levaram
maçãs, 35% dos estagiários levaram laranjas e
os 9 estagiários restantes levaram bananas.
Se todos levaram apenas um tipo de fruta,
quantos estagiários há na empresa?
a) 18
b) 20
c) 35
d) 40
e) 45
Questão 82
Assunto: Porcentagem
Uma determinada empresa vem adotando uma
política de reajustes de preços, de modo que o
preço de seu principal produto sofreu um
reajuste de 10% em Set/2017. Em outubro do
mesmo ano, o produto sofreu novo reajuste,
agora de 5% sobre o valor do mês anterior e,
um mês depois, um terceiro reajuste de 6% foi
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97116
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
aplicado sobre o preço de outubro, de modo
que os três reajustes foram sucessivos.
O valor mais próximo da variação percentual
acumulada nesse período, considerando
exatamente os três reajustes apresentados, é
a) 21,0%
b) 21,5%
c) 22,4%
d) 22,8%
e) 23,2%
Questão 83
Assunto: Porcentagem
Um bar reajustou o preço de vários produtos.
Pode-se ver, nas Figuras a seguir, como variou
o preço do cafezinho, nos meses de maio e
junho deste ano.
O reajuste no preço do cafezinho, mostrado
acima, corresponde a um aumento de:
a) 0,50%
b) 20%
c) 25%
d) 30%
e) 50%
Questão 84
Assunto: Porcentagem
Em uma malha quadriculada composta por 100
quadradinhos idênticos, foi desenhada e
pintada uma figura de 5 lados, como se pode
ver a seguir.
Assim, verifica-se que a região pintada
corresponde a x% de toda a malha.
O valor de x é
a) 34
b) 35
c) 36
d) 37
e) 38
Questão 85
Assunto: Porcentagem
Um feirante sabe que consegue vender seus
produtos a preços mais caros, conforme o
horário da feira, mas, na última hora, ele deve
vender suas frutas pela metade do preço
inicial. Inicialmente, ele vende o lote de uma
fruta a R$ 10,00. Passado algum tempo,
aumenta em 25% o preço das frutas. Passado
mais algum tempo, o novo preço sofreu um
aumento de 20%. Na última hora da feira, o
lote da fruta custa R$ 5,00.
O desconto, em reais, que ele deve dar sobre
o preço mais alto para atingir o preço daúltima hora da feira deve ser de
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97117
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
a) 12,50
b) 10,00
c) 7,50
d) 5,00
e) 2,50
Questão 86
Assunto: Porcentagem
―No 45º Leilão de Biodiesel da ANP foram
arrematados 657,8 milhões de litros de
biodiesel, sendo 100,0% deste volume
oriundos de produtores detentores do selo
Combustível Social. O preço médio foi de R$
2,40 por litro (...).‖
Disponível em:
<http://www.anp.gov.br/?pg=77916&m=&t1=&t2=&t3=&t4=&ar
=&ps=&1446491789898>. Acesso em: 02 nov. 2015. Adaptado.
Um comprador que adquiriu, no 45º Leilão de
Biodiesel da ANP, 10% da quantidade total de
litros arrematados nesse leilão, pagando o
preço médio por litro, gastou, em reais,
a) menos de 100 milhões
b) entre 100 milhões e 400 milhões
c) entre 400 milhões e 700 milhões
d) entre 700 milhões e um bilhão
e) mais de um bilhão
Questão 87
Assunto: Porcentagem
Por 3 anos seguidos, a taxa de inflação de
certo país foi de 5% ao ano. Nesse período, o
aluguel de um imóvel foi reajustado,
anualmente, pelo índice de inflação, o que fez
com que tal aluguel passasse a ser de p
unidades monetárias.
Para saber o valor do mesmo aluguel antes
desses reajustes, basta dividir p por
a) 4,50
b) 1,50
c) 1,05
d) (1,50)3
e) (1,05)3
Questão 88
Assunto: Porcentagem
Um grande tanque estava vazio e foi cheio de
óleo após receber todo o conteúdo de 12
tanques menores, idênticos e cheios.
Se a capacidade de cada tanque menor fosse
50% maior do que a sua capacidade original, o
grande tanque seria cheio, sem excessos, após
receber todo o conteúdo de
a) 4 tanques menores
b) 6 tanques menores
c) 7 tanques menores
d) 8 tanques menores
e) 10 tanques menores
Questão 89
Assunto: Porcentagem
Amanda e Belinha são amigas e possuem
assinaturas de TV a cabo de empresas
diferentes. A empresa de TV a cabo de
Amanda dá descontos de 25% na compra dos
ingressos de cinema de um shopping. A
empresa de TV a cabo de Belinha dá desconto
de 30% na compra de ingressos do mesmo
cinema. O preço do ingresso de cinema, sem
desconto, é de R$ 20,00. Em um passeio em
família, Amanda compra 4 ingressos, e Belinha
compra 5 ingressos de cinema no shopping,
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97118
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
ambas utilizando-se dos descontos oferecidos
por suas respectivas empresas de TV a cabo.
Quantos reais Belinha gasta a mais que
Amanda na compra dos ingressos?
a) 10
b) 15
c) 20
d) 25
e) 30
Questão 90
Assunto: Porcentagem
Joana foi ao mercado e comprou uma
embalagem de amaciante e 2,5 kg de batata.
Por tudo, pagou R$ 18,00. Se Joana tivesse
comprado, além da embalagem de amaciante,
apenas 1,25 kg de batatas, ela teria pago um
total de R$14,25. O mercado em que Joana fez
as compras está fazendo uma promoção, na
qual é dado um desconto de 20% no preço do
quilograma de batatas, para o cliente que
comprar mais do que 3 kg. Esse desconto
incide sobre o preço das batatas, mas não
sobre o preço de outros produtos.
Se a compra de Joana tivesse sido a
embalagem de amaciante e 4 kg de batatas,
então o total a ser pago seria de
a) R$ 20,10
b) R$ 36,60
c) R$ 19,25
d) R$ 12,00
e) R$ 22,40
Questão 91
Assunto: Porcentagem
Durante o período de três meses, o preço de
um determinado produto sofreu três aumentos
consecutivos de 8%, dados em regime
composto. Em um evento comercial, foi dado
um desconto único sobre o preço obtido ao
final dos três aumentos, de modo que o
mesmo fosse reduzido ao preço que o produto
possuía antes dos três aumentos.
O desconto único dado sobre o preço do
produto foi mais próximo de
a) 24%
b) 76%
c) 20%
d) 14%
e) 51%
Questão 92
Assunto: Porcentagem
Uma montadora necessita de 5 peças idênticas
para efetuar o reparo de suas máquinas. As
peças são vendidas em duas lojas. A primeira
loja tem apenas 3 peças disponíveis no
momento e oferece um desconto de 20%
sobre o preço sugerido pelo fabricante. A
segunda loja tem apenas 2 peças disponíveis e
oferece um desconto de 15% sobre o preço
sugerido pelo fabricante.
Comprando-se todas as peças disponíveis
nessas duas lojas, o preço pago, em relação ao
preço sugerido pelo fabricante para as 5 peças,
corresponderá a um desconto de
a) 25%
b) 22%
c) 20%
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97119
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
d) 18%
e) 15%
Questão 93
Assunto: Porcentagem
Após as lâmpadas eletrônicas que permitem
economia de 80% de energia quando
comparadas às lâmpadas incandescentes,
agora fala-se em lâmpadas LED que permitem
economia de 85% de energia em relação às
lâmpadas incandescentes.
A economia de uma lâmpada LED, em relação
às eletrônicas, é de
a) 5%
b) 6,25%
c) 12,5%
d) 20%
e) 25%
Questão 94
Assunto: Porcentagem
A promoção ―na compra de duas embalagens
de biscoito, uma delas tem 75% de desconto‖
é equivalente a ―leve x embalagens e pague y
embalagens de biscoito‖. O menor valor
possível para a soma x + y, sendo x e y
números inteiros distintos é
a) 7
b) 10
c) 13
d) 14
e) 18
Questão 95
Assunto: Porcentagem
Ao receber seu 13o salário, Fábio depositou
70% do que recebeu na poupança e gastou o
restante comprando, à vista, um forno de
micro-ondas e um fogão. A razão entre os
preços do micro-ondas e do fogão, nessa
ordem, é 2/3 .
A que percentual do 13o salário de Fábio
corresponde o preço do fogão?
a) 12%
b) 18%
c) 20%
d) 28%
e) 42%
Questão 96
Assunto: Porcentagem
Durante uma semana, todos os produtos de
uma loja de departamentos foram remarcados
com 30% de desconto sobre os preços
cobrados na semana anterior. Durante essa
promoção, um liquidificador era vendido por
R$ 73,50.
Qual o valor, em reais, do desconto oferecido
na compra desse liquidificador?
a) 105,00
b) 95,55
c) 48,00
d) 31,50
e) 22,05
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97120
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 97
Assunto: Porcentagem
Um investidor dividiu em duas partes os R$
200.000,00 dos quais dispunha, aplicando,
durante um ano, uma das partes em um fundo
de ações e a outra, em um fundo de renda
fixa. Ao final desse período, o rendimento
líquido do fundo de ações foi de 9% e o do
fundo de renda fixa, de 5%, o que deu ao
investidor um total de R$ 13.200,00.
Qual foi, em reais, a quantia aplicada no fundo
de renda fixa?
a) 40.000,00
b) 80.000,00
c) 120.000,00
d) 150.000,00
e) 180.000,00
Questão 98
Assunto: Porcentagem
O preço de catálogo de um produto foi
modificado equivocadamente pelo funcionário
de uma loja. Emvez de o funcionário
aumentá-lo em 20%, como previsto, dele
descontou 20%.
O funcionário poderá obter o preço do
catálogo acrescido de 20% se ele multiplicar o
preço com desconto por
a) 2,2
b) 1,5
c) 1,4
d) 0,5
e) 0,4
Questão 99
Assunto: Porcentagem
Edu foi ao shopping no sábado e gastou 20%
da mesada que recebeu. No domingo, Edu
voltou ao shopping e gastou 20% do restante
da mesada.
Se, após a segunda ida de Edu ao shopping,
sobraram R$ 96,00, qual é, em reais, a
mesada de Edu?
a) 100
b) 200
c) 120
d) 160
e) 150
Questão 100
Assunto: Porcentagem
Quatrocentas pessoas foram convidadas para
uma festa. Dessas pessoas, 62% eram
mulheres. No dia da festa, os organizadores
constataram que apenas 88% dos convidados
compareceram.
Se 25% dos homens convidados não foram,
quantas mulheres compareceram a essa festa?
a) 38
b) 62
c) 114
d) 210
e) 238
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97121
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
N° GAB MATEMÁTICA
51 a CESGRANRIO - Ag PT (IBGE)/IBGE/2014
52 d
CESGRANRIO - Tec Jr
(TRANSPETRO)/TRANSPETRO/Ambiental/2018
53 e CESGRANRIO - Esc BB/BB/"Sem Área"/2018
54 d CESGRANRIO - Esc BB/BB/"Sem Área"/2018
55 d
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Segurança Júnior/2017
56 c
CESGRANRIO - Aju
(LIQUIGÁS)/LIQUIGÁS/Motorista Granel I/2014
57 a CESGRANRIO - Ag PM (IBGE)/IBGE/2014
58 c CESGRANRIO - Ag PT (IBGE)/IBGE/2014
59 d
CESGRANRIO - Ass Adm (EPE)/EPE/Apoio
Administrativo/2014
60 c CESGRANRIO - Tec Adm (BNDES)/BNDES/2013
61 b CESGRANRIO - Esc BB/BB/"Sem Área"/2012
62 e CESGRANRIO - Esc BB/BB/"Sem Área"/2012
63 c CESGRANRIO - Esc BB/BB/"Sem Área"/2012
64 c CESGRANRIO - Esc BB/BB/"Sem Área"/2012
65 c CESGRANRIO - CTA (DECEA)/DECEA/2012
66 e
CESGRANRIO - Tec (PETRO)/PETROBRAS/Químico
Petróleo Júnior/2012
67 d
CESGRANRIO - Ass Adm (EPE)/EPE/Apoio
Administrativo/2012
68 a
CESGRANRIO - Tec Jr
(TRANSPETRO)/TRANSPETRO/Administração e
Controle/2012
69 d
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Contabilidade Júnior/2012
70 d
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Exploração de Petróleo
Júnior/Informática/2012
71 d CESGRANRIO - Tec Ban (BASA)/BASA/2018
72 b
CESGRANRIO - Tec Jr
(TRANSPETRO)/TRANSPETRO/Ambiental/2018
73 d
CESGRANRIO - Tec Jr
(TRANSPETRO)/TRANSPETRO/Administração e
Controle Júnior/2018
74 b CESGRANRIO - Esc BB/BB/"Sem Área"/2018
75 a CESGRANRIO - Esc BB/BB/"Sem Área"/2018
* *
N° GAB MATEMÁTICA
76 e
CESGRANRIO - Aju
(LIQUIGÁS)/LIQUIGÁS/Motorista Granel I/2018
77 d
CESGRANRIO - Ass
(LIQUIGÁS)/LIQUIGÁS/Administrativo I/2018
78 e
CESGRANRIO - Ass
(LIQUIGÁS)/LIQUIGÁS/Administrativo I/2018
79 b
CESGRANRIO - Ass
(LIQUIGÁS)/LIQUIGÁS/Administrativo I/2018
80 a
CESGRANRIO - Ass
(LIQUIGÁS)/LIQUIGÁS/Administrativo I/2018
81 b
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Administração e Controle
Júnior/2018
82 c
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Administração e Controle
Júnior/2018
83 b
CESGRANRIO - Ass
(LIQUIGÁS)/LIQUIGÁS/Administrativo I/2018
84 c
CESGRANRIO - Ass
(LIQUIGÁS)/LIQUIGÁS/Administrativo I/2018
85 b
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Segurança Júnior/2017
86 b CESGRANRIO - TA (ANP)/ANP/2016
87 e CESGRANRIO - TA (ANP)/ANP/2016
88 d
CESGRANRIO - TRPDACGN
(ANP)/ANP/Geral/2016
89 a CESGRANRIO - Esc BB/BB/"Sem Área"/2015
90 a CESGRANRIO - Tec Ban (BASA)/BASA/2015
91 c CESGRANRIO - Tec Ban (BASA)/BASA/2015
92 d
CESGRANRIO - Tec
(BR)/BR/Administração/Controle Júnior/2015
93 e
CESGRANRIO - Tec
(BR)/BR/Administração/Controle Júnior/2015
94 c
CESGRANRIO - Tec
(BR)/BR/Administração/Controle Júnior/2015
95 b
CESGRANRIO - Ass (FINEP)/FINEP/Apoio
Administrativo/2014
96 d
CESGRANRIO - Ass (FINEP)/FINEP/Apoio
Administrativo/2014
97 c
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Suprimento de Bens e
Serviços Júnior/Administração/2014
98 b
CESGRANRIO - Aju
(LIQUIGÁS)/LIQUIGÁS/Motorista Granel I/2014
99 e CESGRANRIO - Ag PM (IBGE)/IBGE/2014
100 e
CESGRANRIO - Ass Adm (EPE)/EPE/Apoio
Administrativo/2014
* *
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97122
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 101
Assunto: Porcentagem
Em um supermercado, uma embalagem com
12 picolés custa R$ 21,60 e cada picolé,
vendido separadamente, custa R$ 2,40.
