Buscar

JoseJaimeGuimaraesPeixotoNeto-DISSERT

Prévia do material em texto

Universidade Federal do Rio Grande do Norte 
Centro de Tecnologia 
Programa de Pós-Graduação em Engenharia Elétrica e 
de Computação 
 
 
 
 
Projeto de absorvedores de micro-ondas 
usando Superfícies Seletivas em 
Frequência 
 
 
 
 
 
 
José Jaime Guimarães Peixoto Neto 
 
 
 
 
 
 
 
 
Orientador: Prof. Dr. Antonio Luiz Pereira de Siqueira Campos 
 
 
 
 
 
 
 
Dissertação de Mestrado 
apresentada ao Programa de Pós-
Graduação em Engenharia Elétrica 
da UFRN (área de concentração: 
Telecomunicações) como parte dos 
requisitos para obtenção do título de 
Mestre em Ciências. 
 
 
 
 
Número de Ordem do PPgEEC: M476 
Natal, Dezembro de 2016. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Universidade Federal do Rio Grande do Norte – UFRN 
Sistema de Bibliotecas – SISBI 
Catalogação da Publicação na Fonte - Biblioteca Central Zila Mamede 
Peixoto Neto, José Jaime Guimarães. 
 Projeto de absorvedores de micro-ondas usando Superfícies Seletivas em Frequência 
/ José Jaime Guimarães Peixoto Neto. 2017. 
 47 f. : il. 
 
 Dissertação (mestrado) - Universidade Federal do Rio Grande do Norte, Centro de 
Tecnologia, Programa de Pós-Graduação em Engenharia Elétrica e de Computação. - Natal, RN, 
2017. 
 Orientador: Prof. Dr. Antônio Luiz Pereira de Siqueira Campos. 
 
 1. Absorvedor de micro-ondas - Dissertação. 2. Superfície seletiva em frequência - 
Dissertação. 3. Espira quadrada - Dissertação. 4. Dipolo cruzado - Dissertação. I. Campos, 
Antônio Luiz Pereira de Siqueira. II. Título. 
 
RN/UFRN/BCZM CDU 621.391.3 
 
 
Agradecimentos 
 
 
A Deus por ter conseguido alcançar esta conquista. 
 
Ao meus avós, pais e irmãos pelas palavras de apoio e incentivo durante 
‘todos os momentos difíceis. 
 
Ao Professor Antônio Luiz Pereira de Siqueira Campos, pela orientação e 
pelo grande incentivo dado. 
 
A todos os professores do PPGEEC que me transmitiram seus 
conhecimentos e experiências profissionais durante este período. 
 
 
Resumo 
 
 
Com o rápido crescimento dos sistemas de comunicações sem fio, estudos 
envolvendo absorvedores de ondas eletromagnéticas tem despertado grande 
atenção pelos pesquisadores. Suas aplicações vão desde sistemas indoor até 
aplicações militares. Em paralelo a esse crescimento, os estudos crescentes em 
Superfícies Seletivas em Frequência (FSS) permitem que suas propriedades de 
filtragem sejam aplicáveis em diversos sistemas como em antenas refletoras, 
em radomes passa-faixa e em absorvedores que será o foco desse trabalho. 
Esse trabalho tem como objetivo projetar absorvedores de micro-ondas 
usando superfícies seletivas em frequência. A metodologia consiste 
basicamente em duas etapas: na primeira etapa, uma análise teórica e numérica 
de FSS com a geometria proposta é desenvolvida e na segunda etapa, a 
simulação e análise dos absorvedores projetados é feita. Para a análise será 
utilizado um programa computacional comercial, que fornece características de 
transmissão da estrutura para uma onda plana com incidência normal e oblíqua. 
Serão apresentados resultados iniciais, que demonstram domínio no uso do 
programa computacional comercial, bem como, entendimento dos efeitos 
analisados. Duas geometrias existentes na literatura foram escolhidas, para 
estudo e projeto de absorvedores de micro-ondas usando FSS: o dipolo cruzado 
e a espira quadrada. 
 
 
Palavras-chave: Absorvedor de Micro-ondas, Superfície Seletiva em 
Frequência, Espira quadrada, Dipolo cruzado. 
 
 
 
Abstract 
 
 
With fast increase of wireless systems, studies involving electromagnetic 
wave absorbers have attracted great attention from researchers. Their 
applications range from indoor systems to military applications. In parallel with 
this growth, the increasing studies in Selective Frequency Surfaces (FSS) allow 
its filtering properties to be applicable in several systems such as reflecting 
antennas, bandpass radomes and absorbers that will be the focus of this work. 
This work aims to design microwave absorbers using frequency selective 
surfaces. The methodology consists of two steps: in the first phase, a theoretical 
and numerical analysis of FSS with the geometries used and in the second 
phase, the simulation and analysis of the absorbers. For the analysis will be used 
a commercial computer program, which provides characteristics of transmission 
of the structure to a flat wave with normal and oblique incidence. 
Initial results are presented, which shows dominance in software use, as 
well as understanding the effects analyzed. Two existing structures in the 
literature were chosen for modeling microwave absorber using FSS: crossed 
dipole and square loop. 
 
 
Keywords: Microwave Absorber, Frequency Selective Surface, Square 
loop, crossed dipole. 
 
 
 
 
Sumário 
1 INTRODUÇÃO ................................................................................. 10 
2 FSS .................................................................................................. 12 
2.1 RESPOSTA EM FREQUÊNCIA ................................................ 12 
2.2 ELEMENTOS BÁSICOS ........................................................... 14 
2.3 COMPORTAMENTO DAS CARACTERÍSTICAS DA FSS ........ 17 
2.4 APLICAÇÕES ........................................................................... 18 
2.5 CONCLUSÕES ......................................................................... 22 
3 ABSORVEDORES DE MICRO-ONDAS .......................................... 23 
3.1 INTRODUÇÃO .......................................................................... 23 
3.2 TIPOS DE ABSORVEDORES ................................................... 23 
3.2.1 ABSORVEDOR DE SALISBURY ........................................ 23 
3.2.2 ABSORVEDOR DE JAUMANN ........................................... 25 
3.2.3 ABSORVEDOR DE DALLENBACH .................................... 25 
3.3 PROJETO DE ABSORVEDORES COM FSS ........................... 26 
3.4 CONCLUSÃO ............................................................................ 27 
4 METODOLOGIA DA PROJETO ...................................................... 28 
5 RESULTADOS ................................................................................. 34 
6 CONCLUSÕES ................................................................................ 44 
REFERÊNCIAS ..................................................................................... 46 
 
 
 
 
 
 
 
 
 
 
 
Lista de Figuras 
Figura 2.1: Tipos de FSS e suas respostas, onde a superfície cinzenta 
representa uma superfície metálica. (a) Arranjo do tipo patch condutor e seu 
comportamento passa-baixa, (b) Arranjo do tipo abertura e seu comportamento 
passa-alta, (c) e (d) apresenta os elementos sob a característica de ressonância; 
no primeiro, o tipo patch condutor como um filtro rejeita-faixa e, no outro, o tipo 
abertura como um filtro passa-faixa. ................................................................ 13 
Figura 2.2: (a) diferentes σd onde d=1mm. À medida que σd diminui, o 
comportamento seletivo de frequência da estrutura desaparece, (b) resposta em 
frequência de transmissão para σd = 0.1S; os resultados são próximos, formando 
uma curva sólida, obtida por extrapolação. ...................................................... 14 
Figura 2.3: Elementos (a) do tipo abertura e (b) tipo patch condutor. .... 15 
Figura 2.4: Grupo 1 – N-polos conectados pelo centro.......................... 15 
Figura 2.5: Grupo 2 – Espiras. ............................................................... 16 
Figura 2.6: Grupo 3 – Interior sólido. ..................................................... 16 
Figura 2.7: Grupo 4 – Combinações. .................................................... 17 
Figura 2.8: FSS como janelas eficientes................................................19 
Figura 2.9: O modelo de uma FSS e antena WLAN combinados. ......... 20 
Figura 2.10: FSS em cascata. ............................................................... 21 
Figura 2.11: Célula unitária de uma FSS desenvolvida pelo MGA. (a) 
incidência oblíqua (θ = 45º, θ = 0º), (b) incidência normal e oblíqua (θ = 0º e 45º, 
φ = 0º). ............................................................................................................. 22 
Figura 2.12: FSS baseada em absorvedor de microonda planar 
esquematizado. (a) Dimensões da célula unitária do dipolo, (b) Primeiro arranjo 
usando uma HIS absorvente, (c) Segundo arranjo usando o design de tela de 
Salisbury modificado. ....................................................................................... 22 
Figura 3.1: Geometria de um Absorvedor de Salysbury. ....................... 24 
Figura 3.2: Absorvedor de Jaumann. ..................................................... 25 
Figura 3.3: Absorvedor de Dallenbach................................................... 26 
Figura 4.1: Configuração do primeiro absorvedor analisado ................. 28 
Figura 4.2: Geometria do segundo absorvedor analisado. .................... 30 
Figura 4.3: Absorvedor Espira Quadrada. ............................................. 32 
 
