Buscar

JoseMS-DISSERT

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 69 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 69 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 69 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Dissertação de Mestrado em Engenharia Mecânica 
Área de Concentração – Termociências 
 
 
 
 
 
 
 
Viabilidade do Uso de Secadores Solar de Convecção Natural e Forçada 
Para a Secagem do Coco Licuri 
 
 
 
 
 
 
 
 
Natal – RN 
Maio 2012 
Jose Menezes da Silva 
 
 
 
 
 
 
 
 
 
 
 
 
 
Viabilidade do Uso de Secadores Solar de Convecção Natural e Forçada 
Para a Secagem do Coco Licuri 
 
 
 
 
 
Dissertação de conclusão do curso de pós 
graduação nível mestrado, em engenharia 
mecânica, área de concentração Termociências, 
na UFRN – Universidade Federal do Rio 
Grande do Norte, sob a orientação do professor 
doutor José Ubiragi de Lima Mendes. 
 
 
 
 
 
Natal – RN 
Maio 2012 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Joel Nogueira Gonçalves 
 
 
 
Silva, José Menezes da 
 
Viabilidade do Uso de Secadores Solar de Convecção Natural e Forçada para a Secagem do 
Coco Licuri. 
 
 
DISSERTAÇÃO APRESENTADA NO PROGRAMA DE PÓS-GRADUAÇÃO EM 
ENGENHARIA MECÂNICA, NÍVEL MESTRADO, ÁREA DE CONCENTRAÇÃO 
TERMOCIÊNCIAS, DA UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE, 
MODALIDADE MINTER COM CEFET-BA - CENTRO FEDERAL DE EDUCAÇÃO 
TECNOLÓGICA. 
 
Palavras chave: energias renováveis, secador solar, convecção forcada, eficiência na 
secagem. 
 
 
 
 
 
 
 
 
 
 
 
Aprovada em ____/_______/______ 
 
 
 
 
BANCA EXAMINADORA 
 
 
 
_______________________________________________________ 
ORIENTADOR – Prof. Dr. José Ubiragi de Lima Mendes (UFRN) 
 
___________________________________________________________ 
COMPONENTE – Prof. Dra. Djane Santiago de Jesus (IFBA) 
 
____________________________________________________________ 
COMPONENTE – Prof. Dr. Luiz Guilherme Meira de Souza (UFRN) 
 
 
 
 
 
 
 
 
 
. 
 
 
 
 
DEDICATÓRIA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A minha esposa, por me compreender e 
me apoiar com tanto carinho algumas 
ausências do convívio familiar, e pelo 
constante incentivo para que mais esta 
etapa de construção de conhecimento 
fosse concretizada, em especial aos 
meus pais Sr. José Porfírio da Silva e 
Maria Menezes de Fragos Silva que 
podem compartilhar juntos comigo mais 
esta conquista. 
 
 
 
 
 
 
 AGRADECIMENTOS 
 
Com muito carinho e respeito agradeço ... 
 
 
 
... a Deus, por ter me dado, força e 
discernimento para chegar até aqui, 
... aos meus familiares, pelo apoio, 
incentivo e compreensão, 
principalmente quanto ao 
distanciamento provocado, 
... aos professores pelas inestimáveis 
contribuições na construção deste 
projeto, 
... aos colegas pelos bons momentos de 
convivência e por todas as superações 
que juntos realizamos, nesta jornada 
acadêmica, 
....ao professor Luiz Guilherme, por 
compartilhar sua tenacidade e 
determinação, 
....a professora Djane Santiago de Jesus, 
pelo incentivo e apoio, 
.....ao meu orientador, professor José 
Ubiragi Mendes, pela compreensão e 
respeito e por conseguir me passar um 
pouco de seu conhecimento e equilíbrio. 
 
RESUMO 
 
O licuri (Syagrus coronata (Martius) Beccari) é uma palmeira nativa do Brasil, 
largamente disseminada por todo o semi-árido do país. O fruto do licuri, conhecido pela 
mesma denominação da palmeira, é totalmente comestível. Apesar do grande potencial 
nutritivo e oleaginoso do licuri, pouca atenção tem sido dada para o estudo detalhado do 
valor nutritivo deste fruto. Nesta dissertação será estudado a viabilidade para utilização 
dos secadores solar de convecção natural e forçada (SSSEICF) sendo comparados com a 
secagem tradicional ao ar livre, para a secagem do coco licuri. 
O estudo levou a construção de dois protótipos de secador solar para a realização de 
experimentos comprovativos: o Sistema de Secagem Solar de Exposição Direta e 
Convecção Natural construído com madeira, possui uma câmara de secagem direta com 
cobertura de lamina de vidro transparente de 4 mm, com utilização de técnicas para o 
correto isolamento da câmara de secagem e o Sistema de Secagem Solar de Exposição 
Indireta e Convecção Forçada, fabricado com chapas de aço galvanizado, tem a câmara de 
secagem indireta com cobertura de lâmina de vidro transparente de 6 mm, tendo a 
utilização de técnicas para correto isolamento da câmara de secagem e a inserção do 
equipamento de exaustor eólico de ar responsável direto pela convecção forçada de ar da 
câmara de secagem indireta. 
Os dois protótipos foram analisados comparativamente quanto ao desempenho e 
eficiência com a secagem tradicional em uso pela comunidade extrativista. Foram avaliados 
quanto as variáveis: tempo e taxas de secagem e qualidade final das amostras de coco licuri. 
Os frutos foram colhidos e trazidos do povoado de Ouricuri, na cidade de Caldeirão 
Grande BA, para a realização dos experimentos comparativos entre os três métodos de 
secagem foi utilizada uma carga padrão com 4,0 Kg. 
A análise quantitativa para o resultado da taxa de secagem, foi encontrado 
rendimento de 74% e 44% para o convecção natural e convecção forçada respectivamente, 
em comparação com a secagem tradicional. Essas taxas de secagem representam variação 
de 3 a 5 vezes menor. 
 
A análise qualitativa das amostras de fruto e das amêndoas mostrou: que, a secagem 
utilizando a convecção natural apresentou boa qualidade para o licuri, porém foi constatada 
uma alteração sensorial no sabor, conhecida como “coco velado”. 
A secagem utilizando a convecção forçada apresentou melhor qualidade do licuri, 
foi encontrada uma coloração avermelhada na polpa, representando que foram mantidas as 
quantidades do nutriente beta caroteno e não se percebeu a mudança de sabor do sistema 
anterior, os custos finais de construção desse sistema foram maiores. 
Os protótipos construídos obtiveram vantagem competitiva e atestou perfeitamente 
para solucionar a dificuldade tecnológica encontrada anteriormente na produção de 
produtos a base do coco licurí. Permitindo agregar valor e elevar as possibilidades de 
aproveitamento do fruto pelas comunidades extrativistas da região semi-árida da Bahia. 
 
Palavras Chave: energias renováveis, secador solar, convecção forcada, licuri. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ABSTRACT 
 
Licuri is a palm tree from the semiarid regions of Bahia State, Brazil. It is an important 
source of food and feed in that region, since their nuts are commonly eaten by humans and 
used as maize substitute for poultry feeding. The aim of this dissertation is to study the 
feasibility for use of natural convection solar dryers and forced being compared with the 
traditional drying outdoors for drying coconut licuri Syagrus coronate. 
The study led to the construction of two prototype solar dryer for carrying out experiments 
proving: model Solar Drying System Direct Exposure to Natural Convection built with 
wood, has a drying chamber with direct cover transparent glass laminates 4 mm, using 
techniques for proper isolation of the drying chamber. 
The two prototypes were comparatively analyzed for performance and drying efficiency 
with traditional extractive use by the community. Were evaluated the variables: time and 
drying rates and quality of the final samples of coconut licuri. The fruits were harvested and 
brought the town of Ouricuri, in the city of Caldeirão Grande, BA for the experiments 
comparing the three methods of drying was used a standard load of 4.0 kg 
The quantitative analysis for the result of the drying rate was found in 74% yield and 44% 
for natural and forced convection respectively compared with the traditional drying. These 
drying rates represent variation 3-5 times lower. 
Drying using forced convection licuri showed better quality, was found in a reddish pulp, 
representing the quantities that were kept of the nutrient beta carotene, and not notice the 
flavor change from the previoussystem, the final cost of construction of this system were 
higher . 
The prototypes built competitive advantage and had testified fully to resolve the technical 
difficulties previously encountered in the production of products made of coconut 
licuri. Allowing add value and increase their potential use for the fruit extractive 
communities of semi-arid region of Bahia. 
 
Keywords: renewable energy, solar dryer, forced convection, licuri. 
 
 
 SUMÁRIO 
 
Lista de Figuras 11 
Lista de Tabelas 12 
Nomenclatura 13 
 
CAPÍTULO 1 - INTRODUÇÃO 
 
 
1.1. Objetivo Geral 
1.2. Objetivos Específicos 
 
CAPITULO 2 – REVISÃO BIBLIOGRÁFICA 
 
20 
20 
 
2.1. A Importância das Energias Renováveis 21 
2.2. A Energia Solar e sua Importância 21 
2.3. A Tecnologia da Secagem 26 
2.4. Tipos de Secadores 28 
2.5. Sistemas de Secagem Solar 29 
2.6. Secagem de Alimentos Utilizando Secador Solar 31 
2.7. O Coco Licuri ( Syagrus Coronata ) 32 
2.8. Caldeirão Grande: aplicação da tecnologia 40 
 
CAPÍTULO 3 - MATERIAIS E MÉTODOS 
 
3.1. Coleta e Preparo do Fruto do Licuri 
3.2. Secagem Modelo Tradicional – Secagem ao Ar Livre 
3.3. Secagem Solar de Exposição Direta com Convecção Natural 
3.4. Sistema de Secagem Solar de Exposição Indireta e Convecção Forcada 
3.5. Realização dos Experimentos 
3.6. Metodologia das Análises 
3.6.1. Analises Físico Químicas 
 
 
 
