Buscar

Termometria-2023-03-25

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 34 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 34 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 34 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Equilíbrio térmico, Temperatura e Dilatação 
 
_____ 
Pinheiro & Corradi - Fundamentos de Mecânica dos Fluidos e Termodinâmica - 25/03/2023 
 
1 Equilíbrio térmico, Temperatura e Dilatação 
Carlos Basílio Pinheiro - Universidade federal de Minas Gerais 
Wagner Corradi Barbosa - Universidade federal de Minas Gerais 
 
APÓS O ESTUDO DESTA UNIDADE VOCÊ DEVE SER CAPAZ DE: 
• Distinguir as descrições macroscópica e microscópica de sistemas; 
• Distinguir os conceitos de temperatura e calor; 
• Relacionar temperatura e equilíbrio térmico; 
• Conceitos de equilíbrio termodinâmico e equilíbrio térmico; 
• Identificar propriedades termométricas e funcionamento de termômetros: 
• Entender a escala Kelvin absoluta de temperatura; 
• Relacionar escalas termométricas; 
• Resolver problemas relativos à dilatação térmica. 
 
Nesta unidade inicialmente serão mostradas as formas macroscópicas e microscópicas de se 
descrever um sistema sob o ponto de vista termodinâmico. A seguir serão definidas as variáveis de 
estado ou propriedades de estado que caracterizam ou identificam o estado termodinâmico do 
sistema. A ideia de equilíbrio térmico é estabelecida com a Lei Zero da Termodinâmica, a qual será 
usada para conceituar formalmente a variável de estado Temperatura. Uma vez estabelecido 
formalmente o conceito de temperatura, podemos perguntar como medi-la. Propriedades 
termométricas, termômetros e escalas de temperatura serão então estudados, destacando-se o 
termômetro de gás a volume constante e a escala Kelvin. Finalmente a dilatação térmica será 
abordada. Vários problemas serão resolvidos ao longo do capítulo e uma série de questões 
conceituais, assim como problemas, serão apresentados ao final do capítulo, visando a fixação dos 
conceitos apresentados. 
 
Equilíbrio térmico, Temperatura e Dilatação 
 
_____ 
Pinheiro & Corradi - Fundamentos de Mecânica dos Fluidos e Termodinâmica - 25/03/2023 
 
 LOCALIZAÇÃO DOS TÓPICOS EM CAPÍTULOS DE LIVROS 
EQ
U
IL
ÍB
RI
O
 T
ÉR
M
IC
O
, T
EM
PE
RA
TU
RA
 E
 D
IL
AT
AÇ
ÃO
 
LIVRO AUTORES EDIÇÕES SEÇÕES 
Física II 
Addison-Wesley 
Sears, Zemansky, Young 
Freedman; 10ª. 
15.1 - 15.8 
16.1 - 16.2 
Física 2 
LTC 
Sears, Zemansky, Young 2ª. 
14.1 – 14.6 
15.1 – 15.5 
16.1 – 16.5 
Física 2 
Livros Técnicos e 
Científicos S.A 
Resnick, Halliday, Krane 4ª. 
22.1 – 22.5 
25.1 – 25.2 
e 25.7 
Física 2 Livros Técnicos e 
Científicos S.A 
Resnick, Halliday, Krane 5ª. 
21.1-22.5 
23.1-23.2 
The Feynman Lectures on 
Physics; Vol. I Feynman, Leighton, Sands 
 
Fundamentos de Física, 
vol.2 Livros Técnicos e 
Científicos S.A 
Halliday, Resnick 3ª. 
19.2 – 19.7 
20.1 – 20.3 
e 20.7 
Física 2 
Editora Makron Books do 
Brasil 
Keller, Gettys, Skove 1ª. 16.1-16.6 
Curso de Física, vol.2 
Ed. Edgard Blücher 
Moysés Nussenzveig 3ª. 
7.1 – 7.5 
8.1 – 8.4 
Física, vol.1b 
Ed. Guanabara 
Tipler 2ª 
16.1 – 16.5 
18.1 – 18.2 
e 18.4 
Física, vol.2 
Ed. Guanabara 
Tipler 3ª. 
15.1 – 15.3 
16.1 – 16.3 
Física, vol.2 
Ed. Guanabara 
Tipler 5ª. 17.1 – 17.3 
Física, vol.2 
Livros Técnicos e 
Científicos S.A 
Alaor S. Chaves 1ª. 
6.1 – 6.2 
6.4 – 6.12 
e 7.4 
Física, Fundamentos e 
Aplicações, vol.2 
Editora McGraw Hill 
Eisberg e Lerner 1ª. 17.1-17.7 
Física 2 
Livros Técnicos e 
Científicos S.A 
R. A. Serway 3ª. 
19.1 – 19.6 
20.1 – 20.3 
e 20.7 
Equilíbrio térmico, Temperatura e Dilatação 
 
_____ 
Pinheiro & Corradi - Fundamentos de Mecânica dos Fluidos e Termodinâmica - 25/03/2023 
 
1.1 Descrição Macroscópica e Microscópica 
Um sistema pode ser fisicamente descrito por suas grandezas macroscópicas, tais como temperatura, 
pressão, volume, energia interna, etc. e essas grandezas macroscópicas podem ser inter-relacionadas 
por equações de estado apropriadamente estabelecidas. Tais grandezas, variáveis ou propriedades, 
são então chamadas de variáveis de estado ou propriedades de estado. 
o A pressão de um gás, grandeza macroscópica, é medida operacionalmente com um 
manômetro. Microscopicamente, a pressão está relacionada com a taxa média de 
transferência do momento linear do gás para o fluido do manômetro, quando as moléculas 
do gás colidem com uma membrana interna de um manômetro; 
o A temperatura de um gás, também uma grandeza macroscópica, é relacionada à energia 
cinética translacional média das moléculas; 
o Se as grandezas macroscópicas podem ser expressas em termos das grandezas 
microscópicas, então as leis da termodinâmica também podem ser expressas 
quantitativamente em termos da mecânica estatística, porque na descrição microscópica 
existe um número infinito de partículas que na verdade representam moléculas ou átomos 
as quais só podem ser caracterizados estatisticamente. 
Desta forma, na descrição microscópica podemos descrever um sistema ou uma substância, por 
exemplo um gás contido em um recipiente, detalhando os movimentos de cada uma das moléculas 
daquele gás. Isto levaria a um número infinito de equações físicas. A abordagem de descrever um 
sistema ou uma substância pela movimentação de cada uma das moléculas ou átomos constituintes 
é chamada de dinâmica molecular e converge para a mecânica estatística que por sua vez, relaciona 
médias de propriedades moleculares com quantidades por nós conhecidas como temperatura, 
pressão e outras. 
A descrição macroscópica trabalha com as propriedades em escala muito maior do que a escala 
molecular e trata da interação macroscópica do sistema com sua vizinhança como salientado 
anteriormente. 
1.2 Variáveis de estado 
As variáveis de estado são variáveis que caracterizam o estado ou a condição de um sistema 
termodinâmico. Exemplos de variáveis de estado termodinâmicas são pressão (p), volume (V), 
temperatura (T), energia (U) etc.. 
Uma variável de estado muito importante é o número de moles ou mols (n) que uma substância pode 
ser constituída. Um mol de substância é a quantidade de substância que contém um número de 
Avogadro de moléculas da substância em questão. O número de Avogadro NA é 
6,022 x 1023 moléculas/mol. Desta forma o número de mols ou moles de uma substância é definido 
de duas maneiras diferentes. Uma em termos do número das moléculas ou átomos da substância em 
relação ao número de Avogadro e a outra em termos da massa da substância em relação à massa 
molar da própria substância. Ou seja, 
 𝑛 =
𝑁
𝑁$
	=
𝑚
𝑀(
	 (1.1) 
onde N é o número de moléculas ou de átomos da substância, NA é número de Avogadro, m é a massa 
da substância e M0 é sua massa molar. A massa molar M0 de um número de Avogadro de moléculas 
ou átomos de uma substância pura é obtida pela tabela periódica e expressa em gramas. 
Equilíbrio térmico, Temperatura e Dilatação 
 
_____ 
Pinheiro & Corradi - Fundamentos de Mecânica dos Fluidos e Termodinâmica - 25/03/2023 
 
Exemplo 1: Qual o peso molecular de 1 mol de glicose (C6H12O6)? 
 
1 mol de carbono pesa 12,011𝑔; 
1 mol de hidrogênio pesa 1,0007𝑔; 
1 mol de oxigênio pesa 16,999	𝑔; 
 
O peso molecular de 1 mol de glicose (C6H12O6) é 180,145 g, esse valor é equivalente é à soma das 
massas atômicas de seus constituintes (6 × 12,011𝑔 + 12 × 1,007𝑔 + 6 × 16,999𝑔). 
 
1. Atividades para auto avaliação: Descrições Macroscópica e Microscópica da Termodinâmica 
1.1 (a) Imagine um balão cheio de gás. Como seriam as descrições macroscópica e microscópica do 
gás dentro desse balão? (b) Esses dois tipos de descrição são independentes um do outro ou deve 
haver alguma relação entre eles? Por quê? 
1.2 (a) Quais são as principais características da Termodinâmica? (b) Ela trabalha com grandezas 
macroscópicas ou microscópicas? 
1.3 Qual o significado do termo "sistema" em termodinâmica? 
1.4 O que é estado de um sistema? 
 
1.3 Lei zero da termodinâmica e o conceito de temperatura 
Um sistema está em equilíbrio termodinâmico quando suas variáveis de estado se mantêm inalteradas 
ao longo do tempo e uniformes através de todo o sistema. Logo, no equilíbrio termodinâmiconão são 
observadas mudanças macroscópicas nas variáveis de estado dos sistemas. 
Sistemas termodinâmicos interagem com a vizinhança através de diferentes tipos de paredes (Figura 
1.1). Entre elas: 
− Parede adiabática: que não permite a passagem de matéria e calor. 
− Parede diatérmica: que permite somente a passagem de calor. 
 
Figura 1.1: (a) Sistema, vizinhança e paredes que determinam trocas de energia. 
Quando dois sistemas isolados A e B estão separados por uma parede adiabática, os sistemas também 
estão isolados entre si. Assim, quando as variáveis de estado de um dos sistemas mudam, o outro 
Vizinhança
Paredes
Universo
Trocas de energia e matéria 
entre sistema e vizinhança
ocorrem através da parede
Sistema
Parede adiabática imaginária suficientemente
afastada para limitar todo o universo.
Equilíbrio térmico, Temperatura e Dilatação 
 
_____ 
Pinheiro & Corradi - Fundamentos de Mecânica dos Fluidos e Termodinâmica - 25/03/2023 
 
sistema não é afetado (Figura 1.2a). Por outro lado, dois sistemas isolados do meio externo, porém 
interagindo entre si através de uma parede diatérmica, conforme mostrado na (Figura 1.2b), trocam 
calor, modificando simultaneamente as variáveis de estado de ambos os sistemas. Como resultado da 
interação, as variáveis de estado irão se modificar até atingir valores constantes em ambos os 
sistemas. Uma forma particular de equilíbrio termodinâmico é o que chamamos equilíbrio térmico. 
Na situação de equilíbrio térmico as temperaturas de todas as partes do sistema se igualam. 
 
(a) 
 (b) 
Figura 1.2: (a) Dois sistemas isolados separados por uma parede adiabática. (b) Dois sistemas isolados 
separados por uma parede diatérmica. 
Existem situações nas quais dois sistemas podem estar em equilíbrio térmico mesmo que não estejam 
em contato direto através de uma parede diatérmica. A 
 
(a) 
 
(b) 
Figura 1.3(a) mostra um sistema no qual uma parede adiabática separa os sistemas A e B e uma parede 
diatérmica separa tanto os sistemas A e C quanto os sistemas B e C. Portanto, se os sistemas A e C 
atingem o equilíbrio térmico, o mesmo acontecerá com os sistemas B e C. A experiência mostra que 
nesta situação os sistemas A e B também estão ou estarão em equilíbrio térmico conforme indicado 
na 
 
(a) 
 
(b) 
Figura 1.3(b). 
 