 
Figura 5.1: Resultado das medições da camada de FSS condutiva com 
dipolo cruzado. ................................................................................................. 34 
Figura 5.2: Resultados medidos da superfície mostrando a absorção .. 35 
Figura 5.3: Resultado da simulação da camada de FSS condutiva para 
polarização perpendicular (TE). ....................................................................... 36 
Figura 5.4: Resultado da simulação da camada de FSS condutiva para 
polarização paralela (TM). ................................................................................ 37 
Figura 5.5: Resultado da simulação do absorvedor para polarização 
perpendicular (TE) e ângulo de incidência de 0º e 45º. .................................... 37 
Figura 5.6: Resultado da simulação do absorvedor para polarização 
paralela (TM) e ângulo de incidência de 0º e 45º. ............................................ 38 
Figura 5.7: Parâmetro S para diferentes valores de d. .......................... 39 
Figura 5.8: Parâmetro S para diferentes valores de d1 ......................... 40 
Figura 5.9: Parâmetro S para diferentes valores de 𝑤1. ........................ 40 
Figura 5.10: Parâmetro S para diferentes valores de ℎ1. ...................... 41 
Figura 5.11: Parâmetro S para diferentes valores de 𝑑2. ...................... 42 
Figura 5.12: Parâmetro S para diferentes valores de 𝑤2. ...................... 42 
Figura 5.13: Parâmetro S para diferentes valores de h2. ...................... 43 
 
 
 
 
 
Lista de Símbolos e Abreviaturas 
FSS: Superfície Seletiva em Frequência 
WLAN: Wireless Local Area Network 
MGA: Microgenetic Algorithm 
HIS: High Impedance Surface 
λ𝑜 : Comprimento de onda no espaço livre 
𝑍𝑜: Impedância intrínseca do espaço livre 
𝑅𝑠: Resistência superficial 
𝐶𝑠: Condutância superficial 
г: Coeficiente de reflexão 
V: Volume 
𝐶𝑏: Condutividade de massa 
GHz: Gigahertz 
MHz: Megahertz 
dB: Decibel 
TE: Transversal Elétrica 
TM: Transversal magnética 
10 
 
1 INTRODUÇÃO 
 
 
Com o desenvolvimento tecnológico ocorrido nos últimos anos na área de 
comunicação, os dispositivos têm cada vez mais a necessidade de se comunicar; 
esses mesmos dispositivos estão sendo miniaturizados, limitando assim o tamanho 
dos dispositivos de comunicação agregados a eles, o que torna a utilização de 
Superfícies Seletivas em Frequências (Frequency Selective Surface - FSS) como 
sendo uma opção atrativa para essas aplicações modernas [1] – [4]. 
Com a difusão das comunicações sem fio, cada vez mais frequências do 
espectro estão sendo usadas, com isso a necessidade de utilizar matérias 
absorvedores de ondas eletromagnéticas aumenta. O uso de absorvedores objetiva a 
diminuição da interferência eletromagnética e das perdas multipercurso proveniente 
das construções [5] - [7]. 
Na literatura, observa-se um grande número de produções científicas com 
superfícies seletivas em frequência. Os absorvedores de micro-ondas podem ser 
utilizados para redução de problemas ocasionados pela interferência eletromagnética. 
A utilização de FSS integradas a absorvedores de micro-ondas é capaz de fornecer 
melhorias relacionadas ao desempenho desses dispositivos. A incorporação de uma 
FSS pode causar mudanças nas propriedades de reflexão dos absorvedores. Pode-
se notar que a utilização dessas superfícies seletivas em frequência aplicada a 
absorvedores [8]. 
O uso de absorvedores não é algo novo, visto que o absorvedor de Salisbury 
foi criado pelo engenheiro americano Winfield Salisbury no ano de 1952 e foi dado a 
esse absorvedor o nome de tela de Salisbury possuía uso militar [9]. Em aplicações 
recentes, utilizando as configurações de uma tela de Salisbury em conjunto com 
Superfícies Seletivas em Frequência, foi alcançado o efeito de aumentar a largura de 
banda. 
Nesse trabalho é proposto o projeto de um absorvedor de ondas 
eletromagnéticas utilizando superfícies seletivas em frequência, projetado com dupla 
camada de superfícies seletivas em frequência separadas por uma distância d. A 
primeira camada é resistiva, enquanto que a segunda camada é condutiva. 
Este trabalho está organizado da seguinte forma: 
11 
 
No Capítulo 2, é apresentada uma descrição geral das superfícies seletivas em 
frequência, mostrando-se um breve histórico de como elas surgiram, os tipos básicos 
encontrados na literatura, as suas formas e algumas das suas aplicações. 
O Capítulo 3 apresenta um estudo sobre absorvedores de ondas 
eletromagnéticas, abordando aspectos como os tipos de absorvedores, parâmetros 
importantes e projeto de absorvedores. 
No Capítulo 4 é apresentada uma análise paramétrica de alguns dos 
parâmetros de um absorvedor, mostrando o impacto das mudanças desses parâmetro 
na resposta em frequência de uma estrutura proposta. 
No Capítulo 5, são apresentados os resultados obtidos com a proposta de 
criação de um absorvedor de ondas eletromagnéticas utilizando uma dupla camada 
de superfícies seletivas em frequências. 
Por fim, no Capítulo 6 são apresentadas as principais conclusões que foram 
obtidas através deste trabalho e são propostas sugestões para a sua continuidade. 
 
12 
 
2 FSS 
 
 
As Superfícies Seletivas em Frequência são estruturas compostas por arranjos 
periódicos, geralmente bidimensionais, constituídos por elementos do tipo patch 
condutor ou do tipo abertura, assim como também podem funcionar com uma 
combinação desses dois elementos. Nessas estruturas, filtros são importantes para 
permitir a passagem ou rejeitar determinada faixa de frequência. 
Diversos parâmetros e princípios são relacionados com a estrutura periódica e 
são de bastante relevância no projeto do dispositivo, como o tipo e a forma do 
elemento, peso e dimensão da estrutura, os tipos de materiais dielétricos e as 
espessuras dos substratos empregados, espaçamento utilizado na estrutura 
condutora, entre outros. 
 
2.1 RESPOSTA EM FREQUÊNCIA 
 
A resposta em frequência refere-se à resposta em um regime estacionário de 
um sistema com entrada senoidal. Nos métodos mais utilizados para análise, a 
frequência do sinal de entrada sofre uma variação, em certo intervalo de tempo, e a 
resposta em frequência resultante é estudada [10]. 
No funcionamento de uma FSS são quatro os tipos de resposta em frequência: 
passa-baixa, passa-alta, passa-faixa e rejeita-faixa, como exposto na Figura 2.1. 
Os filtros passa-baixa e passa-alta são superfícies complementares, no sentido 
de que juntas cobrem toda a superfície. De acordo com o Princípio de Babinet [11], os 
coeficientesde transmissão e reflexão de uma superfície serão os mesmos do outro. 
Isto significa que um filtro passa-alta é obtido a partir de um filtro passa-baixa, 
substituindo as partes condutoras por não condutoras. Isso também é aplicado para 
os filtros passa-faixa e rejeita-faixa. No entanto, a superfície deve satisfazer alguns 
requisitos. Em primeiro lugar, a espessura da tela deve ser inferior a 1/1000 λ 
(extremamente fina) e não deve existir nenhuma camada dielétrica, pois a existência 
dessa camada diminui a frequência de ressonância. Na Figura 2.1a, um arranjo 
periódico de elementos condutores (quadrados cinzentos) é apresentado. Com o uso 
do Princípio de Babinet, a característica passa-baixa do arranjo da Figura 2.1a, é 
obtida em 2.1b, com a inversão dos materiais. De forma similar, o filtro passa-faixa 
13 
 
representado na Figura 2.1d constitui-se de uma estrutura que é o complemento da 
estrutura do filtro rejeita-faixa, da Figura 2.1c. [6] 
 
 
 
Figura 2.1: Tipos de FSS e suas respostas, onde a superfície cinzenta representa uma 
superfície metálica. (a) Arranjo do tipo patch condutor e seu comportamento passa-baixa, (b) Arranjo 
do tipo abertura e seu comportamento passa-alta, (c) e (d) apresenta os elementos sob a 
característica de ressonância; no primeiro, o tipo patch condutor como um filtro rejeita-faixa e, no 
outro, o tipo abertura como um filtro passa-faixa. 
 
No gráfico da Figura 2.2, visualizamos um exemplo onde a resposta de 
frequência é estudada. Em aplicações de FSS como janelas eficientes, a forma do 
elemento utilizado é hexagonal, devido à sua grande largura de banda e estabilidade 
para diferentes ângulos de incidência e polarizações. Na Figura 2.2, é apresentada a 
dependência da resposta em frequência de transmissão para uma FSS de forma 
hexagonal. 
14 
 
 
 
Figura 2.2: (a) diferentes σd onde d=1mm. À medida que σd diminui, o comportamento 
seletivo de frequência da estrutura desaparece, (b) resposta em frequência de transmissão para σd = 
0.1S; os resultados são próximos, formando uma curva sólida, obtida por extrapolação. 
 