43 
44 
44 
46 
48 
49 
49 
 
3.6.2. Extração do Óleo das Amêndoas do Licuri 
3.6.3. Analise Sensorial 
 
CAPITULO 4 – RESULTADOS E DISCUSSÕES 
 
4.1. Eficiência Térmica Para o Sistema de Secagem Com Secador Com Exposição 
Direta e Convecção Natural (SSSEDCN) 
4.2. Eficiência Térmica Para o Sistema de Secagem Com Secador de Exposição 
Indireta e Convecção Forçada (SSSEICF) 
4.3. Avaliação Físico Química do Óleo Obtido Com Amêndoas Secadas Pelos 
Sistemas de Secagem Tradicional e Convecções Natural e Forçada 
50 
50 
 
 
 
53 
 
57 
 
CAPÍTULO 5 - CONCLUSÕES E SUGESTÕES 
61 
5.1 – Conclusões 64 
5.2 – Sugestões 65 
6. Referencias Bibliográficas 66 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 LISTA DE FIGURAS 
 
Figura 2.1. Palmeira Licuri – Caldeirão Grande – BA, 2006 33 
Figura 2.2. Palmeira Licuri: Caule (A), Frutos (B), Folha (C), e Inflorescência (D). 34 
Figura 2.3. Licuri in natura: amêndoa (1), polpa (2). 35 
Figura 2.4. Germinação (A) e Muda (B), do Licuri. 36 
Figura 2.5. Arara-azul-de-lear alimentando-se de Licuri. 37 
Figura 2.6. Cadeia Produtiva do Licuri, GPPQ, 2011. 
Figura 2.7. Mulher “colhendo” Licuri, Caldeirão Grande – BA. 
Figura 2.8. Mapas do Território de Identidade Piemonte Norte do Itapicuru e 
Município de Caldeirão Grande. 
Figura 2.9. Desvantagem da secagem tradicional do licuri. 
39 
40 
41 
 
42 
Figura 3.1. Agricultora colhendo licuri. 43 
Figura 3.2 Secador Solar de exposição direta com convecção natural em Caldeirão 
Grande,Bahia. 
 
45 
Figura 3.3. Sistema de secagem solar de exposição indireta e convecção forçada, 
instalado no LABTECA. 
47 
 
Figura 4.1. Fruto do licuri com polpa no primeiro (A) e quinto(B) dia de secagem no 
secador solar com convecção natural. 
53 
 
Figura 4.2. Temperatura no interior da camara de secagem no secador solar de 
exposição direta e convecção natural durante a secagem do licurí com polpa. 
Figura 4.3. Temperatura no interior da camara de secagem no secador solar de 
exposição direta com convecção natural e a temperatura ambiente durante a 
secagem do licurí com polpa. 
Figura 4.4. Teor de umidade para o licuri submetido a secagem tradicional e 
secagem em secador solar de convecção forçada. 
Figura 4.5. Temperatura no interior da camara de secagem no secador solar de 
exposição indireta com convecção forçada e a temperatura no método tradicional 
durante a secagem do licurí com polpa. 
54 
 
56 
 
 
58 
 
60 
 
 
Figura 4.6. Comparativo das temperaturas no interior das camaras de secagem. 61 
 
LISTA DE TABELAS 
 
 
 
 
 
Tabela 4.1 - Relação entre a temperatura do ar de secagem e o tempo gasto no 
processo de secagem natural. 
55 
 
 
Tabela 4.2 - Teor de umidade para o licurí submetido a secagem no secador solar 
de exposição direta e convecção natural. 
 
57 
 
Tabela 4.3 - Dados de ensaio para o licurí com polpa em secagem forçada 
indireta. 
 
57 
 
Tabela 4.4 - Dados comparativos entre os sistemas de secagem com convecção 
natural e com convecção forçada no processo de secagem do fruto licuri. 
 
59 
 
Tabela 4.5 - Características físico-químicas do óleo de licuri obtido pelas 
amêndoas prensadas à frio. 
 
63 
 
 
 
 
 
 
 
 
 
 
 
NOMENCLATURA 
 
 
A = área de coleção (m2) 
αp = absortividade da placa 
Cp = calor específico do fluido (ar) (J/kg°C). 
∆T = gradiente de temperatura entre entrada e saída do fluido (oC). 
I = irradiação solar global (W/m2) 
Pabs. = potência absorvida (W) 
Pp = potência perdida (W) 
Pu = potência útil (W) 
m = massa (kg) 
ηt = eficiência térmica do sistema (%) 
∆T = variação da temperatura ambiente (°C) 
∆t = variação do tempo (h) 
τv = transmissividade do vidro 
ηt = eficiência térmica (%) 
 
14 
 
CAPITULO 1 
 
1.1 - INTRODUÇÃO 
 
Nos últimos anos o Brasil tem registrado bons exemplos de soluções inovadoras 
voltadas para a promoção do desenvolvimento social visando a melhoria da qualidade de 
vida, principalmente, das classes menos favorecidas da nossa população (SILVA,2008). 
O progresso social existe quando as condições de vida dos indivíduos melhoram, 
elevando o índice de desenvolvimento humano e diminuindo os riscos sociais. Iniciativas 
que difundam a disseminação e popularização da ciência e tecnologia, são fundamentais 
para o desenvolvimento de habilidades individuais e coletivas que venham a auxiliar a 
minoração de dependência do Estado no que diz respeito a melhoria da qualidade de vida 
de cidadãos. 
 Sendo o Nordeste brasileiro uma região com grandes disparidades 
socioeconômicas frente às demais, faz-se necessário, por parte das Instituições difusoras do 
saber, uma ação mais atuante que venha a implantar esta disseminação do saber. 
 A Bahia é o estado da região Nordeste do país que tem uma das maiores áreas e 
onde se observa também grandes problemas de ordem social, principalmente no interior. 
Conforme Sampaio 2008, o estado baiano possui o número de municípios mais elevado no 
semiárido, atingindo 23,4% do total, o que equivale a 63,9% das cidades da Bahia, ou seja, 
dos 417 municípios baianos, 265 estão localizados na região semiárida. 
 No que diz respeito também à demografia, a Bahia também se destaca no tocante à 
população residente na região semiárida, representando 27,3% desse território, conforme 
dados do IBGE. 
O semi-árido baiano, é caracterizado, no tocante à aspectos socioeconômicos e 
geoambientais por uma estrutura espacial heterogênea, apresentando, consequentemente, 
um espaço interno diversificado, dificultando homogeneização dos dados estudados. 
Conforme ainda esses autores, nessa complexidade do espaço geográfico podem ser 
identificadas áreas rurais, urbanas, agricultura moderna, agricultura de subsistência, 
15 
 
agricultura de sequeiro, agricultura irrigada, além de áreas industrializadas e zonas de 
comércio. 
Além do importante patrimônio histórico-cultural, um aspecto relevante no 
semiárido baiano é a permanência das culturas tradicionais adequadas às condições daquela 
região, onde destaca-se o licuri, cultura esta que tem cooperado para a sobrevivência das 
populações de menor poder aquisitivo e se constituído em um fator preponderante para o 
desenvolvimento regional. Neste sentido, o aproveitamento das capacidades naturais da 
região semiáridabaiana, destacando-se a agricultura familiar, com vistas ao 
desenvolvimento regional torna-se de extrema importância. 
A escassez de chuva acaba por dificultar o desenvolvimento da agricultura no semiárido, 
principalmente na Bahia. Entretanto, esta região possui uma vegetação peculiar, a xerófila, 
adaptável à pouca umidade e, possuindo um potencialidade forrageira – ou seja, utilizadas 
para alimentação de gado, frutíferas, ornamentais e, muitas delas, medicinais, se explorada 
de forma sustentável, pode-se tornar grande provedor de rendar de muitas populações na 
região semiárida nordestina e, em especial, baiana. 
 Conhecido popularmente também como nicuri, ouricuri e aricuri, e tendo como 
nome científico SyagrusCoronata – da família Palmae -, o licuri, conforme já afirmava 
Bondar (1938), é nativa do semiárido baiano, principalmente, nos municípios de Jaguarari, 
Bonfim, Pindobaçu, Caldeirão Grande, Caié, Jacobina, Itiúba, Cansação, Monte santo, 
Queimadas, Miguel Calmon, Campo Formoso e outros municípios do semiárido baiano, 
entretanto, as zonas de maior concentração, na década de 1960, era Bonfim e a Encosta da 
Chapada Diamantina. A população baiana de palmeiras nativas, na década de 1930, era de 
cerca de 5 bilhões, tendo base média de 200 pés de licuris por hectare (BONDAR, 1938). 
Conforme Bondar (1938), um cacho de licuri possui cerca de 100 frutos, pesando, cada 
fruto, cerca de 5 gramas. Já a amêndoa, extraída do caroço, o coquilho, não ultrapassa, 
conforme o autor, 1,5 gramas. É estimado o rendimento médio de meio quilo de amêndoa 
por cacho. 
 O licurizeiro tem sua produção registrada durante todo ano, tendo como período de 
safra, conforme Bondar (1938), os meses de março, junho e julho. Há indícios de que esses 
16 
 
meses possam ser considerados de maior incidência de produção devido à intensidade da 
chuva durante este período. 
 Podendo chegar, quando adulto, à uma altura de até dez metros,o licurizeiro, apesar 
de ainda ter o extrativismo com a sua maior forma de exploração, é considerado uma das 
principais fontes de renda dos municípios dos municípios do semiárido baiano, sendo 
considerada uma palmeira com 100% de aproveitamento. O aproveitamento da amêndoa 
do licuri no semiárido para o consumo por crianças e adultos, bem como transformada em 
procedimentos elementares ou como fornecedor de óleo e leite para alimentação, tem seu 
registro datado dos primórdios da colonização portuguesa. 
O tronco serve para a fabricação do bró, uma farinha que serve de alimentação, 
principalmente no período da seca. As folhas, além de servir para forragem para os animais, 
antigamente utilizadas para cobrir as casas de sertanejos, atualmente são utilizadas em sua 
maioria para o artesanato, tais como desenvolvimento de chapéus, peneiras, bolsas e 
utilidades domésticas, além da possibilidade de extração de excelente fibra, que pode 
originar em compósitos, briquetes, Chapas de fibras de licuri (que serve para construção de 
móveis, divisórias etc), além da cera, que serve para fabricação de cosméticos. Da polpa, é 
possível a fabricação de sorvetes, farinha para bolos e mingaus, ração para animais 
ruminantes, licores e essência. A casca possibilita a obtenção de Carvão Vegetal, Carvão 
Ativado, Ácido acético, Briquetes, Artesanatos, Decorativos, Bijuterias e Utilidades; Já das 
amêndoas pode-se adquirir barras de cereais, glicerina, óleo comestível, biodiesel, leite de 
coco, cosméticos, tortas residuais para ração animal (GPPQ-CEFET, Bahia). 
Pesquisas desenvolvidas pelo Instituto Federal de Educação, Ciência e Tecnologia 
da Bahia sobre o valor nutricional e o peso socioeconômico do licuri revelou que neste 
fruto são encontradas as seguintes substâncias: na polpa ou drupa – cálcio, magnésio, cobre 
e zinco e, na amêndoa (dentro do coquilho) – cálcio, magnésio, cobre, zinco, ferro, 
manganês e selênio (MEC, 2006), substâncias indispensáveis à sobrevivência humana e que 
contribuem para o combate à fome, bem como doenças tais como problemas de visão, 
cânceres, doenças do coração, artrite, arteriosclerose, combate à anemia e os distúrbios da 
aprendizagem, diabetes, asma e osteoporose. Diversos produtos foram desenvolvidos a 
partir dessa pesquisa, (tais como complemento alimentar (barra de cereal), compotas, 
17 
 