(a) 
 
(b) 
Figura 1.3: Sistemas A e B separados por uma parede adiabática e ambos separados de C por uma parede 
diatérmica. Antes do equilíbrio térmico (a) cada sistema possui uma temperatura ao atingir o equilíbrio 
térmico (b) , todos os sistemas possuem a mesma temperatura T. 
A B A B
A B
C
Ta
Tc
Tb
A B
C
T
T
T
A B
C
Ta
Tc
Tb
A B
C
T
T
T
A B
C
Ta
Tc
Tb
A B
C
T
T
T
Equilíbrio térmico, Temperatura e Dilatação 
 
_____ 
Pinheiro & Corradi - Fundamentos de Mecânica dos Fluidos e Termodinâmica - 25/03/2023 
 
Dito de outra forma, dois sistemas em equilíbrio térmico com um terceiro sistema, estão também em 
equilíbrio térmico entre si. 
Esse resultado é chamado Lei Zero da Termodinâmica e pode ser anunciado da seguinte forma: 
Existe uma grandeza escalar chamada temperatura (T) que é uma propriedade de todos os 
sistemas termodinâmicos em equilíbrio térmico. Dois sistemas estão em equilíbrio térmico se e 
somente se suas temperaturas forem iguais. 
 
Conceito de temperatura 
O conceito de temperatura está intimamente relacionado com o estado de equilíbrio térmico de dois 
sistemas. Dois sistemas em equilíbrio térmico têm a mesma temperatura. Ou seja, se dois sistemas 
são postos em contato, suas variáveis de estado se modificam até que ambos atinjam a mesma 
temperatura. Suponhamos, por exemplo, que um dos sistemas seja um termômetro usado para medir 
temperatura. Após o termômetro ter atingido o equilíbrio térmico com o outro sistema, ambos terão 
a mesma temperatura. Na realidade, medimos a temperatura do termômetro! Sabemos que o outro 
sistema tem a mesma temperatura porque ele está em equilíbrio térmico com o termômetro. 
A temperatura é uma medida da média da energia térmica das partículas de uma substância. Uma vez 
que se trata de um valor médio, não depende do número de partículas da substância. Nesse sentido, 
não depende das dimensões do sistema. Por exemplo, a temperatura de um pequeno copo de água 
fervente é o mesma que a temperatura de uma panela de água fervente. Mesmo se o volume da 
panela for muito maior do que o volume do copo e contenha milhões e milhões de moléculas de água 
a mais do que no copo. 
2. Atividades para auto avaliação: Temperatura 
2.1 Qual é a diferença entre temperatura e calor? 
2.2 Como medir temperatura? Como medir calor? Explique! 
2.3 Seria correto afirmar em um dia quente que “está fazendo calor”? 
2.4 O que significa dizer que um sistema está em equilíbrio termodinâmico? 
2.5 Se dois sistemas A e B estão, cada um, em equilíbrio termodinâmico, podemos afirmar que eles 
estão em equilíbrio térmico entre si? Por quê? 
2.6 Qual é a relação entre equilíbrio térmico e a definição de temperatura em termos macroscópicos? 
2.7 O que diz a Lei Zero? Como ela se relaciona com a utilização de um termômetro para medir 
temperatura? 
1.4 Termômetros e escalas de temperatura 
Uma vez estabelecido o conceito de temperatura, faz-se necessário estabelecer meios de mensurá-
la. Para tanto usamos termômetros, que são dispositivos usados para medir a temperatura. Um 
termômetro pode ser constituído de qualquer substância que tenha uma propriedade variável com a 
temperatura X(T). Neste caso, a substância é identificada como substância termométrica e a 
propriedade identificada como propriedade termométrica porque varia com a temperatura do meio 
que está inserida. Como exemplo de propriedades termométricas temos: o volume de um líquido 
(como no termômetro de mercúrio ou álcool em bulbo de vidro); a pressão de um gás mantido em 
volume constante (base para o de gás a volume constante); a resistência elétrica de um fio metálico 
(o termômetro de fio de platina); a diferença de potencial observada na junção de dois fios metálicos 
Equilíbrio térmico, Temperatura e Dilatação 
 
_____ 
Pinheiro & Corradi - Fundamentos de Mecânica dos Fluidos e Termodinâmica - 25/03/2023 
 
(termopar ou par termoelétrico), variação da frequência natural com a temperatura dos cristais ou 
mudança de cor com a temperatura, etc. 
Um bom termômetro é aquele cuja propriedade termométrica (𝑋) apresenta variação linear com a 
temperatura (T) na forma: 
 𝑇(𝑋) = 𝑎𝑋 + 𝑏	 (1.2) 
sendo a e b constantes determinadas no processo de calibração do termômetro de interesse. 
Todos termômetros necessitam de uma escala de temperatura para cumprir sua função. Em 1742, o 
astrônomo sueco Anders Celsius vedou mercúrio em um pequeno tubo capilar e observou como ele 
se movia para cima e para baixo conforme a temperatura mudava. Celsius selecionou dois pontos de 
calibração para o seu dispositivo: o ponto de congelamento da água, definido como 0 e o ponto de 
ebulição normal da água rotulado como 1001. Depois dividiu o comprimento do tubo de vidro entre 
estes dois pontos de calibração em 100 intervalos iguais. Ao fazer isto ele inventou a escala de 
temperatura Celsius (conhecida popularmente como escala centígrada). As outras temperaturas, fora 
dos 2 pontos de calibração, são deduzidas por interpolação ou extrapolação. A unidade da escala 
Celsius de temperatura é o "grau Celsius” que é abreviado por °C. Observe que o símbolo ° faz parte 
da unidade C e não do número. A escala Celsius é usada em praticamente todos os países do mundo 
e em todas as áreas de atividade e do conhecimento da humanidade. 
1.4.1 Escala Fahrenheit 
A escala Fahrenheit de temperatura (amplamente usada nos Estados Unidos e Reino Unido) é também 
originalmente baseada em dois pontos de calibração: o ponto de congelamento de uma mistura de 
gelo e sal e a temperatura normal do corpo humano. Esta escala define a temperatura de 
congelamento da água como 32 °F e a temperatura do pontode ebulição da água como 212 °F. A 
conversão entre as escalas Celsius e Fahrenheit é feita observando-se a correspondência entre os 
pontos de calibração, ou seja, o ponto normal de congelamento (0 °C = 32 °F) e de ebulição da água 
(100 °C = 212 °F). Desta forma, a relação entre as escalas Celsius e Fahrenheit é: 
 𝑇: =
9
5𝑇< + 32	 (1.3) 
 
Exemplo 2: O ganho de um amplificador a base de transistor depende da temperatura. O ganho de 
um certo amplificador a 20 °C é 30,0 e a 55,0 °C é 35,2. Se o ganho variar linearmente com a 
temperatura neste intervalo, qual seria o ganho a 28,0 °C? A figura abaixo apresenta em termos 
gráficos a situação apresentada no enunciado deste exemplo: 
 
 
1 Na realidade e historicamente Celsius definiu 100 como o ponto de congelamento da água e 0 como o ponto de 
ebulição normal da água. Naturalmente, isto não tira o mérito de Celsius por significativa contribuição à Termodinâmica 
Equilíbrio térmico, Temperatura e Dilatação 
 
_____ 
Pinheiro & Corradi - Fundamentos de Mecânica dos Fluidos e Termodinâmica - 25/03/2023 
 
 
Pela análise da figura abaixo podemos montar a seguinte expressão: 
 
G − 30
35,2 − 30 =
28 − 20
55 − 20 
 
 G − 30
5,2 =
8
35 		∴ G = 31,2 
 
 
1.4.2 Escala Kelvin 
Uma escala de temperatura que merece uma atenção especial é a escala Kelvin, que foi estabelecida 
com ajuda do termômetro de gás a volume constante. A definição dessa escala usa somente um ponto 
de calibração. Em outras palavras, na escala Kelvin, quando a temperatura for 0 K, atribui-se a 
propriedade termométrica x usada para defini-la o valor zero, ou seja, na equação (1.2), b = 0 
 𝑇(𝑋) = 𝑎𝑋	 (1.4) 
Desta forma geral, basta um ponto de medida para calibrar o possível termômetro na escala Kelvin, 
por exemplo, em um ponto P qualquer de pressão 𝑋B e Temperatura 𝑇B, 𝑎 =
CD
ED
, ou seja, 
 𝑇(𝑋) = F
𝑇B
𝑋B
G𝑋	 (1.5) 
Por acordo decorrente das reuniões das Conferências Internacionais de Pesos e Medidas, ficou 
estabelecido que o ponto de calibração da escala Kelvin é o ponto tríplice da água, isto é, a 
temperatura onde o gelo, a água e o vapor de água coexistem em equilíbrio termodinâmico e a 
constante da equação (1.4) é estabelecida por 𝑎 = CHI
EHI
. Desta forma, por acordo internacional, ficou 
estabelecido que Ttr =273,16 K = 0,01 °C. Voltando à equação (4), 273,16 K = a Xtr, ou seja 
 𝑇(𝑋) = 273,16	 J
𝑋
𝑋KL
M	 (1.6) 
𝑋KL é o valor da propriedade termométrica no ponto tríplice da água. A temperatura dada pela 
equação (6) vale apenas para uma determinada propriedade termométrica X. Outras propriedades 
levam a diferentes leituras de temperatura. A unidade da escala Kelvin é o “Kelvin", abreviado por K. 
Atualmente não se usa mais dois pontos fixos para definir a escala Celsius. A escala Kelvin é definida 
e a relação entre as temperaturas Tc (Celsius) e Tk (Kelvin) é estabelecida pela equação 
 𝑇< = 𝑇N − 273,15	 (1.7) 
16 TERMODINÂMICA BÁSICA
32
5
9
+= CF TT (1.2)
Exemplo 3: 2�JDQKR�GH�XP�DPSOLÀFDGRU�D�EDVH�GH�WUDQVLVWRU�GHSHQGH�
GD�WHPSHUDWXUD��2�JDQKR�GH�XP�FHUWR�DPSOLÀFDGRU�j�����&�p������H�D������
�&�p�������6H�R�JDQKR�YDULDVVH�OLQHDUPHQWH�FRP�D�WHPSHUDWXUD�QHVWH�LQWHU�
YDOR��TXDO�VHULD�R�JDQKR�D�������&"
$�)LJ����DSUHVHQWD�HP�WHUPRV�JUiÀFRV�D�VLWXDomR�DSUHVHQWDGD�QR�HQXQ�
FLDQGR�GHVWH�H[HPSOR��3HOD�ÀJXUD�SRGHPRV�PRQWDU�D�VHJXLQWH�H[SUHVVmR��
30 28 20
35,2 30 55 20
G � �
=
� �
30 8
5,2 35
G �
=
2,31=G
3RUWDQWR��SDUD�D�WHPSHUDWXUD�GH�������&��R�JDQKR�GR�DPSOLÀFDGRU�VHUi�
DSUR[LPDGDPHQWH�����
 
Fig. 1.5 – Exemplo 3
Exemplo 4:�8P�WHUP{PHWUR�FDOLEUDGR�QD�HVFDOD�&HOVLXV� Or�������&��
4XDQWR�HVWD�WHPSHUDWXUD�YDOH�QD�HVFDOD�)DKUHQKHLW��8VDQGR�D�HTXDomR�������
YRFr�LUi�YHULÀFDU�TXH�D�WHPSHUDWXUD�YDOH������)��3RU�IDYRU��FRQÀUD�
8PD�HVFDOD�GH�WHPSHUDWXUD�TXH�PHUHFH�XPD�DWHQomR�HVSHFLDO�p�D�
escala Kelvin�SRUTXH�HOD�XVD�VRPHQWH�XP�SRQWR�GH�FDOLEUDomR�H�WDPEpP�
SRUTXH�D�SDUWLU�GHOD�p�TXH�VH�FRQVLGHUD�D�LPSRUWkQFLD�GR�WHUP{PHWUR�GH�
JiV�D�YROXPH�FRQVWDQWH�XP�LQVWUXPHQWR�IXQGDPHQWDO�SDUD�R�HVWDEHOHFL�
PHQWR�GD�HVFDOD�GH�WHPSHUDWXUD�GR�JiV�LGHDO�H�GD�(VFDOD�,QWHUQDFLRQDO�
GH�7HPSHUDWXUD�
1D�escala Kelvin��TXDQGR�D�WHPSHUDWXUD�IRU���.��DWULEXL�VH�D�SURSULH�
GDGH�WHUPRPpWULFD�[�R�YDORU�]HUR��RX�VHMD��QD�HTXDomR��������E� ���
 axxT =)( (1.3)
'HVWD�IRUPD�JHUDO��Vy�EDVWD�XP�SRQWR�GH�PHGLGD�SDUD�FDOLEUDU�R�SRV�
VLYHO�WHUP{PHWUR�QD�HVFDOD�.HOYLQ��SRU�H[HPSOR��HP�XP�SRQWR�3�TXDOTXHU��D�
a = Tp/Xp��RX�VHMD��
X = Pressão em TE.
Xtr = Pressão no estado Triplo da Agua
Equilíbrio térmico, Temperatura e Dilatação 
 