Ao optar pela compra da embalagem, o cliente
recebe um desconto, em relação ao preço de
venda por unidade, de
a) 15%
b) 20%
c) 25%
d) 30%
e) 60%
Questão 102
Assunto: Porcentagem
Mariana e Laura compraram um saco com 120
balas que custava R$ 7,50. Laura contribuiu
com R$ 4,50, e Mariana, com o restante.
Se as balas forem divididas em partes
diretamente proporcionais ao valor pago por
cada menina, com quantas balas Mariana
ficará?
a) 36
b) 48
c) 54
d) 72
e) 96
Questão 103
Assunto: Porcentagem
Mauro precisava resolver alguns exercícios de
Matemática. Ele resolveu 1/5 dos exercícios no
primeiro dia. No segundo
dia, resolveu 2/3 dos exercícios restantes e,
no terceiro dia, os 12 últimos exercícios.
Ao todo, quantos exercícios Mauro resolveu?
a) 30
b) 40
c) 45
d) 75
e) 90
Questão 104
Assunto: Porcentagem
Em certa cidade, a tarifa do metrô é R$ 2,80, e
a dos ônibus, R$ 2,40. Mas os passageiros que
utilizam os dois meios de transporte podem
optar por um bilhete único, que dá direito a
uma viagem de ônibus e uma de metrô, e
custa R$ 3,80.
Em relação ao valor total gasto com uma
viagem de ônibus e uma de metrô pagas
separadamente, o bilhete único oferece um
desconto de, aproximadamente,
a) 27%
b) 30%
c) 32%
d) 34%
e) 37%
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97123
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 105
Assunto: Porcentagem
A força da água limpa
As novas tecnologias e o empenho dos
organismos públicos, associados aos interesses
e boas práticas da iniciativa privada,
ampliaram a rede de esgotos.
Considere que, em 1990, a população
brasileira era de 145 milhões de habitantes e,
em 2010, de 190 milhões.
Com base nos percentuais apresentados na
reportagem, o número de habitantes, no
Brasil, que contam com saneamento básico
aumentou, de 1990 para 2010, em,
aproximadamente,
a) 65 milhões
b) 50 milhões
c) 45 milhões
d) 25 milhões
e) 10 milhões
Questão 106
Assunto: Porcentagem
Em uma faculdade, uma amostra de 120
alunos foi coletada, tendo-se verificado a idade
e o sexo desses alunos. Na amostra, apurou-se
que 45 estão na faixa de 16 a 20 anos, 60, na
faixa de 21 a 25 anos, e 15 na faixa de 26 a 30
anos. Os resultados obtidos encontram-se na
Tabela abaixo.
Idade (em anos)
Número de alunos
Sexo feminino Sexo masculino
n % n %
16 – 20 ? P 10 20
21 – 25 Q 40 ? R
26 – 30 S ? ? 16
Total 70 100 50 100
Quais são, respectivamente, os valores
indicados pelas letras P, Q, R e S?
a) 40 ; 28 ; 64 e 0
b) 50 ; 28 ; 64 e 7
c) 50 ; 40 ; 53,3e 7
d) 77,8 ; 28 ; 53,3 e 7
e) 77,8 ; 40 ; 64 e 0
Questão 107
Assunto: Porcentagem
Numa empresa, todos os seus clientes
aderiram a apenas um dos seus dois planos,
Alfa ou Beta. O total de clientes é de 1.260,
dos quais apenas 15% são do Plano Beta. Se x
clientes do plano Beta deixarem a empresa,
apenas 10% dos clientes que nela
permanecerem estarão no plano Beta.
O valor de x é um múltiplo de
a) 3
b) 8
c) 13
d) 11
e) 10
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97124
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 108
Assunto: Porcentagem
Durante uma liquidação, uma loja de roupas
vendeu 85% das 120 camisetas que havia no
estoque. Quantas camisetas sobraram?
a) 18
b) 22
c) 24
d) 28
e) 32
Questão 109
Assunto: Porcentagem
Considere que o valor pago pela energia
elétrica (conta de luz) sofra uma redução de
16%. Desse modo, uma família que gasta, em
média, R$ 165,00 mensais em energia elétrica
terá essa despesa mensal reduzida em
a) R$ 16,50
b) R$ 18,80
c) R$ 20,40
d) R$ 26,40
e) R$ 27,80
Questão 110
Assunto: Porcentagem
Em um supermercado, durante uma promoção,
todos os produtos de limpeza estavam sendo
vendidos com 15% desconto. Aproveitando a
promoção, Fátima comprou vários produtos de
limpeza, obtendo um desconto total de R$
2,40.
Quanto Fátima teria gasto se tivesse comprado
os produtos fora da promoção?
a) R$ 12,00
b) R$ 13,60
c) R$ 16,00
d) R$ 18,00
e) R$ 20,40
Questão 111
Assunto: Porcentagem
Numa empresa trabalham 80 funcionários, dos
quais 20 são mulheres. Se forem contratadas
mais 10 mulheres, sem que nenhum
funcionário antigo seja demitido, o percentual
de mulheres nessa empresa passará a ser,
aproximadamente, de
a) 37%
b) 33%
c) 30%
d) 25%
e) 11%
Questão 112
Assunto: Porcentagem
Dois pintores, João e José, foram contratados
para pintar uma área de 240 m2. João pintou
45% dessa área, e José, a área restante.
Quantos metros quadrados foram pintados por
José?
a) 108
b) 120
c) 132
d) 144
e) 156
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97125
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 113
Assunto: Porcentagem
Marcos foi ao mercado comprar leite. Cada
litro custava R$ 2,00, mas, nesse dia, havia
uma promoção: comprando dois litros, seria
dado um desconto de 15%. Ele aproveitou a
promoção e comprou dois litros de leite.
Qual o valor do desconto na compra dos dois
litros de leite?
a) R$ 0,15
b) R$ 0,20
c) R$ 0,30
d) R$ 0,45
e) R$ 0,60
Questão 114
Assunto: Porcentagem
Os gráficos acima apresentam dados sobre a
produção e a reciclagem de lixo em algumas
regiões do planeta.
Baseando-se nos dados apresentados, qual é,
em milhões de toneladas, a diferença entre as
quantidades de lixo recicladas na China e nos
EUA em um ano?
a) 9,08
b) 10,92
c) 12,60
d) 21,68
e) 24,80
Questão 115
Assunto: Porcentagem
5,1 bilhões de moedas, que representam 27%
do total cunhado no Brasil, desde o início do
Plano Real, estão ―entesouradas‖, ou seja,
esquecidas em gavetas ou guardadas em
cofrinhos.
Revista Veja. São Paulo: Abril. Ed. 2267. 02 maio 2012, p. 57.
A partir dos dados apresentados na
reportagem, verifica-se que o número total de
moedas cunhadas no Brasil, desde o início do
Plano Real, corresponde, em bilhões, a,
aproximadamente,
a) 13,7
b) 14,2
c) 16,6
d) 18,9
e) 19,8
Questão 116
Assunto: Porcentagem
Fábio contratou um empréstimo bancário que
deveria ser quitado em 30 de março de 2012.
Como conseguiu o dinheiro necessário 30 dias
antes dessa data, Fábio negociou com o
gerente e conseguiu 5% de desconto. Assim,
quitou o empréstimo antecipadamente,
pagando R$ 4.940,00.
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97126
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Qual era, em reais, o valor a ser pago por
Fábio em 30 de março de 2012?
a) 5.187,00
b) 5.200,00
c) 5.871,00
d) 6.300,00
e) 7.410,00
Questão 117
Assunto: Porcentagem
Uma determinada sala comercial teve seu
condomínio corrigido no mês de março de
2012 em 10%. No mês de abril, em razão de
uma ordem judicial resultante de ação que
julgou abusiva a correção, a administradora do
condomínio foi obrigada a cobrar o valor
equivalente a fevereiro de 2012.
Com base no mês de março, qual foi o
percentual de redução necessário para que se
chegasse ao valor do mês de fevereiro?
a) 9%
b) 9,09%
c) 10%
d) 11%
e) 11,11%
Questão 118
Assunto: Porcentagem
Uma empresa de marketing realizou, durante
trinta dias, uma pesquisa sobre a utilização por
seus clientes de celulares em postos de
combustíveis.
Foram coletados os seguintes dados:
Perfil Entrevistas Utilizam
Não
utilizam
Homens até
25 anos
42 38 4
Homens
acima de 25
anos
65 35 30
Mulheres
até 25 anos
37 35 2
Mulheres
acima de 25
anos
17 10 7
Os homens acima de 25 anos que afirmam
utilizar o celular durante o abastecimento
representam um percentual de
a) 10%
b) 35%
c) 46%
d) 54%
e) 90%
Questão 119
Assunto: Porcentagem
A disponibilidade da frota de veículos de uma
empresa de transportes rodoviários é peça
fundamental na sua lucratividade. Considere
que um ano tem 52 semanas de 5 dias úteis
(dias de entrega) e que uma empresa teve 20
dias úteis perdidos em manutenção, no ano,
por veículo utilizado na entrega de seus
produtos.
A disponibilidade da frota dessa empresa é,
aproximadamente, de
a) 90,35%
b) 92,30%
c) 94,44%
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97127
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
d) 94,52%
e) 98,72%
Questão 120
Assunto: Porcentagem
Um reservatório de água estava cheio até 70%
de sua capacidade quando uma chuva forte
aumentou em 20% a quantidade de água em
seu interior. Ainda assim, para enchê-lo
completamente, seriam necessários mais
16.800 L de água.
Qual é, em litros, a capacidade desse
reservatório?
a) 70.000
b) 105.000
c) 126.000
d) 150.000
e) 168.000
Questão 121
Assunto: Porcentagem
João aplicou metade de seu décimo terceiro
salário em um fundo de investimentos. Um ano
mais tarde, ele resgatou um montante (valor
aplicado acrescido de juros) de R$ 1.522,50.
Se a taxa anual de juros dessa aplicação foi de
5%, qual é, em reais, o valor do décimo
terceiro salário de João?
a) 1.450,00
b) 1.600,00
c) 2.124,00
d) 2.892,00
e) 2.900,00
Questão 122
Assunto: Porcentagem
Dezoito pessoas saíram de uma sala. Com isso,
apenas 60% do número de pessoas
inicialmente presentes permaneceram na sala.
Quantas pessoas havia na sala inicialmente?
a) 63
b) 54
c) 48
d) 45
e) 30
Questão 123
Assunto: Porcentagem
Para evitara falta de etanol no mercado, o
governo decidiu diminuir o teor de etanol na
gasolina de 25% para 20%. Um carro, cujo
tanque está com três quartos da sua
capacidade ocupados por gasolina com o teor
antigo, terá seu tanque completado com
gasolina no teor novo, definido pelo governo.
Após ser abastecido, o teor de etanol do
composto no tanque desse carro será de
a) 45%
b) 25%
c) 23,75%
d) 22,5%
e) 20%
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97128
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 124
Assunto: Porcentagem
Numa pizzaria, cada pizza comprada dá direito
a um selo, e 7 selos dão direito a uma pizza
grátis, que não dá direito a selo. Para uma
reunião, uma pessoa encomenda 8 pizzas e
utiliza os selos das pizzas como parte do
pagamento.
Qual o desconto percentual obtido na utilização
dos selos?
a) 14%
b) 13%
c) 12,5%
d) 12%
e) 11,5%
Questão 125
Assunto: Porcentagem
A etiqueta com o preço de um computador
registra R$ 2.062,50. Esse valor é tal que,
mesmo dando um desconto de 20% ao
consumidor, ainda há um lucro de 10% sobre
o preço de custo.
Qual o preço de custo, em reais, desse
computador?
a) 1.687,50
b) 1.650,00
c) 1.546,88
d) 1.500,00
e) 1.375,00
Questão 126
Assunto: Porcentagem
Uma churrascaria oferece desconto de 10%
nos jantares em relação ao preço do almoço.
Nessa churrascaria, aniversariantes têm
desconto de 20% no almoço ou jantar. Fábio
foi comemorar seu aniversário no fim de
semana seguinte ao seu aniversário com um
almoço nessa churrascaria e, como não era o
dia do seu aniversário, pagou o preço integral.
Se Fábio tivesse comemorado no dia de seu
aniversário com um jantar nessa churrascaria,
teria economizado quantos por cento do preço
que pagou?
a) 32
b) 30
c) 28
d) 18
e) 15
Questão 127
Assunto: Porcentagem
Considere que carros novos, 0 km,
desvalorizam 20% no primeiro ano e 10% nos
anos seguintes. Uma pessoa comprou dois
carros, um básico 0 km e um completo com 1
ano de uso. Daqui a dois anos, ela deve
vender os dois carros pelo mesmo preço.
Qual a razão entre o preço do carro 0 km e o
preço do carro usado comprado por essa
pessoa?
a) 8/9.
b) 9/8.
c) 7/8.
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97129
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
d) 8/7.
e) 13/12.
Questão 128
Assunto: Porcentagem
João solicitou a uma instituição financeira a
liquidação antecipada de um empréstimo e foi
informado que, se a quitação do mesmo fosse
feita até o final do mês em curso, o valor pago
seria R$ 7.350,00, o que representaria um
desconto de 12,5% sobre o valor a ser pago
na data combinada inicialmente.
Qual foi, em reais, o valor do desconto
oferecido para a liquidação antecipada?
a) 882,00
b) 918,75
c) 1.044,05
d) 1.050,00
e) 1.368,50
Questão 129
Assunto: Porcentagem
Uma dona de casa comprou um novo botijão
de gás pelo valor de R$ 75,00, à vista.