sorvetes, geléias, iogurtes, cocadas, doces, licor e farinha) fortalecendo a cadeia produtiva 
do fruto, bem como possibilitando a inclusão produtiva da população do semiárido que tem 
no licuri sua principal fonte de renda. 
 A exploração extrativa do licuri compete, acirradamente, na ocupação de mão-de-
obra, com outras atividades agrícolas regionais, sendo utilizada para complementar a renda 
familiar. 
 Um cacho de licuri médio possui, conforme LIMA (1961), cerca de 500 frutos, os 
quais devem ser apanhados “de vez ou maduros”. Esta maturação do licuri se dá de forma 
licuri é rápida, levando à queda do fruto, que se depositava ao pé do licurizeiro ou “cama”, 
como é denominado. Ao cair e ficar depositado ao chão, o coquilho acaba por sofrer a 
contaminação pelo germe de bicho de coco, conhecido cientificamente, por 
Pachimerusnucleorum, germe que acaba por destruir o licuri. Tradicionalmente, o 
aproveitamento do licuri envolve um modelo de extrativismo artesanal, restringindo-se à 
produção de amêndoa do licuri a partir de resíduos do processo de quebra do coco in natura 
com pedra, geralmente realizado por mulheres e crianças, no entanto, é comum no turno da 
noite toda a família, inclusive os homens, se ocuparem na debulha. O processamento do 
licuri começa com de colheita que se dá durante todo o ano, com destaque no período de 
novembro a abril. As colheitas são realizadas em camas no chão e nos currais de bovinos e 
caprinos, os frutos expelidos após a ruminação, muito poucos frutos são colhido 
diretamente no palmeiral. 
 Neste sentido, através das pesquisas realizadas para o desenvolvimento de 
produtos alimentícios, bem como a aproximação com a comunidade do semiárido baiano, o 
Instituto Federal de Educação Ciência e Tecnologia da Bahia, juntamente com comunidade 
do município de Caldeirão Grande – Bahia, na perspectiva de fortalecer a Cadeia Produtiva 
do Licuri, identificou três demandas por Tecnologias Sociais no processo produtivo do 
licuri, 
Apesar da inexistência de estatísticas oficiais, o desperdício de licuri na Bahia é 
estimado em mais de 40% da produção, ou seja, mais de 14 milhões de toneladas. Por outro 
lado as condições de coleta, manuseio e armazenamento impende a implementação do uso 
para fins alimentícios e o fortalecimento da cadeia produtiva do licuri. 
18 
 
Caldeirão Grande é um dos quatro maiores municípios produtores de licuri da Bahia 
e aquele para o qual o extrativismo do licuri tem maior importância econômica e social. 
Existem cerca de 900 famílias extrativistas cadastradas que mantêm vivos práticas e saberes 
relacionados ao extrativismo e ao uso do licuri, condições fundamentais para o 
desenvolvimento de TS. É o município cuja produtividade na extração vegetal do licuri é a 
mais alta considerando tanto sua superfície quanto sua população. Além de ter uma mata de 
licurizeiros avaliada em torno de mais de 15 milhões de palmeiras, cujo aproveitamento 
econômico-produtivo não alcança menos de 0,1% de seu potencial. 
Tais condições favorecem a implantação do projeto, já conhecido e aceito pelas 
comunidades implicadas na sua implantação, o que faz de Caldeirão Grande um local 
apropriado para o início do projeto. Objetivamente, a idéia de fortalecimento da cadeia 
produtiva do licuri voltado para a geração de renda das famílias extrativistas locais e as 
relações entre o IFBA e o lugar existem desde 2005 quando a equipe do Grupo de Pesquisa 
e Produção em Química do então CEFET-BA iniciou trabalho de pesquisa aplicado à 
cadeia produtiva do Licuri, tendo realizado reuniões com a comunidade identificando os 
gargalose problemas tecnológicos para cultura do Licuri. pesquisas iniciadas em 2003 por 
professores e estudantes do Instituto Federal de Educação, Ciência e Tecnologia da Bahia - 
IFBA, na época, ainda Centro Federal de Educação Tecnológica, identificaram uma gama 
de potencialidades no fruto, bem como contribuíram no desenvolvimento de tecnologias 
sociais e condições estruturais adequadas para o fortalecimento de toda cadeia produtiva do 
licuri, agregando valor aos produtos, aperfeiçoando a organização da produção comunitária 
e, conseqüentemente, gerando aumento da renda para as populações extrativistas 
tradicionais. 
Nas comunidades rurais, o licuri, catado no mato, era seco em terreiros e sem 
condições higiênicas sanitárias, além de haver muita perda das amêndoas pelo 
desenvolvimento do bicho do coco como também pela germinação do mesmo. 
Nesta perspectiva, a presente dissertação, corrobora para o alcance destes objetivos 
de fortalecimento da cadeia produtiva do licuri, motivada pela riqueza ambiental e o 
comprometimento das mulheres agricultoras familiares do município e na um produto de 
grande potencial econômico devidamente explorado pela agricultura familiar e que poderá 
19 
 
transformar o município em referência regional do licuri. Assim, a avaliação da secagem do 
licuri em secador solar fomentará a cadeia produtiva do licuri que significa, para Caldeirão 
Grande e para o semi-árido, a transformação de uma atividade potencial em atividade real 
de geração. 
Ao mesmo tempo, o licurizeiro ainda possui expressivo valor ambiental, 
participando da manutenção dos ciclos ambientais, como o ciclo da água e dos nutrientes. 
Ressalte-se que grande totalidade dos licurizeiros é nativa, isto é, não cultivados, e 
estão presentes nos mais diversos ecossistemas. Não se pode deixar de fazer referência 
ainda, ao licuri ser o principal alimento da arara-azul-de-lear. Essas araras são uma das aves 
mais raras do mundo. O Raso da Catarina, Bahia é o único lugar do mundo onde elas 
podem ser encontradas. 
Tendo em vista as necessidades do pequeno produtor rural do semiarido baiano, 
buscou-se uma alternativa econômica, sustentável e ecologicamente viável para que estes 
produtores pudessem obter uma renda complementar, por meio da utilização do secador 
solar unidade de secagem de alimentos que utilize fontes renováveis e limpas de 
combustíveis. 
O problema principal consiste no melhor aproveitamento dos produtos agrícolas. A 
secagem de alimentos possibilita também um aumento do tempo de consumo, paralelo a 
isso há uma agregação de valor ao produto final que pode significar um aumento na receita 
de até 20 vezes o valor do alimento comercializado in natura. O projeto de 
desenvolvimento da unidade de secagem tem por objetivo dar uma outra destinação aos 
alimentos que se perderiam no transporte ou na própria lavoura. Uma das premissas deste 
empreendimento é que ele seja de baixo custo de implantação devido a utilização de 
materiais alternativos e regionais e também pelo fato do próprio produtor executar toda a 
montagem do equipamento. Toda a tecnologia deverá ser transferida por mio de cursos e 
palestras nas comunidades rurais, bem como por meio de cartilhas explicativas e um 
manual de implantação da unidade de secagem. 
A composição desta dissertação está dividida em cinco capítulos. Neste primeiro 
capítulo, a introdução, é apresentada a estrutura do trabalho. No capítulo dois será 
explicitada uma discussão acerca dos conceitos de energia renováveis, energia solar, 
20 
 
utilização deste tipo de energia para secagem de alimentos e os diferentes tipos de 
secadores é também uma breve descrição do fruto licuri e seu peso socioeconômico. O 
capítulo 3 apresenta a proposta em estudo, mostrando os métodos construtivos, princípios 
de funcionamento e processos de fabricação e montagem, e apresenta também a 
metodologia experimental empregada. 
O capítulo 4 mostra os resultados e as discussões dos dados obtidos no levantamento 
de desempenho comparativo das secagens com secador solar e método tradicional. 
O quinto e último capítulo, constituído pela conclusão, será realizada a síntese e 
análise das abordagens ao longo do trabalho, apresentando, se possível, expectativas para 
realização de futuras pesquisas. 
 
1.2 - Objetivos 
 
1.2.1 - Objetivo Geral 
 
Estudar a viabilidade de utilização de um secador solar de exposição direta para 
secagem do coco licuri, visando a redução do tempo de secagem, obtenção de produto de 
melhor qualidade, bem como seu emprego por comunidades de agricultores familiares do 
semiarido baiano. 
 
1.2.2 - Objetivos Específicos 
 
1. Desenvolver, projetar e construir modelos de secadores solar de exposição direta 
para secagem do coco licuri; 
3. Avaliar a qualidade final do produto por meio da análise química, sensorial e física. 
4. Implementar a utilização do secador solar para licuri em comunidades de 
agricultores rurais EXTRATIVISTA DO LICURI em Caldeirão Grande. 
 