_____ 
Pinheiro & Corradi - Fundamentos de Mecânica dos Fluidos e Termodinâmica - 25/03/2023 
 
Os pontos de congelamento e ebulição da água são medidos em Kelvin e depois convertidos para 
Celsius, sendo o ponto de congelamento 273,15 K ou 0,00 °C e o ponto de ebulição 373,16 K , ou seja 
99,98 °C. 
Exemplo 3: Quando em equilíbrio térmico no ponto triplo da água, a pressão do He em um 
termômetro a gás de volume constante é 1020 Pa. A pressão do He é 288 Pa quando o termômetro 
está em equilíbrio térmico com o nitrogênio líquido em seu ponto normal de ebulição. Qual é o 
ponto normal de ebulição do nitrogênio obtido com este termômetro? 
𝑇(𝑅) = 273,16	 J
288
1020M = 77,13	𝐾	
 
Exemplo 4: A resistência de um certo fio de platina aumenta por um fator de 1,392 entre o ponto 
tríplice e o ponto normal de ebulição da água. Ache a temperatura de ebulição da água quando se 
utiliza um termômetro de resistência de platina	
𝑇(𝑅) = 273,16	 J
𝑅
𝑅KL
M = 273,16	 × 1,392 = 380,2	𝐾		
ou seja, esse termômetro indicaria uma temperatura de ebulição da água de 107,05 oC, valor acima 
do valor de 99,98 oC experimentalmente aceito para tal propriedade. Isto nos leva a concluir que a 
resistência do fio de platina em questão, não varia linearmente com a temperatura. 
Valores de temperaturas típicas nas escalas Celsius, Kelvin e Fahrenheit são mostrados na Tabela 1.1. 
Tabela 1.1: Temperaturas de algumas substâncias e processos nas escalas Celsius (oC) , Kelvin (K) e 
Fahrenheit (oF). 
Substância Temperaturas 
 oC K oF 
Ebulição da Água (fervura) 100 373,125 212 
Corpo humano 37,0 310,2 98,6 
Fusão da Água (congelamento) 0,00 273,15 32,0 
Ponto triplo da água 0,01 273,16 32,0 
L Ebulição do Nitrogênio -196 77 -321 
Zero absoluto -273,15 0 -459,67 
°F = 1.8°C + 32 K = °C + 273.15 
3. Atividades para auto avaliação: Termometria 
3.1 (a) A medida da temperatura da testa de outra pessoa com a mão é uma medida confiável para 
saber se a pessoa está com febre? (b) Como você mediria a temperatura de um corpo? 
3.2 (a) O que é propriedade termométrica? (b) Quais características tornam uma certa propriedade 
termométrica apropriada para a utilização em um termômetro prático? 
3.3 Qual é a diferença entre as temperaturas medidas pelas escalas Celsius, Fahrenheit e Kelvin? 
3.4 (a) Há alguma temperatura na qual coincidem as medidas feitas na escala Kelvin e na escala 
Celsius? (b) E entre a escala Kelvin e a escala Fahrenheit? (c) E entre a escala Fahrenheit e a escala 
Celsius? 
Equilíbrio térmico, Temperatura e Dilatação 
 
_____ 
Pinheiro & Corradi - Fundamentos de Mecânica dos Fluidos e Termodinâmica - 25/03/2023 
 
1.5 Termômetro a gás a volume constante 
Idealmente a temperatura de um sistema deveria ter um valor bem definido independente da 
propriedade usada para medi-la. A pergunta é saber qual é o instrumento ou termômetro que 
preenche este requerimento. Será mostrado abaixo que o termômetro de gás a volume constante 
satisfaz esta condição, e que gases ideais são substâncias termométricas padrão. Por razões que serão 
discutidas a seguir, a pressão será a propriedade termométrica escolhida para este termômetro. 
Pela lei dos gases ideais, que relaciona as variáveis de estado pressão, volume ocupadopelo gás, 
número de partículas do gás e temperatura mostrada na equação (1.8), verificamos que se o volume 
do gás for mantido constante, a pressão neste termômetro depende linearmente da temperatura. 
 𝑝𝑉 = 𝑛𝑅𝑇	 (1.8) 
Na Figura 1.4 é apresentado o termômetro de gás a volume constante. Ele consiste de um bulbo, 
contendo um gás qualquer, ligado por um tubo capilar conectado a um manômetro de mercúrio. O 
bulbo de quartzo, vidro, platina ou outro material (dependendo do intervalo de temperatura a ser 
medido) é colocado no banho ou ambiente cuja temperatura deseja-se conhecer. Abaixando-se ou 
levantando-se o reservatório de mercúrio obriga-se o nível do mercúrio a coincidir com a marca de 
referência forçando o gás no interior do termômetro a permanecer sempre com o volume constante. 
 
Figura 1.4: Termômetro de gás a volume constante 
A diferença de pressão do gás P e da pressão atmosférica Po é indicada pela diferença de altura h da 
coluna de mercúrio na escala. Ou seja, 
 𝑃 − 𝑃( = 𝜌. 𝑔. ℎ	 (1.9) 
Sendo ρ a densidade do mercúrio, g a aceleração da gravidade. O bulbo contendo gás é colocado no 
banho a temperatura T. Levantando-se ou abaixando-se o reservatório de mercúrio, faz-se o nível de 
mercúrio coincidir com o ponto O, como já dito. Supondo que todas as correções experimentais sejam 
feitas (como por exemplo, levar em conta a variação do volume do bulbo e que nem todo o gás no 
capilar está imerso no bulbo, etc.) a pressão absoluta P fornecerá a temperatura pela expressão: 
Equilíbrio térmico, Temperatura e Dilatação 
 
_____ 
Pinheiro & Corradi - Fundamentos de Mecânica dos Fluidos e Termodinâmica - 25/03/2023 
 
 𝑇(𝑝) = (273,16𝐾)	J
𝑃
𝑃KL
M
W
	
(1.10) 
onde o índice V indica que o volume do gás é mantido constante e 𝑃KL	é a pressão no ponto triplo da 
água. 
Iremos a seguir fazer uma simulação de como se determina a temperatura T de um banho usando 
este termômetro. Suponhamos que no termômetro haja certa quantidade de gás (por exemplo N2) a 
certa pressão. 
1. Coloca-se o termômetro de N2 em água no ponto triplo e ajusta-se sua pressão para 80 cmHg, 
isto é, 𝑃KL = 80 cmHg acima de Po. Este ajuste de pressão é feito retirando ou adicionando 
nitrogênio no interior do termômetro. 
2. A seguir, leva-se o termômetro ao banho onde se quer medir a temperatura T. Espera-se o 
equilíbrio térmico e a seguir ajusta-se a altura da coluna de mercúrio até o nível do mercúrio 
coincidir com o ponto 0, isto garante o volume constante do gás no termômetro. Quando o 
equilíbrio for atingido, a nova pressão pode ser calculada usando o valor de h e a expressão 
(9). Por exemplo, calcula-se P (𝑃KL = 80 cmHg) = 109,334 cmHg. Assim, pela equação (10) 
temos: 
 𝑇(𝑃) = (273,16𝐾)	J
109,334
80 MW
= 373,32	𝐾	 
3. O termômetro é então recolocado no recipiente com água no ponto triplo e ajusta-se a 
pressão a 40 cmHg, isto é, 𝑃KL = 40 cmHg acima de Po. Como anteriormente, isto é obtido 
retirando nitrogênio do interior do termômetro até atingir 40 cmHg. 
4. A seguir, leva-se o termômetro ao banho onde a temperatura T será medida. Espera-se o 
equilíbrio térmico, e a seguir ajusta-se a altura da coluna de mercúrio até o nível do mercúrio 
coincidir com o ponto 0, isto garante o volume constante do gás no termômetro. A nova 
pressão pode ser calculada usando o novo valor de h e a expressão (9). Por exemplo, calcula-
se P(𝑃KL = 40 cmHg) = 54,65 cmHg. Assim, pela equação (10) temos: 
 T(P) = (273,16K)	J
54,65
40 M\
= 373,20	K 
5. Repete-se o item 3 para 𝑃KL = 20 cmHg 
6. Repete-se o item 4 obtendo P (𝑃KL = 20 cmHg) = 27,323 cmHg . Pela equação (10) teremos: 
 𝑇(𝑃) = (273,16𝐾)	J
27,323
20 MW
= 373,18	𝐾	 
Colocando-se os pontos em um gráfico e extrapolando para a situação onde 𝑃KL = 0 (ou seja P = Po) 
encontra-se o valor verdadeiro para temperatura T (Figura 1.5). Neste caso, T = 373,15 K (ponto de 
ebulição da água). 
Equilíbrio térmico, Temperatura e Dilatação 
 
_____ 
Pinheiro & Corradi - Fundamentos de Mecânica dos Fluidos e Termodinâmica - 25/03/2023 
 
 
Figura 1.5: Termômetro de gás a volume constante usando diferentes gases (O2, N2 e H2) para medição 
da temperatura. 
A escala de temperatura construída com ajuda do termômetro de gás a volume constante depende 
das propriedades dos gases ideais(equação (1.8) mas não das propriedades químicas dos gases (desde 
que estes se comportem de acordo com a equação dos gases ideais). A escala Kelvin é independente 
de qualquer propriedade de qualquer substância particular. Por isso, é uma escala absoluta. A escala 
Kelvin e a escala do termômetro de gás a volume constante são idênticas no intervalo de temperatura 
em que este termômetro pode ser usado, sendo definida por: 
 𝑇(𝑃) = (273,16𝐾)	J
𝑃
𝑃KL
M
W
	 
(1.11) 
Termômetros de gás a volume constante, mesmo com uma pequena quantidade de gás em seu 
interior, indicam a temperatura do sistema com o qual estão em equilíbrio térmico com grande 
precisão e, por isto, são escolhidos como termômetros de referência . Para se medir temperaturas 
muito baixas, digamos da ordem 1 K, é preciso usar o hélio como gás de trabalho porque o hélio é o 
único gás que permanece na forma gasosa em baixa pressão nesta temperatura, estabelecendo assim 
o limite no qual o termômetro de gás a volume constante pode operar. 
4. Atividades para auto avaliação: Termômetro a gás a volume constante 
4.1 O gráfico da figura abaixo, representa as temperaturas obtidas com um termômetro de gás a 
volume constante cujo bulbo está imerso em água em ebulição. Gases diferentes são usados, cada 
um com uma densidade diferente, como indicado pelo eixo horizontal que representa a pressão 
no ponto triplo da água (Ptr). Responda: (a) Que valor será obtido para a temperatura do ponto de 
ebulição da água se for usado um termômetro de gás a volume constante que utiliza Ar e que 
contém Ar suficiente para que Ptr = 80cmHg? Esse valor corresponde à temperatura absoluta? (b) 
Qual seria a leitura do termômetro se fosse retirado um pouco de ar, de forma que Ptr = 20cmHg? 
Equilíbrio térmico, Temperatura e Dilatação 
 
_____ 
Pinheiro & Corradi - Fundamentos de Mecânica dos Fluidos e Termodinâmica - 25/03/2023 
 
 
4.2 Qual o valor da temperatura absoluta do ponto de ebulição da água? 
4.3 Por que um termômetro de gás a volume constante permite a definição de uma escala 
termométrica absoluta? 
1.6 Dilatação térmica 
A dilatação térmica pode ser compreendida analisando a estrutura atômica de um sólido cristalino. 
Em um sólido, os átomos são mantidos juntos em um arranjo regular por forças elétricas. As 
propriedades deste arranjo são semelhantes às de uma rede composta de massas e molas mostrada 
na Figura 1.6(a). Existem da ordem de 1023 átomos e molas em 1 cm3 de um sólido. Os átomos de uma 
estrutura sólida cristalina como esta vibram com frequência de 1013 Hz e amplitude da ordem de 10-
11 m, que é aproximadamente um décimo do diâmetro do átomo (o raio atômico é da ordem de 10-10 
m). Quando a temperatura do sólido aumenta, a distância média entre os átomos aumenta como 
mostrado na Figura 1.6(b) e isso leva a uma dilatação de todo o sólido. A variação de qualquer 
dimensão linear do sólido, como comprimento, largura ou espessura, é chamada de dilatação linear. 
 