Sabendo-se que o valor inicial do produto era
R$ 80,00, qual foi o percentual de desconto
concedido à dona de casa?
a) 5%
b) 6,25%
c) 6,67%
d) 75%
e) 80%
Questão 130
Assunto: Porcentagem
A empresa Show de Bola Ltda. produz
mensalmente 8.000 bolas de futebol, 3.000
bolas de vôlei e 1.500 bolas de basquete. No
mês de junho de 2014, está previsto um
aumento na produção de bolas de futebol,
equivalente a 12%.
O percentual de aumento na produção total da
empresa, no mês de junho de 2014, é de
a) 7,13%
b) 7,68%
c) 12%
d) 36%
e) 64%
Questão 131
Assunto: Porcentagem
Com o objetivo de identificar a necessidade da
criação de uma creche, uma empresa de
combustíveis realizou um levantamento entre
seus funcionários, por setor e sexo, com o
seguinte resultado:
Empresa XY
Produção Administrativo
Homens 32 Homens 17
Mulheres 15 Mulheres 8
Com base nas informações apresentadas,
conclui-se que o número total de homens é
superior ao total de mulheres em,
aproximadamente,
a) 26%
b) 32%
c) 53%
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97130
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
d) 68%
e) 113%
Questão 132
Assunto: Porcentagem
O preço de um produto sofreu exatamente três
alterações ao longo do primeiro trimestre de
2011. A primeira alteração foi devida a um
aumento de 10%, dado em janeiro, sobre o
preço inicial do produto. Em fevereiro, um
novo aumento, agora de 20%, foi dado sobre
o preço que o produto possuía no final de
janeiro. A última alteração sofrida pelo preço
do produto foi, novamente, devida a um
aumento, de 10%, dado em março sobre o
preço do final de fevereiro.
A variação do preço do produto acumulada no
primeiro trimestre de 2011, relativamente ao
seu preço inicial, foi de
a) 58,4%
b) 45,2%
c) 40%
d) 35,2%
e) 13,2%
Questão 133
Assunto: Proporções. Grandezas
proporcionais. Divisão em partes proporcionais
Considere um gás ideal que passa por uma
transformação durante a qual sua pressão e o
volume que ocupa podem variar, mas sua
temperatura é sempre mantida constante. A
Lei de Boyle-Mariotte garante que, nessas
circunstâncias, o produto entre a pressão P e o
volume V ocupado pelo gás é constante.
Quando o gás considerado ocupa o volume
correspondente a 18ml, a sua pressão é de 3
atm (atmosferas).
Se a medida do volume ocupado pelo gás for
de 2,25ml, então, sua pressão, em atmosferas,
medirá
a) 33,75
b) 31,50
c) 24,00
d) 13,50
e) 12,00
Questão 134
Assunto: Proporções. Grandezas
proporcionais. Divisão em partes proporcionais
Uma determinada solução é a mistura de 3
substâncias, representadas pelas letras P, Q e
R. Uma certa quantidade dessa solução foi
produzida, e sua massa é igual à soma das
massas das três substâncias P, Q e R, usadas
para compô-la. As massas das substâncias P,
Q e R dividem a massa da solução em partes
diretamente proporcionais a 3, 5 e 7,
respectivamente.
A que fração da massa da solução produzida
corresponde a soma das massas das
substâncias P e Q utilizadas na produção?
a) 12
b) 23
c) 1235
d) 815
e) 1021
Questão 135
Assunto: Proporções. Grandezas
proporcionais. Divisão em partes proporcionais
Aldo, Baldo e Caldo resolvem fazer um bolão
para um concurso da Mega-Sena. Aldo
contribui com 12 bilhetes, Baldo, com 15
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97131
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
bilhetes e Caldo, com 9 bilhetes. Eles
combinaram que, se um dos bilhetes do bolão
fosse sorteado, o prêmio seria dividido entre
os três proporcionalmente à quantidade de
bilhetes com que cada um contribuiu. Caldo
também fez uma aposta fora do bolão e, na
data do sorteio, houve 2 bilhetes ganhadores,
sendo um deles o da aposta individual de
Caldo,e o outro, um dos bilhetes do bolão.
Qual a razão entre a quantia total que Caldo
recebeu e a quantia que Baldo recebeu?
a) 0,8
b) 1,5
c) 2
d) 2,5
e) 3
Questão 136
Assunto: Proporções. Grandezas
proporcionais. Divisão em partes proporcionais
Em uma empresa, o total de descontos que
incidem sobre o salário bruto de cada
funcionário é proporcional ao valor desse
mesmo salário bruto. Um funcionário F1 tem
salário líquido igual a S1, calculado após a
incidência do total de descontos igual a
x1 reais. Um funcionário F2 tem salário líquido
igual a S2, calculado após a incidência do total
de descontos igual a x2 reais.
O total de descontos x2 é tal que
a)
b)
c)
d)
e)
Questão 137
Assunto: Proporções. Grandezas
proporcionais. Divisão em partes proporcionais
Maria tinha 450 mL de tinta vermelha e 750
mL de tinta branca. Para fazer tinta rosa, ela
misturou certa quantidade de tinta branca com
os 450 mL de tinta vermelha na proporção de
duas partes de tinta vermelha para três partes
de tinta branca.
Feita a mistura, quantos mL de tinta branca
sobraram?
a) 75
b) 125
c) 175
d) 375
e) 675
Questão 138
Assunto: Proporções. Grandezas
proporcionais. Divisão em partes proporcionais
Em um certo país, cada aposentado ganha
uma quantia diretamente proporcional à raiz
quadrada do número de anos que trabalhou.
Urbano aposentou-se hoje nesse país e
receberá uma aposentadoria de X unidades
monetárias. Se trabalhasse mais 13 anos, sua
aposentadoria aumentaria em 1000 unidades
monetárias e, no entanto, se tivesse se
aposentado há 11 anos, receberia 1000
unidades monetárias a menos.
Para que as afirmações acima estejam todas
corretas, o valor de X deve ser
a) 2000
b) 3000
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97132
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
c) 4000
d) 5000
e) 6000
Questão 139
Assunto: Proporções. Grandezas
proporcionais. Divisão em partes proporcionais
Os catadores de uma cooperativa recolheram
14.000 latas de alumínio. Essas latas eram,
exclusivamente, de cerveja, de sucos ou de
refrigerantes. De cada 5 latas recolhidas, 2
eram de cerveja e, para cada 7 latas de
refrigerantes, havia 3 latas de suco.
Do total de latas recolhidas pelos catadores,
quantas eram de suco?
a) 2.000
b) 2.520
c) 2.800
d) 5.600
e) 5.880
Questão 140
Assunto: Proporções. Grandezas
proporcionais. Divisão em partes proporcionais
Em uma caixa há n fichas, todas pretas, e, em
um saco opaco há 144 fichas, todas
vermelhas. Todas as fichas têm o mesmo
formato e são indistinguíveis pelo tato. Metade
das fichas pretas é retirada da caixa e colocada
no saco. Desse modo, se uma ficha for retirada
do saco, a probabilidade de que ela seja
vermelha é 8/9.
Qual é o valor de n?
a) 36
b) 44
c) 72
d) 126
e) 180
Questão 141
Assunto: Proporções. Grandezas
proporcionais. Divisão em partes proporcionais
Um pipoqueiro observou que, de cada 12
saquinhos de pipoca que vendia, 5 eram de
pipoca salgada e os restantes, de pipoca doce.
Considerando-se essa proporção, se ele vender
96 saquinhos de pipoca, quantos serão de
pipoca doce?
a) 8
b) 20
c) 40
d) 48
e) 56
Questão 142
Assunto: Proporções. Grandezas
proporcionais. Divisão em partes proporcionais
Carlos foi de ônibus de casa para o trabalho, e
a viagem demorou 54 minutos. Na volta,
pegou o metrô, e o tempo de viagem foi
reduzido em 12 minutos. Nesse dia, qual foi a
razão entre os tempos gastos por Carlos para
ir ao trabalho e dele voltar, nessa ordem?
a) 9/7
b) 8/7
c) 4/3
d) 3/2
e) 9/2
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97133
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 143
Assunto: Proporções. Grandezas
proporcionais. Divisão em partes proporcionais
Com a expansão do setor hoteleiro no Rio de
Janeiro, novos postos de trabalho serão
criados. Estima-se que, de cada 7 novas vagas,
4 serão no setor de alimentação (garçons,
copeiras, cozinheiros, por exemplo), e 3, para
camareiras.
Considerando-se essa proporção, um hotel que
contratar 24 camareiras contratará, também,
quantos profissionais para o setor de
alimentação?
a) 18
b) 26
c) 30
d) 32
e) 36
Questão 144
Assunto: Proporções. Grandezas
proporcionais. Divisão em partes proporcionais
Para fazer determinado tipo de biscoitos,
utilizam-se 100 g de manteiga para cada 250 g
de farinha de trigo.
Mantendo-se essa proporção, se uma
cozinheira utilizar 500 g de manteiga, quantos
gramas de farinha ela precisará utilizar?
a) 1.250
b) 750
c) 650
d) 400
e) 200
Questão 145
Assunto: Proporções. Grandezas
proporcionais. Divisão em partes proporcionais
A razão entre as idades de Joana e de Sergio é
igual a 7/8. Sergio, que é mais velho que
Joana, tem 56 anos.
Qual é a idade de Joana?
a) 36
b) 45
c) 49
d) 54
e) 64
Questão 146
Assunto: Proporções. Grandezas
proporcionais. Divisão em partes proporcionais
Ao receber certa quantia, Fábio guardou R$
252,00 e gastou o restante. Se a razão entre a
quantia gasta e a recebida por Fábio é 7/9,
quanto ele gastou?
a) R$ 196,00
b) R$ 324,00
c) R$ 882,00
d) R$ 1.134,00
e) R$ 1.764,00
Questão 147
Assunto: Regra de três simples
Em uma lanchonete, foram produzidos 120
litros de refresco de laranja, adicionando-se 30
litros de água a 90 litros de suco de laranja.
Em um restaurante, foi produzida uma
quantidade menor de refresco de laranja,
segundo a mesma proporção usada na
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97134
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
lanchonete, gastando- se apenas 15 litros de
suco de laranja.
Quantos litros de refresco de laranja foram
produzidos no total por ambos os
estabelecimentos?
a) 140
b) 150
c) 165
d) 180
e) 210
Questão 148
Assunto: Regra de três simples
Em certa empresa, 5 em cada 7 funcionários
completaram o Ensino Médio, e há 210
funcionários com Ensino Médio completo.
O número de funcionários dessa empresa é
a) 150
b) 280
c) 294
d) 304
e) 320
Questão 149
Assunto: Regra de três simples
O preço da Placa Solar no mundo todo é
negociado em dólares (U$) por watt. Mesmo
que o painel solar seja fabricado no Brasil, a
célula ainda não é. (...)
Em janeiro de 2018, uma placa solar
fotovoltaica de 330 watts, no Brasil, era
vendida, no varejo, por R$ 858,00 (...).
Disponível em:<https://www.portalsolar.com.br/placa-solar-preco.
html>. Acesso em: 01 abr. 2018. Adaptado.
Considerando que, em janeiro de 2018, 1 dólar
estava cotado a R$ 3,20, o preço aproximado
dessa placa, em dólares por watt, era
a) 0,81
b) 0,92
c) 1,16
d) 1,40
e) 2,60
Questão 150
Assunto: Regra de três simples
No Brasil utilizamos o quilômetro (km) para
medir as distâncias nas estradas, mas nem
todos os países adotam o mesmo sistema de
medidas. Nos EUA, por exemplo, as distâncias
rodoviárias são medidas em milhas, e uma
milha equivale a, aproximadamente,1,6 km. A
maior rodovia brasileira totalmente
pavimentada é a BR-116, que tem cerca de
4.510 km de extensão.
Qual é a extensão aproximada, em milhas, da
BR-116?
a) 2.818
b) 4.780
c) 5.116
d) 6.210
e) 7.216
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97135
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
N° GAB MATEMÁTICA
101 c
CESGRANRIO - Ass Adm (EPE)/EPE/Apoio
Administrativo/2014
102 b CESGRANRIO - Tec Adm (BNDES)/BNDES/2013
103 c CESGRANRIO - Tec Adm (BNDES)/BNDES/2013
104 a CESGRANRIO - Tec Adm (BNDES)/BNDES/2013
105 b CESGRANRIO - Tec Adm (BNDES)/BNDES/2013
106 b CESGRANRIO - Tec Adm (BNDES)/BNDES/2013
107 e
CESGRANRIO - Esc BB/BB/Tecnologia da
Informação/2013
108 a
CESGRANRIO - Tec (BR)/BR/Administração e
Controle Júnior/2013
109 d
CESGRANRIO - Tec (BR)/BR/Administração e
Controle Júnior/2013
110 c
CESGRANRIO - Tec (BR)/BR/Administração e
Controle Júnior/2013
111 b
CESGRANRIO - Tec (BR)/BR/Administração e
Controle Júnior/2013
112 c
CESGRANRIO - Tec (BR)/BR/Contabilidade
Júnior/2013
113 e
CESGRANRIO - Tec (BR)/BR/Contabilidade
Júnior/2013
114 a CESGRANRIO - Esc BB/BB/"Sem Área"/2012
115 d CESGRANRIO - CTA (DECEA)/DECEA/2012
116 b
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Químico Petróleo
Júnior/2012
117 b
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Administração e Controle
Júnior/2012
118 d
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Administração e Controle
Júnior/2012
119 b
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Suprimento de Bens e
Serviços Júnior/Administração/2012
120 b
CESGRANRIO - Ass Adm (EPE)/EPE/Apoio
Administrativo/2012
121 e
CESGRANRIO - Ass Adm (EPE)/EPE/Apoio
Administrativo/2012
122 d
CESGRANRIO - Tec (BR)/BR/Administração e
Controle Júnior/2012
123 c
CESGRANRIO - Tec (BR)/BR/Administração e
Controle Júnior/2012
124 c
CESGRANRIO - Tec (BR)/BR/Administração e
Controle Júnior/2012
125 d
CESGRANRIO - Tec (BR)/BR/Administração e
Controle Júnior/2012
* *
N° GAB MATEMÁTICA
126 c
CESGRANRIO - Tec (BR)/BR/Administração e
Controle Júnior/2012
127 b
CESGRANRIO - Tec (BR)/BR/Administração e
Controle Júnior/2012
128 d
CESGRANRIO - Tec Jr
(TRANSPETRO)/TRANSPETRO/Administração e
Controle/2012
129 b
CESGRANRIO - Tec Jr
(TRANSPETRO)/TRANSPETRO/Administração e
Controle/2012
130 b
CESGRANRIO - Tec Jr
(TRANSPETRO)/TRANSPETRO/Administração e
Controle/2012
131 e
CESGRANRIO - Tec Jr
(TRANSPETRO)/TRANSPETRO/Administração e
Controle/2012
132 b
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Contabilidade Júnior/2012
133 c
CESGRANRIO - TRPDACGN
(ANP)/ANP/Geral/2016
134 d
CESGRANRIO - TRPDACGN
(ANP)/ANP/Geral/2016
135 e CESGRANRIO - Esc BB/BB/"Sem Área"/2015
136 d CESGRANRIO - Tec Ban (BASA)/BASA/2015
137 a
CESGRANRIO - Ass (FINEP)/FINEP/Apoio
Administrativo/2014
138 e CESGRANRIO - Ag PT (IBGE)/IBGE/2014
139 b
CESGRANRIO - Ass Adm (EPE)/EPE/Apoio
Administrativo/2014
140 a
CESGRANRIO - Ass Adm (EPE)/EPE/Apoio
Administrativo/2014
141 e
CESGRANRIO - Tec (BR)/BR/Administração e
Controle Júnior/2013
142 a
CESGRANRIO - Tec (BR)/BR/Administração e
Controle Júnior/2013
143 d
CESGRANRIO - Tec (BR)/BR/Administração e
Controle Júnior/2013
144 a
CESGRANRIO - Tec (BR)/BR/Contabilidade
Júnior/2013
145 c
CESGRANRIO - Tec (BR)/BR/Contabilidade
Júnior/2013
146 c
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Estabilidade Júnior/2012
147 a
CESGRANRIO - Aju
(LIQUIGÁS)/LIQUIGÁS/Motorista Granel I/2018
148 c
CESGRANRIO - Moto
(LIQUIGÁS)/LIQUIGÁS/Caminhão Granel I/2018
149 a
CESGRANRIO - Moto
(LIQUIGÁS)/LIQUIGÁS/Caminhão Granel I/2018
150 a
CESGRANRIO - Moto
(LIQUIGÁS)/LIQUIGÁS/Caminhão Granel I/2018
* *
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97136
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 151
Assunto: Regra de três simples
Certo modelo de automóvel percorre 100 km
com 8,1 litros de gasolina. Outro modelo,
menos econômico, consome mais 0,03 litro de
gasolina por quilômetro rodado.