 
 
21 
 
 CAPÍTULO 2 - REVISÃO BIBLIOGRÁFICA 
 
2.1 - A Importância das Energias Renováveis 
 
O homem ao direcionar o seu olhar para o futuro percebe o custo cada vez maior que 
a energia tende a sempre ter e o que é pior, encontra-se na crise cada vez maior que 
experimenta os combustíveis fosseis atualmente utilizados em grande escala, o que nos 
preocupa com a possibilidade de racionamentos sempre crescente e mesmo o 
desabastecimento o que para a sociedade moderna representa uma completa paralisação de 
todas as suas atividades. As formas de suprimento de energia estão determinando o curso 
do desenvolvimento social e econômico para um futuro cada vez mais próximo. 
O suprimento de energia será a base para um elevado e sustentável nível de segurança 
e conforto, a energia também determinará o balanço ecológico. As fontes energéticas e as 
tecnologias que são usadas nos dias atuais influenciarão significativamente o futuro do 
planeta. 
Há também uma grande evidência de que a maioria das tecnologias energéticas em 
uso não são ecologicamente apropriadas e tem o potencial de provocar sérias e irreversíveis 
mudanças climáticas, bem como a constatação de que a quase totalidade destas fontes 
energéticas não são renováveis e estão se esgotando rapidamente. Em função dessas 
percepções, o direcionamento às fontes renováveis de energia é inevitável. As fontes de 
energia eólica, solar e de biomassa são abundantes, amplamente distribuídas, 
ecologicamente atrativas e renováveis. Essas fontes não poluem a atmosfera e não 
contribuem para o aumento da temperatura do planeta. 
 
2.2 - A Energia Solar e Sua Importância 
 
O Sol é o responsável pela origem de praticamente todas as outras fontes de energia 
conhecidas pelo homem. O aproveitamento dessa energia, inesgotável na escala terrestre de 
tempo, tanto como fonte de calor quanto de luz, é atualmente uma das alternativas 
energéticas mais promissoras para o enfrentamento dos novos desafios para a obtenção de 
22 
 
energia em escala mundial. 
O Sol fornece anualmente 1,5x1018 KWh de energia para a atmosfera terrestre, o que 
corresponde a cerca de 10000 vezes o consumo mundial de energia no mesmo período de 
tempo. 
Os países tropicais, devido a excelente posição geográfica, possuem grande potencial 
energético, encontrando potencial bastante favorável para a utilização dos equipamentos 
solares. O Brasil possui significativo potencial solar com disponibilidade equivalente a 1,13 
X 1010 GWh, no período de um ano, e uma das mais promissoras regiões para utilização da 
energia solar é o Nordeste (QUEIROZ, 2005). 
O aproveitamento da radiação solar pode ser dividido, conforme a aplicação, em 
quatro grupos distintos: aplicações térmicas em geral, geração de força motriz diversa, 
geração de eletricidade e geração de energia química. 
 As aplicações térmicas são aquelas em que a forma de energia necessária aoprocesso 
final é o calor, como aquecimento de água, destilação, secagem de frutas e grãos, 
refrigeração por absorção e adsorção, calefação e o cozimento de alimentos através de 
fogões solares. 
Para a obtenção de energia mecânica para tarefas específicas como bombeamento 
d’água, irrigação, moagem de grãos, entre outras, as duas formas de obtenção mais comuns 
são a obtenção de eletricidade por painéis fotovoltaicos e a posterior alimentação de um 
motor elétrico ou, através da conversão térmica e alimentação de um motor de ciclo 
térmico. 
Para a obtenção de eletricidade, os métodos de conversão mais utilizados são a 
conversão termoelétrica indireta que utiliza o efeito da termoconversão para obtenção de 
calor e acionamento de uma máquina térmica; conversão termoelétrica direta, onde vários 
fenômenos conhecidos permitem que a energia solar seja convertida diretamente em 
eletricidade e a conversão fotovoltaica cujos princípios são conhecidos já a bastante tempo, 
embora a sua utilização só tenha se intensificado após o ano de 1958 com a corrida 
espacial pelas superpotências EUA e União Soviética, onde as fotocélulas obtiveram 
bastante êxito como fonte de energia em satélites, dominando totalmente essa aplicação. As 
instalações terrestres também se desenvolveram e atualmente os painéis fotovoltaicos são 
23 
 
bastante difundidos, o mesmo se observa em relação a eficiência para as células 
fotovoltaicas que tem crescido significativamente nos últimos anos, atingindo índices de 
eficiência de 40% na Alemanha, um dos países que apresentam maior difusão para 
utilização dessa forma de energia. 
Finalmente, a energia solar pode ser aplicada a sistemas que produzam diretamente 
energia química, o que representa um grande atrativo em função das vantagens inerentes 
aos combustíveis como sua grande densidade energética, facilidade de distribuição e de 
transporte, boa adequação à aplicação nos transportes e permitir armazenamento sem 
degradação por longos períodos, compensando variações sazonais de produção. 
Cada metro quadrado da superfície do sol emite aproximadamente 62,8 MW de 
energia eletromagnética, que são lançados no espaço. A origem desta energia está em um 
conjunto de reações termonucleares que ocorrem no núcleo do sol causando uma 
diminuição em sua massa da ordem de 4,25 milhões de toneladas em cada segundo. 
Embora esse dado seja avaliado como uma perda inimaginável seriam necessários 147 
bilhões de anos (a idade de nosso sistema solar é estimada em 8 bilhões de anos) de 
atividade solar, neste mesmo ritmo, para que a sua massa sofresse uma diminuição de um 
por cento (1%) (BEZERRA, 2000). 
Para ter-se uma ideia de tal potencial basta que se faça a seguinte análise: Considere-
se que a Terra recebe do sol, ao nível do solo, no máximo 1KW/m2, embora possa atingir 
maiores picos em algumas regiões. Excluídas as regiões Ártica e Antártica, ela recebe em 
média 3,6 KWh/m2.dia, nas massas continentais temos uma área de cerca de 132,5x1012 
W/m2 (SOUZA, 2002). Portanto, a incidência solar sobre essas massas continentais é 
4,77x108 GWh/dia, logo, a incidência em um ano é de 1,74x 1011GWh. 
Considerando-se que o consumo energético anual atual corresponde a 1,5x108 GWh, 
conclui-se que a energia solar disponível nas massas continentais representa mais de 1.000 
vezes o consumo de energia da humanidade. Isso equivale a dizer que menos de 1% da 
energia solar disponível nas massas continentais seria suficiente para suprir de energia à 
humanidade. Considerando-se toda a área da Terra, vai para 1,02 x1013 GWh. 
Uma vez que a luz solar está disponível em todas as regiões da Terra e pode ser usada 
de forma descentralizada, a opção solar para a geração de eletricidade dispensa o caro 
24 
 
transporte da energia através de redes de distribuição, inerentes ao sistema convencional. 
Os equipamentos solares têm um grande potencial em países tropicais, entre os quais 
se encontra o Brasil, com disponibilidade equivalente a 1,13x1010 GWh, por possuírem 
significativos potenciais solares e receberem energia solar em quase todo o ano, como 
acontece no nordeste brasileiro. 
A radiação solar é atualmente usada para produzir potência através de duas 
tecnologias: fotovoltaica e térmica. A tecnologia fotovoltaica tem um grande potencial e 
parece ser um dos mais atrativos modos de obtenção de energia no futuro. Os sistemas 
fotovoltaicos são atualmente mais confiáveis e econômicos que muitas outras tecnologias 
energéticas por serem independentes, descentralizados e pelas alternativas de 
aplicabilidade, gerando uma gama de produtos para consumo. 
Um sistema fotovoltaico pode atuar em rede ou de modo independente. São muito 
importantes para o desenvolvimento de países do terceiro mundo, pela escassez de 
fornecimento de energia elétrica principalmente em áreas rurais, onde a energia elétrica 
gerada pode ser usada de forma descentralizada. 
Os métodos para a geração de potência térmica solar são essencialmente os mesmos 
das tecnologias convencionais, porém o combustível usado é a energia térmica. Ao invés do 
combustível fóssil, usa-se a radiação solar. A faixa de temperatura requerida para 
aplicações domésticas e comerciais pode ser suprida com as tecnologias disponíveis de 
conversão da energia solar em energia térmica. 
Os sistemas térmicos solares para uso principalmente doméstico não necessitam de 
alta eficiência, porém para uso em aplicações industriais e comerciais já estão sendo 
desenvolvidos sistemas com alta performance. Tais sistemas permitem a obtenção de 
temperaturas para pré-aquecer a água de alimentação de caldeiras, aquecer água e ar em 
processos industriais e produzir vapor para gerar potência. 
Um dos processos comerciais mais utilizados é a conservação de produtos 
agropecuários através da técnica conhecida como desidratação ou conservação das frutas, 
em que a técnica não promove alteração em suas propriedades nutritivas e biológicas. O 
método consiste em se promover a redução do teor de umidade presente no produto, agindo 
diretamente na atividade da água, o que impede o desenvolvimento de microorganismos e a 
25 
 
ocorrência de reações químicas indesejáveis, que acabam por deteriorar os produtos, 
tornando-os impróprios para o consumo (MADAMBA,2007). 
Podem ser enumeradas as principais vantagens oferecidas por esta técnica está em 
manter a concentração dos nutrientes e permitir um maior tempo de vida de prateleira para 
os produtos. Além de manter o sabor praticamente inalterado por longo período. A secagem 
é atualmente utilizada não apenas para a conservação dos alimentos, mas também permite 
que sejam elaborados produtos diferenciados como exemplo: massas, biscoitos, iogurtes e 
sorvetes entre outros (FIORENZE,2004). 
Entre os diferentes equipamentos utilizados na secagem de alimentos podem ser 
citados os secadores mecânicos e os secadores solar. A principal diferença entre esses 
equipamentos encontra-se na energia utilizada para o aquecimento do fluido de secagem, 
no modelo mecânico esta energia é oriunda da queima dos combustíveis fosseis, da lenha 
ou através da utilização da eletricidade. No método da secagem solar, o gás é aquecido pela 
energia solar, o que faz o modelo ser bastante utilizado na secagem de grãos e de sementes. 
O desenvolvimento tecnológico atual, experimentado pela sociedade, tem permitido a 
transformação da energia solar em calor. O que é de suma importância, frente ao atual 
momento, em que os combustíveis fósseis apresentam escassez e preços elevados e ainda a 
constante preocupação com a poluição causada pelos mesmos (SOUZA et al. 2007). 
O Brasil apresenta um grande potencial, para utilização da energia solar, em quase 
todo o território nacional, principalmente na região Nordeste onde se tem a presença do sol 
em quase todas as épocas do ano (ANUNCIAÇÃO, 2007). 
A energia solar representa uma das opções mais quevantajosas para viabilizar 
projetos e promover o desenvolvimento regional em vários setores como: secagem de 
frutos, aquecimento de água para uso comercial e doméstico e ainda na conversão de 
energia solar em elétrica para aqueles locais de difícil acesso onde se faz necessário a 
construção de muitos quilômetros de linhas de transmissão de redes elétricas 
convencionais. Os sistemas de secagem solar apresentam aspectos importantes como baixo 
custo de construção e de manutenção dos equipamentos (SINICIO, 2006). 
A energia solar e a energia eólica são fontes inesgotáveis de energia não poluente, 
capazes de atender a todas as necessidades da raça humana. Isto leva a reflexão para a 
26 
 
urgente necessidade de utilização destas fontes de energia as quais atendam as necessidades 
globais de forma sustentável e sem comprometer o crescimento econômico. 
 