2.2 ELEMENTOS BÁSICOS 
 
As FSS são compostas por dois tipos fundamentais de elementos. O primeiro 
consiste de patches metálicos condutores sobre um substrato, que funcionam com um 
filtro passa-baixa. O outro tipo de elemento consiste de aberturas sobre uma folha 
metálica, que se comporta como um filtro passa-alta. Se a configuração dos elementos 
apresenta características de ressonância, os elementos do tipo patch condutor 
comportam-se como um filtro rejeita-faixa em torno da frequência de ressonância, 
enquanto os elementos do tipo abertura funcionam como um filtro passa-faixa. [5] No 
caso do tipo abertura, de filtro passa-faixa, à medida que os elementos vão entrando 
em ressonância, a estrutura vai se tornando transparente para a onda incidente, até 
que na frequência de ressonância da estrutura, ocorre a transmissão total da onda. 
Em outras palavras, o sinal passa através da estrutura com perdas mínimas de 
inserção na frequência de operação. Enquanto que nos elementos do tipo patch 
condutor, de filtro rejeita-faixa, conforme os elementos vão entrando em ressonância, 
radiam a potência incidente na direção da reflexão, até que na frequência de 
ressonância da estrutura, está se comporta como um condutor perfeito refletindo 
totalmente a onda incidente. Ou seja, o sinal é refletido em frequências fora da banda 
de operação. [12] 
15 
 
 
Figura 2.3: Elementos (a) do tipo abertura e (b) tipo patch condutor. 
 
A forma do elemento é fundamental para o projeto de uma FSS. Eles podem 
ser divididos em quatro grupos principais [26]: 
● Grupo 1: N – polos conectados pelo centro; 
● Grupo 2: espiras; 
● Grupo 3: elementos de interior sólido; 
● Grupo 4: combinações. 
As formas mais usuais de elementos do primeiro grupo são: dipolo fino (dipolo 
cruzado, cruz de Jerusalém e o tripolo, como podem ser vistos na Figura 2.4. 
 
 
 
Figura 2.4: Grupo 1 – N-polos conectados pelo centro. 
16 
 
Os elementos do tipo espira formam o segundo grupo. Os tipos mais comuns 
são: espiras quadradas, quadradas duplas, quadradas com grades e anéis circulares 
concêntricos, como podem ser vistos na Figura 2.5. 
 
 
 
Figura 2.5: Grupo 2 – Espiras. 
 
O Grupo 3 é constituído por elementos de interior sólido. Os mais comuns são: 
os patches retangulares, hexagonais e circulares, como podem ser vistos na Figura 
2.6. 
 
 
 
Figura 2.6: Grupo 3 – Interior sólido. 
 
Por fim, o Grupo 4, são elementos formados a partir de uma combinação dos 
elementos típicos. Um exemplo de combinação pode ser visto na Figura 2.7. 
17 
 
 
 
Figura 2.7: Grupo 4 – Combinações. 
 
As FSS também podem ser classificadas como anteparo-fino e anteparo-
espesso, de acordo com a espessura do elemento. A FSS anteparo-fino refere-se a 
um anteparo com elementos do tipo circuito impresso que tem espessura menor que 
0,001 λ0, em que λ0 é o comprimento de onda para a frequência de ressonância. 
Geralmente, caracteriza-se pelo seu peso, volume e custo baixos. Contrapondo-se a 
isso, a FSS do tipo anteparo-espesso é pesada e sua fabricação necessita do 
manuseio preciso de um bloco de metal espesso. Porém, a vantagem das FSS de 
anteparo-espesso é que sua banda de separação – isto é, a razão da frequência 
transmitida para a frequência refletida (ft/fr) – pode ser reduzida para 1,15, valor 
adequado para antenas de satélite de comunicações multifrequenciais. [12] 
 
2.3 COMPORTAMENTO DAS CARACTERÍSTICAS DA FSS 
 
Em aplicações da FSS, há a necessidade de uso em dispositivos que operem 
em diferentes faixas de frequência, por isso existe um processo de filtragem, 
selecionando-se bandas. O arranjo periódico da estrutura caracteriza-se por funcionar 
como uma barreira para determinadas frequências. Existe uma antena transmissora 
que propaga seu sinal, incidindo na FSS, surgindo uma densidade de corrente nos 
elementos de patch metálico e, dessa forma, passa a haver uma seleção de 
frequências onde apenas é captado o sinal desejável, chegando à antena receptora. 
Na análise de FSS, para ocorrer esse processo de filtragem, são diversos os 
parâmetros de projeto que exercem influência nessa seleção. Variações na forma, 
periodicidade, dimensões físicas da célula unitária, na espessura do substrato, no tipo 
de material dielétrico empregado, no ângulo de incidência, bem como no ângulo de 
defasagem entre as células, provocam alterações na frequência de ressonância e na 
18 
 
largura de banda da estrutura projetada. A espessura do dielétrico em relação ao 
comprimento de onda (espessura elétrica) é importante para a caracterização da FSS, 
assim como a constante do substrato é essencial para as propriedades. 
Considerando a análise de FSS, o uso de camadas dielétricas anisotrópicas 
aponta para vantagens significativas. O uso de materiais anisotrópicos pode afetar as 
características de transmissão e de reflexão de uma FSS, introduzindo mais um 
parâmetro de projeto. Os materiais anisotrópicos podem apresentar ainda, uma baixa 
tangente de perdas, comparando-se com materiais isotrópicos, consistindo em uma 
vantagem a mais, sendo, dessa forma, muito útil para aplicações em micro-ondas. [12] 
 
2.4 APLICAÇÕES 
 
As aplicações das FSS são diversas. Talvez a mais conhecida seja a do 
anteparo da porta do forno de micro-ondas, que consiste de um arranjo periódico 
projetado para refletir energia na frequência de 2.45GHz. O seu princípio de 
funcionamento consiste de um filtro passa-faixa que libera a passagem da faixa de 
frequência da luz visível e rejeita a faixa de micro-ondas. Nas aplicações de micro-
ondas, FSS podem ser utilizadas para tornar o uso da antena refletora mais eficiente, 
permitindo o uso simultâneo de mais de uma fonte. São usadas como cobertura 
protetora de antenas (radomes), como antenas de satélite, etc. Na região de 
infravermelhodistante (far-infraredregion), FSS são usadas como polarizadores, 
divisores de feixe, espelhos para melhorar a eficiência na amplificação dos lasers, 
sensores infravermelho, etc. Na região de infravermelho próximo (near-infraredregion) 
e porções do visível, têm sido utilizadas para aumentar a eficiência dos coletores de 
energia solar. [13] 
Ainda na região de infravermelho, existe a utilização de FSS como janelas 
eficientes, para uma economia efetiva de energia, onde é aplicada uma camada 
metálica muito fina em projetos de janelas modernas. Atuando como um filtro, a 
camada bloqueia a radiação eletromagnética na região do infravermelho e é 
completamente transparente à parte visível do espectro, assim rejeita a transferência 
de calor de fora para dentro do ambiente no verão e vice-versa no inverno. 
19 
 
 
 
Figura 2.8: FSS como janelas eficientes. 
 
Recentemente, com a pesquisa de novas configurações de arranjos periódicos 
empregando elementos com configurações não usuais, visando alcançar novas 
características eletromagnéticas, têm sido publicadas na literatura aplicações 
inovadoras dessas estruturas. Na faixa de micro-ondas temos, como exemplos, o 
metal invisível, o espelho magnético e o magnetismo óptico. Na região de teraHertz, 
aplicações relacionadas com a manipulação de ondas e sensoriamento foram 
publicadas. [13] 
Apesar de serem geralmente bidimensionais, também existem aplicações de 
FSS em três dimensões. Por exemplo, uma superfície seletiva em frequência 
tridimensional que funciona como um filtro passa-faixa, com múltiplos zeros de 
transmissão. Essa proposta é uma combinação de uma FSS tridimensional de banda 
dupla com um filtro rejeita-faixa e uma FSS tridimensional com um filtro passa-faixa. 
Tal aplicação apresenta elevadas seletividade e largura de banda, útil em muitos 
casos. Porém, FSS em 3D ainda é um conceito relativamente novo e poucas 
propostas foram desenvolvidas. [3] 
Superfícies seletivas em frequência com resposta de frequência passa-faixa 
têm encontrado aplicações na geração de energia solar, rádio astronomia, 
20 
 
transceptores de ondas milimétrica/submilimétricas, economia de energia e lentes de 
micro-ondas. FSS com resposta do tipo rejeita-faixa são utilizadas em sistemas de 
celular, imagens de onda milimétrica, propagação de rede sem fio interna e redução 
da interferência eletromagnética. 
Existem pesquisas de grande potencial no desenvolvimento de antenas WLAN 
(Wireless Local Area Network) combinadas com FSS, como pode ser visto da Figura 
2.9. É possível projetar uma FSS de banda dupla que funciona como um filtro rejeita-
faixa, baseada em um método de combinação. [14] 
 
 
 
Figura 2.9: O modelo de uma FSS e antena WLAN combinados. 
 