Aproximadamente quantos quilômetros, em
média, o automóvel menos econômico
percorre com 1 litro de gasolina?
a) 9,0
b) 8,4
c) 8,2
d) 8,0
e) 7,8
Questão 152
Assunto: Regra de três simples
A final da Copa do mundo de 2014 foi
disputada entre Alemanha e Argentina no
Maracanã, que tem capacidade para 80 mil
espectadores.
Supondo-se que o estádio estivesse lotado,
que exatamente 26 mil espectadores não
fossem argentinos nem alemães, e que, para
cada 5 alemães houvesse 7 argentinos, qual o
total de argentinos presentes no estádio?
a) 22.500
b) 24.000
c) 26.000
d) 30.000
e) 31.500
Questão 153
Assunto: Regra de três simples
O gráfico abaixo apresenta o consumo médio
de oxigênio, em função do tempo, de um
atleta de 70 kg ao praticar natação.
Considere que o consumo médio de oxigênio
seja diretamente proporcional à massa do
atleta.
Qual será, em litros, o consumo médio de
oxigênio de um atleta de 80 kg, durante 10
minutos de prática de natação?
a) 50,0
b) 52,5
c) 55,0
d) 57,5
e) 60,0
Questão 154
Assunto: Regra de três simples
No Brasil, quase toda a produção de latas de
alumínio é reciclada. As empresas de
reciclagem pagam R$ 320,00 por 100 kg de
latas usadas, sendo que um quilograma
corresponde a 74 latas.
De acordo com essas informações, quantos
reais receberá um catador ao vender 703 latas
de alumínio?
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97137
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
a) 23,15
b) 23,98
c) 28,80
d) 28,96
e) 30,40
Questão 155
Assunto: Regra de três simples
Dois corredores, M e N, partem juntos do
ponto P de uma pista de corrida retilínea, em
direção a um ponto Q, situado a 240 m de P. O
corredor M é mais rápido e percorre 25 m,
enquanto o corredor N percorre 15 m.
Se essa proporção for mantida durante todo o
percurso, a quantos metros do ponto Q o
corredor N estará no momento em que o
corredor M passar por esse mesmo ponto?
a) 96
b) 104
c) 106
d) 128
e) 144
Questão 156
Assunto: Regra de três simples
Um senhor possui uma fazenda com cabras e
coelhos e deseja iniciar uma nova fazenda
transferindo parte de seus animais para lá.
Para isso, ele contrata um caminhão que pode
levar 20 jaulas de cabras ou 300 gaiolas de
coelhos. Em cada jaula de cabras, cabem 3
cabras para transporte, e, em cada gaiola de
coelhos, cabem 6 coelhos para transporte. O
dono da fazenda deseja transferir 1.080
coelhos e tantas cabras quanto puder no
mesmo caminhão.
Qual o maior número de cabras que poderá ser
levado para a nova fazenda?
a) 60
b) 36
c) 30
d) 24
e) 18
Questão 157
Assunto: Regra de três simples
Se H homens conseguem fazer um trabalho
em d dias, então, H + r homens farão o
mesmo trabalho em quantos dias?
a)
b)
c)
d)
e)
Questão 158
Assunto: Regra de três composta
Uma empresa possui uma frota de 8 carros
iguais. A empresa verificou quesua frota leva
3 dias para distribuir 126 produtos para seus
clientes, o que foi julgado como sendo
insuficiente. Por isso, ela ampliará a sua frota
adquirindo o menor número possível de carros
adicionais, iguais aos 8 de sua frota atual, que
lhe permita distribuir, com a frota ampliada,
630 produtos para seus clientes em apenas 4
dias.
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97138
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
O número de carros que devem ser adquiridos
na ampliação da frota é
a) 8
b) 14
c) 16
d) 22
e) 35
Questão 159
Assunto: Regra de três composta
No auge da crise hídrica de São Paulo, em
fevereiro de 2014, a Sabesp, empresa de água
e saneamento da região (...), ofereceu um
benefício àqueles que poupassem água. (...) a
companhia daria um desconto na conta a
quem reduzisse o consumo (...). A estratégia
foi um sucesso: contribuiu para economizar
330 bilhões de litros, volume suficiente para
abastecer 20 milhões de pessoas na região
metropolitana por quatro meses.
Revista Veja, 21 mar. 2018, p. 82.
Considerando-se as informações do texto,
quantos bilhões de litros de água são
suficientes para abastecer 30 milhões de
pessoas durante 8 meses?
a) 495
b) 615
c) 660
d) 900
e) 990
Questão 160
Assunto: Regra de três composta
Se 8 máquinas, de mesma capacidade,
produzem um total de 8 peças idênticas,
funcionando simultaneamente por 8 horas,
então, apenas uma dessas máquinas, para
produzir duas dessas peças, levará um total de
x horas.
O valor de x é
a) 0,25
b) 2
c) 4
d) 8
e) 16
Questão 161
Assunto: Regra de três composta
O setor de uma empresa enviou os seus 10
funcionários para participarem de um curso
sobre a utilização de um sistema de
preenchimento de relatórios. Ao final do curso,
todos os funcionários passaram a utilizar o
sistema no mesmo ritmo, isto é, cada um
passou a preencher a mesma quantidade de
relatórios por hora: cada 4 funcionários
preenchem 48 relatórios em 6 horas.
Após o curso, em quantas horas 8 funcionários
preencheriam 96 relatórios?
a) 3
b) 12
c) 4
d) 8
e) 6
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97139
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 162
Assunto: Exercícios envolvendo velocidade,
espaço, tempo
Certo reservatório continha 1.000 L de água
quando foi aberta uma torneira de vazão
constante. Cinquenta minutos mais tarde, sem
que a torneira fosse fechada, um ralo foi
destampado acidentalmente, permitindo o
escoamento parcial da água. O Gráfico abaixo
mostra a variação do volume de água dentro
do reservatório, em função do tempo.
Qual era, em litros por minuto, a capacidade
de escoamento do ralo?
a) 20
b) 12
c) 6
d) 4
e) 2
Questão 163
Assunto: Unidades de Medida (distância,
massa, volume, tempo, etc)
O comprimento de um grande fio corresponde
à soma dos comprimentos de 24 fios menores.
São eles:
• 12 fios, cada um dos quais com comprimento
que mede 14,7 cm;
• 4 fios, cada um dos quais com comprimento
que mede 0,3765 km;
• 8 fios, cada um dos quais com comprimento
que mede 13,125 dam.
Esse grande fio foi dividido em 3 fios de igual
comprimento, chamados de unidade modelo.
Qual é a medida, em metros, do comprimento
de uma unidade modelo?
a) 6385,500
b) 2557,764
c) 852,588
d) 94,302
e) 31,434
Questão 164
Assunto: Unidades de Medida (distância,
massa, volume, tempo, etc)
Às 5 da tarde de sexta-feira, Aldo desligou seu
computador, que já estava ligado há 100
horas.
A que horas de que dia Aldo havia ligado o
computador anteriormente?
a) 1 da tarde de segunda-feira
b) 9 da noite de segunda-feira
c) 1 da tarde de terça-feira
d) 2 da tarde de terça-feira
e) 9 da noite de quarta-feira
Questão 165
Assunto: Unidades de Medida (distância,
massa, volume, tempo, etc)
Para se encher por completo um reservatório
de água com uma bomba de vazão constante
igual a 12,5 litros por segundo, gastam-se 13
horas e 45 minutos. Uma nova bomba foi
comprada, e sua vazão, também constante, é
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97140
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
maior que a vazão da bomba anterior em 25
litros por segundo.
Quanto tempo seria gasto para se encher, por
completo, o mesmo reservatório de água com
a bomba nova?
a) 4 h 15 min
b) 4 h 35 min
c) 4 h 55 min
d) 6 h 53 min
e) 7 h 27 min
Questão 166
Assunto: Unidades de Medida (distância,
massa, volume, tempo, etc)
Um caminhão-tanque chega a um posto de
abastecimento com 36.000 litros de gasolina
em seu reservatório. Parte dessa gasolina é
transferida para dois tanques de
armazenamento, enchendo-os completamente.
Um desses tanques tem 12,5 m³, e o outro,
15,3 m³, e estavam, inicialmente, vazios.
Após a transferência, quantos litros de gasolina
restaram no caminhão-tanque?
a) 35.722,00
b) 8.200,00
c) 3.577,20
d) 357,72
e) 332,20
Questão 167
Assunto: Unidades de Medida (distância,
massa, volume, tempo, etc)
Um voo direto, do Rio de Janeiro a Paris, tem
11 horas e 5 minutos de duração. Existem
outros voos, com escala, cuja duração é bem
maior. Por exemplo, a duração de certo voo
Rio-Paris, com escala em Amsterdã, é 40%
maior do que a do voo direto.
Qual é a duração desse voo que faz escala em
Amsterdã?
a) 15h 4 min
b) 15h 15 min
c) 15 h 24 min
d) 15h 29 min
e) 15 h 31 min
Questão 168
Assunto: Unidades de Medida (distância,
massa, volume, tempo, etc)
Considere que a medida do comprimento de
um arco seja de hectômetros.
A medida do comprimento do referido arco,
em quilômetros, é mais próxima de
a) 11,20
b) 125,0
c) 10,00
d) 1,120
e) 12,50
Questão 169
Assunto: Unidades de Medida (distância,
massa, volume, tempo, etc)
Certa praça tem 720 m² de área. Nessa praça
será construído um chafariz que ocupará 600
dm².
Que fração da área da praça será ocupada
pelo chafariz?
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97141
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
a) 1/600
b) 1/120
c) 1/90
d) 1/60
e) 1/12
Questão 170
Assunto: Unidades de Medida (distância,
massa, volume, tempo, etc)
Um professor de ginástica estava escolhendo
músicas para uma aula. As quatro primeiras
músicas que ele escolheu totalizavam 15
minutos, sendo que a primeira tinha 3 minutos
e 28 segundos de duração, a segunda, 4
minutos e 30 segundos, e as duas últimas,
exatamente a mesma duração.
Qual era a duração da terceira música?
a) 3 min 1 s
b) 3 min 31 s
c) 3 min 51 s
d) 4 min 1 s
e) 4 min 11 s
Questão 171
Assunto: Unidades de Medida (distância,
massa, volume, tempo, etc)
Sebastião caminhou 680 m de sua casa até a
farmácia.Depois, caminhou mais 560 m da farmácia até
o banco.
Ao todo, Sebastião caminhou quantos
quilômetros?
a) 1,14
b) 1,24
c) 1,33
d) 1,42
e) 1,51
Questão 172
Assunto: Unidades de Medida (distância,
massa, volume, tempo, etc)
Certo pedaço de pano, com 2 m2 de área, será
partido em 8 pedaços do mesmo tamanho, ou
seja, com a mesma área.
Qual será, em cm2, a área de cada pedaço?
a) 250
b) 500
c) 1.250
d) 2.500
e) 4.000
Questão 173
Assunto: Unidades de Medida (distância,
massa, volume, tempo, etc)
Os comprimentos de uma mesa e de uma
bancada são, respectivamente, iguais a 204
centímetros e 7,5 metros.
A razão entre o comprimento da mesa e o
comprimento da bancada, quando ambos são
escritos em uma mesma unidade, é
a) 17/625.
b) 5/136.
c) 68/125.
d) 34/125.
e) 136/5.
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97142
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 174
Assunto: Unidades de Medida (distância,
massa, volume, tempo, etc)
As luzes de um semáforo alternam entre
amarelo (atenção), vermelho (fechado) e
verde (aberto), nessa ordem. Os tempos de
cada etapa são respectivamente iguais a 3 s,
30 s e 45 s.
Se o semáforo fechou exatamente às 9h 36min
12s, ele esteve aberto quando eram
a) 9h 33 min 55 s
b) 9h 34 min 2 s
c) 9h 34 min 12 s
d) 9h 35 min 15 s
e) 9h 35 min 20 s
Questão 175
Assunto: Logaritmo
Sejam M = log 30 e N = log 300.
Na igualdade x + N = M, qual é o valor de x?
a) –2
b) –1
c) 0
d) +1
e) +2
Questão 176
Assunto: Logaritmo
A sequência {an}nEN é uma progressão
geométrica de termos positivos cuja razão
é 1/64.
Considere {bn}nEN a sequência definida
por bn=log2((an)3).
A sequência {bn}nEN é uma progressão
a) aritmética de razão −18.
b) aritmética de razão −6.
c) aritmética de razão 32.
d) geométrica de razão 1/6.
e) geométrica de razão 1/2.