2.3 - A Técnica da Secagem 
 
É uma técnica bastante antiga aplicada na conservação dos alimentos, o processo 
consiste em se remover a água ou qualquer outro liquido do alimento em forma de vapor 
para o ar saturado. O processo também consiste em se remover a água dos alimentos 
sólidos, sendo uma forma para reduzir a atividade da água a qual tem por objetivo a 
inibição do crescimento microbiano, evitando a deterioração do produto. 
Esta tecnologia para conservação dos alimentos consiste na aplicação de alguns 
princípios físicos e químicos: utilização de baixas e altas temperaturas, eliminação da água 
presente nos alimentos (secagem, liofilização, desidratação osmótica, prensagem, 
concentração), aditivos químicos e irradiação (SILVA, 2005). 
A correria em que vive a sociedade moderna tem privilegiado a indústria de alimentos 
chamados de instantâneos (prontos e semi-prontos), utilizando como matéria prima os 
produtos submetidos a algum tipo de secagem, buscando com isso facilitar os processos de 
manuseio e armazenagem . Para que os produtos sejam adequadamente secos é necessário 
que uma quantidade de energia seja aplicada. Com isso é perceptível um grande 
fortalecimento das técnicas de secagem, para alimentos e produtos agropecuários, que 
mostram uma busca pela qualidade de vida, e a crescente utilização dos alimentos mais 
saudáveis, com minimização de desperdícios de tempo contribuindo para a melhoria da 
qualidade de vida da população. 
Para que a secagem ocorra faz-se necessário que o meio esteja submetido a uma 
temperatura superior a percebida no sólido úmido, o que leva a percepção da existência de 
um fluxo de calor, possibilitando a vaporização da umidade. Outra característica é 
explicada pela retirada de grande parte da água, inicialmente presente na constituição 
intrínseca do produto, para ser finalizado com um nível máximo de umidade, onde não são 
verificadas perdas de suas qualidades organolépticas e nutricionais (sabor e aroma). É um 
processo simultâneo de transferência de calor e de massa, onde se é requerida energia para 
27 
 
evaporar a umidade da superfície do produto para o meio externo o ar. 
A técnica da secagem que realiza a remoção da água possibilita a conservação dos 
produtos por não permitir a proliferação dos microorganismos e para os grãos a presença de 
insetos que deterioram os produtos (PARK, 2007). 
Durante muito tempo, a metodologia da secagem tradicional sempre consistiu em se 
deixar exposto o produto no campo, sob a ação do sol e dos ventos, para que seja 
descartada grande parte da umidade. É uma técnica que ainda hoje encontra aplicação 
devido aos elevados custos empregados na metodologia da secagem artificial. A 
metodologia conhecida como secagem tradicional é aquela que se realiza com o produto 
exposto a céu aberto, em condições ambientais normais (PARK, 2007). Entre as várias 
metodologias aplicadas na realização da secagem podem ser destacadas as mais 
importantes: 
a) secagem por convecção – um dos mais comuns em que o calor sensível é 
transferido para o material por convecção. O agente da secagem (o ar pré aquecido) passa 
sobre ou através do sólido, evaporando a umidade e retirando-a para fora do secador. As 
condições da secagem podem ser controladas através da temperatura e do ar aquecido. 
b) Secagem por condução – é a transferência do calor por contato físico. É favorável 
quando o material a ser seco é muito úmido e a espessura do leito do material é reduzida. 
c) secagem por radiação – a energia térmica pode ser suprida por uma série de fontes 
eletromagnéticas, sendo que o transporte da umidade e a difusão do vapor no solido seguem 
as mesmas leis físicas que a condução e a convecção. 
d) secagem por liofilização – esta é a metodologia em que se baseia na sublimação da 
água congelada do material sendo colocada em uma câmara de secagem onde a pressão está 
situada abaixo do ponto tríplice da água. A energia é suprida por irradiação direta ou 
condução nas bandejas aquecidas, sendo que as taxas para a temperatura do material não 
ultrapassa o valor de zero grau célsius. 
A umidade é então sublimada e se condensa em placas refrigeradas, localizadas em 
uma câmara do secador, longe do material ou em um condensador separado. Esta é a 
técnica em que o material secado não pode ser aquecido, nem mesmo com temperaturas 
mais baixas. A secagem é a técnica que menos agride o material, produzindo produtos com 
28 
 
melhor qualidade entre todos os outros métodos (PARK, 2007). 
 
 
2.4 - Tipos de Secadores 
 
Existe atualmente no mercado uma grande variedade de processos e equipamentos de 
secagem, os quais são aplicados para se obter produtos com mais qualidade, dentre eles 
podem ser citados: 
O secador de bandejas – é bastante versátil, o produto a ser secado é exposto em 
bandejas e submetido a uma corrente de ar aquecido. Podem ser utilizados por pequenas, 
médias e grandes indústrias de alimentos: são operados por duas diferentes condições: na 
primeira a câmara do aquecedor está cheia e o ar só será movimentado após a temperatura 
atingir o grau desejado; já para a segunda, os produtos só deverão ser introduzidos no 
secador após a temperatura e a circulação de ar serem encontradas em condições ideais. Um 
dos inconvenientes apresentados encontra-se no fato da distribuição do fluido de 
aquecimento não ser uniforme, o que leva a secagem dos produtos a ocorrer de maneira 
diferente, uma tentativa para se minimizar o problema está na troca de posição das bandejas 
com produto. 
Secadores de túnel – nas indústrias de alimentos são utilizados para desidratar de 
forma subcontinua, hortaliças e frutas apresentando grande capacidade de produção. 
Possuem comprimento variado, sendo construídos com um túnel de 10 a 15 metros de 
comprimento. A corrente do fluido pode ser material ou forcada e o seu fluxo pode ser 
paralelo, contracorrente ou combinado. 
Secador de leito de jorro – ocupam posição de destaque em operações que 
envolvem partículas sólidas e fluidas. Um dos principais objetivos está em se realizar a 
secagem de maneira eficiente, materiais, granulados, pastas e suspensões promovendo um 
contato intimo entre o fluido e as partículas relativamente grandes as quais apresentam 
fluidização com qualidade inferior. 
Secador por aspersão ou atomização “spray-dryer” – utilizado para a secagem de 
alimentos líquidos, exemplo leite, café solúvel, alimentos pastosos em suspensão. É 
29 
 
constituído por uma câmara, geralmente cônica com diâmetro e comprimento precisamente 
calculados, nele o fluido a ser processado é introduzido por aspersão, sob pressão. É um 
processo continuo, no qual um liquido, ou pasta são transformados em produto seco, 
caracterizando-se por um túnel de secagem relativamente curto. Consiste na atomização do 
produto no interior da câmara de secagem em contato com uma corrente de ar quente que 
pode atingir até 200 °C, com tempo de contato variando entre 20 e 30 segundos . Encontra 
aplicação não apenas na indústria de alimentos, como tambémfarmacêutica, cerâmica e de 
detergentes etc. 
Fornos secadores – encontram grande aplicação para a secagem de maçã, lúpulo, 
malte e batata. A construção do modelo ocorre com a formação de dois pisos: o primeiro, 
onde é colocado o produto a ser desidratado, o qual entra em contato com o ar aquecido, 
através do calor gerado neste piso pelo forno, estufa ou outra fonte de calor. O ar aquecido 
então passa pelo produto por corrente material ou forcada, através de um soprador ou 
ventilador. Para que seja reduzido o tempo de secagem, o material deve ser colocado numa 
agitação continua, porém mesmo após todos estes cuidados, ainda se verifica um grande 
tempo de secagem . 
 