Figura 1.6: (a) Podemos visualizar as forças entre átomos vizinhos em um sólido imaginando-os ligados 
por molas que apresentam constantes elásticas distintas para a compressão e para o alongamento. É 
mais fácil dilatar um sólido que comprimi-lo. (b) Gráfico da energia potencial pela distância entre dois 
átomos vizinhos, mostrando que as forças não são simétricas. E3 > E2 > E1 e, portanto, T3 > T2 > T1. 
Equilíbrio térmico, Temperatura e Dilatação 
 
_____ 
Pinheiro & Corradi - Fundamentos de Mecânica dos Fluidos e Termodinâmica - 25/03/2023 
 
Por experimentação, observa-se que a dilatação linear de um corpo, caracterizada pela variação ΔL 
no seu comprimento Lo, é diretamente proporcionalao próprio comprimento Lo como também à 
variação de temperatura ΔT correspondente, conforme mostrado na Figura 1.7. 
 
Figura 1.7: Como o comprimento de uma barra se comporta com a variação da temperatura. As variações 
de comprimento foram exageradas para facilitar a visibilidade. 
Ou seja, se ΔT for suficientemente pequeno: 
 
∆𝐿 = 𝛼𝐿(∆𝑇		
𝐿 = 𝐿((1 + 	𝛼∆𝑇)		
(1.12) 
sendo α o coeficiente de dilatação linear, uma característica própria de cada material. O coeficiente 
de dilatação linear é precisamente estimado por: 
 𝛼 = (∆𝐿/𝐿()a/∆𝑇		 (1.13) 
o qual corresponde à variação fracionária do comprimento por variação de intervalo de temperatura 
na escala adotada à pressão (P) constante. Na realidade, α deveria ser tomado ponto a ponto na 
temperatura da medição e da temperatura escolhida para se determinar L, entretanto a variação é 
desprezível quando comparada com a precisão em que os comprimentos são medidos. Normalmente 
assume-se um valor médio para uma faixa de temperatura de interesse. Na Tabela 1.2 são 
apresentados os coeficientes de dilatação linear médios para algumas substâncias, no intervalo de 
temperatura entre 0 °C a 100 °C. 
Tabela 1.2: Coeficiente de dilatação linear de algumas substâncias no intervalo entre 0 e 100 oC. 
Substância α x 10-6 (1/oC) 
Chumbo 29 
Alumínio 23 
Latão 19 
Cobre 17 
Aço 11 
Equilíbrio térmico, Temperatura e Dilatação 
 
_____ 
Pinheiro & Corradi - Fundamentos de Mecânica dos Fluidos e Termodinâmica - 25/03/2023 
 
Vidro 9 
 
Exemplo 5: Uma barra feita com uma liga de alumínio mede 10 cm a 20 °C e 10,015 cm no ponto 
de ebulição da água. (a) Qual seu comprimento no ponto de congelamento da água? (b) Qual sua 
temperatura, se seu comprimento final for 10,009 cm? Determinaremos inicialmente o valor de a. 
 α =
c∆LLe
f
∆T = 	
(10,015 − 10)
(100 − 20) = 1,88	 × 	10
gh	°Cgk 
(a) no ponto de congelamento T = 0 oC 
 L = Le(1 + 	α∆T)	 
 L = 10(1 + 	1,88	 ×	10gh × (0 − 20) = 9,9962	cm	 
(b) Se o comprimento final é 10,009 cm 
 L − Le = Leα∆T	 
 10,009 − 10 = 10 × 	1,88	 ×	10gh × (Tn − 20) 
 Tn = 67.9	°C 
 
 
Considerando 𝐴 = 𝐿p a área de um objeto, a variação da área pode ser calculada por: 
 ∆𝐴 = 2𝐿∆𝐿	 (1.14) 
Substituindo o resultado obtido para variação do comprimento em (1.13) em (1.14), obtermos que a 
variação da área de um objeto isotrópico (situação em que suas grandezas físicas variam igualmente 
em qualquer direção) em função da variação da temperatura é dada por: 
 
∆𝐴 = 𝛾𝐴(∆𝑇; 				𝛾 = 2𝛼		
𝐴 = 𝐴((1 + 	𝛾∆𝑇)	
(1.15) 
onde 𝛾, chamado de coeficiente de expansão superficial, é característico de cada material. 
Considerando 𝑉 = 𝐿r o volume de um objeto, a variação do volume será dada por 
 ∆𝑉 = 3𝐿
p∆𝐿	 (1.16) 
Substituindo o resultado obtido para variação do comprimento em (1.13) em (1.16), obtemos que a 
variação do volume para um corpo isotrópico em função da variação da temperatura é dada por: 
 
∆𝑉 = 𝛽𝑉(∆𝑇; 					𝛽 = 3𝛼		
𝑉 = 𝑉((1 + 	𝛽∆𝑇)	
(1.17) 
onde 𝛽, chamado de coeficiente de dilatação volumétrica, é característico de cada material. De uma 
forma geral, o coeficiente de dilatação volumétrica (𝛽), para gases e líquidos, é dado por 
Equilíbrio térmico, Temperatura e Dilatação 
 
_____ 
Pinheiro & Corradi - Fundamentos de Mecânica dos Fluidos e Termodinâmica - 25/03/2023 
 
 𝛽 = (∆𝑉/𝑉()B/∆𝑇		 (1.18) 
e corresponde à variação fracionária do volume por variação de intervalo de temperatura na escala 
adotada à pressão (𝑃) constante. 
Exemplo 6: Um cubo de latão (alatão = 1,90 x 10-5 °C-1) tem aresta de 31 cm. Qual o acréscimo em 
sua área, se a temperatura subir de 20 °C para 75 °C? 
 
∆A = γAe∆T = 	2αAe∆T 
∆A = 	2 ∙ (1,9	 ×	10gh	) ∙ (0,31	 × 0,31) ∙ (75 − 20) 
∆A = 	2,00	 ×	10gwmp 
 
Se uma aresta aumenta sua área de 2,00 ´ 10-4 m2 o cubo (6 faces) aumentará sua área de 
12 ´10-4 m2 
 
A maioria dos materiais sofre dilatação quando aquecidos e sofre contração quando resfriados. A 
exceção mais notável desta regra é a água. Conforme mostrado na Figura 1.8, acima de 4 °C a água se 
dilata e no intervalo de 4 °C para 0 °C (no sentido de 4 °C para 0 °C) a água também se expande, 
caracterizando assim a anomalia da dilatação térmica da água. Essa característica tem consequências 
importantes. Em temperaturas acima de 4 °C, a água se torna mais densa enquanto é resfriada e, 
portanto, afunda. Porém, ao ser resfriada abaixo de 4 °C, ela se torna menos densa e sobe à superfície. 
Esta é a razão pela qual o gelo se forma primeiro na superfície de um lago ou rio. A água também se 
expande quando congela. Como o gelo é menos denso do que a água líquida, ele permanece na 
superfície e atua como uma camada isolante para a água que está abaixo. Se a água se comportasse 
como a maioria das substâncias e contraísse enquanto congela, então o gelo afundaria e deixaria mais 
água exposta na superfície, para ser congelada. Os lagos se encheriam de gelo do fundo para cima e 
seria muito provável que congelassem completamente no inverno, principalmente nos extremos dos 
hemisférios norte e sul da Terra. Obviamente o congelamento completo de lagos e rios poderia 
inviabilizar a vida em sistemas aquosos nessas latitudes. 
Existe um grande interesse tecnológico nas áreas de engenharia, fotônica, eletrônica e aplicações 
estruturais, por materiais que apresentam coeficiente de dilatação térmica negativos. Por exemplo, 
misturando um material de dilatação térmica negativa com um material "normal", que se expande 
com o aquecimento, seria possível obter um material compósito de expansão térmica nula. Como a 
expansão térmica causa muitos problemas na engenharia, e de fato na vida cotidiana, existem muitas 
aplicações potenciais para materiais apresentando expansão térmica controlada. Um exemplo simples 
de um problema de expansão térmica é a tendência da obturação dentária se expandir de uma 
quantidade diferente daquela observada nos dentes, por exemplo, ao se beber uma bebida quente, 
causando dor de dentes. Se obturações dentárias foram feitas de um material compósito contendo 
uma mistura de materiais com expansão térmica positiva e negativa, a expansão do compósito poderia 
ser precisamente ajustada à do esmalte do dente. 
Equilíbrio térmico, Temperatura e Dilatação 
 
_____ 
Pinheiro & Corradi - Fundamentos de Mecânica dos Fluidos e Termodinâmica - 25/03/2023 
 
 
Figura 1.8: O volume de um grama de água aumenta de 1,000 cm3 a 0 oC para 1,034 cm3 a 100 oC. 
Entretanto 1 g de água atinge seu menor volume e, portanto, maior densidade a 4 oC . Observe que entre 
a 0 e 4 oC o volume da água não varia linearmente com a temperatura. 
Um dos materiais mais estudados por exibir expansão térmica negativa é o Tungstato de Zircônio 
(ZrW2O8). Esse composto se contrai continuamente em intervalo de temperatura entre 0,3-1050 K (a 
temperaturas mais elevadas o material se decompõe). Outros materiais que exibem esse 
comportamento incluem outros membros da família AM2O8 e A2(MO4)3, em que A = Zr ou Hf, M = Mo 
ou W, e ZrV2O7. Gelo comum apresenta dilatação térmica negativa em suas fases hexagonal e cúbica 
em temperaturas muito baixas (abaixo de -200 °C). Quartzo e uma série de zeólitas também 
apresentam coeficiente de dilatação térmica negativos sob certas faixas de temperatura. Silício puro 
apresenta coeficiente de dilatação térmica negativo para temperaturas entre cerca de 18 K e 120 K. 
Borracha apresenta coeficiente de dilatação térmica negativa em temperaturas normais, mas a razão 
para o efeito é bastante diferente do que na maioria dos outros materiais. Para a borracha, à medida 
que as longas cadeias de polímero absorvem a energia elas adotam uma configuração mais 
contorcida, reduzindo o volume do material. 
 