Ainda abordando sistemas de comunicação sem fio WLAN, um exemplo de 
aplicação de FSS com múltiplas camadas é o cascateamento de estruturas para 
bloqueio de sinais de comunicação. Na Figura 2.10, é esquematizada uma estrutura 
cascateada utilizada em bloqueio de sinais de redes sem fio WLAN. Nesse caso, a 
estrutura periódica funciona como um refletor dos sinais WLAN e permite a passagem 
de sinais de telefonia celular. 
21 
 
 
 
Figura 2.10: FSS em cascata. 
 
Pesquisas relacionadas a FSS integradas a absorvedores de micro-ondas são 
importantes, pois essa estrutura pode fornecer melhorias ao desempenho de diversos 
dispositivos para sistemas de comunicação modernos. Exemplo disso é a aplicação 
do Algoritmo Microgenético (MicrogeneticAlgorithm – MGA) para o projeto de banda 
larga por meio de absorvedores de micro-ondas usando superfícies seletivas em 
frequência sobre telas dielétricas. Fornecida a quantidade de camadas dielétricas, a 
espessura do compósito e a gama de permitividade de valores para cada camada, o 
MGA constrói iterativamente um composto cuja resposta de frequência se aproxima 
da resposta desejada. Além disso, o MGA também otimiza os parâmetros FSS. [5] 
Outra aplicação é uma FSS baseada em absorvedores de micro-ondas planar. 
Em estudos recentes, este projeto pode ser dividido em dois tipos: o primeiro tipo de 
absorvedor de micro-ondas é uma Superfície de alta impedância (High 
ImpedanceSurface – HIS), construída com o uso de dipolos com perdas periódicas, 
onde a FSS é suportada por uma placa de metal. O segundo tipo é o Amortecedor de 
tela Salisbury, resistivamente carregado por uma HIS. [6] 
 
22 
 
 
 
Figura 2.11: Célula unitária de uma FSS desenvolvida pelo MGA. (a) incidência oblíqua (θ = 45º, θ = 
0º), (b) incidência normal e oblíqua (θ = 0º e 45º, φ = 0º). 
 
 
 
Figura 2.12: FSS baseada em absorvedor de microonda planar esquematizado. (a) Dimensões da 
célula unitária do dipolo, (b) Primeiro arranjo usando uma HIS absorvente, (c) Segundo arranjo 
usando o design de tela de Salisbury modificado. 
 
2.5 CONCLUSÕES 
 
Nesse capítulo foi apresentado uma introdução sobre superfícies seletivas em 
frequência, foram apresentados seus elementos básicos, tipos e formas. Foi mostrado 
também exemplo de comportamento das características da FSS e suas aplicações. 
23 
 
3 ABSORVEDORES DE MICRO-ONDAS 
 
 
Nesse capítulo serão apresentados os principais conceitos sobre absorvedores 
de micro-ondas. Na seção 3.1 é mostrada uma breve introdução sobre absorvedores 
de micro-ondas. Na seção 3.2 são mostrados os tipos de absorvedores de micro-
ondas. Por fim, na seção 3.3 é apresentado o projeto de absorvedores com FSS. 
 
3.1 INTRODUÇÃO 
 
Absorvedores de micro-ondas são matérias capazes de transformar a energia 
proveniente de ondas eletromagnéticas em calor. Esses materiais podem absorver a 
energia proveniente de uma onda que opera em uma única frequência ou podem 
funcionar em várias frequências e serem multibanda. A utilização de absorvedores 
visa obter baixo coeficiente de reflexão. Pode-se obter esse baixo coeficiente de 
reflexão casando-se a impedância de uma onda eletromagnética na interface espaço 
livre-absorvedor, resultando assim na propagação da onda incidente no absorvedor, 
ou pode-se usar um absorvedor de várias camadas cujas ondas refletidas em suas 
camadas geram interferência destrutiva, como é o caso dos Absorvedores de 
Dallenbach, Absorvedores de Salisbury e Absorvedores de Jaumann. 
 Conhecendo-se a espessura, a permissividade elétrica complexa e a 
permeabilidade magnética complexa é possível calcular o coeficiente de reflexão do 
absorvedor. Porém, as propriedades ótimas do absorvedor, por exemplo, a largura de 
banda de frequência para um absorvedor com espessura inferior a 1 centímetro, 
geralmente não podem ser garantidas; pode-se apenas garantir essa propriedade 
caso seja usado um absorvedor multicamadas. 
 
3.2 TIPOS DE ABSORVEDORES 
 
3.2.1 ABSORVEDOR DE SALISBURY 
 
Também conhecido como tela de Salisbury, esse absorvedor foi patenteado no 
ano de 1952, pelo engenheiro americano Winfield Salisbury. Sua primeira aplicação 
24 
 
foi militar, e esse absorvedor foi um dos primeiros conceitos sobre material absorvedor 
de radar. A sua estrutura básica consiste de um plano de terra, um isolante 
(espaçador, dielétrico sem perdas) e um material que apresente uma resistência 
superficial Rs, como um semicondutor. A separação entre o plano de terra e o material 
com resistência superficial é dada por d, onde essa distância d é igual a um múltiplo 
de λ/4, como pode ser visto na Fig. 3.1. 
 
 
 
Figura 3.1: Geometria de um Absorvedor de Salysbury. 
 
Geralmente é usado o ar como espaçador, mas pode-se usar também um 
material com baixa constante dielétrica para substituir o ar com o objetivo de obter 
uma elevada largura de banda com pequena espessura. O método para análise para 
esse absorvedor é o da linha de transmissão. Para se obter um coeficiente de reflexão 
nulo, ou seja, uma absorção total da onda aparecendo no comprimento de onda 
correspondente ao usado no comprimento do espaçador, deve-se utilizarum material 
na camada resistiva com impedância efetiva semelhante a do espaço livre, causando 
assim um casamento de impedância da onda. 
Partindo-se de um valor de coeficiente de reflexão aceitável, pode-se maximizar 
a largura de banda da frequência do Absorvedor de Salisbury por meio do cálculo da 
impedância efetiva da camada: 
 
𝑅𝑐𝑎𝑚𝑎𝑑𝑎 = 𝑍0
1 + Γ𝑎𝑐𝑒𝑖𝑡á𝑣𝑒𝑙
1 − Γ𝑎𝑐𝑒𝑖𝑡á𝑣𝑒𝑙
 
 
em que aceitável é o valor máximo do coeficiente de reflexão permitido e Z0 é a 
impedância intrínseca do espaço livre. Sabe-se que a largura de banda diminui com o 
aumento da permissividade da camada espaçadora. 
 
25 
 
3.2.2 ABSORVEDOR DE JAUMANN 
 
Essa tipo de absorvedor é o mais usado na prática. Sua principal função é a de 
maximizar a largura de banda absorvida, a um dado valor de refletividade com uma 
quantidade mínima de superfícies resistivas. Este absorvedor consiste na adição de 
camadas resistivas espaçadas igualmente, como pode ser visto na Figura 3.2. Ao 
aumentar o número de camadas resistivas, eleva-se o desempenho do coeficiente de 
reflexão desta configuração em relação à sua largura de banda. 
 
 
 
Figura 3.2: Absorvedor de Jaumann. 
 
3.2.3 ABSORVEDOR DE DALLENBACH 
 
Nesse tipo de absorvedor, nenhuma folha resistiva é utilizada. Sua estrutura é 
composta por uma camada de material dielétrico homogêneo com perdas magnéticas, 
que é posicionada à frente de uma camada de metal, como pode ser visto na Figura 
3.3. A mudança do meio de propagação, com consequente mudança de impedância 
de onda na interface, causa a reflexão sobre o material. Caso a impedância do 
material se aproxime do valor 377Ω, então não ocorrerá reflexão na interface entre o 
espaço-livre e o material, fazendo assim com que a atenuação dependa somente da 
espessura e dos parâmetros eletromagnéticos do material. [15] 
26 
 
 
Figura 3.3: Absorvedor de Dallenbach. 
 