2.5 - Sistemas de Secagem Solar 
 
As pesquisas atualmente conduzidas estão sendo direcionadas para as aplicações em 
sistemas que utilizam a secagem solar, principalmente pelas características de: baixo custo, 
eficiência, simplicidade de fabricação etc. Os principais tipos são: secador de exposição ou 
radiação direta e indireta por convecção natural ou forcada. O nome desse secador se deve 
ao fato de receber diretamente a radiação solar na câmara de secagem e o de exposição 
indireta por possuir um coletor solar plano, adicionado a uma câmara de secagem com 
bandejas, onde o produto é distribuído sendo complementado por uma chaminé a qual 
promove uma melhor circulação do fluido no interior da câmara e por consequência, no 
produto. 
A construção dos protótipos dos secadores pode ser realizada utilizando diversos 
tipos de materiais: chapas metálicas, alvenaria, madeira, metais reciclados, perfis de 
30 
 
alumínio, de ferro galvanizado e outros. O processo para escolha do tipo de material mais 
adequado a construção deve primar pela obtenção da qualidade e eficiência para o produto 
final, redução dos custos e elevação do tempo de vida útil para o protótipo. O sistema deve 
garantir o melhor isolamento térmico, utilizando materiais com baixa condutibilidade 
térmica, para que sejam evitadas perdas de calor no interior da câmara de secagem e a 
cobertura deve possuir a melhor transparência possível com a utilização de vidro ou 
plástico transparente com a espessura definida corretamente em projeto (BEZERRA, 2005 
e POTTER, 2006). 
O sistema utiliza para aquecimento do fluido de trabalho, a radiação solar que é um 
tipo de radiação eletromagnética, onde a terra recebe a radiação com pequeno comprimento 
de onda e retransmite de volta com grande comprimento de onda. Quando a radiação solar 
incidente atinge a cobertura do secador, uma parte é absorvida causando uma elevação da 
temperatura no interior da câmara de secagem, com consequente elevação da energia 
térmica, resultando em uma radiação com grandes comprimentos e pequenas frequências, o 
que consequentemente leva a radiação a ficar retida no interior da câmara de secagem, 
promovendo um “efeito estufa” (SILVA, 2005). 
Este efeito pode ser grandemente favorecido pela pintura da superfície absorvedora 
com tinta preto fosco (GOMES, 2007). A construção da caixa do secador é em formato de 
uma caixa retangular, por cima da estrutura é colocado um vidro transparente e na parte 
frontal da estrutura da caixa uma entrada de ar frio e na parte posterior na outra 
extremidade uma saída para expulsar o ar quente e úmido. 
Segundo MELONI (2005), faz-se necessário o fornecimento de calor, para que seja 
evaporada a umidade do produto e um meio de transporte para remover o vapor de água 
que se forma na superfície do produto a ser secado. A maneira para se realizar a circulação 
de ar, da câmara de secagem é transportar a umidade removida do produto para o meio 
ambiente. Este processo pode ser realizado por convecção natural ou através de um 
soprador ou ventilador o que caracteriza a convecção forçada. 
No trabalho desenvolvido por MATTHEW (2001) é citado que o sistema solar pode 
ser constituído com três componentes principais: a câmara de secagem onde o alimento é 
processado; o coletor solar utilizado para aquecer o ar que constitui o fluido responsável 
31 
 
pela secagem; e um componente diferente chamado de exaustor (airflow), a sua função é a 
de facilitar e direcionar a circulação de ar no interior da câmara de secagem, a atuação 
ocorre em forma de arrasto do fluido carregado de umidade para a saída superior do 
secador. 
O secador solar por secagem indireta tem a câmara de secagem apresentando uma 
vantagem em relação a outros sistemas solares abertos, pois a estrutura construtiva ser de 
maneira fechada permite a proteção do alimento de animais, insetos, sujeiras e da chuva, 
além de permitir um eficiente sistema de isolamento com materiais de baixíssimo custo, 
como exemplo da serragem da madeira, que melhora em muito a eficiência térmica. 
A técnica da secagem natural, o ar entra no coletor em condições normais, depois 
segue aquecido pela placa absorvedora e vai para a câmara de secagem onde é responsável 
pela retirada da umidade do produto a ser secado. Na convecção forçada é adicionado um 
ventilador e ou um soprador que é responsável por proporcionar uma maior vazão de ar 
para a câmara de secagem. 
O rendimento térmico de um secador é representado por ηt e pode ser calculado pela 
seguinte equação: ηt = ṁCp.∆T/I.A, sendo que ηt = Energia útil / Energia incidente. Onde: 
 
ṁ= vazão mássica em Kg/s; 
Cp= calor específico, J/Kg.K; 
∆T=variação de temperatura, valor final menos o valor inicial, K; 
I=energia solar incidente, W/ m2 
A=área do coletor, m2 
 
2.6 - Secagem de Alimentos Utilizando Secador Solar 
 
O secador solar é o equipamento utilizado para realizar a extração da água dos 
produtos através das aplicações do calor, para realizar a secagem, inclusive alguns dos 
melhores e mais eficientes modelos já estão sendo industrializados. A técnica da secagem 
ou da desidratação dos alimentos, tem a finalidade de aumentar o tempo de conservação em 
relação aos produtos in natura, esse procedimento, porém apresenta concentração do sabor 
32 
 
e do seu valor nutritivo, além de apresentar facilidade de transporte e de manipulação no 
preparo dos produtos. (CRUZ, 1990). 
Algumas cidades no interior do semiárido apresentam sua exploração agrícola 
bastante diversificada com grande vocação para a agricultura de subsistência com a venda 
dos excedentes de produção, dentre as quais as frutas de época: umbu, cajá, caju, jaca, 
mangas, etc. 
Entretanto, a experiência mostra que nem toda a produção colhida encontra comércio 
para ser vendida, devido principalmente a vulnerabilidade dos produtos, os quais são 
bastante perecíveis ou pelo fato das propriedades rurais estarem situadas distantes dos 
centros de consumo. Ao serem aplicadas as técnicas de secagem e de desidratação, as quais 
representam um prévio tratamento dispensado para a produção, pode-se agregar valor e 
minimizar as perdas, algumas das melhores técnicas encontram aplicações industrializadas 
há bastante tempo, (CRUZ,1990). 
Como principal resultado para o processo da desidratação dos alimentos, os mesmos 
podem ser transformados em pó e adicionados a sopas, caldos e mingaus. Em sua forma 
granulada, podem ser cozidos junto com arroz ou outros cereais. Em pó ou pequenos 
pedaços, podem ser usados como ingredientes de pães, bolos e biscoitos. As frutas 
desidratadas podem ser ingeridas em pedaços, cruas. 
Uma das principais vantagens para essas técnicas estão na obtenção dos frutos 
desidratados que bem acondicionados e embalados, possibilitará aumento da renda das 
famílias dos agricultores. O que leva a um melhor aproveitamento da produção, 
possibilitando o comércio dos produtos em período fora das safras e facilidade de 
estocagem, contribuindo diretamente para o aumento da produtividade e dos lucros.2.7 - O Coco Licuri 
 
 O licuri (Syagrus coronata) (Figura 2.1) é uma palmeira bem adaptada às regiões 
secas e áridas da caatinga e possui grande potencial alimentício, ornamental e forrageiro; 
sendo o seu manejo de grande importância para essas regiões, visto que as mesmas 
apresentam limitações para a agricultura. No entanto, essa cultura ainda se encontra sendo 
33 
 
explorada de forma extrativista. A palmeira do licuri possui tronco ereto, com comprimento 
situado na faixa que vai dos 6 aos 10 metros de altura, apresenta cerca de 20 centímetros de 
diâmetro, profundamente anelado. As folhas, geralmente em fileiras de cinco, ocorrem no 
ápice do tronco, formando uma “coroa foliar”, daí o epíteto específico coronata. As bases 
dos pecíolos são persistentes (BONDAR, 1938; NOBLICK, 1991). Há emissão de uma 
folha por mês. A folha possui em média 186 pinas. 
O florescimento acontece entre os meses de dezembro e de março. A inflorescência 
tem um comprimento de 60,3 cm e leva dois meses para o seu desenvolvimento total 
(Figura 2.2 D). Os ramos basais têm 28,5 cm de comprimento e os apicais 
aproximadamente 7,2 cm de comprimento. As flores masculinas medem entre 15 e 17 mm 
de comprimento e são amarelas e as femininas medem entre 10 e 12 mm de comprimento e 
tem coloração esbranquiçada. A proporção entre as flores masculina/feminina é de 
10587,8/1327,2. Os frutos são tipo drupa com uma média de 1,9 cm de comprimento e 2,3 
cm de diâmetro. Levam cerca de dois meses para amadurecerem e são amarelos quando 
maduros (CRESPALDI et al, 2006). 
 
Figura 2.1- Palmeira Licuri – Caldeirão Grande – BA, 2006. 
(Fotografia - Rosilã Jacques Pereira) 
Um cacho com frutos tem em média cerca de 6,26 kg e possui cerca de 1070 frutos. A 
polpa do fruto tem aproximadamente 4,26 g e a amêndoa 0,66 g e a proporção 
polpa/amêndoa é de 6,26 (CRESPALDI et al, 2006). 
 Enquanto verdes, os frutos possuem o endosperma líquido que se torna sólido no 
34 
 
processo de amadurecimento, dando origem à amêndoa. Quando maduros estes apresentam 
uma coloração que varia do amarelo-claro a para a cor laranja, dependendo não apenas do 
seu estágio de maturação, mas também dos indivíduos considerados (Figura 2.2. B). 
 
 
 
 Figura 2.2 - Palmeira Licuri: Caule (A), Frutos (B), Folha (C), e Inflorescência (D). 
 
A palmeira frutifica o ano todo, mas apresenta um pico para sua frutificação entre os 
meses de junho e julho (CRESPALDI, et al., 2006). A distribuição da espécie vai do Norte 
de Minas Gerais, porção oriental e central da Bahia até o Sul de Pernambuco, incluindo os 
estados de Sergipe e Alagoas (NOBLICK, 1991) 
As sinonímias listadas para S. coronata estão em Noblick (1986, 1991): Cocos 
coronata Mart., 1826; Cocos coronata var. todari Beccari, 1887; Cocos botryophora var. 
ensifolia Drude, 1881; Cocos quinquefaria Barb. Rodr, 1900; Licuri é o nome mais 
utilizado no semiárido baiano, entretanto, outros nomes também designam a mesma 
espécie: ouricuri, aricuri, nicuri, coqueiro dicori, coqueiro cabeçudo, alicuri e baba-de-boi. 
(BONDAR,1942).O licuri embora não se saiba, até então, qual o grau de ameaça do licuri, 
em 1996 a IUCN já recomendava estudos ecológicos e biológicos que permitissem o 
manejo sustentável da palmeira e ações de conservação diante da crescente pressão e erosão 
genética sofrida a qual esta espécie está submetida (JOHNSON, 1996). O coco licuri in 
natura apresenta uma polpa agridoce, endocarpo e amêndoa conforme mostra a Figura 2.3 . 
A B D C 
35 
 
 
 
 
Figura 2.3- Licuri in natura: amêndoa (1), polpa (2),. 
 