Figura 1.9 : Variação relativa do volume do ZrW2O8 com o aumento da temperatura. 
5. Atividades para auto avaliação: Dilatação Térmica 
r 0.30
* 0.2-
ffi 0.1 .
x 00
> -0.1
-0.2 -<
-04 ,-0.4
0 200 400 600 800 1000 1200
Temperature(K)
Fig. 1. Plot of percentage relative expansion versus
temperature for ZrW208. Open circles are dilatom-
eter data; solid circles are neutron diffraction data.
compound ZrW208 is evidently only ther-
modynamically stable between 1380 and
1530 K ( 1). It must be rapidly cooled from
high temperature to avoid decomposition
into ZrO2 and W03. Once formed, howev-
er, this compound has a high degree of
kinetic stability at temperatures below
about 1050 K. Thus, heating ZrW208 above
1050 K results in decomposition into ZrO2
and W03, which react to reform ZrW208 if
the temperature is increased to 1380 K. The
ordering that occurs below 430 K lowers the
free energy of this system; however, this is
presumably not an equilibrium phase. If the
system were to achieve equilibrium, ZrW208
would decompose into ZrO2 and W03. This
decomposition reaction is frustrated by its
high activation energy. The system is
trapped in a high-energy state, and this phe-
nomenon may be related to the unusual
thermal expansion properties. Negative ther-
mal expansion also occurs in AgI, but only in
the metastable cubic form (12). Negative
thermal expansion in cubic AgI is confined
to a region no wider than 200°C, the ther-
mal expansion at 100 K being positive.
We begin our explanation of the
unique properties of ZrW208 and
HfW208 by eliminating certain possibili-
ties. In both ZrO2 and HfO2, there is an
abrupt negative volume expansion at a
tetragonal-to-monoclinic phase transi-
tion. This transition is associated with a
A
C
Fig. 2. Section of the ZrW208 structure (thermal ellipsoids are used for atoms).
change in the coordination number of Zr
and Hf from 8 to 7 with decreasing tem-
perature. No such coordination change
occurs in ZrW208. The shortest Zr-O dis-
tance beyond the 2.1 A octahedral coor-
dination -sphere (Table 2) is 3.66 A at
both 0.3 and 700 K. We also eliminate
from consideration any changes with tem-
perature of the Zr-O or W-O bond dis-
tances. Structure refinements conducted
at 12 temperatures from 0.3 to 700 K show
no decreases in these distances with in-
creasing temperature. Furthermore, be-
cause of differences in Zr-O and Hf-O
bonding in isostructural ZrO2 and HfO2,
the temperature of the tetragonal-to-mon-
oclinic phase transition in these two com-
pounds differs by about 4000C. By con-
trast, in ZrW208 as compared to HfW208,
there is no detectable difference in their
phase transition temperature or in their
thermal expansion properties. Significant
changes in W-O bonding occur at the 430
K phase transition (Fig. 3), but the nega-
tive coefficient of thermal expansion re-
mains similar above and below this tran-
sition. We thus conclude that subtleties of
W-O, Zr-O, or Hf-O bonding are unlike-
ly to be the cause of the negative thermal
expansion.
We are thus left with Zr-O-W linkages
as the source of the negative thermal ex-
pansion. A systematic change in the an-
gles of this linkage could have been the
source, but this is not supported by our
structural refinements. It is, however, well
documented that the potential for
M-O-M transverse vibrations (corre-
sponding in a static picture to bond bend-
ing) is significantly lower than for longi-
tudinal vibrations (which correspond to
changes in the M-O bond lengths). A
transverse vibration of a bridging 0 in a
framework in which M-O bond distances
remain largely unchanged will cause a
contraction of the M-M distance and a
negative coefficient of thermal expansion.
Because of the asymmetry of a typical
M-O potential, however, longitudinal vi-
brations tend to lead to an overall increase
in M-M distances. As discussed above, the
network arrangement of ZrW208 leads to
a highly flexible structure that can readily
accommodate the changes in M-O-M
B
03
03
01
01
Fig. 3. (A) The two crystallographically distinct W04 tetrahedra of low-tem-
perature ZrW208 in space group P213. (B) The W04 "tetrahedra" of high-
temperature ZrW208 in space group Pa3. The 04 position is only 50% occu-
pied, and the large ellipsoid of W is due to disorder along the threefold axis.
SCIENCE * VOL. 272 * 5 APRIL 1996
01
I ..l
91
Equilíbrio térmico, Temperatura e Dilatação 
 
_____ 
Pinheiro & Corradi - Fundamentos de Mecânica dos Fluidos e Termodinâmica - 25/03/2023 
 
5.1 Explique, em termos microscópicos, por que os materiais podem sofrer dilatação quando sua 
temperatura é variada? 
5.2 A equação ∆𝐿 = 𝛼𝐿(∆𝑇 expressa a variação do comprimento com a temperatura. Obtenha as 
equações ∆𝐴 = 2𝛼𝐴(∆𝑇 e ∆𝑉 = 3𝛼𝑉(∆𝑇 que descrevem a variação da área e do volume com a 
temperatura, respectivamente. 
5.3 O que é dilatação aparente? 
5.4 O que existe de peculiar e importante na dilatação térmica da água? 
5.5 Explique a expressão para a tensão térmica :
$
= −𝑌𝛼∆𝑇, onde F é a tensão da barra, A é a área 
da seção reta, α é o coeficiente de dilatação linear e Y é o módulo de Young. 
5.6 Pode existir coeficiente de dilatação negativo? 
1.7 Exercícios de fixação 
1.7.1 Em alguns locais da Terra a temperatura em graus Celsius é igual à temperatura em graus 
Fahrenheit. Qual é o valor desta temperatura? Qual é a estação mais provável? 
1.7.2 O ganho de um certo amplificador à temperatura ambiente (20,0 oC) é 30,0 e a 55,0 oC é 
35,2. Se o ganho variasse linearmente com a temperatura neste intervalo limitado, qual seria o 
ganho a 28,0 oC? 
1.7.3 Dois termômetros de gás a volume constante são imersos em um banho de água no ponto 
de ebulição. Um utiliza nitrogênio e o outro hélio, e ambos contêm gás suficiente para que ptr=100 
mmHg (figura abaixo). Qual é a diferença entre as pressões dos dois termômetros? Qual 
termômetro apresenta a maior pressão? 
 
 
1.7.4 Usando-se um termômetro de gás a volume constante verificou-se que a pressão do ponto 
triplo da água (0,01 oC) era igual a 4,80 x 104 Pa e a pressão do ponto de ebulição normal da água 
(100 oC) era igual a 6,50 x 104 Pa. (a) Supondo que a pressão varie linearmente com a temperatura, 
use esses dados para calcular a temperatura Celsius para a qual a pressão do gás seria igual zero 
(isso é, ache a temperatura Celsius do Zero absoluto). (b) O gás neste termômetro obedece à 
equação		Cy
Cz
= ay
az
 de modo preciso? Caso esta equação fosse obedecida exatamente, e a pressão a 
100 oC fosse igual a 6,50 x 104 Pa, qual seria a pressão medida a 0,01 oC? 
1.7.5 Os trilhos de uma estrada de ferro são fixados quando a temperatura é de -5,0 oC. Uma seção 
padrão de trilho tem 12,0m de comprimento. Qual deve ser o espaçamento entre as seções para 
que não haja compressão quando a temperatura subir até 42oC? 
1.7.6 Mostre que se α depende da temperatura T, então	𝐿 ≅ 𝐿(	 |1 +	∫ 𝛼(𝑇)𝑑𝑇
C
C�
�,	onde L0 é o 
comprimento à temperatura de referência T0. 
Equilíbrio térmico, Temperatura e Dilatação 
 
_____ 
Pinheiro & Corradi - Fundamentos de Mecânica dos Fluidos e Termodinâmica - 25/03/2023 
 
1.7.7 A área A de uma placa retangular (figura abaixo) é ab e seu coeficiente de dilatação linear é 
α. Com o aumento de temperatura ∆T, o lado a dilata ∆a e o lado b, ∆b. Mostre que se 
desprezarmos o termo ∆a∆b/ab, então ∆𝐴 = 2𝛼𝐴𝛥𝑇. 
 
1.7.8 O avião supersônico Concorde possui um comprimento igual a 62,1 m quando está em 
repouso no solo em um dia típico (a 15 oC). Ele é basicamente feito de alumínio. Quando ele está 
voando com uma velocidade igual ao dobro da velocidade do som, o atrito com o ar aquece a parte 
externa do Concorde e produz uma dilatação de 25 cm no comprimento do avião. O compartimento 
dos passageiros está apoiado em rolamentos, e o avião se expande em torno dos passageiros. Qual 
é a temperatura da parte externa do Concorde durante o vôo? 
1.7.9 Determine o coeficiente de dilatação volumétrica da água à uma temperatura de 9 oC. Utiliza 
a a figura do problema que descreve a variação do volume da água em função da temperatura. 
 
1.7.10 Uma barra de latão possui comprimento igual a 185 cm e diâmetro de seção circular igual a 
1,60 cm. Qual é a força que deve ser aplicadaa cada extremidade da barra para impedir que ela se 
contraia quando for esfriada de 120 oC para 10 oC? O coeficiente de dilatação do latão vale 
2 x 105 K-1 e o módulo de Young do latão vale 9 x 1010 N/m2. 
1.8 Problemas 
1.8.1. A uma temperatura T0, a aresta de um cubo é igual a L0 e ele possui densidade igual a ρ0. O 
material constituinte do cubo possui coeficiente de dilatação volumétrica igual a β. 
(a) Mostre que quando a temperatura cresce de T0+∆T, a densidade do cubo passa a ser dada 
aproximadamente por 𝜌 ≅ 𝜌((1 + 𝛽∆𝑇). (Sugestão: Use a expressão (1 + 𝑥)� ≈ 1 + 𝑛𝑥, 
válida quando |𝑥| ≪ 1). Explique por que este resultado aproximado é válido somente 
Respostas na Pag. 31
Equilíbrio térmico, Temperatura e Dilatação 
 
_____ 
Pinheiro & Corradi - Fundamentos de Mecânica dos Fluidos e Termodinâmica - 25/03/2023 
 
quando ∆T for muito menor do que 1/β e explique por que essa aproximação é válida na 
maior parte dos casos. 
(b) Um cubo de cobre possui aresta de 1,25 cm a 20,0 oC. Calcule sua variação de volume e de 
densidade quando sua temperatura passa para 70 oC. 
1.8.2. Mostre que se os comprimentos de duas barras de materiais diferentes são inversamente 
proporcionais a seus respectivos coeficientes de dilatação linear à mesma temperatura 
inicial e que a variação de seus respectivos comprimentos também sejam proporcionais à 
temperatura, a diferença entre os seus comprimentos será constante em todas as 
temperaturas. b) Quais deveriam ser os comprimentos de uma barra de aço e uma de latão 
a 0 oC para que as diferenças de seus comprimentos fosse 0,30 m em todas as temperaturas? 
1.8.3. A equação	:
$
= −𝑌𝛼∆𝑇 fornece a tensão necessária para manter a temperatura da barra 
constante à medida que a temperatura da barra varia. Mostre que se o comprimento pudesse 
variar de ∆L quando a sua temperatura varia de ∆T, a tensão seria dada por: 
:
$
= 𝑌 c∆�
��
− 𝛼∆𝑇f 
Onde F é a tensão da barra, L0 é o comprimento original da barra, A é a área da seção reta, α é o 
coeficiente de dilatação linear e Y é o módulo de Young. 
 
Equilíbrio térmico, Temperatura e Dilatação 
 
_____ 
Pinheiro & Corradi - Fundamentos de Mecânica dos Fluidos e Termodinâmica - 25/03/2023 
 
 
RESPOSTAS: Atividades de autoavaliação 
1. Atividades para auto avaliação: Descrições Macroscópica e Microscópica da Termodinâmica 
1.1 (a) Imagine um balão cheio de gás. Como seriam as descrições macroscópica e microscópica do 
gás dentro deste balão? (b) Esses dois tipos de descrição são independentes um do outro ou deve 
haver alguma relação entre eles? Por quê? 
 (a) Na descrição microscópica, sabendo que o gás é constituído por um grande número de moléculas 
poderia ser fornecida a posição e a velocidade de cada uma delas ao longo do tempo e, a partir daí, 
algum conhecimento das propriedades do gás ou de seu comportamento poderiam ser obtidas (um 
gás com N moléculas seria descrito por 6N parâmetros, 3 coordenadas e 3 componentes da velocidade 
em cada direção do espaço para cada molécula). Outra maneira de descrever o gás no balão seria 
ignorar essa estrutura microscópica e especificar apenas um reduzido número de grandezas como sua 
pressão, volume, densidade, temperatura etc. Essa seria a descrição macroscópica. 
(b) As descrições macroscópica e microscópica estão relacionadas entre si. Por exemplo, a pressão 
(descrição macroscópica) está relacionada com a taxa média de transferência de momento linear para 
as paredes do recipiente pelas partículas do gás (descrição microscópica). A temperatura (descrição 
macroscópica) está relacionada com a energia cinética translacional média das moléculas de um gás 
(descrição microscópica). 
1.2 (a) Quais são as principais características da Termodinâmica? (b) Ela trabalha com grandezas 
macroscópicas ou microscópicas? 
(a) A Termodinâmica faz uma descrição macroscópica dos sistemas físicos, sem levar em conta o 
comportamento individual das partículas. Por ser caráter estatístico, só sistemas com grande número 
de partículas podem ser estudados através da Termodinâmica. A Termodinâmica ajuda a 
compreender a maneira como as propriedades da matéria são influenciadas pela transferência de 
energia. No centro desta ciência está a temperatura. Cada propriedade macroscópica investigada pela 
Termodinâmica é, na verdade, um valor médio de grandezas microscópicas estudadas pela Teoria 
Cinética e pela Mecânica Estatística. Isso faz com que estas ciências se relacionem estreitamente. 
(b) A termodinâmica é complementar à teoria cinética e à mecânica estatística. Partindo da descrição 
microscópica, especificamos as forças que atuam nessas partículas e aplicando as leis da mecânica a 
cada partícula conseguiremos prever o comportamento do sistema nos instantes subsequentes. Essa 
é a base da teoria cinética da matéria. A abordagem da Mecânica Estatística é ignorar a individualidade 
de cada molécula e aplicar considerações estatísticas ao conjunto de moléculas. 
1.3 Qual o significado do termo “sistema” em termodinâmica? 
Em termodinâmica, o termo “sistema” se refere a uma parte do universo separada dele por uma 
fronteira que pode ser real (concreta) ou imaginária. Muitos problemas em termodinâmica envolvem 
trocas de energia entre um sistema e outro. Os sistemas que podem interagir (trocar energia) com 
um dado sistema são chamados de vizinhança desse sistema. As características da fronteira que 
envolve um determinado sistema influenciam a troca de energia com sua vizinhança. Assim, uma 
parede adiabática é um tipo de fronteira que não permite a troca de calor entre um sistema e sua 
vizinhança, ao contrário de uma parede diatérmica, que permite a troca de calor. 
1.4 O que é estado de um sistema? 
Equilíbrio térmico, Temperatura e Dilatação 
 
