Buscar

Ecossistemas Aquáticos - Livro-Texto Unidade I

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 41 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 41 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 41 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Autores: Prof. Luiz Henrique Cruz de Mello
 Profa. Fernanda Torello de Mello
Colaboradoras: Profa. Cristiane Jaciara Furlaneto
 Profa. Laura Cristina da Cruz Dominciano
Ecossistemas Aquáticos
Re
vi
sã
o:
 V
irg
ín
ia
 -
 D
ia
gr
am
aç
ão
: F
ab
io
 -
 1
6/
11
/2
01
5
Professores conteudistas: Luiz Henrique Cruz de Mello / Fernanda Torello de Mello
Luiz Henrique Cruz de Mello
Doutor e mestre pela Universidade de São Paulo (USP) em Geologia Sedimentar/Paleontologia, e bacharel em 
Ciências Biológicas pela Universidade Estadual Paulista “Júlio de Mesquita Filho” (Unesp), de Botucatu.
Especialista em Sistemática de Invertebrados Marinhos Fósseis, atuando como pesquisador, educador e professor 
universitário. Lecionou na Unesp/Bauru, Universidade Federal de Sergipe e Universidade Paulista (UNIP).
Fernanda Torello de Mello
Doutora e mestre pela Universidade de São Paulo (USP) em Geologia Sedimentar/Paleontologia, e bacharel em 
Ciências Biológicas pela Universidade Estadual Paulista “Júlio de Mesquita Filho” (Unesp), de Botucatu.
Especialista em Tafonomia de Invertebrados Fósseis, atuando como pesquisadora, educadora e professora 
universitária. Lecionou na Unesp/Bauru, Universidade Federal de Sergipe e Universidade Paulista (UNIP).
© Todos os direitos reservados. Nenhuma parte desta obra pode ser reproduzida ou transmitida por qualquer forma e/ou 
quaisquer meios (eletrônico, incluindo fotocópia e gravação) ou arquivada em qualquer sistema ou banco de dados sem 
permissão escrita da Universidade Paulista.
Dados Internacionais de Catalogação na Publicação (CIP)
M527e Mello, Luiz Henrique Cruz de.
Ecossistemas Aquáticos. / Luiz Henrique Cruz de Mello; Fernanda 
Torello de Mello. – São Paulo: Universidade Paulista - UNIP, 2016.
116 p., il.
Nota: este volume está publicado nos Cadernos de Estudos e 
Pesquisas da UNIP, Série Didática, ano XXII, n. 2-017/16, ISSN 1517-9230.
1. Ecossistemas aquáticos. 2. Ciclo hidrológico. 3. Chuva ácida. I. 
Mello, Luiz Henrique Cruz de. II. Mello, Fernanda Torello de. III. Título.
CDU 556.1
Re
vi
sã
o:
 V
irg
ín
ia
 -
 D
ia
gr
am
aç
ão
: F
ab
io
 -
 1
6/
11
/2
01
5
Prof. Dr. João Carlos Di Genio
Reitor
Prof. Fábio Romeu de Carvalho
Vice-Reitor de Planejamento, Administração e Finanças
Profa. Melânia Dalla Torre
Vice-Reitora de Unidades Universitárias
Prof. Dr. Yugo Okida
Vice-Reitor de Pós-Graduação e Pesquisa
Profa. Dra. Marília Ancona-Lopez
Vice-Reitora de Graduação
Unip Interativa – EaD
Profa. Elisabete Brihy 
Prof. Marcelo Souza
Prof. Dr. Luiz Felipe Scabar
Prof. Ivan Daliberto Frugoli
 Material Didático – EaD
 Comissão editorial: 
 Dra. Angélica L. Carlini (UNIP)
 Dra. Divane Alves da Silva (UNIP)
 Dr. Ivan Dias da Motta (CESUMAR)
 Dra. Kátia Mosorov Alonso (UFMT)
 Dra. Valéria de Carvalho (UNIP)
 Apoio:
 Profa. Cláudia Regina Baptista – EaD
 Profa. Betisa Malaman – Comissão de Qualificação e Avaliação de Cursos
 Projeto gráfico:
 Prof. Alexandre Ponzetto
 Revisão:
 Virgínia Bilatto
 Giovanna Oliveira
Re
vi
sã
o:
 V
irg
ín
ia
 -
 D
ia
gr
am
aç
ão
: F
ab
io
 -
 1
6/
11
/2
01
5
Sumário
Ecossistemas Aquáticos
APRESENTAÇÃO ......................................................................................................................................................7
INTRODUÇÃO ...........................................................................................................................................................7
Unidade I
1 A ÁGUA EM NOSSO PLANETA ......................................................................................................................9
1.1 As quatro esferas do planeta Terra ..................................................................................................9
1.1.1 Hidrosfera ................................................................................................................................................... 10
1.1.2 Litosfera ...................................................................................................................................................... 10
1.1.3 Atmosfera....................................................................................................................................................11
1.1.4 Biosfera ........................................................................................................................................................11
2 CONHECENDO A ÁGUA ................................................................................................................................. 11
2.1 Características físicas e químicas................................................................................................... 12
2.1.1 A molécula de água ............................................................................................................................... 12
2.1.2 Capacidade térmica ............................................................................................................................... 13
2.1.3 Densidade................................................................................................................................................... 15
2.1.4 Dissolução .................................................................................................................................................. 17
2.1.5 Tensão superficial ................................................................................................................................... 17
2.1.6 Viscosidade ................................................................................................................................................ 18
2.1.7 Capilaridade .............................................................................................................................................. 18
2.2 Origem da água ..................................................................................................................................... 18