A propagação da palmeira licuri, ocorre como a grande maioria das espécies de 
Arecaceae, de forma sexuada, por sementes. A germinação é um processo lento, que pode 
demorar quase um ano (LORENZI, 2000). Em condições de viveiro, registraram uma 
grande variação no número de dias necessários para germinação das sementes situando se 
em uma faixa que vai de 42 a 334 dias (MATTHES e CASTRO,1987). Este fenômeno é 
comum para várias espécies de palmeiras, as quais apresentam dificuldade para germinar, 
mesmo quando suas sementes são submetidas a condições adequadas (BOVI e CARDOSO, 
1978; BROSCHAT e DONSELMAN, 1988; CUNHA e JARDIM, 1995; TOMLINSON, 
1990). Esta demora e desuniformidade da germinação podem ser explicadas por obstáculos 
mecânicos como a espessura da testa ou do endocarpo, que dificultam a penetração de água 
no embrião (TOMLINSON, 1990; BOVI e CARDOSO 1976; CARVALHO et al., 2005). 
Rodrigues et al. (2006) estudando A viabilidade de sementes de licuri durante o 
armazenamento, sugerem que as mesmas sejam recalcitrantes, ou seja, altamente sensíveis 
ao dessecamento. Apesar disto, algumas sementes de licuri conseguem atravessar o período 
de seca até o início da estação chuvosa para germinar, embora esta taxa de germinação seja 
baixa (CREPALDI, 2001). 
 O cultivo de embriões in vitro tem se mostrado uma técnica promissora para 
propagação de espécies de palmeiras em menor espaço de tempo, superando o problema do 
lento processo de germinação da semente . O transplante de plantas semi-adultas ou adultas 
também poderia ser empregado como alternativa de propagação e manejo do licuri, 
36 
 
particularmente em áreas de cultivo com grande adensamento de palmeiras. Áreas com esta 
característica possuem uso limitado para a agricultura tradicional e a redução do 
adensamento de licurizeiros pode ser uma alternativa para viabilizar a agricultura, sem que 
palmeiras sejam sacrificadas, mas transplantadas para outras áreas. Um licurizeiro adulto ao 
ser retirado da caatinga e transplantado em outro local sobrevive naturalmente, como pode 
ser observado em diversos povoados no interior baiano, em que, por ocasião de festas, se 
transplantam licurizeiros para ornamentação das ruas, os quais, ao serem deixados no novo 
lugar, continuam vegetando e produzindo frutos. A figura 2.4 mostra a germinação e muda 
da palmeira do licuri (CARVALHO et al,2005). 
 
. 
 
 A B 
Figura 2.4 – Germinação (A) e muda (B), do Licuri. 
Estudos a respeito da interação de vertebrados e palmeiras ainda são escassos, com 
exceção do palmito juçara (Euterpe edulis Mart.) 
Dentre os estudos realizados com o licurizeiro, destacam-se os relatos do 
comportamento alimentar da arara-azul-de-lear por (BRANDT e MACHADO, 1990). 
Quinze espécies de vertebrados, distribuídos entre répteis, aves e mamíferos, 
alimentam-se dos frutos da palmeira ou de invertebrados associados. De acordo com os 
diversos tipos de interação ecológica citados , acredita-se que possam existir quatro tipos de 
interação dos organismos associados ao licurizeiro. A palmeira do licuri é uma das 
principais fontes de alimento para vários animais silvestres como a arara-azul-de-lear, 
Anodorhynchus leari que está ameaçado de extinção. Sua sobrevivência está intimamente 
37 
 
ligada à existência do licuri que também serve como fonte de alimentação a animais 
domésticos como bovinos e caprinos. A Figura 2.5 mostra a espécie alimentando-se dos 
frutos dos licuri. 
 
 
Figura 2.5 - Arara-azul-de-lear alimentando-se de Licuri. 
A otimização do uso dessa palmeira, certamente contribuirá para a melhoria da 
qualidade de vida das populações da região, possibilitando a utilização dos seus frutos na 
alimentação humana, pois estes apresentam um bom valor nutricional, como também para 
aumentar o desenvolvimento socioeconômico do semiárido, gerando renda para a 
população através da utilização sustentável do licuri. O licurizeiro apresenta grande 
importância nos municípios onde se encontra, pois representa uma fonte de renda para as 
populações, no entanto a sua exploraçãoainda se dá de forma extrativista. Das suas folhas, 
são confeccionados sacolas, chapéus, vassouras, espanadores, etc. Estas também são usadas 
para retirada da cera do licuri que durante algumas décadas atrais era utilizada na 
fabricação de papel carbono, graxa para sapatos, móveis e pintura de automóveis, sendo 
considerada equivalente a da carnaubeira. As amêndoas do licuri são consumidas in natura 
seca ou cozidas. Também são utilizadas na produção de cocadas, rosários, licores, e do leite 
de licuri, muito utilizado na culinária baiana. O óleo constitui cerca de 55 a 61% da 
amêndoa é usado em culinária da população do semi-árido, análogo ao coqueiro da praia 
(Cocus nucifera, Lin). Industrialmente é utilizado na produção de saponáceos (sabão em pó, 
38 
 
detergentes, sabão em barra e sabonetes finos) considerados de alta qualidade.Do resíduo 
obtido com a extração do óleo, origina-se uma torta também que serve como alimento para 
animais, esta torta apresenta 41% de substâncias não azotadas, 19% de proteínas, 16% de 
celulose e 11% a 12% de óleo. Representa ótima ração adicional para vacas leiteiras, para o 
desenvolvimento precoce de animais de corte e também para reprodutores. 
A análise da composição nutricional do fruto do licuri (CREPALDI et al., 2001) 
mostrou que o fruto é bastante calórico (108,6 Kcal/100g, polpa e 527,3 Kcal/100g, 
amêndoa), tendo em média 4,5% de lipídeos na polpa e 49,2% na amêndoa. O teor de 
proteínas é de 3,2% na polpa e 11,5 % na amêndoa. Os carboidratos totais predominam na 
polpa (13,2%), sendo que a amêndoa possui 9,7%. Também na polpa há predomínio de 
fibra alimentar total (37,5%) e na amêndoa 22,8%. Em estudo posterior efetuou-se a 
caracterização do óleo de licuri por cromatografia liquida de alta eficiência HPLC e por 
cromatografia gasosa acoplada à espectrometria de massa CG/EM assim como dos seus 
produtos usando lípases (SEGAL). 
Os macro e micronutrientes presente na polpa e amêndoa foram estudados mostrando 
a presença de cálcio e magnésio na polpa e na amêndoa além destes minerais também foi 
encontrado zinco, cobre e selênio (DUARTE 2006). 
Em virtude do grande potencial nutricional do licuri diversos produtos alimentícios 
foram desenvolvidos barras de cereais, conservas, sorvetes, leite de coco licuri e diversas 
outras iguarias desde 2006 (MEC,2006) formando um mix de produtos da alimentação, que 
pode ser mostrado na Figura 2.6 que mostra a Cadeia produtiva do licuri elaborada a partir 
do desenvolvimento do projeto Licuri pelo IFBA. 
39 
 
 
Figura 2.6 - Cadeia Produtiva do Licuri, GPPQ, 2011. 
 
O maior gargalo tecnológico da cadeia produtiva do licuri para produção de alimentos 
é representado pela colheita e pelas operações pós-colheita como secagem, armazenamento 
e manutenção de qualidade. Assim foi implementado pelo IFBA o programa colhedoras de 
licuri, (Figura 2.7), uma vez que o licuri é um fruto deve ser colhido e não catado no meio 
de estrumes de animais ruminantes e a avaliação de tecnologias de pós-colheita próprias 
para o licuri, a qual esta dissertação colabora com o estudo da secagem em secador solar, 
que podem ser utilizados principalmente para unidades de pequena e média escala. Nestas 
propriedades normalmente os grãos são secados nos terreiros em condições alta 
vulnerabilidade, ficando à mercê das condições ambientais. na obtenção de amêndoas do 
licuri com segurança alimentar em virtude da forma rudimentar iniciaram um estudo para o 
uso do licuri na fabricação de devido o seu grande potencial para alimentação humana, essa 
pesquisa foi concluída com resultados positivos o que fortalece a urgência de estudos sobre 
essa cultura. 
40 
 
 
Figura 2.7 - Mulher “colhendo” Licuri, Caldeirão Grande – BA. 
(Fotografias - Rosilã Jacques Pereira) 
 
 2.8 – Caldeirão Grande: O Campo de Aplicação da Tecnologia Desenvolvida 
 
Integrante do Território de Identidade Piemonte Norte do Itapicuru, o município de 
Caldeirão Grande dista 333 Km de sua capital, Salvador, possui, conforme o IBGE, uma 
população estimada em 13.864 habitantes, sendo que, aproximadamente, 32% deste total 
são habitantes da zona urbana e 68% da zona rural. 
A altitude do município é de 400 metros, área geográfica de 495,84 km², densidade 
demográfica de 22,99 h/km². O município de Caldeirão Grande limita-se com Ponto Novo, 
Caém e Saúde. Possui um clima quente a seco, semiárido com estiagens prolongadas. O 
solo é variado, com a vegetação é caatinga e cerrado, tendo sua pluviosidade media anual 
de 700 a 900 mm/ano, com período chuvoso inverno de abril a junho. Localizado ao 
extremo sul do Território de Identidade do Piemonte Norte do Itapicuru- que está inserido 
entre outros dois Territórios de Identidade – Piemonte de Diamantina e Sisal, onde, juntos, 
perfazem mais de 60% da produção de licuri da Bahia (SEI, 2003) – o município de 
Caldeirão Grande é um dos quatro maiores municípios produtores de licuri da Bahia e 
aquele para o qual o extrativismo do fruto tem maior importância econômica e social. 
 
41 
 
 
 
 
Fonte: tipni.blogspot.com (2011) Fonte: IBGE (2011) 
 
Figura 2.8 - Território de Identidade Piemonte Norte do Itapicuru de Caldeirão Grande. 
 