_____ 
Pinheiro & Corradi - Fundamentos de Mecânica dos Fluidos e Termodinâmica - 25/03/2023 
 
O estado de um sistema termodinâmico é determinado pelos valores das quantidades macroscópicas 
relevantes para a descrição do sistema em estudo. Assim, o estado de um gás, por exemplo, pode ser 
determinado por sua temperatura, pressão, volume, densidade, entropia etc. Se estivermos 
interessados em descrever o comportamento termodinâmico de um sólido magnético, precisaremos 
conhecer sua magnetização; diferentes tipos de sistemas, portanto, vão requerer a especificação de 
diferentes quantidades macroscópicas. 
 
2. Atividades para auto avaliação: Temperatura 
2.1 Qual é a diferença entre temperatura e calor? 
Temperatura é um PROPRIEDADE de todos os materiais. Quando sistemas entram em equilíbrio 
térmico, eles apresentam a mesma temperatura. Enquanto existir uma diferença de temperatura 
entre os sistemas fluirá do sistema de temperatura mais alta para o sistema de temperatura mais 
baixa uma ENERGIA chamada CALOR. 
2.2 Como medir temperatura? Como medir calor? Explique! 
Mede-se temperatura utilizando um termômetro. Ou seja, um dispositivo que usa uma característica 
física adequada para cada situação, que varie com a temperatura. Quando termômetro e sistema 
entrarem em equilíbrio térmico, eles possuirão a mesma temperatura. 
Calor deve ser medido com o auxílio de um calorímetro, recipiente que isola dois ou mais corpos, 
permitindo que haja troca de energia apenas entre eles. 
2.3 Seria correto afirmar em um dia quente que “está fazendo calor”? 
Não. Calor não é uma característica de um sistema. Calor significa a energia que flui de um corpo para 
o outro. Portanto, qualquer sistema pode ceder ou receber calor, mas nunca possuí-lo. Assim, seria 
correto dizer que: “a temperatura está alta”. 
2.4 O que significa dizer que um sistema está em equilíbrio termodinâmico? 
Quando um sistema se encontra em equilíbrio termodinâmico não se observa mudança de nenhuma 
de suas propriedades MACROSCÓPICAS, embora possa existir mudanças instantâneas de suas 
propriedades microscópicas. Dito de outra forma, toda medida experimental de quantidades 
macroscópicas de um sistema em equilíbriotermodinâmico fica inalteradas enquanto perdurar o 
referido estado de equilíbrio. 
2.5 Dois sistemas em equilíbrio termodinâmico, estão necessariamente em equilíbrio térmico entre 
si? Por quê? 
Note que há uma ligeira diferença entre equilíbrio termodinâmico e equilíbrio térmico. O primeiro se 
refere às condições macroscópicas que um sistema deve apresentar para estar em equilíbrio 
enquanto que o segundo (equilíbrio térmico) se refere à comparação da temperatura entre dois ou 
mais sistemas. Cada um dos sistemas pode estar individualmente em equilíbrio termodinâmico, mas 
isso não implica que eles estejam necessariamente em equilíbrio térmico. Sistemas em equilíbrio 
termodinâmico em temperaturas distintas quando colocados em contato térmico evoluirão, mudando 
suas condições termodinâmicas individuais até atingir o equilíbrio térmico. Se compararmos as 
variáveis macroscópicas dos sistemas antes e depois deles atingirem o equilíbrio térmico, veremos 
que elas são diferentes. 
2.6 Qual é a relação entre equilíbrio térmico e a definição de temperatura em termos macroscópicos? 
Equilíbrio térmico, Temperatura e Dilatação 
 
_____ 
Pinheiro & Corradi - Fundamentos de Mecânica dos Fluidos e Termodinâmica - 25/03/2023 
 
A temperatura de um corpo é a propriedade macroscópica que expressa a energia cinética 
translacional média - propriedade microscópica - das moléculas existentes no corpo em questão. 
A definição de temperatura em termos macroscópicos requer compreensão do conceito de equilíbrio 
térmico. Quando dois corpos com temperaturas diferentes são colocados em contato, ocorre 
entre eles transferência de energia, até que se atinja uma situação de equilíbrio térmico. 
2.7 O que diz a Lei Zero? Como ela se relaciona com a utilização de um termômetro para medir 
temperatura? 
Lei Zero da Termodinâmica: Dois sistemas que estejam em equilíbrio térmico com um terceiro sistema 
estarão também em equilíbrio térmico um com o outro. 
A Lei Zero afirma que se um termômetro está em equilíbrio térmico com dois sistemas distintos, estes 
estarão à mesma temperatura. 
2.8 
Parece óbvio, mas o fato que duas pessoas conheçam o presidente da República não implica no fato 
que estas duas pessoas se conheçam. Como, à época da discussão sobre o conceito de temperatura, 
já existia a primeira lei da termodinâmica, e dada a importância das conclusões discutidas acima, a 
assertiva foi estabelecida como a “Lei Zero da Termodinâmica”. 
 
3. Atividades para auto avaliação: Termometria 
3.1 (a) Se alguém medisse a sua temperatura com a mão e lhe dissesse que você está com febre, você 
tomaria ou não um antitérmico? (b) Como você mediria a temperatura de um corpo. 
(a) Certamente não, visto que nossa percepção tátil pode nos conduzir a conclusões errôneas. Num 
dia frio ao tocarmos numa porta de madeira e em sua fechadura, temos a impressão de que a parte 
metálica (fechadura e maçaneta) está mais fria do que a parte de madeira. No entanto, isso é um 
equívoco. A porta como um todo se encontra em equilíbrio térmico com o ambiente, ou seja, à mesma 
temperatura que o ambiente. Essa sensação do metal estar mais frio é devida ao fato do metal ser 
melhor condutor de calor do que a madeira. Assim, a troca de calor ocorre mais rapidamente entre a 
sua mão e o metal, deixando a sensação dele estar mais frio. 
(b) É necessário então buscar um método de medição que evite esses percalços. O medidor mais 
comum é o termômetro de mercúrio (Hg) que, à pressão constante, sofre alterações no volume 
quando tem sua temperatura variada. Após certo tempo o Hg estará em equilíbrio térmico com o 
sistema a ser medido. Embora a variação volumétrica seja muito usada, ela não é a única. Há vários 
tipos de termômetros que funcionam com as mais diversas propriedades termométricas 
(resistividade, dilatação, intensidade da radiação etc.) 
3.2 O que é propriedade termométrica? Que características tornam certa propriedade termométrica 
apropriada para a utilização em um termômetro? 
Propriedade termométrica de um material é uma característica que varia com a temperatura. No 
termômetro de mercúrio (Hg), por exemplo, a propriedade termométrica usada é o volume, que para 
pequenos intervalos de temperatura varia de forma linear com a temperatura. Uma boa substância 
para se usar em um termômetro é aquela que pode ser encontrada facilmente, tornando o processo 
reprodutível, e tenha uma propriedade termométrica que permita boa visualização de sua variação 
Equilíbrio térmico, Temperatura e Dilatação 
 
_____ 
Pinheiro & Corradi - Fundamentos de Mecânica dos Fluidos e Termodinâmica - 25/03/2023 
 
em função da temperatura. O volume da água é uma propriedade termométrica inviável, devido ao 
comportamento anômalo que a água apresenta entre 0o e 4o C. Para cada comprimento da coluna da 
água teremos duas possíveis temperaturas nas proximidades de 4o C. 
3.3 Qual é a diferença entre as temperaturas medidas pelas escalas Celsius, Fahrenheit e Kelvin? 
As escalas Celsius, Fahrenheit e Kelvin são as mais conhecidas. Elas se relacionam através das 
expressões:𝑇: =
�
h
𝑇< + 32 e 𝑇< = 𝑇� − 273. A escala Celsius é erroneamente conhecida como 
“centígrado”. 
3.4 Há alguma temperatura na qual coincidem as medidas feitas na escala Kelvin e na escala Celsius? 
E entre a escala Kelvin e a escala Fahrenheit? E entre a escala Fahrenheit e a escala Celsius? 
Para sabermos se há uma temperatura coincidente entre as escalas, usamos as expressões citadas 
acima, supomos sua existência e verificamos se há coerência. 
Entre Kelvin e Celsius 
𝑇� = 𝑇� − 273 
𝑇 = 𝑇 − 273 
 
Entre Kelvin e Fahrenheit 
𝑇: =
9
5
(𝑇� − 273) + 32 
𝑇 =
9
5
(𝑇 − 273) + 32 
𝑇 = 575 
575 K = 575oF 
Entre Fahrenheit e Celsius 
𝑇: =
9
5𝑇< + 32 
𝑇 =
9
5𝑇 + 32 
𝑇 = −40 
-40oC = -40oF 
 
4. Atividades para auto avaliação: Termômetro a gás a volume constante 
4.1 O gráfico da figura abaixo, representa as temperaturas obtidas com um termômetro de gás a 
volume constante cujo bulbo está imerso em água em ebulição. Gases diferentes são usados, cada 
um com uma densidade diferente, como indicado pelo eixo horizontal que representa a pressão no 
ponto triplo da água (Ptr). (a) Que valor será obtido para a temperatura do ponto de ebulição da água 
se for usado um termômetro de gás a volume constante que utiliza Ar e que contém ar suficiente para 
que Ptr = 80cmHg? Esse valor corresponde à temperatura absoluta? 
 
(a) Pela leitura do gráfico T = 373,32 K. Este valor não corresponde à temperatura absoluta. 
(b) Qual seria a leitura do termômetro se fosse retirado um pouco de Ar, de forma que Ptr = 20cmHg? 
T= 373,16 K. 
4.2 Qual o valor da temperatura absoluta do ponto de ebulição da água? 
Equilíbrio térmico, Temperatura e Dilatação 
 
_____ 
Pinheiro & Corradi - Fundamentos de Mecânica dos Fluidos e Termodinâmica - 25/03/2023 
 
T = 373,15K, como podemos ver no gráfico. 
4.3 Por que um termômetro de gás a volume constante permite a definição de uma escala 
termométrica absoluta? 
Para todos os gases o valor de T converge quando 𝑃�� → 0. Ou seja, quando	
�
W
→ 0. Assim, 
independente da substância termométrica, podemos definir uma escala absoluta para a temperatura. 
 
5. Atividades para auto avaliação: Dilatação Térmica 
5.1 Explique, em termos microscópicos, por que os materiais podem sofrer dilatação quando sua 
temperatura é variada? 
O conjunto de átomos que forma um material vibra constantemente em torno de um ponto de 
equilíbrio. Quanto maior a temperatura do corpo maior é a amplitude de vibração. A energia potencial 
do conjunto de átomos é semelhante ao que se observa na primeira figura abaixo: 
 
Quanto T aumenta (de T1 para T2) variamos as posições médias (de <X1> para <X2>) e 
consequentemente a distância entre átomos. Por isso verificamos uma dilatação ou contração. Se o 
potencial fosse simétrico como indicado abaixo, independentemente da temperatura, a posição 
média de cada átomo seria a mesma econsequentemente não observaríamos mudança das distâncias 
interatômicas. 
 