2.3 Água no planeta ................................................................................................................................... 22
2.3.1 Diversidade ................................................................................................................................................ 22
2.3.2 Definição da salinidade ........................................................................................................................ 23
2.3.3 Gases dissolvidos ..................................................................................................................................... 25
2.3.4 Balanço ácido-base ................................................................................................................................ 25
2.4 Distribuição da água no planeta .................................................................................................... 26
3 CICLO HIDROLÓGICO ..................................................................................................................................... 29
4 INTERAÇÕES DA ÁGUA COM O MEIO ..................................................................................................... 33
4.1 Chuva ácida ............................................................................................................................................ 33
4.2 Intemperismo ou meteorização ..................................................................................................... 35
4.3 Erosão ........................................................................................................................................................ 37
Unidade II
5 ECOSSISTEMASAQUÁTICOS MARINHOS ............................................................................................... 42
5.1 Aspectos iniciais .................................................................................................................................... 42
Re
vi
sã
o:
 V
irg
ín
ia
 -
 D
ia
gr
am
aç
ão
: F
ab
io
 -
 1
6/
11
/2
01
5
5.2 Estrutura do ecossistema marinho ............................................................................................... 43
5.2.1 Bacias oceânicas...................................................................................................................................... 44
5.2.2 Critérios de classificação...................................................................................................................... 49
6 TIPOS DE ECOSSISTEMAS MARINHOS .................................................................................................... 50
6.1 Ecossistema marinho costeiro ........................................................................................................ 50
6.1.1 Costão rochoso ........................................................................................................................................ 54
6.1.2 Praia arenosa ............................................................................................................................................ 57
6.1.3 Estuários ..................................................................................................................................................... 58
6.2 Ecossistema marinho aberto ........................................................................................................... 60
6.2.1 Correntes oceânicas ............................................................................................................................... 61
6.2.2 Temperatura das águas e seus efeitos ............................................................................................ 63
6.2.3 Recifes de coral ........................................................................................................................................ 64
6.2.4 Reservas de petróleo ............................................................................................................................. 68
Unidade III
7 ECOSSISTEMAS AQUÁTICOS CONTINENTAIS ........................................................................................ 76
7.1 Aspectos iniciais .................................................................................................................................... 76
7.2 Ecossistemas aquáticos continentais lóticos ............................................................................ 76
7.2.1 Dinâmica dos rios ................................................................................................................................... 77
7.2.2 Áreas alagáveis......................................................................................................................................... 81
7.3 Ecossistemas aquáticos continentais lênticos .......................................................................... 83
7.3.1 Caracterização dos ambientes lênticos .......................................................................................... 86
7.4 Aquíferos .................................................................................................................................................. 91
8 VARIAÇÕES EM ECOSSISTEMAS AQUÁTICOS ....................................................................................... 93
8.1 Dinâmica dos elementos bióticos e abióticos ........................................................................... 93
8.2 Sobrepesca e sobreutilização dos recursos hídricos ............................................................... 96
7
Re
vi
sã
o:
 V
irg
ín
ia
 -
 D
ia
gr
am
aç
ão
: F
ab
io
 -
 1
6/
11
/2
01
5
APRESENTAÇÃO
A vida começou na água! Essa é uma frase famosa e uma ideia bastante difundida no meio acadêmico 
e fora dele. Numa primeira análise, já é possível identificar a água como elemento fundamental na 
história de todos os seres vivos e, portanto, de nossa própria origem. Como se não bastasse, essa mesma 
água é responsável por paisagens fascinantes e por processos fundamentais para a transformação, 
modelagem e equilíbrio da Terra, interagindo com os demais componentes do planeta (atmosfera, 
biosfera e litosfera).