3.3 PROJETO DE ABSORVEDORES COM FSS 
 
O projeto de absorvedores de micro-ondas utilizando Superfícies Seletivas em 
frequência tem sido recentemente bastante difundido na literatura [4], visto que a 
utilização de FSS faz com que esses absorvedores possam ser miniaturizados e 
tenham um menor custo de produção. 
Partindo da estrutura do Absorvedor de Salisbury, pode-se substituir os 
elementos dessa estrutura por Superfícies Seletivas em frequência com funções 
similares para projetar um absorvedor, substituindo o plano de terra por uma FSS 
condutora que opere em uma faixa de frequência desejada e substituindo o material 
semicondutor por uma FSS resistiva com resistência superficial 𝑅𝑠, separadas por um 
isolante a uma dada distância d, que é respectivamente um múltiplo de λ/4. 
Em [1], um absorvedor de ondas eletromagnéticas, projetado com superfícies 
seletivas em frequência foi projetada e construída, visando aplicações em redes locais 
sem fio (WLAN) de 5 GHz. A novidade do projeto é que é capaz de absorver, ao 
contrário de refletir, sinais WLAN, enquanto deixa passar sinais de telefonia móvel. O 
absorvedor consiste em duas FSS cascateadas, uma com dipolos cruzados 
condutores convencionais e a outra com dipolos cruzados resistivos. A absorção do 
sinal WLAN é importante para reduzir multipercursos adicionais e o desvanecimento 
resultante causado. A estrutura possui boas características de transmissão para 
bandas móveis 900/1800/1900-MHz e funciona bem para polarizações horizontais e 
verticais. A distância entre as duas camadas é inferior a um quarto de comprimento 
de onda no espaço livre. 
27 
 
Em [4], duas superfícies seletivas em frequência (FSS) cascateadas, formando 
uma estrutura com características absorvedoras, foi apresentada. A aplicação visou 
segurança de redes locais sem fio (WLAN) em 5 GHz. As FSS propostas tem um 
grande potencial, para absorver sinais de WLAN. A estrutura consiste em duas 
camadas, uma com FSS resistiva e outra com FSS condutora. A geometria utilizada 
foi o anel circular. A estrutura apresentou uma resposta em frequência estável para 
as polarizações TE e TM, mesmo quando o ângulo incidente variou de 0o a 45o. 
Em [27], os layouts apresentados são capazes de proporcionar 
comportamentos absorventes que vão desde a banda ultra estreita até a banda ultra-
larga. Uma comparação entre várias soluções é apresentada tanto em termos de 
largura de banda alcançável quanto em termos de espessura teórica mínima. Mostra-
se que as ressonâncias podem ser amortecidas usando soluções alternativas em 
relação ao uso clássico de materiais magnéticos com perdas. 
Em [28], é proposto um absorvedor de banda larga de camada única com 
espessura compacta. O absorvedor consiste na matriz de dois dipolos transversais 
condutores com elementos de resistência agrupados na parte superior de um 
substrato FR4 de camada única, apoiado por uma camada metálica contínua. A 
espessura da amostra fabricada é inferior a 0,077𝜆𝐿 (comprimento de onda na menor 
frequência de corte). Oferece largura de banda total a meio-máximo de (3,75-12 GHz). 
 
3.4 CONCLUSÃO 
 
Nesse capítulo foram apresentados absorvedores de Dallenbach, Salisbury e 
Jaumann. Além disso, foram descritos os principais aspectos relativos a cada tipo de 
absorvedor, apontando vantagens e desvantagens. 
 
28 
 
4 METODOLOGIA DA PROJETO 
 
 
Inicialmente, foi verificada a necessidade de reproduzir resultados encontrados 
na literatura, para se familiarizar com o projeto de absorvedores de micro-ondas com 
FSS. Assim, duas estruturas apresentadas em [1] e [4] foram analisadas e tiveram 
seus resultados reproduzidos. 
A primeira configuração é a da superfície de duas camadas mostrada na Figura 
4.1 [1]. O dielétrico utilizado na camada da FSS condutora e na camada da FSS 
resistiva foi o FR4, de constante dielétrica εr = 4,4, com espessuras ilustradas na 
Figura 4.1. O patch da FSS condutora possui a forma de dipolo cruzado, assim como 
o patch da camada resistiva. Entre os dois dielétricos, existe uma camada de ar de 10 
mm de espessura, que respeita a especificação da distância de um quarto do 
comprimento de onda utilizada num absorvedor de Salisbury convencional. A camada 
resistiva possui uma resistência superficial de 50 Ω/□. 
 
 
Figura 4.1: Configuração do primeiro absorvedor analisado 
 
Inicialmente foi definido o dielétrico utilizado no projeto, seguido pelo tamanho 
da célula da FSS. No passo seguinte, foi montada uma pilha de materiais, respeitando 
a ordem da Figura 4.1, e foram definidas as espessuras, materiais e o tipo de cada 
camada, que são divididos em sinal, sinal metalizado e dielétrico. No caso, para os 
29 
 
dipolos cruzados foi utilizado o tipo sinal e para as camadas de dielétricos e do ar, foi 
utilizado o tipo dielétrico. 
Para definir o material da camada resistiva utilizado no absorvedor, foi 
solicitada a modificação das especificações de um material, no caso, o cobre, para 
que o mesmo adquirisse propriedades resistivas. A propriedade modificada foi a 
condutividade do cobre, medida em Siemens/m. Para calcular essa condutividade a 
partir do valor da resistência superficial da camada resistiva (50 Ω/□) é preciso efetuar 
os seguintes cálculos: 
Sabendo que Rs = 50 Ω/□, onde □ pode ser dado em mm2, e que a condutância 
Cs é o inverso da resistência, temos: 
𝐶𝑠 =
1
𝑅𝑠
=
1
50
= 0,02 𝑆𝑖𝑒𝑚𝑒𝑛𝑠. 𝑚𝑚3 
Em seguida, o volume da camada resistiva é calculado. Para facilitar os 
cálculos, o dipolo cruzado será dividido em três paralelepípedos, um com dimensões 
20,58 mm × 3,83 mm × 0,0001 mm, e os outros dois iguais, com dimensões 8,375 mm 
× 3,83 mm × 0,0001 mm. O valor 0,0001 mm corresponde à espessura do material 
resistivo e foi obtido a partir de arquivos enviados por um fabricante de filme resistivo, 
a Ohmega® Technologies, Inc., sobre um de seus produtos, o Ohmega-Ply®. 
𝑉 = 𝑉1 + 𝑉2 + 𝑉3 = 20,58 . 3,83 . 0,0001 + 8,375 .3,83 .0,0001 + 8,375 .3,83 .0,0001 ≅ 0,0143 𝑚𝑚2 
De posse da condutância Cs e do volume V, obtém-se o valor da Condutividade 
de Massa (do inglês, Bulk Conductivity), parâmetro pedido pelo programa de 
simulação fazendo a seguinte operação: 
𝐶𝑏 =
𝐶𝑠
𝑉
=
0,02
0,0143
= 1,3989 𝑆𝑖𝑒𝑚𝑒𝑛𝑠 𝑚𝑚⁄ = 1398,9 
𝑆𝑖𝑒𝑚𝑒𝑛𝑠
𝑚⁄ 
Feito isso, os dipolos cruzados foram desenhados, a excitação foi definida 
como onda plana incidente, o setup de simulação foi determinado, o intervalo de 
frequência de varredura foi escolhido de acordo com as situações simuladas, ou seja, 
para a análise separadamente da FSS e do absorvedor foi escolhido um intervalo 
entre 3,5 e 7 GHz, com um passo de 100 MHz. Na análise final da estrutura integrada, 
foi escolhido um intervalo de 100 MHz a 8 GHz, com passo de 100 MHz. 
A segunda geometria escolhida foi a espira circular. As superfícies são 
separadas por uma distância d, como pode ser visto na Figura 4.2. 
A segunda estrutura foi apresentada em [4]. O dielétrico utilizado na camada 
da FSS condutora e na camada da FSS resistiva foi o FR4, de constante dielétrica εr 
30 
 
= 4,4, com espessuras ilustradas na Figura 4.2. O patch da FSS condutora possui a 
forma de anel circular, assim como o patch da camada resistiva. Entre os dois 
dielétricos, existe uma camada de ar de 6 mm de espessura, que respeita a 
especificação da distância de um quarto do comprimento de onda utilizada num 
absorvedor de Salisbury convencional. A camada resistiva possui uma resistência 
superficial de 50 Ω/□. Esse absorvedor funciona da mesma forma que uma tela 
convencional de Salisbury e do absorvedor de Jaumann, a diferença principal é que a 
FSS condutora atua como refletor apenas para a faixa de frequências desejada, 
deixando passar todas as outras frequências. 
 
 
Figura 4.2: Geometria do segundo absorvedor analisado. 
 