Questão 177
Assunto: Logaritmo
Sabe-se que x e y são números reais tais que y
= 53x.
Conclui-se que x é igual a
a) log5(y
3).
b) log5(y/3).
c) log5(
3√y)
d) −log5(3y).
e) 1 / 3.log5(y).
Questão 178
Assunto: Progressão aritmética
O quarto, o quinto e o sexto termos de uma
progressão aritmética são expressos por x + 1,
x 2 + 4 e 2x 2 + 3, respectivamente.
A soma dos dez primeiros termos dessa
progressão aritmética é igual a
a) 260
b) 265
c) 270
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97143
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
d) 275
e) 280
Questão 179
Assunto: Progressão aritmética
Uma sequência numérica tem seu termo geral
representado por an, para n ≥ 1. Sabe-se que
a1 = 0 e que a sequência cujo termo geral é
bn = an+1 – an, n ≥ 1, é uma progressão
aritmética cujo primeiro termo é b1 = 9 e cuja
razão é igual a 4.
O termo a1000 é igual a
a) 2.002.991
b) 2.002.995
c) 4.000.009
d) 4.009.000
e) 2.003.000
Questão 180
Assunto: Progressão aritmética
Para obter uma amostra de tamanho 1.000
dentre uma população de tamanho 20.000,
organizada em um cadastro em que cada
elemento está numerado sequencialmente de
1 a 20.000, um pesquisador utilizou o seguinte
procedimento:
I - calculou um intervalo de seleção da
amostra, dividindo o total da população pelo
tamanho da amostra: 20.000/1.000 = 20;
II - sorteou aleatoriamente um número inteiro,
do intervalo [1, 20]. O número sorteado foi 15;
desse modo, o primeiro elemento selecionado
é o 15º;
III - a partir desse ponto, aplica-se o intervalo
de seleção da amostra: o segundo elemento
selecionado é o 35º (15+20), o terceiro é o
55º (15+40), o quarto é o 75º (15+60), e
assim sucessivamente.
O último elemento selecionado nessa amostra
é o
a) 19.997º
b) 19.995º
c) 19.965º
d) 19.975º
e) 19.980º
Questão 181
Assunto: Progressão aritmética
Em uma progressão aritmética de 5 termos e
primeiro termo 5, a soma dos quadrados dos
três primeiros termos é igual à soma dos
quadrados dos dois últimos termos.
O maior valor possível para o último termo
dessa progressão aritmética é
a) 5,5
b) 6
c) 6,5
d) 7
e) 7,5
Questão 182
Assunto: Progressão aritmética
Os números naturais m, w e p constituem,
nessa ordem, uma progressão aritmética de
razão 4, enquanto que os números m, (p + 8)
e (w + 60) são, respectivamente, os três
termos iniciais de uma progressão geométrica
de razão q.
Qual é o valor de q?
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97144
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
a) 2
b) 3
c) 4
d) 6
e) 8
Questão 183
Assunto: Progressão aritmética
A sequência (a1, a2, a3, ..., a20) é uma
progressão aritmética de 20 termos, na qual
a8 + a9 = a5 + a3 + 189.
A diferença entre o último e o primeiro termo
dessa progressão, nessa ordem, é igual a
a) 19
b) 21
c) 91
d) 171
e) 399
Questão 184
Assunto: Progressão aritmética
Progressões aritméticas são sequências
numéricas nas quais a diferença entre dois
termos consecutivos é constante.
A sequência (5, 8, 11, 14, 17, ..., 68, 71) é
uma progressão aritmética finita que possui
a) 67 termos
b) 33 termos
c) 28 termos
d) 23 termos
e) 21 termos
Questão 185
Assunto: Progressão aritmética
Um cientista distribuiu 46,0 mL de álcool em
quatro tubos de ensaio dispostos lado a lado,
tendo as quantidades de álcool neles colocadas
formado uma progressão aritmética crescente.
Se, no último tubo, o cientista colocou 6,0 mL
a mais do que no segundo, quantos mililitros
de álcool ele colocou no primeiro tubo?
a) 2,5
b) 3,0
c) 4,5
d) 7,0
e) 10,0
Questão 186
Assunto: Progressão aritmética
Álvaro, Bento, Carlos e Danilo trabalham em
uma mesma empresa, e os valores de seus
salários mensais formam, nessa ordem, uma
progressão aritmética. Danilo ganha
mensalmente R$ 1.200,00 a mais que Álvaro,
enquanto Bento e Carlos recebem, juntos, R$
3.400,00 por mês.
Qual é, em reais, o salário mensal de Carlos?
a) 1.500,00
b) 1.550,00
c) 1.700,00
d) 1.850,00
e) 1.900,00
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97145
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 187
Assunto: Progressão aritmética
Os irmãos Antônio, Beatriz e Carlos comeram,
juntos, as 36 balas que havia em um pacote.
Mas Antônio achou a divisão injusta, já que
Beatriz comeu 4 balas a mais que ele, e Carlos
comeu mais balas do que Beatriz.
Se as quantidades de balas que os três irmãos
comeram formavam uma progressão
aritmética, quantas balas Antônio comeu?
a) 4
b) 6
c) 8
d) 10
e) 12
Questão 188
Assunto: Progressão aritmética
Durante os meses de agosto e setembro de
2011, o dólar apresentou grande valorização
frente ao real. Suponha que, em 24 de agosto,o valor de um dólar fosse R$ 1,60 e, em 23 de
setembro, R$ 1,84.
Se o aumento diário, de 24 de agosto a 23 de
setembro, tivesse ocorrido linearmente,
formando uma progressão aritmética, qual
seria, em reais, o valor do dólar em 8 de
setembro?
a) 1,70
b) 1,71
c) 1,72
d) 1,73
e) 1,74
Questão 189
Assunto: Progressão aritmética
Parlamentares alemães visitam a Transpetro
para conhecer logística de biocombustível.
―o presidente Sergio Machado mostrou o
quanto o Sistema Petrobras está crescendo.
Com a descoberta do pré-sal, o Brasil se
transformará, em 2020, no quarto maior
produtor de petróleo do mundo. ‗Em 2003, a
Petrobras produzia cerca de 1,5 milhão de
barris. Atualmente (2011), são 2,5 milhões. A
perspectiva é de que esse número aumente
ainda mais‘.‖
Disponível em: <http://www.transpetro.com.br/TranspetroSite/
appmanager/transpPortal/transpInternet?_nfpb=true&_windowLabel=barra
Menu_3&_nffvid=%2FTranspetroSite%2Fportlets%2FbarraMenu%2Fbarra
Menu.faces&_ pageLabel=pagina_base&formConteudo:codigo=1749>.
Acesso em: 07 abr. 2012. Adaptado.
Suponha que o aumento na produção anual de
barris tenha sido linear, formando uma
progressão aritmética. Se o mesmo padrão for
mantido por mais alguns anos, qual será, em
milhões de barris, a produção da Petrobras em
2013?
a) 2,625
b) 2,750
c) 2,950
d) 3,000
e) 3,125
Questão 190
Assunto: Progressão geométrica
Considere a sequência numérica cujo termo
geral é dado por a n=2
1-3n, para n ≥ 1. Essa
sequência numérica é uma progressão
a) geométrica, cuja razão é 1/8
b) geométrica, cuja razão é -6.
c) geométrica, cuja razão é -3.
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97146
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
d) aritmética, cuja razão é -3.
e) aritmética, cuja razão é 1/8
Questão 191
Assunto: Progressão geométrica
Para x > 0, seja Sx a soma
O número real x para o qual se tem Sx=1/4
a) 4
b) log25
c) 3/2
d) 5/2
e) log23
Questão 192
Assunto: Progressão geométrica
A soma dos n primeiros termos de uma
progressão geométrica é dada
por Sn=3n+4−81
2x3n
Quanto vale o quarto termo dessa progressão
geométrica?
a) 1
b) 3
c) 27
d) 39
e) 40
Questão 193
Assunto: Progressão geométrica
Uma sequência de números reais tem seu
termo geral, an , dado por an = 4.2
3n+1, para n
≥ 1. Essa sequência é uma progressão
a) geométrica, cuja razão é igual a 2.
b) geométrica, cuja razão é igual a 32.
c) aritmética, cuja razão é igual a 3.
d) aritmética, cuja razão é igual a 1.
e) geométrica, cuja razão é igual a 8.
Questão 194
Assunto: Progressão geométrica
Considere a progressão geométrica finita (a1,
a2, a3,...,a11, a12), na qual o primeiro termo
vale metade da razão e a7 = 64 . a4. O último
termo dessa progressão é igual a
a) 212
b) 216
c) 222
d) 223
e) 234
Questão 195
Assunto: Progressão geométrica
A sequência an, n∈N é uma progressão
aritmética cujo primeiro termo é a1=−2 e cuja
razão é r=3. Uma progressão geométrica, bn,
é obtida a partir da primeira, por meio da
relação
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97147
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Se b1 e q indicam o primeiro termo e a razão
dessa progressão geométrica, então q/b1 vale
a) 243.
b) 3.
c) 1/243.
d) −2/3.
e) −27/6.
Questão 196
Assunto: Função de primeiro grau
O gráfico de uma função f: R → R, definida
por f(x) = ax + b, contém o ponto (2,3) e um
outro ponto que pertence ao segmento de reta
que liga os pontos (4,7) e (4,10).
O maior valor possível de b é
a) -4
b) -1
c) 3
d) 7
e) 10
Questão 197
Assunto: Função de segundo grau
O gráfico de uma função quadrática, mostrado
na Figura a seguir, intersecta o eixo y no ponto
(0,9), e o eixo x, nos pontos (-2, 0) e (13, 0).
Se o ponto P(11,k) é um ponto da parábola, o
valor de k será
a) 5,5
b) 6,5
c) 7
d) 7,5
e) 9
Questão 198
Assunto: Função de segundo grau
Um estagiário de engenharia recebeu a
incumbência de resolver o seguinte problema:
ele precisava achar uma posição para o
ponto P (x,y), restrito ao primeiro quadrante
do plano xy, conforme mostrado na Figura
abaixo.
Trata-se de uma superfície plana e
perfeitamente circular, com diâmetro de 100
metros. O problema consiste em achar a
posição exata para o ponto P que garante a
máxima área para o triângulo sombreado da
Figura.
Após um estudo do problema, o estagiário
encontrou a posição exata do ponto P, para o
qual a área máxima do triângulo, em m2, é de
a) 1.250
b) 825
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97148
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
c) 625
d) 525
e) 485
Questão 199
Assunto: Função de segundo grau
Sejam
funções quadráticas de domínio real, cujos
gráficos estão representados acima. A função
f(x) intercepta o eixo das abscissas nos pontos
P(xp, 0) e M(xM, 0), e g(x), nos pontos (1, 0) e
Q(xQ, 0).
Se g(x) assume valor máximo quando x = xM,
conclui-se que xQ é igual a
a) 3
b) 7
c) 9
d) 11
e) 13
Questão 200
Assunto: Função de segundo grau
A raiz da função f(x) = 2x − 8 é também raiz
da função quadrática g(x) = ax2 + bx + c.
Se o vértice da parábola, gráfico da função
g(x), é o ponto V(−1, −25), a soma a + b + c
é igual a
a) − 25
b) − 24
c) − 23
d) − 22
e) − 21
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97149
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
N° GAB MATEMÁTICA
151 a CESGRANRIO - TA (ANP)/ANP/2016
152 e
CESGRANRIO - Tec
(BR)/BR/Administração/Controle Júnior/2015
153 e CESGRANRIO - Tec Adm (BNDES)/BNDES/2013
154 e CESGRANRIO - Esc BB/BB/"Sem Área"/2012
155 a
CESGRANRIO - Ass Adm (EPE)/EPE/Apoio
Administrativo/2012
156 d
CESGRANRIO - Tec (BR)/BR/Administração e
Controle Júnior/2012
157 e
CESGRANRIO - Tec (BR)/BR/Administração e
Controle Júnior/2012
158 d
CESGRANRIO - Aju
(LIQUIGÁS)/LIQUIGÁS/Motorista Granel I/2018
159 e
CESGRANRIO - Moto
(LIQUIGÁS)/LIQUIGÁS/Caminhão Granel I/2018
160 e
CESGRANRIO - Ass
(LIQUIGÁS)/LIQUIGÁS/Administrativo I/2018
161 e CESGRANRIO - Ag PM (IBGE)/IBGE/2016
162 d
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Suprimento de Bens e
Serviços Júnior/Administração/2014
163 c CESGRANRIO - Tec Ban (BASA)/BASA/2018
164 a
CESGRANRIO - Tec Jr
(TRANSPETRO)/TRANSPETRO/Ambiental/2018
165 b
CESGRANRIO - Aju
(LIQUIGÁS)/LIQUIGÁS/Motorista Granel I/2018
166 b CESGRANRIO - TA (ANP)/ANP/2016
167 e CESGRANRIO - TA (ANP)/ANP/2016
168 a CESGRANRIO - Tec Ban (BASA)/BASA/2015
169 b
CESGRANRIO -Ass (FINEP)/FINEP/Apoio
Administrativo/2014
170 b CESGRANRIO - Tec Adm (BNDES)/BNDES/2013
171 b
CESGRANRIO - Tec (BR)/BR/Operação
Júnior/2013
172 d
CESGRANRIO - Tec (BR)/BR/Operação
Júnior/2013
173 d CESGRANRIO - Tec Ban (BASA)/BASA/2013
174 c
CESGRANRIO - Ass Adm (EPE)/EPE/Apoio
Administrativo/2012
175 b CESGRANRIO - Tec (BR)/BR/Química Júnior/2015
* *
N° GAB MATEMÁTICA
176 a
CESGRANRIO - Aju
(LIQUIGÁS)/LIQUIGÁS/Motorista Granel I/2014
177 c CESGRANRIO - Tec Ban (BASA)/BASA/2013
178 d
CESGRANRIO - Tec Jr
(TRANSPETRO)/TRANSPETRO/Ambiental/2018
179 b CESGRANRIO - Esc BB/BB/"Sem Área"/2018
180 b CESGRANRIO - Esc BB/BB/"Sem Área"/2018
181 d
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Administração e Controle
Júnior/2018
182 b
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Suprimento de Bens e
Serviços Júnior/Administração/2014
183 e
CESGRANRIO - Ass Adm (EPE)/EPE/Apoio
Administrativo/2014
184 d CESGRANRIO - Tec Adm (BNDES)/BNDES/2013
185 d CESGRANRIO - CTA (DECEA)/DECEA/2012
186 e
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Químico Petróleo
Júnior/2012
187 c
CESGRANRIO - Ass Adm (EPE)/EPE/Apoio
Administrativo/2012
188 c
CESGRANRIO - Tec (BR)/BR/Administração e
Controle Júnior/2012
189 b
CESGRANRIO - Tec Jr
(TRANSPETRO)/TRANSPETRO/Administração e
Controle/2012
190 a CESGRANRIO - Tec Ban (BASA)/BASA/2018
191 b CESGRANRIO - Esc BB/BB/"Sem Área"/2018
192 a
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Segurança Júnior/2017
193 e CESGRANRIO - Tec Ban (BASA)/BASA/2015
194 d CESGRANRIO - Tec (BR)/BR/Química Júnior/2015
195 a CESGRANRIO - Tec Ban (BASA)/BASA/2013
196 b
CESGRANRIO - Aju
(LIQUIGÁS)/LIQUIGÁS/Motorista Granel I/2014
197 e
CESGRANRIO - Tec Jr
(TRANSPETRO)/TRANSPETRO/Ambiental/2018
198 c
CESGRANRIO - Tec
(LIQUIGÁS)/LIQUIGÁS/Instalações I/2018
199 b
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Químico Petróleo
Júnior/2012
200 e
CESGRANRIO - Tec Jr
(TRANSPETRO)/TRANSPETRO/Administração e
Controle/2012
* *
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97150
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 201
Assunto: Função exponencial e inequações
exponenciais
Quanto maior for a profundidade de um lago,
menor será a luminosidade em seu fundo, pois
a luz que incide em sua superfície vai
perdendo a intensidade em função da
profundidade do mesmo. Considere que, em
determinado lago, a intensidade y da luz a x
cm de profundidade seja dada pela
função , onde i0 representa a
intensidade da luz na sua superfície. No ponto
mais profundo desse lago, a intensidade da luz
corresponde a i0/3.