 
5.2 A equação 𝛥𝐿 = 𝛼𝐿𝛥𝑇 expressa a variação do comprimento com a temperatura. Obtenha as 
equações 𝛥𝐴 = 2𝛼𝐴(𝛥𝑇e 𝛥𝑉 = 3𝛼𝑉(𝛥𝑇 que descrevem a variação da área e do volume com a 
temperatura, respectivamente. 
𝛥𝐿 = 𝐿 − 𝐿� = 	𝐿�𝛼𝛥𝑇 
𝐿 = 𝐿�(1 + 𝛼𝛥𝑇) 
𝐴 = 𝐿p;	𝐴( = 𝐿(p 
𝛥𝐴 = 𝐴 − 𝐴� = 𝐿p − 𝐿(p 
Equilíbrio térmico, Temperatura e Dilatação 
 
_____ 
Pinheiro & Corradi - Fundamentos de Mecânica dos Fluidos e Termodinâmica - 25/03/2023 
 
𝛥𝐴 = 𝐿(p(1 + 2𝛼𝛥𝑇 + 𝛼p𝛥𝑇p) − 𝐿(p 
𝛥𝐴 = 𝐴((1 + 2𝛼𝛥𝑇 + 𝛼p𝛥𝑇p − 1) 
 
Mas 𝛼p𝛥𝑇p<<1 e ∴ 𝛥𝐴 = 𝐴�2𝛼𝛥𝑇 
𝑉 = 𝐿r;	𝑉( = 𝐿(r 
𝛥𝑉 = 𝑉 − 𝑉� = 𝐿r − 𝐿(r 
𝛥𝑉 = 𝐿(r(1 + 3𝛼𝛥𝑇 + 3𝛼p𝛥𝑇p +	𝛼r𝛥𝑇r) − 𝐿(r 
𝛥𝐴 = 𝑉((1 + 3𝛼𝛥𝑇 + 3𝛼p𝛥𝑇p +	𝛼r𝛥𝑇r − 1) 
 
Mas 𝛼p𝛥𝑇p ≪1 e 𝛼r𝛥𝑇r≪1 ∴ 𝛥𝑉 = 𝑉�3𝛼𝛥𝑇 
 
5.3 O que é dilatação aparente? 
Quando observamos a expansão da coluna de mercúrio no interior de um termômetro, na realidade 
estamos observando a diferença de dilatação entre o mercúrio e o recipiente. A substância líquida, 
em geral se dilata mais que os sólidos. Essa diferença é o que torna possível a leitura do termômetro. 
Se os coeficientes de dilatação do mercúrio e do vidro fossem iguais, ambos teriam a mesma expansão 
ao serem aquecidos e a coluna de mercúrio permaneceria na mesma marca da escala. Dilatação 
aparente é a diferença entre a variação volumétrica do líquido e do recipiente, que é dada por 
�𝛽liq − 3𝛼solido�. 
5.4 O que existe de peculiar e importante na dilatação térmica da água? 
A água, assim como a maioria das substâncias, se expande ao ser aquecida. No entanto, a dilatação 
só vale para temperaturas acima de 4o C. Esse líquido tão comum apresenta um comportamento 
singular quando tem a sua temperatura variada entre 0o C e 4o C. Nesta faixa a queda de temperatura 
provoca expansão da água, desta forma a densidade máxima da água ocorre a 4o C, isso pode ser 
observado colocando um cubo de gelo num copo com água, como ele é menos denso, o gelo (sólido) 
flutua. Essa singularidade da água é fundamental para a vida. Quando os lagos congelam na superfície 
as camadas inferiores se mantém a uma temperatura de 4o C. 
5.5 Explique a expressão para a tensão térmica :
$
= −𝑌𝛼𝛥𝑇, onde F é a tensão da barra, A é a área da 
seção reta, α é o coeficiente de dilatação linear e Y é o módulo de Young. 
J
𝛥𝐿
𝐿 Mtermica
= 𝛼𝛥𝑇 
J
𝛥𝐿
𝐿 Mtensão
=
1
𝑌
𝐹
𝐴 
À medida que T varia a barra sofre dilatação, e consequentemente fica sujeita a uma tensão que tende 
a impedir a dilatação. Ou seja, como c��
�
f
termica
+ c��
�
f
tensão
= 0. 
𝛼𝛥𝑇 = −
1
𝑌
𝐹
𝐴 
Logo, 
Equilíbrio térmico, Temperatura e Dilatação 
 
_____ 
Pinheiro & Corradi - Fundamentos de Mecânica dos Fluidos e Termodinâmica - 25/03/2023 
 
𝐹
𝐴 = −𝑌𝛼𝛥𝑇 
5.6 Pode existir coeficiente de dilatação negativo? 
Sim. Isto ocorre se o corpo contrai quando sua a temperatura aumenta. Lembre-se que 𝛼 = k
��
dL
dT
. Este 
comportamento é comum a vários materiais, entre eles podemos citar a borracha. 
RESPOSTAS: Exercícios de Fixação 
1.7.1 Em alguns locais da Terra a temperatura em graus Celsius é igual à temperatura em graus 
Fahrenheit. Qual é o valor desta temperatura? Qual é a estação mais provável? 
Resposta 
 Considerando que TF=TC, então 
T� =
9
5T� + 32 
T =
9
5T + 32 ⇒ T = −40	℃ = −40	℉ 
A estação mais provável é o inverno. 
 
1.7.2 O ganho de um certo amplificador à temperatura ambiente (20,0 oC) é 30,0 e a 55,0 oC é 35,2. 
Se o ganho variasse linearmente com a temperatura neste intervalo limitado, qual seria o ganho a 
28,0 oC? 
Resposta 
 Considerando a relação linear temos que a cada 35 oC de variação há um ganho de 5,2 ��
��
. Podemos 
encontrar qual é o ganho com a variação de 1 oC usando a equação da reta 
y = ax + b : 
30 = a20+ b 
35, 2 = a55+ b 
Resolvendo o sistema, temos que a = 0,15eb = 27 
∴ y = 0,15x + 27 
y(28) = 0,15(28) + 27 = 31, 2 
1.7.3 Dois termômetros de gás a volume constante são imersos em um banho de água no ponto 
de ebulição. Um utiliza nitrogênio e o outro hélio, e ambos contêm gás suficiente para que ptr=100 
cm Hg Qual é a diferença entre as pressões dos dois termômetros e qual é a maior? 
Resposta 
Equilíbrio térmico, Temperatura e Dilatação 
 
_____ 
Pinheiro & Corradi - Fundamentos de Mecânica dos Fluidos e Termodinâmica - 25/03/2023 
 
Tomando Ptr como sendo 100 mm de Mercúrio para ambos termômetros. De acordo com a Figura 
1.5, o termômetro de N2 fornece 373,32 K para o ponto de ebulição da água. Usamos a Equação T =
273,16 × ¡
¡¢£
∴ P = ¤
273,16
ptr para determinar a pressão: 
P¦ =
373,32
273,16
(100) P¦ = 136,67mmHg 
Analogamente, o termômetro de hidrogênio fornece 373,05 K para o ponto de ebulição da água e 
P§ =
r¨r,�h
273,16
(100) P§ = 136,57 mmHg 
A pressão no termômetro de nitrogênio é maior que a pressão no termômetro de hidrogênio por 0,10 
mm de mercúrio. 
 
 
1.7.4 Usando-se um termômetro de gás a volume constante verificou-se que a pressão do ponto 
triplo da água (0,01 oC) era igual a 4,80 x 104 Pa e a pressão do ponto de ebulição normal da água 
(100 oC) era igual a 6,50 x 104 Pa. 
a) Supondo que a pressão varie linearmente com a temperatura, use esses dados para calcular a 
temperatura Celsius para a qual a pressão do gás seria igual zero (isso é, ache a temperatura 
Celsius do Zero absoluto). 
b) O gás neste termômetro obedece à equação ¤y
¤z
= ¡y
¡z
 de modo preciso? Caso esta equação fosse 
obedecida exatamente, e a pressão a 100oC fosse igual a 6,50 x 104 Pa, qual seria a pressão medida 
a 0,01oC? 
 
Resposta 
4,80 × 10w = 0,01a + b 
6,50 × 104 = 100a + b 
Resolvendo o sistema: a = 170 e	b = 48000 
P = aT+ b 
0=170 T+ 48000 
T= -282 0C 
20 TERMODINÂMICA BÁSICA
Fig. 1.7 - Termometro de gás à volume constante usando hidrogênio, nitrogênio ou oxigê-
QLR�FRPR�ÁXLGR�GH�VXD�RSHUDomR�
$�HVFDOD�GH�WHPSHUDWXUD�UHVSHLWDGD�SHOR�WHUP{PHWUR�GH�JiV�D�YROXPH�
FRQVWDQWH�p�a escala de temperatura de gás ideal��TXH�p�D�PHVPD�HVFDOD�
.HOYLQ��GHÀQLGD�SHOD�VHJXLQWH�H[SUHVVmR�
 ( )
tr
Ptr P
PKT
0
lim16,273
o
�= (V constante) (1.9)
3HOR� IDWR�GHVWHV� WHUP{PHWURV�QD� FRQGLomR�GH�SUDWLFDPHQWH�QHQKXP�
JiV�HP�VHX�LQWHULRU�FRQFRUGDUHP�HP�TXDOTXHU�WHPSHUDWXUD�FRPR�YLVWR�QD�
)LJXUD�����HOHV�VHUYHP�SDUD�GHÀQLU�H�PHGLU�WHPSHUDWXUD�FRP�D�PHOKRU�SUH�
FLVmR�SRVVtYHO�H�EDVLFDPHQWH�SRU�FDXVD�GLVWR�VmR�HVFROKLGRV�FRPR�termô-
metros padrões.
0HVPR�VHQGR�WHUP{PHWUR�TXH�LQGHSHQGHQWH�GR�JiV�XVDGR�HOH�GHSHQGH�
GDV�SURSULHGDGHV�GRV�JDVHV�HP�JHUDO��SURSULHGDGHV�HVWDV�UHSUHVHQWDGDV�SHOR�
FKDPDGR�JiV�LGHDO�TXH�VHUi�HVWXGDGR�QR�FDSLWXOR�VHJXLQWH�
3DUD�VH�PHGLU�WHPSHUDWXUD�PXLWR�EDL[D��GLJDPRV�GD�RUGHP���.�p�SUH�
FLVR�XVDU�R�KpOLR�FRPR�JiV�GH� WUDEDOKR�SRUTXH�R�KpOLR�p�R�~QLFR�JiV�TXH�
SHUPDQHFH�QD�IRUPD�JDVRVD�j�EDL[D�SUHVVmR�QHVWD�WHPSHUDWXUD��FRORFDQGR�
DVVLP�R�OLPLWH�DWp�RQGH�HVWH�WLSR�GH�WHUP{PHWUR�SRGH�RSHUDU�
1.3. Dilatação térmica
$�GLODWDomR�WpUPLFD�SRGH�VHU�FRPSUHHQGLGD��LPDJLQDQGR�D�HVWUXWXUD�
GH�XP�VyOLGR�FULVWDOLQR��2V�iWRPRV�VmR�PDQWLGRV� MXQWRV�HP�XP�DUUDQMR�
UHJXODU�SRU�IRUoDV�HOpWULFDV��FRPR�VH�IRVVHP�XP�FRQMXQWR�GH�PRODV�OLJD�
GDV�HQWUH�HOHV��(P�XP�FPó�Ki�FHUFD�GH������´PRODVµ��2V�iWRPRV�GH�XPD�
HVWUXWXUD�VyOLGD�FULVWDOLQD�FRPR�HVWD�YLEUD�HP�FHUFD�GH������+]�HP�XPD�
DPSOLWXGH�GD� RUGHP�GH�������P�� TXH� p� DSUR[LPDGDPHQWH�XP�GpFLPR�GR�
GLkPHWUR�GR�iWRPR��
4XDQGR�D�WHPSHUDWXUD�DXPHQWD��RV�iWRPRV�YLEUDP�FRP�DPSOLWXGHV�
PDLRUHV�H�VXD�GLVWDQFLD�PpGLD�DXPHQWD��,VWR�OHYD�D�XPD�GLODWDomR�GH�WRGR�R�
FRUSR�VyOLGR��$�YDULDomR�GH�TXDOTXHU�GLPHQVmR�OLQHDU�GR�VyOLGR��FRPR�FRP�
SULPHQWR��ODUJXUD�RX�HVSHVVXUD�p�FKDPDGD�GH�GLODWDomR�OLQHDU.
3RU�H[SHULPHQWDomR�REVHUYD�VH�TXH�D�GLODWDomR� OLQHDU�GH�XP�FRUSR��
FDUDFWHUL]DGD�SHOD�YDULDomR�¨/�QR�VHX�FRPSULPHQWR�/�p�GLUHWDPHQWH�SURSRU�
FLRQDO�DR�SUySULR�FRPSULPHQWR�/�FRPR�WDPEpP�j�YDULDomR�GH�WHPSHUDWXUD�¨7�FRUUHVSRQGHQWH��RX�VHMD���TXDQGR�¨7�IRU�VXÀFLHQWHPHQWH�SHTXHQR��
Equilíbrio térmico, Temperatura e Dilatação 
 