O projeto foi simulado utilizando um programa computacional comercial. 
Inicialmente foi definido o dielétrico utilizado no projeto, seguido pelo tamanho da 
célula da FSS. No passo seguinte, foi montada uma pilha de materiais, respeitando a 
ordem da Figura 4.2, e foram definidas as espessuras, materiais e o tipo de cada 
camada, que são divididos em sinal, sinal metalizado e dielétrico. No caso, para os 
dipolos cruzados foi utilizado o tipo sinal e para as camadas de dielétricos e do ar, foi 
utilizado o tipo dielétrico. 
Para definir o material da camada resistiva utilizado no absorvedor, foi 
solicitada a modificação das especificações de um material, no caso, o cobre, para 
31 
 
que o mesmo adquirisse propriedades resistivas. A propriedade modificada foi a 
condutividade do cobre, medida em Siemens/m. 
Sabendo que Rs = 100 Ω/□, onde □ pode ser dado em 𝑚𝑚2, e a condutância 
Cs é o inverso da resistência, tem-se: 
𝐶𝑠 =
1
𝑅𝑠
=
1
100
= 0,01 𝑆𝑖𝑒𝑚𝑒𝑛𝑠. 𝑚𝑚2 
Em seguida, o volume da camada resistiva é calculado. O valor 0,0001 mm 
corresponde à espessura do material resistivo e foi obtido a partir de arquivos 
enviados por um fabricante de filme resistivo, a Ohmega® Technologies, Inc., sobre 
um de seus produtos, o Ohmega-Ply®. 
𝑉 = 0,001 𝑥 𝐴𝑎𝑛𝑒𝑙 = 0,00311 𝑚𝑚
3 
De posse da condutância Cs e do volume V, obtém-se o valor da Condutividade 
de Massa (do inglês, Bulk Conductivity), parâmetro pedido pelo programa de 
simulação fazendo a seguinte operação: 
 
𝐶𝑏 =
𝐶𝑠
𝑉
=
0,01
0,00311
= 3,2154 𝑆𝑖𝑒𝑚𝑒𝑛𝑠 𝑚𝑚⁄ = 3215,4 
𝑆𝑖𝑒𝑚𝑒𝑛𝑠
𝑚⁄ 
 
Ambos os projetos apresentados em [1] e [4] foram para a faixa de frequências 
de 5 a 6 GHz. Assim, a ideia nesse trabalho é projetar e simular uma estrutura 
absorvedora de micro-ondas, que emprega superfícies seletivas em frequência com 
espira quadrada, para operar 2 a 3 GHz, outra faixa de frequências para aplicações 
WLAN. A estrutura proposta tem capacidade de absorver a energia eletromagnética 
em uma faixa de frequência de interesse, impedindo a reflexão/transmissão de ondas 
eletromagnéticas, e é transparente para as demais frequências. Por não possuir plano 
de terra, esse tipo de estrutura absorvedora não agrava os múltiplos percursos nas 
vizinhanças nas quais são instaladas. 
A estrutura proposta faz uso da geometria espira quadrada. Esse tipo de 
geometria foi escolhido porque o mesmo apresenta estabilidade angular e 
independência de polarização [26], o que é exigência, para aplicações envolvendo 
absorvedores eletromagnéticos. 
A configuração do absorvedor de micro-ondas proposto é ilustrada na Figura 
4.3. Cada camada de FSS é impressa em uma placa de FR4, cuja constante dielétrica 
é 4,4. O patch condutor da FSS possui a forma de espira quadrada, assim como a 
32 
 
camada resistiva. Entre as duas camadas existe uma camada de ar de 24 mm de 
espessura, que respeita a especificação da distância de um quarto do comprimento 
de onda utilizada num absorvedor de Salisbury convencional. A camada resistiva 
possui uma resistência superficial que pode ser de 25 Ω/□, 50 Ω/□ ou 100 Ω/□. A ideia 
é projetar um absorvedor, para absorver a faixa de frequência entre 2GHz e 3GHz. 
 
 
Figura 4.3: Absorvedor Espira Quadrada. 
 
A condutividade de massa é uma medida que depende das dimensões da 
espira quadrada (comprimento da espira e largura da fita), bem como da espessura 
da camada de material resistivo, depositada sobre o dielétrico FR-4. Assim, essas 
variáveis afetam fortemente a energia eletromagnética refletida do absorvedor. A 
transmissão através da estrutura é fortemente afetada pelas dimensões da FSS 
condutora. Além disso, o afastamento entre as duas estruturas, d, também influencia 
a reflexão e a transmissão. 
Para definir o material da camada resistiva utilizado no absorvedor, foi 
solicitada a modificação das especificações de um material, no caso, o cobre, para 
que o mesmo adquirisse propriedades resistivas. A propriedade modificada foi a 
condutividade do cobre, medida em Siemens/m. 
33 
 
Sabendo que Rs = 50 Ω/□, onde □ pode ser dado em 𝑚𝑚2, e a condutância Cs 
é o inverso da resistência, tem-se: 
𝐶𝑠 =
1
𝑅𝑠
=
1
50
= 0,02 𝑆𝑖𝑒𝑚𝑒𝑛𝑠. 𝑚𝑚2 
Em seguida, o volume da camada resistiva é calculado. O valor 0,0001 mm 
corresponde à espessura do material resistivo e foi obtido a partir de arquivos 
enviados por um fabricante de filme resistivo, a Ohmega® Technologies, Inc., sobre 
um de seus produtos, o Ohmega-Ply®. 
𝑉 = 0,001 𝑥 𝐴𝑒𝑠𝑝𝑖𝑟𝑎 = 0,00329 𝑚𝑚
3 
De posse da condutância Cs e do volume V, obtém-se o valor da Condutividade 
de Massa (do inglês, Bulk Conductivity), parâmetro pedido pelo programa de 
simulação fazendo a seguinte operação: 
 
𝐶𝑏 =
𝐶𝑠
𝑉
=
0,02
0,0329
= 0,6079 𝑆𝑖𝑒𝑚𝑒𝑛𝑠 𝑚𝑚⁄ = 607,9 
𝑆𝑖𝑒𝑚𝑒𝑛𝑠
𝑚⁄ 
 
Feito isso, foi possível simular no software. No capítulo seguinte serão 
mostrados os resultados obtidos com a estrutura projetada. 
 
34 
 
5 RESULTADOS 
 
 
Nesse capítulo serão mostrados os resultados simulados, com o intuito de 
avaliar a ferramenta computacional de análise e o desempenho dos absorvedores 
analisados. Os resultados de simulações foram obtidos mediante implementação das 
estruturas em um software comercial. 
A primeira estrutura a ser simulada foi apenas a FSS condutora com dipolo 
cruzado. Os resultados obtidos nessa simulação podem ser vistos na Figura 5.1. 
 
Figura 5.1: Resultado das medições da camada de FSS condutiva com dipolo cruzado. 
 
A largura de banda passante obtida foi de, aproximadamente, 600 MHz, e a 
frequência de maior absorção da estrutura, ocorre em 5,20 GHz com um coeficiente 
de - 28,74 dB. Os resultados simulados são comparados com resultados 
experimentais obtidos pelos autores em [4]. Pode-se observar uma boa concordância 
entre os resultados. 
A segunda estrutura a ser simulada foi o absorvedor projetado com FSS com 
dipolos cruzados. Observa-se na Figura 5.2 os resultados da simulação. 
35 
 
 
Figura 5.2: Resultados medidos da superfície mostrando a absorção 
 
É possível perceberque o coeficiente de transmissão se assemelha bastante 
ao da FSS, porém com uma largura de banda um pouco maior, de aproximadamente 
900 MHz, e uma resposta de - 37,57 dB numa frequência de 5,15 GHz. Já o coeficiente 
de reflexão possui uma resposta diferente, pois ao invés de refletir as ondas de 
frequências próximas às do padrão IEEE 802.11a/n, ele demonstra um 
comportamento de absorção. Mais uma vez, os resultados simulados foram 
comparados com os resultados medidos em [4]. Pode-se observar que os resultados 
apresentam boa convergência. 
A terceira estrutura simulada foi a FSS condutora com espira circular, ou seja, 
o anel referente a camada inferior da configuração da Figura 4.3. Os resultados 
obtidos nessa primeira simulação podem ser vistos na Figura 5.3. Pode-se observar 
que a largura da banda passante é de aproximadamente 1 GHz, e a frequência de 
ressonância da estrutura é 5,13 GHz com um coeficiente de -30,30 dB. Nessa mesma 
frequência, o coeficiente de reflexão atinge seu valor máximo, que é de - 0.1dB. 
Essa simulação considerou uma polarização vertical (TE), para os ângulos de 
incidência de 0º e 45º. Observa-se que as frequências de ressonância para os ângulos 
de 0º e 45º foram respectivamente 5,13 GHz e 5 GHz. Para um ângulo de incidência 
de 45º, obteve-se um coeficiente de reflexão máximo de -0,18 dB e um coeficiente de 
transmissão mínimo de -29,94 dB. 
36 
 
 
 
Figura 5.3: Resultado da simulação da camada de FSS condutiva para polarização 
perpendicular (TE). 
 
Foi simulado o desempenho da camada de FSS condutiva para uma 
polarização horizontal (TM). Para os ângulos de incidência de 0º e 45º, como pode ser 
visto na Figura 5.4, pode-se notar que a frequência de ressonância para ambos os 
ângulos de incidência foi de 5,13 GHz. Para um ângulo de incidência de 45º, obteve-
se um coeficiente de reflexão máximo de -0,3 dB e um coeficiente de transmissão 
mínimo de -25,68 dB. 
Após simular a camada condutiva da estrutura, simulou-se a estrutura 
completa. Foi obtido, uma largura de banda de aproximadamente 1,5 GHz, um 
coeficiente de reflexão mínimo de 16,16 dB para a frequência de ressonância de 5,20 
GHz, e um coeficiente de transmissão mínimo de -25,97 dB para a frequência de 
ressonância de 5,10 GHz, como pode ser visto na Figura 5.5. 
Foi simulado o desempenho desse absorvedor para o caso de uma onda 
polarizada vertical (TE), com ângulos de incidência de 0° e 45º, para o ângulo de 
incidência igual a 45º pode-se observar que o valor máximo do coeficiente de reflexão 
foi de -2,22 dB quando a frequência é igual 3,70 GHz, e um valor mínimo de - 27,46 
dB para o coeficiente de transmissão quando a frequência é igual a 5 GHz. 
37 
 
 
Figura 5.4: Resultado da simulação da camada de FSS condutiva para polarização paralela 
(TM). 
 