A profundidade desse lago, em cm, está entre
a) 150 e 160
b) 160 e 170
c) 170 e 180
d) 180 e 190
e) 190 e 200
Questão 202
Assunto: Função logarítmica e inequações
logarítmicas
Considerem-se as funções logarítmicas f(x) =
log4 x e g(x) = log2 x, ambas de domínio .
Calculando-se f(72) − g(3), o valor encontrado
será de
a) 1,0
b) 1,5
c) 2,0
d) 2,5
e) 3,0
Questão 203
Assunto: Função logarítmica e inequações
logarítmicas
Considere as funções g(x)= log2 x e h(x)
=logb x , ambas de domínio .
Se h(5)=1/2, então g(b + 9) é um número real
compreendido entre
a) 5 e 6
b) 4 e 5
c) 3 e 4
d) 2 e 3
e) 1 e 2
Questão 204
Assunto: Função logarítmica e inequações
logarítmicas
Se y=log81(1/27) e x ∈ R+ são tais que x
y=8,
então x é igual a
a) 1/16
b) 1/2
c) log38
d) 2
e) 16
Dados
log 2 = 0,30
log 3 = 0,48
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97151
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 205
Assunto: Outras questões sobre funções
Sabe-se que g é uma função par e está
definida em todo domínio da função f, e a
função f pode ser expressa por f(x) = x 2 + k .
x . g(x).
Se f(1) = 7, qual o valor de f(–1)?
a) 7
b) 5
c) –7
d) –6
e) –5
Questão 206
Assunto: Determinantes
Sejam A uma matriz quadrada de ordem 2 e B
uma matriz quadrada de ordem 3, tais que
detA . detB = 1.
O valor de det(3A) . det(2B) é
a) 5
b) 6
c) 36
d) 72
e) 108
Questão 207
Assunto: Determinantes
Na matriz , m, n e p são
números inteiros ímpares consecutivos tais que
m < n < p.
O valor de é
a) 2
b) 8
c) 16
d) 20
e) 22
Questão 208
Assunto: Determinantes
A matriz
O determinante da matriz A3×3 é igual a
a) − 6
b) 0
c) 6
d) 10
e) 42
Questão 209
Assunto: Sistemas lineares
Sistemas lineares homogêneos possuem, pelo
menos, uma solução e, portanto, nunca serão
considerados impossíveis. O sistema linear
dado abaixo possui infinitas soluções.
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97152
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Qual o maior valor possível para α?
a) 0
b) 1
c) 2
d) 3
e) 4
Questão 210
Assunto: Sistemas lineares
Maria comprou 30 balas e 18 chocolates para
distribuir entre seus três filhos, mas não os
distribuiu igualmente. O filho mais velho
recebeu igual número de balas e chocolates,
enquanto que o filho do meio ganhou 5 balas a
mais do que chocolates. O número de balas
que o filho caçula ganhou correspondeu ao
dobro do número de chocolates.
Sabendo-se que os dois filhos mais novos de
Maria ganharam a mesma quantidade de
chocolates, quantas balas couberam ao filho
mais velho?
a) 4
b) 7
c) 8
d) 11
e) 12
Questão 211
Assunto: Sistemas lineares
―A Diretoria de Terminais e Oleodutos da
Transpetro opera uma malha de 7.179 km de
oleodutos. Em 2010, [...] os 28 terminais
aquaviários operaram uma média mensal de
869 embarcações (navios e barcaças).‖
Disponível em:<http://www.transpetro.com.br/portugues/
relatorio_anual/2010/pt-en/index.html> Relatório anual 2010, p. 42.
Acesso em: 07 abr. 2012. Adaptado.
Se a diferença entre o número médio de
barcaças e o de navios operados mensalmente
nos terminais aquaviários em 2010 foi 23, qual
a média de barcaças operadas mensalmente?
a) 423
b) 432
c) 446
d) 464
e) 472
Questão 212
Assunto: Polinômios e equações polinomiais.
Expansão de binômios. Triângulo de Pascal
Se n é um número inteiro positivo, quantos
valores de n fazem com que a expressão
seja um número inteiro?
a) 4
b) 5
c) 6
d) 8
e) 12
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97153
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 213
Assunto: Tabela verdade das proposições
compostas
p q F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14
V V V V V V V V V F F F F F F F
F V V V V V F F F V V V F F F F
V F V V F F V V F V F F V V F F
F F V F V F V F V F V F V F V F
Da análise da tabela verdade associada às
fórmulas Fi,1 ≤ i ≤ 14, formadas a partir das
proposições p e q, onde V significa
interpretaçãoverdadeira e F interpretação
falsa, conclui-se que
a) F4 ∩ F13 é uma tautologia.
b) F9 implica F3.
c) F3 e F12 são equivalentes.
d) F1 é uma contradição.
e) {F2, F5, F10, F14 } é um conjunto de fórmulas
satisfatível.
Questão 214
Assunto: Equivalências lógicas (inclui negação
de proposições compostas)
No dia 15 de janeiro, Carlos disse:
— Se a data de entrega do trabalho fosse
amanhã, em vez de ter sido ontem, então eu
conseguiria concluí-lo.
De forma logicamente equivalente, no dia
seguinte, dia 16 de janeiro, Carlos poderia
substituir sua fala original por:
a) Se a data de entrega do trabalho tivesse
sido hoje, em vez de ontem, então eu
conseguiria concluí-lo.
b) Se a data de entrega do trabalho tivesse
sido anteontem, em vez de hoje, então eu
conseguiria concluí-lo.
c) Se eu não consegui concluir o trabalho,
então é porque a data de entrega não foi
anteontem, foi hoje.
d) Se eu não consegui concluir o trabalho,
então é porque a data de entrega não foi
amanhã, foi ontem.
e) Se eu não consegui concluir o trabalho,
então é porque a data de entrega não foi hoje,
foi anteontem.
Questão 215
Assunto: Equivalências lógicas (inclui negação
de proposições compostas)
João disse:
— Das duas, pelo menos uma: o depósito é
amplo e claro, ou ele não se localiza em
Albuquerque.
O que João disse é falso se, e somente se, o
depósito
a) fica em Albuquerque e não é amplo ou não
é claro.
b) fica em Albuquerque, não é amplo, nem é
claro.
c) não é amplo, não é claro e não fica em
Albuquerque.
d) é amplo ou é claro e fica em Albuquerque.
e) é amplo e claro e fica em Albuquerque.
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97154
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 216
Assunto: Equivalências lógicas (inclui negação
de proposições compostas)
É dada a seguinte proposição:
João não foi trabalhar, mas saiu com amigos.
A negação dessa proposição é logicamente
equivalente a
a) João foi trabalhar ou não saiu com amigos.
b) João foi trabalhar e não saiu com amigos.
c) João foi trabalhar e não saiu com inimigos.
d) João não foi trabalhar ou não saiu com
inimigos.
e) João não foi trabalhar e não saiu com
amigos.
Questão 217
Assunto: Equivalências lógicas (inclui negação
de proposições compostas)
João disse que, se chovesse, então o show não
seria cancelado. Infelizmente, os
acontecimentos revelaram que aquilo que João
falou não era verdade.
Portanto,
a) o show não foi cancelado porque choveu.
b) o show foi cancelado porque não choveu.
c) não choveu, e o show não foi cancelado.
d) não choveu, e o show foi cancelado.
e) choveu, e o show foi cancelado.
Questão 218
Assunto: Equivalências lógicas (inclui negação
de proposições compostas)
Se filho de pai estatístico sempre é estatístico,
então
a) pai de estatístico sempre é estatístico.
b) pai de estatístico nunca é estatístico.
c) pai de estatístico quase sempre é
estatístico.
d) pai de não estatístico sempre é estatístico.
e) pai de não estatístico nunca é estatístico.
Questão 219
Assunto: Equivalências lógicas (inclui negação
de proposições compostas)
Certo dia, João afirmou:
Se eu tivesse ido ao banco ontem, eu não
precisaria ir ao banco amanhã.
No dia seguinte, não tendo ido ao banco ainda,
João diria algo logicamente equivalente ao que
dissera no dia anterior, se tivesse dito:
a) Como não fui ao banco hoje, fui ao banco
anteontem.
b) Como não fui ao banco ontem, irei ao banco
hoje.
c) Como não fui ao banco hoje, fui ao banco
ontem.
d) Como preciso ir ao banco hoje, não fui ao
banco anteontem.
e) Como preciso ir ao banco hoje, eu fui ao
banco ontem.
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97155
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 220
Assunto: Argumentos - métodos decorrentes
da tabela verdade
Sabe-se que:
- Se João anda de navio ou não anda de trem,
então João se perde.
- Se João anda de trem, então João é paulista.
- Se João não poupa, então João anda de
navio.
Assim, se João não se perde, então João
a) é paulista e poupa.
b) é paulista, mas não poupa.
c) não é paulista e não poupa.
d) não é paulista, mas poupa.
e) ou não é paulista, ou não poupa.
Questão 221
Assunto: Argumentos - métodos decorrentes
da tabela verdade
O turista perdeu o voo ou a agência de viagens
se enganou. Se o turista perdeu o voo, então a
agência de viagens não se enganou. Se a
agência de viagens não se enganou, então o
turista não foi para o hotel. Se o turista não foi
para o hotel, então o avião atrasou. Se o
turista não perdeu o voo, então foi para o
hotel. O avião não atrasou. Logo,
a) o turista foi para o hotel e a agência de
viagens se enganou.
b) o turista perdeu o voo e a agência de
viagens se enganou.
c) o turista perdeu o voo e a agência de
viagens não se enganou.
d) o turista não foi para o hotel e não perdeu
o voo.
e) o turista não foi para o hotel e perdeu o
voo.
Questão 222
Assunto: Argumentos - métodos decorrentes
da tabela verdade
Sabe-se que as proposições
- Se Aristides faz gols então o GFC é campeão.
- O Aristides faz gols ou o Leandro faz gols.
- Leandro faz gols.
são, respectivamente, verdadeira, verdadeira e
falsa.
Daí, conclui-se que
a) Aristides não faz gols ou o GFC não é
campeão.
b) Aristides faz gols e o GFC não é campeão.
c) Aristides não faz gols e o GFC é campeão.
d) Aristides faz gols e o GFC é campeão.
e) Aristides não faz gols e o GFC não é
campeão.
Questão 223
Assunto: Diagramas lógicos, Proposições
categóricas, Negação de quantificadores
Considere a afirmação:
―Houve um momento em que todos não
falavam coisa alguma‖.
A negação dessa afirmação é logicamente
equivalente a
a) Em algum momento, todos falavam alguma
coisa.
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97156
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
b) Em algum momento, alguém não falava
coisa alguma.
c) Em nenhum momento todos falavam
alguma coisa.
d) Em cada momento, havia alguém que
falava alguma coisa.
e) Em cada momento, todos falavam alguma
coisa.
Questão 224
Assunto: Diagramas lógicos, Proposições
categóricas, Negação de quantificadores
Américo disse para seu filho:
— Se alguém chegasse à garagem, em
qualquer sexta- feira, então veria que todos os
carros estavam limpos. Ontem foi a primeira
exceção!
A fala de Américo para seu filho revela que
ontem
a) ou foi uma sexta-feira, ou todos os carros
da garagem estavam sujos.
b) ou foi uma sexta-feira, ou algum carro da
garagem estava sujo.
c) foi sexta-feira, e algum carro na garagem
não estava limpo.
d) havia mais de um carro sujo na garagem,
pois era sexta-feira.
e) foi sexta-feira, e todos os carros na
garagem não estavam limpos.
Questão 225
Assunto: Diagramas lógicos, Proposições
categóricas, Negação de quantificadores
Considere a seguinte argumentação:
Se alguémtivesse faltado à festa, então todos
teriam passado por interesseiros.
No entanto, alguém não passou por
interesseiro.
Conclui-se que
a) alguém foi à festa, mas não todos.
b) não houve festa.
c) quem faltou à festa é interesseiro.
d) todos faltaram à festa.
e) ninguém faltou à festa.
Questão 226
Assunto: Diagramas lógicos, Proposições
categóricas, Negação de quantificadores
A respeito de um pequeno grupo indígena, um
repórter afirmou: ―todos os indivíduos do
grupo têm pelo menos 18 anos de idade‖.
Logo depois, descobriu-se que a afirmação a
respeito da idade dos indivíduos desse grupo
não era verdadeira.
Isso significa que
a) todos os indivíduos do grupo têm mais de
18 anos de idade.
b) pelo menos um indivíduo do grupo tem
menos de 17 anos de idade.
c) todos os indivíduos do grupo têm menos de
18 anos de idade.
d) pelo menos um indivíduo do grupo tem
mais de 18 anos de idade.
e) pelo menos um indivíduo do grupo tem
menos de 18 anos de idade.