_____ 
Pinheiro & Corradi - Fundamentos de Mecânica dos Fluidos e Termodinâmica - 25/03/2023 
 
b) Usando a equação ¤y
¤z
= ¡y
¡z
 teríamos 1,3662 = 1,3541, assim percebemos que o gás no termômetro 
não obedece de modo preciso a equação mencionada. 
¤y
¤z
= ¡y
¡z
 → 373©
273©
= ª,50«10
¬Pa
¡z
 → Pk = 4,76 × 10wPa 
1.7.5 Os trilhos de uma estrada de ferro são fixados quando a temperatura é de -5,0o C. Uma seção 
padrão de trilho tem 12,0 m de comprimento. Qual deve ser o espaçamento entre as seções para 
que não haja compressão quando a temperatura subir até 42o C? 
Resposta 
Considerando que o coeficiente linear do Ferro seja 12,0 x 10-6 C-1, um trilho de ferro de 12 metros de 
comprimento, submetido a um aumento de temperatura de 47oC, sofrerá uma dilatação dada por : 
ΔL = αL�ΔT 
ΔL = 12, 0 × 10gªCgk.(12, 0m).(47, 0oC) 
ΔL = 6,7mm 
O trilho se dilata em 6,7 mm. Este deve ser o espaçamento entre eles para que não ocorra compressão 
quando a temperatura for 42oC. 
1.7.6 Mostre que se α depende da temperatura T, então L ≅ Le |1 + ∫ α(T)dT
¤
¤°
�, 
onde L0 é o comprimento à temperatura de referência T0. 
Resposta 
α =
ΔL
L
1
ΔT 
α(T) =
1
L
dL
dT
 
α(T)dT =
dL
L 
± α(T)dT = ±
dL
L
²
²�
¤
¤�
 
ln
L
L�
= ± α(T)dT
¤
¤�
 
L
L�
= e∫ ³(¤)dT
´
´� 
Em primeira aproximação por expansão de séria de Taylor, e« = 1 + x 
L
L�
= 1 + ± α(T)dT
¤
¤�
 
Equilíbrio térmico, Temperatura e Dilatação 
 
_____ 
Pinheiro & Corradi - Fundamentos de Mecânica dos Fluidos e Termodinâmica - 25/03/2023 
 
L ≃ L� ¶1 +± α(T)dT
¤
¤�
· 
1.7.7 A área A de uma placa retangular (figura abaixo) é a.b e seu coeficiente de dilatação linear é 
α. Com o aumento de temperatura ∆T, o lado a dilata ∆a e o lado b, ∆b. 
Mostre que se desprezarmos o termo ∆a∆b/ab, então ∆A = 2αAΔT. 
Resposta 
A� = a�.b� An = a.b = (a� + Δa)(b� + Δb) 
ΔA = An − A� 
ΔA = [(a� + Δa)(b� + Δb)] − a�b� 
ΔA = [a�b� + a�Δb + b�Δa + ΔaΔb] − a�b� 
ΔA = [a�b� + a�(b�αΔT) + b�(a�αΔT) + (a�αΔT)(b�αΔT)] − a�b� 
ΔA = 2a�b�αΔT + a�b�αpΔTp 
a�b�αpΔTp esse termo é extremamente pequeno, por isso pode ser desprezado, então temos: 
ΔA = 2αA�ΔT 
 
1.7.8 O avião supersônico Concorde possui um comprimento igual a 62,1 m quando está em 
repouso no solo em um dia típico (a 15oC). Ele é basicamente feito de alumínio. Quando ele está 
voando com uma velocidade igual ao dobro da velocidade do som, o atrito com o ar aquece a parte 
externa do Concorde e produz uma dilatação de 25 cm no comprimento do avião. O compartimento 
dos passageiros está apoiado em rolamentos, e o avião se expande em torno dos passageiros. Qual 
é a temperatura da parte externa do Concorde durante o vôo? 
Resposta 
 DT = (DL)/( DL0) = (25 x 10-2 m)/((2.4 x 10-5 (oC)-1)(62.1 m)) = 168 oC. 
Logo a temperatura é igual a 168 oC. 
1.7.9 Determine o coeficiente de dilatação volumétrica da água à uma temperatura de 9oC. Utiliza 
a figura do problema que descreve a variação do volume da água em função da temperatura. 
Equilíbrio térmico, Temperatura e Dilatação 
 
_____ 
Pinheiro & Corradi - Fundamentos de Mecânica dos Fluidos e Termodinâmica - 25/03/2023 
 
Resposta 
O coeficiente pode ser achado pela inclinação da curva a 9oC. 
β =
1
V�
ΔV
ΔT =
1
1.00025cmr
(1.0003cmr − 1.0000cmr)
(10eC − 6eC) → β = 0.000075/
eC = 7.5x10gh/eC. 
 
1.7.10 Uma barra de latão possui comprimento igual a 185 cm e diâmetro de seção circular igual a 
1,60 cm. Qual é a força que deve ser aplicada a cada extremidade da barra para impedir que ela se 
contraia quando for esfriada de 120 oC para 10 oC? O coeficiente de dilatação do latão vale 
2 x 105 K-1 e o módulo de Young do latão vale 9 x 1010 N/m2. 
Resposta 
F = -Y aADT 
= -(9 x 1010 Pa)(2.0 x 10-5(oC)-1) (2.01 x 10-4 m2) (-110oC) 
= 4.0 x 104 N. 
 
RESPOSTAS: Problemas 
1.8.1 À uma temperatura T0, a aresta de um cubo é igual a L0 e ele possui densidade igual a ρ0. O 
material constituinte do cubo possui coeficiente de dilatação volumétrica igual a β. 
(a) Mostre que quando a temperatura cresce de T0+∆T, a densidade do cubo passa a ser dada 
aproximadamente por ρ ≈ ρ�(1 − βΔT). (Sugestão: Use a expressão (1 + x)½ ≈ 1 + nx, válida 
quando |x|<<1) Explique porque este resultado aproximado é valido somente quando ∆T for muito 
menor do que 1/β e explique por que é de esperar essa aproximação na maior parte dos casos. 
(b) Um cubo de cobre possui aresta de 1,25 cm a 20,0 oC. Calcule sua variação de volume e de 
densidade quando sua temperatura passa para 70 oC. 
Resposta 
(a) 
Equilíbrio térmico, Temperatura e Dilatação 
 
_____ 
Pinheiro & Corradi - Fundamentos de Mecânica dos Fluidos e Termodinâmica - 25/03/2023 
 
ρ� =
¾
\�
 ∴ ρ = ¾
\�¿\�À�¤
 
ρ =
mV�
1 + βΔT =
ρ�
1 + βΔT 
Se (1 + x)½ ≈ 1 + nx,	então (1 + βΔT)gk ≈ 1 − βΔT 
ρ(T) ≈ ρ�(1 − βΔT) 
Δρ(T) ≈ −ρ�βΔT 
Este resultado aproximado é valido somente quando ∆T for muito menor do que 1/β porque a 
expressão usada é válida para |x|<<1 βΔT<<1 
(b) 
Variação de volume: 
ΔV = V�β	ΔT 
ΔV = 1,953(5,1 × 10gh)(50) 
ΔV = 4,98 × 10grcmr 
Variação de Densidade: 
Δρ
ρ�
≈ (5,1 × 10gh)(50)	
Δρ
ρ�
≈ 2,5 × 10gr	%	
1.8.2 a) Mostre que se os comprimentos de duas barras de materiais diferentes são inversamente 
proporcionais a seus respectivos coeficientes de dilatação linear à mesma temperatura inicial e que a 
variação de seus respectivos comprimentos também sejam proporcionais à temperatura, a diferença 
entre os seus comprimentos será constante em todas as temperaturas. b) Quais deveriam ser os 
comprimentos de uma barra de aço e uma de latão a 0 oC para que as diferenças de seus 
comprimentos fosse 0,30 m em todas as temperaturas? 
Resposta 
(a) 
A temperatura inicial considere-se os comprimentos das duas barras dados por: 
(1) Lk� =
¦
³z
 
(2) Lp� =
¦
³y
 
onde N é a constante de proporcionalidade. 
A variação dos respectivos comprimentos também é proporcional à variação da temperatura. Logo 
(3) ΔLk = 	ΔLp = NΔT 
Equilíbrio térmico, Temperatura e Dilatação 
 
_____ 
Pinheiro & Corradi - Fundamentos de Mecânica dos Fluidos e Termodinâmica - 25/03/2023 
 
Assim, quando a temperatura varia de um ∆T, tem-se: 
(4) Lk = Lk� + ΔLk =
¦
³z
+ NΔT 
(5) Lp = Lp� + ΔLp =
¦
³y
+ NΔT 
A diferença entre os comprimentos iniciais das barras será obtida subtraindo (2) e (1) 
(6) ΔL� = Lk� − Lp� =
¦
³z
− ¦
³y
 
(7) ΔL� = N
³zg³y
³z³y
 
A diferença entre os comprimentos das barras após uma variação da temperatura ΔT	será obtida 
subtraindo (5) e (4) 
ΔL = Lk − Lp =
N
αk
+ NΔT −
N
αp
− NΔT 
ΔL = N
αk − αp
αkαp
 
ΔL = ΔL� 
Logo, a diferença de comprimento é constante para qualquer variação de temperatura. 
(b) Sendo ∆L= 0,30 m e os valores dos coeficientes de expansão do aço e do latão dados por 
 
αp = αaço = 11 × 10gª	℃gk e αk = αlatão = 19 × 10gª		℃gk 
Obtemos 
N = ³z³y
³zg³y
ΔL = (19)(11)	×	10
Ä12
(19g11)×10ÄÅ
(0,30) = 7,84 × 10gª 
Portanto, 
Lk� =
7,84 × 10gª
19 × 10gª
= 0,4125m 
Lp� =
7,84 × 10gª
11 × 10gª
= 0,7125m 
Tal que 
ΔL� = Lk� − Lp� = 0,30m 
1.8.3 A equação �
Æ
= −YαΔT fornece a tensão necessária para manter a temperatura da barra 
constante à medida que a temperatura da barra varia. Mostre que se o comprimento pudesse variar 
de ∆L quando a sua temperatura varia de ∆T, a tensão seria dada por: 
F
A = YJ
ΔL
L�
− αΔTM 
Equilíbrio térmico, Temperatura e Dilatação 
 
_____ 
Pinheiro & Corradi - Fundamentos de Mecânica dos Fluidos e Termodinâmica - 25/03/2023 
 
Onde F é a tensão da barra, L0 é o comprimento original da barra, A é a área da seção reta, α é o 
coeficiente de dilatação linear e Y é o módulo de Young. 
Resposta 
Por definição temos: c�²
²�
f
termica
= αΔT c�²
²�
f
tensão
= �
AY
 
ΔLtérmica = L�αΔT ΔLtensão =
�
AY
L� 
ΔLtotal = ΔLtermica + ΔLtensão 
ΔLtotal = L�αΔT +
F
AY
L� 
ΔLtotal

Continue navegando