 
Figura 5.5: Resultado da simulação do absorvedor para polarização perpendicular (TE) e 
ângulo de incidência de 0º e 45º. 
 
Simulou-se também o absorvedor para um ângulo de incidência de 0º e 45º e 
uma onda polarizada paralelamente (TM). Como pode ser visto na Figura 5.6, para o 
ângulo de incidência de 45º foi obtido o valor máximo do coeficiente de reflexão de 
valor igual a -3,12 dB quando a frequência é igual 4,50 GHz, e um valor mínimo de -
21,09 dB para o coeficiente de transmissão quando a frequência é igual a 5,10 GHz. 
38 
 
 
Figura 5.6: Resultado da simulação do absorvedor para polarização paralela (TM) e ângulo de 
incidência de 0º e 45º. 
 
Estes foram os resultados obtidos através da simulação do absorvedor 
projetado usando o software ANSYS HFSS. 
Um amplo estudo paramétrico foi realizado, com o intuito de avaliar como as 
variáveis de projeto influenciam na resposta em frequência do absorvedor de micro-
ondas, com espira quadrada, uma vez que essa geometria não foi proposta ainda para 
projeto de absorvedores de micro-ondas. O estudo foi feito tanto do ponto de vista de 
reflexão, quanto do ponto de vista de transmissão. A camada resistiva possui uma 
resistência superficial de 50 Ω/□. Os resultados simulados foram obtidos através do 
ANSYS HFSS. 
A primeira análise foi o efeito da distância de separação entre as duas FSS, d. 
O valor desse parâmetro foi variado como: 20 mm, 24 mm e 28 mm, como pode ser 
visto na Figura 5.7. 
Para esse estudo paramétrico, a FSS resistiva teve as seguintes dimensões: T 
= 30 mm, d1 = 27 mm, w1 = 3.5 mm e h1 = 1.054 mm. A FSS condutora teve as 
seguintes dimensões: T = 30 mm, d2 = 27 mm, w2 = 3 mm e h2 = 2 mm. Percebe-se 
uma grande influência do valor da distância, d, sobre a largura de banda e frequência 
de ressonância do coeficiente de reflexão, ocorrendo uma diminuição de ambos, 
enquanto que o coeficiente de transmissão permanece inalterado, como ilustrado na 
Figura 5.7. 
39 
 
 
Figura 5.7: Parâmetro S para diferentes valores de d. 
 
A segunda análise foi o efeito do comprimento da espira resistiva, d1. O valor 
desse parâmetro foi variado como: 23 mm, 25 mm e 27 mm. 
Para esse estudo paramétrico, a FSS resistiva teve as seguintes dimensões: T 
= 30 mm, w1 = 3.5 mm e h1 = 1.054 mm. A FSS condutora teve as seguintes 
dimensões: T = 30 mm, d2 = 27 mm, w2 = 3 mm e h2 = 2 mm. A separação entre as 
duas FSS foi 24 mm. Percebe-se que a influência do comprimento da espira resistiva, 
d1, sobre a largura de banda e frequência de ressonância do coeficiente de reflexão 
ocorre, mas não é tão intensa quanto da avaliação passada. Ocorre uma diminuição 
de ambos, enquanto que o coeficiente de transmissão permanece inalterado, como 
ilustrado na Figura 5.8. Havendo um aumento de potência refletida. 
A terceira análise foi o efeito da espessura da fita da espira resistiva, w1. O 
valor desse parâmetro foi variado como: 2,5 mm, 3,5 mm e 4,5 mm. 
Para esse estudo paramétrico, a FSS resistiva teve as seguintes dimensões: T 
= 30 mm, d1 = 27 mm, h1 = 1.054 mm. A FSS condutora teve as seguintes dimensões: 
T = 30 mm, d2 = 27 mm, w2 = 3 mm e h2 = 2 mm. A separação entre as duas FSS foi 
24 mm. Percebe-se que a influência da largura da fita da espira resistiva, w1, sobre a 
largura de banda e frequência de ressonância do coeficiente de reflexão ocorre de 
forma semelhante à avaliação passada. Ocorre uma diminuição de ambos, enquanto 
que o coeficiente de transmissão permanece inalterado, como ilustrado na Figura 5.9. 
Havendo um aumento de potência refletida, em torno de 6 dB. 
 
40 
 
 
Figura 5.8: Parâmetro S para diferentes valores de d1 
 
 
Figura 5.9: Parâmetro S para diferentes valores de 𝑤1. 
 
A quarta análise foi o efeito da espessura do dielétrico da FSS resistiva, h1. O 
valor desse parâmetro foi variado como: 0,8 mm, 1,054 mm e 1,2 mm. 
Para esse estudo paramétrico, a FSS resistiva teve as seguintes dimensões: T 
= 30 mm, d1 = 27 mm e w1 = 3.5 mm. A FSS condutora teve as seguintes dimensões: 
T = 30 mm, d2 = 27 mm, w2 = 3 mm e h2 = 2 mm. A separação entre as duas FSS foi 
24 mm. Percebe-se que a espessura do dielétrico da FSS resistiva é desprezível. 
41 
 
Pouca influência ocorre mesmo no coeficiente de reflexão, como ilustrado na Figura 
5.10. 
 
 
Figura 5.10: Parâmetro S para diferentes valores de ℎ1. 
 
A quinta análise foi o efeito do comprimento da espira condutora, d2. O valor 
desse parâmetro foi variado como: 23 mm, 25 mm e 27 mm. 
Para esse estudo paramétrico, a FSS resistiva teve as seguintes dimensões: T 
= 30 mm, d1 = 27 mm, w1 = 3.5 mm e h1 = 1.054 mm. A FSS condutora teve as 
seguintes dimensões: T = 30 mm, w2 = 3 mm e h2 = 2 mm. A separação entre as duas 
FSS foi de 24 mm. Percebe-se uma grande influência do comprimento da espira 
condutora, d2, sobre a largura de banda e frequência de ressonância dos coeficientes 
de reflexão e de transmissão, ocorrendo uma diminuição de ambos e um aumento da 
potência refletida pela estrutura, como ilustrado na Figura 5.11. 
A sexta análise foi o efeito da espessura da fita da espira condutora, w2.O valor 
desse parâmetro foi variado como: 2 mm, 3 mm e 4 mm. 
Para esse estudo paramétrico, a FSS resistiva teve as seguintes dimensões: T 
= 30 mm, d1 = 27 mm, w1 = 3.5 mm e h1 = 1.054 mm. A FSS condutora teve as 
seguintes dimensões: T = 30 mm, d2 = 27 mm e h2 = 2 mm. A separação entre as 
duas FSS foi 24 mm. Percebe-se que a influência da largura da fita da espira resistiva, 
w1, produz pouca variação no coeficiente de reflexão. Entretanto, o coeficiente de 
transmissão é fortemente afetado pelo parâmetro w2, ocorrendo um aumento na 
frequência de ressonância e na largura de banda, como ilustrado na Figura 5.12. 
42 
 
 
Figura 5.11: Parâmetro S para diferentes valores de 𝑑2. 
 
 
 
Figura 5.12: Parâmetro S para diferentes valores de 𝑤2. 
 
Por fim, a espessura do dielétrico da FSS condutora, h2, foi variado. O valor 
desse parâmetro foi variado como: 1,2 mm, 1,6 mm e 2,0 mm. 
Para esse estudo paramétrico, a FSS resistiva teve as seguintes dimensões: T 
= 30 mm, d1 = 27 mm, w1 = 3.5 mm e h1 = 1.054 mm. A FSS condutora teve as 
seguintes dimensões: T = 30 mm, d2 = 27 mm e w2 = 3 mm. A separação entre as 
duas FSS foi 24 mm. Percebe-se que a espessura do dielétrico da FSS condutora não 
43 
 
influencia em nada no coeficiente de reflexão e que a mesma produz uma influência 
moderada no coeficiente de transmissão, reduzindo a frequência de ressonância do 
mesmo e produzindo uma variação desprezível na largura de banda, como ilustrado 
em Figura 5.13. 
 
 
Figura 5.13: Parâmetro S para diferentes valores de h2. 
 