Existem, em Caldeirão Grande, cerca de 970 famílias extrativistas cadastradas que 
mantêm vivas as práticas e saberes referentes ao extrativismo e ao uso do licuri, condições 
fundamentais para o desenvolvimento de Tecnologia Social. A média total de anos de 
exploração da atividade de extrativismo do licuri por família, conforme cadastro, é de 28,6 
(anos), onde 44% das famílias cadastradas exploram somente sua propriedade e 20% catam 
o licuri como meeiros em propriedades vizinhas. É o município que possui o número mais 
elevado no tocante à produtividade na extração vegetal do licuri, além disso, é o município 
que possui uma mata de licurizeiros auferida em torno de mais de 15 milhões de palmeiras, 
cujo aproveitamento no tocante à economia e processo produtivo não alcança menos de 
0,1% de seu potencial. 
Caldeirão Grande, juntamente com Jacobina, Cansanção e Monte Santo são os 4 
maiores produtores de licuri da Bahia, correspondendo à praticamente metade da produção 
do Estado. Destarte, o papel preponderante do licuri para o município de Caldeirão Grande 
pode ser ratificada na visualização da relação produção/área territorial que alcança 1,0 
t/km2 enquanto na relação produção/habitante chega a 47 kg/hab., de 3 a até 10 vezes 
superior às dos outros municípios. 
Mapa do Território de Identidade 
Piemonte Norte do Itapicuru 
Mapa do Município de Caldeirão 
Grande 
 
42 
 
 
Em Caldeirão Grande a prática do extrativismo faz parte da base econômica das 
famílias e da cultura local. Atualmente o extrativismo do licuri é praticado basicamente por 
mulheres e crianças. Os homens somente em períodos de falta de trabalho vão à colheita. 
No entanto, é comum no turno da noite toda a família, inclusive os homens, se ocuparem na 
debulha. 
A secagem do licuri em Caldeirão Grande ocorre de forma radicional já bastante 
difundida pela comunidade rural, onde o licurí é secado em terreno aberto sobre o solo. A 
maneira tradicional para a secagem normalmente desenvolvida pelas comunidades 
apresenta muitas perdas para o processo. A primeira está no fato da umidade do terreno 
atingir os frutos, o que contribui para um alongamento do tempo de secagem. A outra 
forma de perda encontra-se no ataque da praga, denominada pela comunidade como morotó 
do licurí. O agente biológico da praga - o besouro do coco - depositam os seus ovos sobre o 
pedúnculo das flores, no período de germinação da planta, as larvas introduzem-se para o 
interior dos pequenos cocos. No período de maturação do cacho, as larvas passam a 
estragar muitos frutos, arruinando qualquer possibilidade de utilização deste licurí. 
A outra grande perda para essemétodo de secagem tradicional encontra-se no 
ataque de animais como: bois, porcos, cabritos e galinhas que se alimentam dos frutos 
expostos para serem secados diretamente sobre o terreno, conforme mostra a Figura 2.9. 
 
 
 
Figura 2.9. Desvantagem da secagem tradicional do licuri. 
 
43 
 
 
 CAPÍTULO 3 - MATERIAIS E MÉTODOS 
 
 3.1 - Coleta e Preparo do Fruto do Licuri 
 
A coleta do material, diretamente nos licurizeiros, foi realizada no município de 
Caldeirão Grande no povoado de Castelo, situado na região do Centro-Norte Baiano, 
11°01’ 12” S e 40°18’ 10, localidade totalmente inserida no polígono das secas. 
As amostras de licuri com o fruto maduro, com um dia de coletado, foram retiradas 
do cacho, selecionada de acordo com o grau de maturação, coloração da casca e ausência 
de danos físicos, lavados, enxugadas com papel tolha, pesadas. As amostras, assim tratadas, 
foram submetidas aos processos de secagem. Para cada método de secagem foi utilizada 
uma carga de licuri variando entre 4 a 6 quilos. Na figura 3.1 vê-se uma coletadora com 
frutos licuri. 
 
 
Figura 3.1- Agricultora colhendo Licuri. 
(Fotografia - Rosilã Jacques Pereira) 
 
 
 
 
44 
 
 3.2 - Secagem Modelo Tradicional - Secagem ao Ar Livre 
 
A secagem ao ar livre foi realizada no pátio do Laboratório de Tecnologia em 
Alimentos (LABTECA) do Instituto Federal de Educação Ciências e Tecnologia da Bahia 
IFBA, localizado na cidade de Simões Filho, BA a uma distância de 32 km de sua capital. 
O local escolhido era plano, com boa drenagem e sem obstáculos à ventilação e próximo do 
local em que foram instalados os protótipos dos secadores solares, de modo a evitar 
variações climáticas para os diferentes tipos de secagem. 
 
 3.3 - Secagem Solar de Exposição Direta Com Convecção Natural. 
 
O modelo do secador utilizado é simplificado, haja vista a motivação da pesquisa, 
que é a reaplicação em comunidades de agricultores rurais, extrativistas do licuri. 
O protótipo foi construído com um painel de fibra de madeira, MDF (Fibra de 
Média Densidade), atendendo aos critérios de baixo preço, retidão nas tábuas cortadas em 
formato retangular e por facilitar a montagem do modelo com a utilização de parafusos na 
fixação do conjunto. As dimensões do secador foram: 1 m de largura, 1,20 m de 
comprimento e altura de 0,40 m. A área externa coletora foi recoberta por uma fina lamina 
de vidro transparente de 4 mm, com máximo grau de transparência. Esta medida atendeu 
adequadamente aos critérios de resistência e durabilidade para aplicações móveis. A 
estrutura retangular da caixa foi apoiada sobre quatro pés de madeira, com tamanhos 
calculados de tal maneira que o ângulo de inclinação do secador fosse obtido com 22 graus, 
pois este valor corresponde a latitude da cidade acrescido de 10 graus, pois o município de 
Simões Filho, BA apresenta sua latitude 12° 47′ 8″ graus, o secador foi posicionado com 
sua face frontal para a direção norte, sendo a orientação obtida com a utilização de uma 
bússola, Meloni, 2004. 
A câmara de secagem possui características de construção para disponibilizar um 
correto isolamento, as paredes da caixa foram pintadas com uma tinta preta fosca, 
formando uma grande área interna absorvedora. Essa estratégia tem como objetivo, realizar 
o aproveitamento máximo do efeito estufa, que se forma no interior da câmara, em virtude 
45 
 
da mudança sofrida pelo comprimento de onda dos raios incidentes que ao passarem pelo 
vidro são desviados no interior da câmara, atingindo a superfície preta do absorvedor e 
permanecendo no interior dela, contribuindo para elevar a temperatura que pode ser 
atingida no interior da câmara, o que contribui diretamente para a otimização do processo 
de secagem. 
O modelo foi construído, tendo-se o cuidado para eliminar as pequenas frestas 
presentes nos cantos, da caixa retangular, fazendo uso do material lã de vidro e cola de 
silicone. O modelo apresenta uma pequena porta, presa com dobradiças, a qual facilita o 
carregamento e descarregamento do produto no interior do secador. As extremidades do 
secador são providas de duas entradas e saídas de ar, fechadas com telas de isolamento, as 
quais possibilitam a filtragem do ar e não permitem a entrada de insetos e pássaros. O ar ao 
entrar no interior da câmara é aquecido, por uma corrente convectiva de ar ascendente, a 
qual promove o arrastamento da umidade que é retirada dos frutos do licurí. 
 
 
 
 Figura 3.2 - Secagem de exposição direta com convecção natural. Caldeirão Grande -Ba. 
 
 
 
46 
 
 3.4 - Sistema de Secagem Solar de Exposição Direta Com Convecção Forçada. 
 
A construção do modelo de secador solar de secagem indireta com convecção 
forçada foi construído baseando-se no modelo do secador do pedúnculo de caju, 
desenvolvido pela UFRN. 
O protótipo foi projetado e composto de duas partes: uma câmara de pré-secagem e 
a câmara de secagem indireta, a qual possui formato retangular, as duas partes são 
interligadas por um duto de ventilação de PVC carbonizado com dimensão de seis 
polegadas. O material usado para construção do sistema de secagem foi com chapas de aço 
galvanizado com oito mm de espessura, (Figura 3.3). 
A câmara de pré-secagem possui as seguintes dimensões: 1,40 m de comprimento, 
0,80 largura e 0,15 m de altura, sendo recoberta por uma lâmina de vidro transparente de 6 
mm, o sistema de ventilação é provido com aberturas frontais e traseiras de 3 mm. 
A câmara de secagem indireta possui as seguintes dimensões: comprimento externo 
de 1,0 m, largura externa de 0,80 m, altura externa de 1,0 m, comprimento interno de 0,95 
m, 0,75 m largura interna, altura interna de 0,75m com volume interno de 0,72 m3. Esta 
câmara de secagem indireta possui uma porta lateral fixada por dobradiças e parafusos com 
porcas do mesmo material. As bandejas para secagem em número de cinco, foram 
fabricadas com chapa de duralumínio sendo vazadas com formato de tela com orifícios de 
1,0 cm de raio, objetivando a circulação do ar aquecido no interior da câmara. 
O isolamento interno e externo foi provido com tinta preto fosca, sendo secado por 
período de três dias ao sol, a impermeabilização da parte interna foi melhorada com mistura 
de cola de madeira, silicone e lã de vidro. O sistema de convecção forcada foi realizado 
com um exaustor eólico o qual possui duas hastes acopladas, para promover a circulação 
forçada do ar. 
 
47 
 
 Figura 3.3- Sistema de secagem indireta com convecção forçada, instalado no LABTECA. 
 
O secador solar recebe a radiação solar diretamente do sol e os raios penetram no 
interior da câmara de secagem, passando pela lâmina de vidro, sendo que uma parte menor 
da radiação é refletida e reenviada para o meio exterior outra parte com maior energia é 
desviada em relação ao seu ângulo de incidência pela coloração preta absorvedora 
permanecendo no interior da câmara de secagem, formando um processo conhecido como 
“efeito estufa”. 
As pequenas aberturas de ventilação se encarregam de arrastar o ar aquecido da 
câmara para o exterior, aplicando um gradiente de temperatura sobre os frutos realizando a 
secagem, outra parte da radiação é perdida através da chapa de metal ou de madeira que 
forma o corpo do secador para a atmosfera, representando as perdas térmicas do secador. 
O parâmetro que engloba todas essas perdas é o Coeficiente Global de Perdas 
(Uloss), que pode ser determinado por três métodos distintos, quais são: Método da Perda 
Térmica, Método das Trocas Térmicas e Método da Inversão de Fluxo (DUFFIE & 
BECKMAN, 1991, INCROPERA, 2003). 
48 
 
Nesta dissertação foi utilizado o método das perdas térmicas, que consiste na 
determinação do Coeficiente Global de Perda Térmica (Uloss),

Continue navegando