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97157
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 227
Assunto: Diagramas lógicos, Proposições
categóricas, Negação de quantificadores
Considere a afirmação feita sobre o setor de
uma empresa no qual há funcionários lotados:
―No setor de uma empresa, há algum
funcionário com, no mínimo, 32 anos de
idade.‖
A fim de se negar logicamente essa afirmação,
argumenta-se que
a) nenhum funcionário do setor tem 32 anos.
b) há apenas um funcionário do setor com 32
anos.
c) todos os funcionários do setor têm, no
mínimo, 33 anos.
d) todos os funcionários do setor têm, no
máximo, 32 anos.
e) todos os funcionários do setor têm, no
máximo, 31 anos.
Questão 228
Assunto: Diagramas lógicos, Proposições
categóricas, Negação de quantificadores
Considere verdadeiras as seguintes premissas:
- Todas as pessoas que andam de trem moram
longe do centro.
- Todas as pessoas que andam de carro não
andam de ônibus.
- Algumas pessoas andam de ônibus e de
trem.
Portanto,
a) algumas pessoas que moram próximo do
centro andam de carro ou de ônibus.
b) algumas pessoas que moram longe do
centro não andam de carro.
c) todas as pessoas que moram próximo do
centro andam de trem.
d) algumas pessoas que andam de carro
moram longe do centro.
e) todas as pessoas que andam de carro
moram longe do centro.
Questão 229
Assunto: Associação de informações
Uma liga de futebol do interior de um estado
brasileiro possui um banco de dados para
controlar os contratos entre os clubes e seus
técnicos e jogadores. Esse banco de dados
está armazenado em planilhas Excel.
As três primeiras Figuras exibem,
respectivamente, parte dos cadastros de
jogadores, técnicos e clubes. Jogadores e
técnicos são identificados pelo número do CPF,
enquanto os clubes são identificados pelo
número de inscrição na liga.
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97158
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
As duas Figuras seguintes exibem,
respectivamente, parte dos dados sobre
contratos entre clubes e jogadores e entre
clubes e técnicos.
Tomando por base as Tabelas acima, qual
jogador trabalhou durante mais tempo sob o
comando do técnico Joel Santamaria?
a) Jessé dos Santos
b) Orlando Casagrande
c) Paulo Roberto
d) Vanderlei Bastos
e) Wilson Mendes
Questão 230
Assunto: Associação de informações
Os aniversários de Alberto, Delson, Gilberto,
Nelson e Roberto são em 15 de março, 23 de
agosto, 28 de agosto e 23 de novembro, não
necessariamente nessa ordem. Esses cinco
rapazes nasceram em um mesmo ano, sendo
dois deles irmãos gêmeos que, naturalmente,
aniversariam no mesmo dia.
Delson e Alberto aniversariam em dias
diferentes do mesmo mês. Nelson e Alberto
aniversariam no mesmo dia de meses
diferentes. Desses rapazes, o mais novo é
a) Roberto
b) Alberto
c) Nelson
d) Delson
e) Gilberto
Questão 231
Assunto: Associação de informações
Ana, Beatriz e Clara namoram, cada uma
delas, um dos rapazes: Rui, Samuel ou Túlio,
não necessariamente nessa ordem.
Ana perguntou a Beatriz: ―Seu namorado foi
com o Túlio ao jogo de futebol?‖
Beatriz respondeu: ―Não, o seu namorado é
quem foi com o Túlio.‖
Se Rui não foi ao jogo de futebol, conclui-se
que
a) Ana é namorada de Rui.
b) Ana é namorada de Samuel.
c) Beatriz é namorada de Samuel.
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97159
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
d) Beatriz é namorada de Túlio.
e) Clara é namorada de Rui.
Questão 232
Assunto: Associação de informações
Um professor escolheu três alunos de sua
turma para fazerem seminários sobre medidas
de tendência central: João, Carlos e Maria. A
média aritmética, a mediana e a moda foram
as medidas escolhidas pelo professor para
serem os temas dos seminários. Cada um dos
alunos abordou apenas uma das três medidas
de tendência central, sendo que, ao final, cada
uma delas foi tema de algum seminário.
Sabe-se que:
Sobre a mediana, falou João ou Maria;
Sobre a moda, falou Maria ou Carlos;
Sobre a média aritmética, falou Carlos
ou Maria;
Ou João falou sobre a média aritmética,
ou Carlos falou sobre a moda.
A média aritmética, a mediana e a moda
foram, respectivamente, os temas dos
seminários de
a) Carlos, João e Maria
b) Carlos, Maria e João
c) Maria, João e Carlos
d) Maria, Carlos e João
e) João, Maria e Carlos
Questão 233
Assunto: Associação de informações
Três homens, Ari, Beto e Ciro, e três mulheres,
Laura, Marília e Patrícia, formam três casais
(marido e mulher). Dentre as mulheres, há
uma médica, uma professora e uma advogada.
A mulher de Ari não se chama Patrícia e não é
professora. Beto é casado com a advogada, e
Ciro é casado com Laura.
As profissões de Laura, Marília e Patrícia são,
respectivamente,
a) advogada, médica e professora
b) advogada, professora e médica
c) professora, médica e advogada
d) professora, advogada e médica
e) médica, professora e advogada
Questão 234
Assunto: Sequências de números, figuras,
letras e palavras
Laura tem 6 caixas, numeradas de 1 a 6, cada
uma contendo alguns cartões. Em cada cartão
está escrita uma das seis letras da palavra
BRASIL. A Figura ilustra a situação:
Laura retirou cartões das caixas, um de cada
vez, de modo que, no final, sobrou apenas um
cartão em cada caixa, sendo que, em caixas
diferentes, sobraram cartões com letras
diferentes.
O cartão que sobrou na caixa de número 4 foi
o que contém a letra
a) L
b) B
c) S
d) R
e) A
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97160
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 235
Assunto: Sequências de números, figuras,
letras e palavrasJuninho brinca com uma folha de papel da
seguinte forma: corta-a em 6 pedaços, depois
apanha um desses pedaços e o corta em 6
pedaços menores; em seguida, apanha
qualquer um dos pedaços e o corta,
transformando-o em 6 pedaços menores.
Juninho repete diversas vezes a operação:
apanhar um pedaço qualquer e cortá-lo em 6
pedaços. Imediatamente após uma dessas
operações, ele resolve contar os pedaços de
papel existentes.
Um resultado possível para essa quantidade de
pedaços de papel é
a) 177
b) 181
c) 178
d) 180
e) 179
Questão 236
Assunto: Sequências de números, figuras,
letras e palavras
Na Figura abaixo, em cada um dos pontos
destacados, será escrito um número, de modo
que, para qualquer segmento desenhado
(lados dos hexágonos), a soma dos números
escritos em suas extremidades seja a mesma.
Já estão escritos dois dos números.
Sendo assim, o valor de x é
a) 84
b) 51
c) 42
d) 36
e) 15
Questão 237
Assunto: Sequências de números, figuras,
letras e palavras
Considere dois triângulos equiláteros tais que o
menor tem o lado medindo a metade da
medida do lado do maior. O triângulo menor
gira, no sentido horário, em torno do maior. Os
giros são feitos sempre mantendo algum
contato (sem deslizamento) entre os dois
triângulos. Cada passo consiste no giro que
termina com um vértice do triângulo pequeno
coincidindo com um vértice do triângulo
grande, e um lado do triângulo pequeno
apoiado em um lado do grande, como mostra
a Figura abaixo.
A Figura correspondente ao fim do 2.014º
passo é
a)
b)
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97161
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
c)
d)
e)
Questão 238
Assunto: Sequências de números, figuras,
letras e palavras
Uma sequência numérica infinita (e1, e2, e3,...,
en,...) é tal que a soma dos n termos iniciais é
igual a
n2 + 6n
O quarto termo dessa sequência é igual a
a) 9
b) 13
c) 17
d) 32
e) 40
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97162
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
N° GAB MATEMÁTICA
201 e
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Suprimento de Bens e
Serviços Júnior/Administração/2014
202 b CESGRANRIO - CTA (DECEA)/DECEA/2012
203 a
CESGRANRIO - Tec (PETRO)/PETROBRAS/Químico
Petróleo Júnior/2012
204 a
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Contabilidade Júnior/2012
205 e CESGRANRIO - Esc BB/BB/"Sem Área"/2018
206 d
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Administração e Controle
Júnior/2018
207 e
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Segurança Júnior/2017
208 b
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Contabilidade Júnior/2012
209 c
CESGRANRIO - Tec Jr
(TRANSPETRO)/TRANSPETRO/Ambiental/2018
210 a
CESGRANRIO - Tec (BR)/BR/Administração e
Controle Júnior/2012
211 c
CESGRANRIO - Tec Jr
(TRANSPETRO)/TRANSPETRO/Administração e
Controle/2012
212 b
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Administração e Controle
Júnior/2018
213 b
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Informática Júnior/2012
214 e
CESGRANRIO - Ass
(LIQUIGÁS)/LIQUIGÁS/Logística/2018
215 a
CESGRANRIO - Ass
(LIQUIGÁS)/LIQUIGÁS/Logística/2018
216 a
CESGRANRIO - Ass
(LIQUIGÁS)/LIQUIGÁS/Logística/2018
217 e
CESGRANRIO - Ass
(LIQUIGÁS)/LIQUIGÁS/Logística/2018
218 e CESGRANRIO - Ag PT (IBGE)/IBGE/2014
219 d CESGRANRIO - Tec IGE (IBGE)/IBGE/2013
220 a CESGRANRIO - Tec IGE (IBGE)/IBGE/2013
221 a
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Exploração de Petróleo
Júnior/Informática/2012
222 d
CESGRANRIO - Tec
(PETRO)/PETROBRAS/Exploração de Petróleo
Júnior/Informática/2012
223 d
CESGRANRIO - Ass
(LIQUIGÁS)/LIQUIGÁS/Logística/2018
224 c
CESGRANRIO - Ass
(LIQUIGÁS)/LIQUIGÁS/Logística/2018
225 e CESGRANRIO - Ag PM (IBGE)/IBGE/2016
* *
N° GAB MATEMÁTICA
226 e CESGRANRIO - Ag PM (IBGE)/IBGE/2014
227 e CESGRANRIO - Tec IGE (IBGE)/IBGE/2013
228 b CESGRANRIO - Tec IGE (IBGE)/IBGE/2013
229 a
CESGRANRIO - TRPDACGN (ANP)/ANP/Técnico
em Química/2016
230 c CESGRANRIO - Ag PM (IBGE)/IBGE/2014
231 b
CESGRANRIO - Tec (BR)/BR/Administração e
Controle Júnior/2013
232 c CESGRANRIO - Tec IGE (IBGE)/IBGE/2013
233 c CESGRANRIO - Tec IGE (IBGE)/IBGE/2013
234 a CESGRANRIO - Ag PM (IBGE)/IBGE/2014
235 b CESGRANRIO - Ag PM (IBGE)/IBGE/2014
236 b CESGRANRIO - Ag PT (IBGE)/IBGE/2014
237 d CESGRANRIO - Ag PT (IBGE)/IBGE/2014
238 b CESGRANRIO - Esc BB/BB/"Sem Área"/2012
* *
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97163
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
MATEMÁTICA FINANCEIRA
Questão 1
Assunto: Conceitos iniciais: definição de
capital, montante, taxa e desconto.
Uma mercadoria é vendida por R$ 95,00 à
vista ou em duas parcelas de R$ 50,00 cada
uma: a primeira no ato da compra, e a
segunda um mês após a compra.
Qual é, aproximadamente, a taxa de juros
mensal cobrada na venda em duas parcelas?
a) 5%
b) 5,26%
c) 10%
d) 11,11%
e) 15%
Questão 2
Assunto: Juros simples
Um capital de R$ 1.200,00, aplicado no regime
de juros simples, rendeu R$ 65,00 de juros.
Sabendo-se que a taxa de juros contratada foi
de 2,5% ao ano, é correto afirmar que o
período da aplicação foi de
a) 20 meses.
b) 22 meses.
c) 24 meses.
d) 26 meses.
e) 30 meses.
Questão 3
Assunto: Juros simples
Em uma determinada data, Henrique recebeu,
por serviços prestados a uma empresa, o valor
de R$ 20.000,00. Gastou 37,5% dessa quantia
e o restante aplicou a juros simples, a uma
taxa de 18% ao ano. Se no final do período de
aplicação ele resgatou o montante
correspondente de R$ 14.000,00, significa que
o período dessa aplicação foi de
a) 1 trimestre.
b) 10 meses.
c) 1 semestre.
d) 8 meses.
e) 1 ano e 2 meses
Questão 4
Assunto: Juros simples
Um aparelho de telefone celular custa, à vista,
R$ 1.200,00. Esse valor pode ser pago
posteriormente, sendo cobrada uma taxa
mensal de juro simples de 4%. Se uma pessoa
comprar esse aparelho e efetuar o pagamento
dois meses depois, o preço total pago será de
a) R$ 1.284,00.
b) R$ 1.296,00.
c) R$ 1.310,00.
d) R$ 1.318,00.
e) R$ 1.325,00.
Questão 5
Assunto: Juros simples
Um capital A, aplicado a juros simples com
taxa de 9% ao ano, rende em 6 meses, os
mesmos juros simples que um capital B
aplicado a taxa de 0,8% ao mês, durante 9
meses. Sabendo-se que o capital A é R$
900,00 superior ao capital B, então o valor do
capital A é
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97164
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
a) R$ 2.500,00.
b) R$ 2.400,00.
c) R$ 2.200,00.
d) R$ 1.800,00.e) R$ 1.500,00.
Questão 6
Assunto: Juros simples
Uma pessoa aplicou R$ 1.500,00, à taxa de
juro simples de 18% ao ano. Exatamente 5
meses após, ela fez mais uma aplicação, à taxa
de juro simples de 12% ao ano. Quando a
primeira aplicação completou 18 meses, ela
resgatou as duas aplicações, resultando em
um montante total de R$ 3.261,00. A segunda
aplicação feita pela pessoa foi de
a) R$ 1.100,00.
b) R$ 1.200,00.
c) R$ 1.300,00.
d) R$ 1.400,00.
e) R$ 1.500,00.
Questão 7
Assunto: Juros simples
Antonia fez uma aplicação a juros simples, por
um período de um ano e meio, e a razão entre
o montante dessa aplicação e o capital
aplicado foi 23/20.
Sabendo que o valor dos juros dessa aplicação
foi de R$ 750,00, o valor do capital aplicado e
a taxa de juros simples anual equivalente a
essa aplicação foram, correta e
respectivamente,
a) R$ 5.000,00 e 10%
b) R$ 5.000,00 e 12%
c) R$ 5.500,00 e 12,5%
d) R$ 6.000,00 e 10%
e) R$ 6.000,00 e 12%
Questão 8
Assunto: Juros simples
Aldo aplicou R$ 7.000,00 por um tempo numa
caderneta de poupança e recebeu um total de
R$ 1.750,00 de juros. No mesmo dia em que
Aldo fez a aplicação, Baldo aplicou, na mesma
poupança, uma certa quantia que rendeu R$
1.375,00 de juros no mesmo período de tempo
da aplicação de Aldo.