44 
 
6 CONCLUSÕES 
 
 
Neste trabalho, foi apresentado um estudo teórico sobre absorvedores de 
ondas eletromagnéticas utilizando superfícies seletivas em frequência. 
Foram obtidos resultados numéricos para o absorvedor que foi projetado neste 
trabalho. Para obter esses resultados foi utilizado o software comercial de simulação 
ANSYS HFSS. 
Observou-se, na análise, que a utilização de superfícies seletivas em 
frequência aplicada a absorvedores é muito interessante, pois sua utilização traz 
benefícios, como é o caso da miniaturização de absorvedores, diminuição do custo de 
fabricação, obtenção de melhores resultados quanto à largura de banda e coeficientes 
de transmissão e reflexão melhores. Outro benefício obtido com esse uso, é a maior 
flexibilidade de projeto, pois as superfícies seletivas em frequência possuem diversos 
formatos e geometrias, podendo substituir o plano de terra em absorvedores de 
Salisbury. 
O absorvedor projetado com dipolo cruzado apresentou resultados 
satisfatórios. Entre eles, pode-se citar a largura de banda de 1,5 GHz, que possibilita 
seu uso para uma aplicação em WLAN (Wireless Local Area Network). Ao mesmo 
tempo em que atenua sinais de WLAN, o absorvedor produz pouco efeito em sinais 
de outras faixas de frequência, como sinais provenientes de serviços de telefonia 
celular. Essa atenuação alcança o valor máximo de 27,46 dB para a frequência de 
ressonância de 5 GHz. 
Para o outro absorvedor proposto, utilizando a espira quadrada, foi realizado 
um estudo paramétrico detalhado e extenso dos parâmetros físicos. A partir deste 
estudo, pode-se observar quais parâmetros influenciam mais no projeto do absorvedor 
e foi proposta uma metodologia de projeto. A análise mostrou que o projeto do 
absorvedor deve ser iniciado pelo projeto da FSS condutora. A partir daí, pode-se usar 
os parâmetros comprimento e largura da fita da FSS resistiva, bem como o 
espaçamento entre as FSS, para fazer um ajuste fino. Alcançando a máxima reflexão 
desejada. 
A continuidade desse trabalho é válida, em função dos resultados mostrarem 
que a utilização de superfícies seletivas em frequência aplicadas a absorvedores 
proporcionarem resultados interessantes. Para continuação desse trabalho, pode-se 
45 
 
realizar o estudo de fractais e multifractais para aplicação juntamente com superfícies 
seletivas em frequência, para obtenção de resultados melhores do ponto de vista de 
largura de banda da faixa de rejeição, maior atenuação nessa faixa e redução das 
dimensões do absorvedor. 
46 
 
REFERÊNCIAS 
 
 
[1] Kiani, G. I., Weily, A. R., Esselle, K. P., “A novel absorb/transmit FSS for 
secure indoor wireless networks with reduced multipath fading”, IEEE Microwave and 
Wireless Components Letters 16(6), Junho de 2006. 
[2] M. Gustafsson, A. Karlsson, A. P. P. Rebelo, and B. Widenberg, “Design of 
frequency selective windows for improved indoor outdoor communication”, IEEE 
Transactions on Antennas and Propagation 54, pp. 1897-1900, Junho de 2006. 
[3] B. Li, and Z. Shen, “Three-Dimensional Band-Pass Frequency-Selective 
Structure with Multiple Transmission Zeros”, IEEE Transactions on Antennas and 
Propagation 61, pp. 448-450, Dezembro de 2012. 
[4] U. Rafique, G. I. Kiani, M. M. Ahmed and S. Habib, “Frequency Selective 
Surface Absorber for WLAN Security,” Proc. 5th European Conf. Antennas and 
Prop., pp. 872-875, 2011. 
[5] S. Chakravarty, R. Mittra, and N. R. Williams, “Application of a Microgenetic 
Algorithm (MGA) to the Design of Broad-band Microwave Absorbers using Multiple 
Frequency Selective Surface Screens Buried in Dieletrics”, IEEE Transactions on 
Antennas and Propagation 50, pp. 284-296, Março de 2002. 
[6] F. C. Seman and R. Cahill, “Frequency Selective Surfaces Based Planar 
Microwave Absorber”, PIERS Proceedings, pp. 906-909, Março de 2012. 
[7] Bennett, J. C.; Chambers, B.; Crossley, G. E., “Characterisation of 
Microwave four parameter material and its application in Wideband Radar Absorber 
Design”, IEE Proc. –Radar, Sonar Navig.141, pp. 337 – 340, Dezembro de 1994. 
[8] Musal, H. M; Hahn, H. T.. Thin-layer Electromagnetic Absorber Design. IEEE 
Transaction on Magnetics 25, pp. 3851-3853, Setembro de 1989. 
[9] Salisbury, W. W..Absorbent Body for Electromagnetic Wave, U. S. Patent 
no 2.599.944, June 1952.ion on Magnetics, vol. 25, pp. 3851-3853, Setembro de 1989. 
[10] Métodos de resposta em frequência. Disponível em: 
<http://www2.dem.inpe.br/mcr/Inpe/CMC-021-0/pdf/Aula_18.pdf>. Acesso em: 20 de 
novembro de 2015, 00:00:00. 
[11] Princípio de Babinet. Disponível em: 
<http://efisica.if.usp.br/otica/universitario/difracao/babinet>. Acesso em: 20 de 
novembro de 2015, 00:00:00. 
47 
 
[12] Campos, A. L. P. de S. Superfícies seletivas em frequência: análise e 
projeto. Natal, IFRN: 2009. 198 p. 
[13] M. N. Kawakatsu. Superfícies eletromagnéticas de microondas com 
controle de regime de trapped-mode. 2012. 91 p. Dissertação (Doutorado em 
Engenharia Elétrica) – Universidade Federal do Pará, Belém, 2012. 
[14] Y. Liu, Q-W. Ye, B. Xiao, and H. Yang, “A Novel Application of Frequency 
Selective Surface in Dual-Band WLAN Antenna”, IEEE Transactions on Antennas and 
Propagation, pp. 512-514, Outubro de 2012. 
[15] Knott, E. F.; Shaeffer, J. F.; Tuley, M. T.. Radar Cross Section, second 
edition, Scitech Publishing, Raleigh 2004. 
[16] S. M. Y. Zuluaga. Desenvolvimento de filtro passa-faixa banda larga 
com zeros de transmissão para sistemas de comunicação Ultra-Wideband 
(UWB). 2007. 103 p. Dissertação (Mestrado em Engenharia Elétrica) – Departamento 
de Engenharia Elétrica, Universidade de Brasília, Brasília, 2007 
[17] Araújo, L. M. Análise teórica e experimental de superfícies seletivas de 
frequência e suas aplicações em antenas planares. 2009. 85 p. Dissertação 
(Mestrado em Engenharia) – Departamento de Engenharia Elétrica, Universidade 
Federal do Rio Grande do Norte, Natal, 2009. 
[18] Maniçoba, R. H. C. Estudo comparativo de técnicas de cascateamento 
de superfícies seletivas em frequência. 2009. 87 p. Dissertação (Mestrado em 
Engenharia) – Departamento de Engenharia Elétrica, Universidade Federal do Rio 
Grande do Norte, Natal, 2009. 
[19] Braz, Érico Cadineli. Análise de Superfícies Seletivas em Frequência 
com Geometrias Multifractais. 2014. 107f. Tese (Doutorado em Automação e 
Sistemas; Engenharia deComputação; Telecomunicações) - Universidade Federal do 
Rio Grande do Norte, Natal, 2014. 
[20] Campos, A. L. P. S., Oliveira E. E. C. & P. H. F. Silva (2012), ‘Design of 
miniaturized frequency selective surfaces using minkowski island fractal’, Journal of 
Microwaves, Optoelectronics and Electromagnetic Applied 9(1), 43–49. 
[21] Campos, A. L. P. S. (2009), Superfícies Seletivas em Frequência - Análise 
e Projeto, 1ª edição, IFRN, Natal, Brasil. 
[22] Shadiku, M. N. O.. Elementos de Eletromagnetismo, terceira edição, 
editora Bookman, Brasil,2004. 
48 
 
[23] Cruz, Rossana Moreno Santa. Análise do espalhamento espectral em 
superfícies de estruturas complexas para comunicações móveis. 2005. 157 f. 
Dissertação (Mestrado em Automação e Sistemas; Engenharia de Computação; 
Telecomunicações) - Universidade Federal do Rio Grande do Norte, Natal, 2005. 
[24] Fante, R. L.; Mccormack, M.. Reflection Properties of Salisbury Screen. 
IEEE Transaction on Antennas and Propagation 36, pp. 1443-1454, Outubro de 1988. 
[25] Fernandez, A.; Valenzuela, A.. General Design Theory for Single-layer 
Homogeneous Absorber. IEEE Trans. on Ant. and Propagation 44, pp. 822-826, 1996. 
[26] B. A. Munk, Frequency-selective surfaces: theory and design. John Wiley 
& Sons, New York, 2000. 
[27] F. Costa, A. Monorchio and G. Manara, "Theory, design and perspectives 
of electromagnetic wave absorbers," IEEE Electromagnetic Compatibility Magazine, 
vol. 5, no. 2, pp. 67-74, Agosto de 2016. 
[28] D. Kundu, A. Mohan and A. Chakrabarty, "Single-Layer Wideband 
Microwave Absorber Using Array of Crossed Dipoles," IEEE Antennas and Wireless 
Propagation Letters, vol. 15, pp. 1589-1592, Janeiro de 2016.

Continue navegando