Quanto, em reais, Baldo aplicou na poupança?
a) 5.500
b) 5.000
c) 6.500
d) 6.000
e) 4.500
Questão 9
Assunto: Juros simples
Um capital de R$ 1.350,00 foi aplicado a juros
simples, com taxa trimestral de 2,4%. Para se
obterem juros de R$ 64,80, o tempo de
duração dessa aplicação deverá ser de
a) 4 meses.
b) 5 meses.
c) 6 meses.
d) 7 meses.
e) 8 meses.
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97165
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 10
Assunto: Juros simples
Uma financiadora lançou a seguinte
campanha:
Se uma pessoa contratar um empréstimo de
R$ 6.000,00, nos moldes da campanha, para
pagar em 12 prestações iguais, com
vencimentos para os 12 meses seguintes à
contratação do empréstimo, ela irá pagar
prestações iguais a
a) R$ 650,00.
b) R$ 625,00.
c) R$ 575,00.
d) R$ 525,00.
e) R$ 512,50.
Questão 11
Assunto: Juros simples
Considere um empréstimo de certo valor
tomado por um período de 8 meses, contraído
no sistema de juro simples, à taxa de 15% ao
ano. Sabe-se que o valor emprestado mais os
juros devidos foram integralmente pagos na
data de vencimento desse empréstimo. Se o
valor total pago na data de vencimento foi
igual a R$ 9.350,00, então o valor emprestado
foi de
a) R$ 8.500,00.
b) R$ 8.250,00.
c) R$ 8.000,00.
d) R$ 7.750,00.
Questão 12
Assunto: Juros simples
Um capital, aplicado a juros simples, durante 8
meses e com taxa de 18% ao ano, rendeu R$
216,00 de juros. O capital aplicado era de
a) R$ 2.200,00.
b) R$ 2.000,00.
c) R$ 1.800,00.
d) R$ 1.600,00.
e) R$ 1.400,00
Questão 13
Assunto: Juros simples
Uma empresa toma um empréstimo de R$
200.000,00, por 20 dias, a uma determinada
taxa de juro, no regime de simples. Considere
que, ao final desse período, os juros pagos são
de R$ 8.800,00.
Assim, a taxa mensal de juro simples cobrada
nesse empréstimo, considerando o mês com
30 dias, foi igual a
a) 4,0%
b) 4,4%
c) 6,0%
d) 6,6%
e) 8,8%
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97166
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 14
Assunto: Juros simples
Um comprador tem duas opções de
pagamento: pagar à vista, com desconto de
20% sobre o preço de tabela ou a prazo, um
mês após a data da compra, com um
acréscimo de 10% sobre o preço de tabela.
O valor mais próximo da taxa de juro mensal
cobrada nessa operação, comparando-se o
valor a ser pago, por um mesmo produto, em
cada uma das opções apresentadas, é igual a
a) 10%
b) 22%
c) 30%
d) 33%
e) 38%
Questão 15
Assunto: Juros simples
Um certo capital foi aplicado por 15 meses em
uma aplicação que rendia juros simples de 8%
ao ano. Os juros obtidos com essa aplicação
foram reinvestidos no mercado de ações, o
que proporcionou 25% de ganho sobre o que
foi investido. Se o montante dessa segunda
aplicação foi igual a R$ 600,00, o capital que
foi investido na primeira aplicação foi
a) R$ 4.800,00.
b) R$ 5.000,00.
c) R$ 5.600,00.
d) R$ 6.200,00.
e) R$ 6.400,00.
Questão 16
Assunto: Juros simples
Para dobrar o valor de um capital, investido
em um regime de capitalização com juros
simples à taxa de 4% ao mês, são necessários:
a) 60 meses
b) 36 meses
c) 18 meses
d) 48 meses
e) 25 meses
Questão 17
Assunto: Juros simples
João fez uma compra de R$ 250,00 e pagou
em uma só vez, após dois meses. Sabendo que
o valor pago, após esses dois meses, foi de R$
275,00, e que foi cobrado juro simples sobre o
valor da compra, então, a taxa mensal de juros
cobrada foi:
a) 4,0%
b) 4,5%
c) 5,0%
d) 5,5%
e) 6,0%
Questão 18
Assunto: Juros simples
Conrado tomou um empréstimo de valor igual
a R$ 8.000,00, que foi totalmente pago, em
uma única parcela, após n meses, com
acréscimo de juro simples, à taxa de 9% ao
ano. Se o valor total pago foi de R$ 8.600,00,
então n é igual a
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97167
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
a) 8.
b) 9.
c) 10.
d) 11.
e) 12.
Questão 19
Assunto: Juros simples
Ao final de um mês de aplicação financeira,
Antônio resgatou R$ 2.121,00, o que
correspondeu a um resgate com 1% de
rendimento em relação ao valor aplicado no
início do mês. Nas condições descritas, o valor
aplicado por Antônio no início do mês foi de
a) R$ 2.050,00.
b) R$ 2.089,00.
c) R$ 1.928,18.
d) R$ 2.099,79.
e) R$ 2.100,00.
Questão 20
Assunto: Juros simples
Certo capital, aplicado por um período de 9
meses, a uma taxa de juro simples de 18% ao
ano, rendeu juros no valor de R$ 1.620,00.
Para que os juros do mesmo capital, aplicado
no mesmo período, sejam de R$ 2.160,00, a
taxa de juro simples anual deverá
corresponder, da taxa de 18% ao ano, a:
a) 7/6
b) 4/3
c) 3/2
d) 5/3
e) 11/6
Questão 21
Assunto: Juros simples
Carlos fez um empréstimo de R$ 2.800,00, à
taxa de juros simples de 1,3% ao mês, que
deve ser pago após 3 meses, juntamente com
os juros. O valor que Carlos deverá pagar é
igual a
a) R$ 2.839,40.
b) R$ 2.889,30.
c) R$ 2.909,20.
d) R$ 2.953,20.
e) R$ 3.112,40.
Questão 22
Assunto: Juros simples
Anselmo aplicou R$ 10.000,00 a uma taxa de
juro simples de 0,75% ao mês, durante x
meses. Na mesma data, Bernardo aplicou,
também, R$ 10.000,00 a uma taxa de juro
simples de 0,8% ao mês, durante x + 3
meses. Se o valor recebido de juros por
Bernardo superou em R$ 255,00 o valor
recebido de juros por Anselmo, então o
número de meses da aplicação de Bernardo foi
igual a
a) 5.
b) 6.
c) 7.
d) 8.
e) 9.
Lei 9610/98. Proibida a reprodução, vendaou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97168
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 23
Assunto: Juros simples
Um empréstimo de determinado valor C foi
efetuado a uma taxa de juro simples de 18%
ao ano, por um prazo de 8 meses. Sabendo-se
que o montante relacionado a esse
empréstimo foi de R$ 11.200,00, o valor C
emprestado foi de
a) R$ 9.000,00.
b) R$ 9.250,00.
c) R$ 9.500,00.
d) R$ 9.750,00.
e) R$ 10.000,00.
Questão 24
Assunto: Juros simples
Dois capitais distintos, C1 e C2, sendo C2
maior que C1, foram aplicados por prazos
iguais, a uma mesma taxa de juros simples e
geraram, ao final da aplicação, montantes
iguais a 9/8 dos respectivos capitais iniciais. Se
a diferença entre os valores recebidos de juros
pelas duas aplicações foi igual a R$ 500,00,
então C2 – C1 é igual a
a) R$ 3.000,00.
b) R$ 4.000,00.
c) R$ 5.000,00.
d) R$ 6.000,00.
e) R$ 8.000,00
Questão 25
Assunto: Juros simples
Um capital de R$ 1.500,00 aplicado a juro
simples durante 9 meses rendeu juros de R$
81,00. A taxa anual de juros dessa aplicação
foi
a) 7,2%
b) 6,8%
c) 6,3%
d) 5,5%
e) 5,2%
Questão 26
Assunto: Juros simples
Uma determinada quantia de dinheiro foi
aplicada a juro simples, com taxa de 0,8% ao
mês, durante 5 meses. Sabendo que nesse
período foram obtidos R$ 48,00 de juros, a
quantia de dinheiro aplicada foi
a) R$ 1.200,00.
b) R$ 1.250,00.
c) R$ 1.300,00.
d) R$ 1.350,00.
e) R$ 1.400,00.
Questão 27
Assunto: Juros simples
Um produto foi comprado em 2 parcelas, a
primeira à vista e a segunda após 3 meses, de
maneira que sobre o saldo devedor, incidiram
juros simples de 2% ao mês. Se o valor das 2
parcelas foi igual a R$ 265,00, o preço desse
produto à vista é
a) R$ 530,00.
b) R$ 515,00.
c) R$ 500,00.
d) R$ 485,00.
e) R$ 460,00.
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97169
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 28
Assunto: Juros simples
Um capital aplicado a juro simples, com taxa
de 10,2% ao ano, durante 4 meses, rendeu
um juro de R$ 68,00. O valor do capital
aplicado era
a) R$ 2.000,00.
b) R$ 2.100,00.
c) R$ 2.200,00.
d) R$ 2.300,00.
e) R$ 2.400,00.
Questão 29
Assunto: Juros simples
Gabriel aplicou R$ 3.000,00 a juro simples, por
um período de 10 meses, que resultou em um
rendimento de R$ 219,00. Após esse período,
Gabriel fez uma segunda aplicação a juro
simples, com a mesma taxa mensal da
anterior, que após 1 ano e 5 meses resultou
em um rendimento de R$ 496,40. O valor
aplicado por Gabriel nessa segunda aplicação
foi
a) R$ 4.500,00.
b) R$ 5.000,00.
c) R$ 4.000,00.
d) R$ 6.000,00.
e) R$ 5.500,00.
Questão 30
Assunto: Juros simples
Um capital A, de R$ 1.000,00, foi aplicado a
juros simples com taxa de 0,75% ao mês,
durante certo tempo. Um capital B, também
aplicado a juros simples com taxa de 0,80% ao
mês, durante o mesmo período de tempo de
aplicação do capital A, rendeu os mesmos
juros que o capital A. O valor do capital B era
a) R$ 997,50.
b) R$ 983,00.
c) R$ 963,50.
d) R$ 953,70.
e) R$ 937,50.
Questão 31
Assunto: Juros simples
Um comerciante, ao final de um trimestre,
possui R$ 50.000,00 para aplicar. Ele decidiu
aplicar apenas 20% desse dinheiro, durante 3
meses, em um investimento que rende, em
juros simples, uma taxa de 1,5% ao mês. Ao
fim desse trimestre, se não houver retiradas,
esse comerciante possuirá, entre o valor
aplicado e os juros correspondentes, um total
de
a) R$ 10.250,00.
b) R$ 10.450,00.
c) R$ 10.675,00.
d) R$ 14.500,00.
e) R$ 15.675,00.
Questão 32
Assunto: Juros simples
Suponha que Carlos queira aplicar um capital a
juros simples para sacar um montante de
130% do capital aplicado 18 meses depois.
Nessa condição, a taxa de juros simples anual
equivalente será de
a) 20%.
b) 15%.
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97170
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
c) 17,5%.
d) 22,5%.
e) 25%.
Questão 33
Assunto: Juros simples
Quando os juros incidem, exclusivamente,
sobre o capital inicial investido, eles são
chamados de juros
a) compostos.
b) montantes.
c) simples.
d) iniciais.
e) proporcionais.
Questão 34
Assunto: Juros simples
Texto VI
A prefeitura de determinada cidade celebrou
convênio com o governo federal no valor de R$
240.000,00 destinados à implementação de
políticas públicas voltadas para o
acompanhamento da saúde de crianças na
primeira infância. Enquanto não eram
empregados na finalidade a que se destinava e
desde que foram disponibilizados pelo governo
federal, os recursos foram investidos, pela
prefeitura, em uma aplicação financeira de
curto prazo que remunera à taxa de juros de
1,5% ao mês, no regime de capitalização
simples.
Na situação descrita no texto VI, se o
dinheiro tivesse ficado aplicado por três meses,
o rendimento auferido nessa aplicação no final
desse período teria sido de
a) R$ 2.400,00.
b) R$ 3.600,00.
c) R$ 7.200,00.
d) R$ 8.000,00.
e) R$ 10.800,00
Questão 35
Assunto: Juros simples
Texto VI
A prefeitura de determinada cidade celebrou
convênio com o governo federal no valor de R$
240.000,00 destinados à implementação de
políticas públicas voltadas para o
acompanhamento da saúde de crianças na
primeira infância. Enquanto não eram
empregados na finalidade a que se destinava e
desde que foram disponibilizados pelo governo
federal, os recursos foram investidos, pela
prefeitura, em uma aplicação financeira de
curto prazo que remunera à taxa de juros de
1,5% ao mês, no regime de capitalização
simples.
De acordo com as informações do texto VI, a
taxa de juros anual equivalente à taxa de
remuneração da aplicação financeira escolhida
pela prefeitura é
a) inferior a 5%.
b) superior a 5% e inferior a 10%.
c) superior a 10% e inferior a 15%.
d) superior a 15% e inferior a 20%.
e) superior a 20%.
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Uso Individual. Cópia licenciada para: Julian matheus Da silva abreu CPF/CNPJ: 608.108.673-97171
Lei 9610/98. Proibida a reprodução, venda ou compartilhamento deste arquivo.
Concurseiros Abençoados / Uso Individual. Cópia registrada para
Questão 36
Assunto: Juros simples
Miguel aderiu ao consórcio de uma moto em
parcelas mensais de R$ 220,00. Suas parcelas
vencem sempre no dia 20 de cada mês,
mesmo se o dia cair em feriado ou fim de
semana. Em caso de atraso no pagamento,
cobra-se uma multa fixa de R$ 30,00 a cada
período de 40 dias de atraso, mais um juro
simples de 1% por dia de atraso. Miguel
esqueceu de fazer o pagamento da parcela no
mês de março, quitando-a no dia 20 de abril
do mês seguinte, juntamente com a quitação
da parcela mensal que vencia naquele dia.
Lembrando que março tem 31 dias, o valor do
consórcio pago por Miguel no dia 20 de abril
foi igual a
a) R$ 518,20.
b) R$ 538,20.
c) R$ 586,40.
d) R$ 594,60.
e) R$ 606,40.