Assim, nossa disciplina tem como objetivos principais identificar os fatores bióticos (aqueles 
relativos aos elementos vivos) e abióticos (aqueles relativos aos elementos não vivos) que caracterizam 
os ecossistemas aquáticos espalhados pelo mundo. Para tanto, o aluno terá contato com informações 
sobre as características físicas e químicas da água, sua distribuição no planeta, os reservatórios da 
hidrosfera, ambientes marinhos e de água doce, clima, botânica, zoologia, ecologia e conservacionismo, 
de modo a compor um conhecimento amplo sobre nosso planeta, muito útil no restante do curso e na 
vida profissional do biólogo, bacharel ou licenciado.
A partir dessas informações, os alunos serão convidados a irem um pouco mais além, caracterizando 
esses ecossistemas e identificando os processos ecológicos predominantes em cada um deles. Para 
iniciar sua orientação por esses caminhos, destacamos que a unidade I deste livro-texto tratará das 
características da água, do ciclo hidrológico e da distribuição da água no planeta. A unidade II irá 
caracterizar os ecossistemas aquáticos marinhos e continentais, discutindo os processos responsáveis 
por suas características e equilíbrio. A unidade III trará os aspectos ecológicos e conservacionistas dos 
ecossistemas aquáticos, debatendo a interação dos seres vivos em cada um deles, incluindo o ser humano.
INTRODUÇÃO
Muitas vezes os amantes da natureza manifestam o desejo de ir para lugares distantes, nunca antes 
explorados, e fazer desses locais o seu laboratório particular: estudar as espécies, os ambientes, os 
processos. Alguns têm essa oportunidade, muitos, não. De fato, se pararmos para analisar, nosso planeta 
tem muitos locais inexplorados que poderiam muito bem cumprir o papel mencionado anteriormente. 
Para essa missão, muitos são os desafios, tais como financiamento, tempo, formação do profissional, 
oportunidades de atuação. Enfim, há o desejo, há a necessidade, mas nem sempre eles se encontram.
Todo naturalista, biólogo ou não, que um dia já pensou nesse assunto, mesmo que por poucos 
minutos, deve saber que o desafio maior entre todos esses é o do conhecimento. O profissional deve 
buscar ao máximo as informações que o tornem capacitado a aproveitar essa oportunidade quando ela 
aparecer. Afinal, de que adianta ter dinheiro, tempo e oportunidade se não houver a capacidade para 
fazer valer todo o esforço? E o nosso planeta é bonito e interessante demais, permitindo que o interesse 
de cada um possa ser atendido, seja para estudar um pequeno organismo planctônico ou um gigante 
terrestre como as sequoias.
Tanto os organismos planctônicos quanto as sequoias não existem por si só. Suas dependências 
de outros seres, de produtos e processos é tão extrema que um estudo mais completo desses seres 
8
Re
vi
sã
o:
 V
irg
ín
ia
 -
 D
ia
gr
am
aç
ão
: F
ab
io
 -
 1
6/
11
/2
01
5
passa, obrigatoriamente, pelo entendimento dessas interações, caracterizando aquilo que chamamos de 
ecossistemas. Para isso, é preciso entender que, externamente, a Terra pode ser observada de dois pontos 
de vista bem distintos, quase que como dois mundos paralelos que interagem. Cada um representando 
um sistema aberto, com seus elementos bióticos e abióticos. Trata-se dos ecossistemas terrestrese 
dos ecossistemas aquáticos, intercalados para servirem de moradia para as espécies, de cenários para 
fenômenos naturais e de fontes de recursos para a vida do ser humano (Figura 1). 
Figura 1 – Mangue: exemplo de relação entre os elementos vivos e não vivos do planeta
Na tentativa de construir uma visão mais interativa e completa da Biologia e do planeta Terra, 
na presente disciplina serão estudados os ecossistemas aquáticos, ou seja, as paisagens naturais que 
caracterizam os oceanos e parte dos continentes.
 Observação
O estudo dos ecossistemas exige a utilização de informações de áreas 
como Química, Física, Ecologia, Geologia etc. Muitos ecossistemas têm 
sofrido degradações e alterações devido às atividades humanas, exigindo 
maior atenção também para esses aspectos.
9
Re
vi
sã
o:
 V
irg
ín
ia
 -
 D
ia
gr
am
aç
ão
: F
ab
io
 -
 1
6/
11
/2
01
5
ECOSSISTEMAS AQUÁTICOS
Unidade I
1 A ÁGUA EM NOSSO PLANETA 
1.1 As quatro esferas do planeta Terra
Antes de tratarmos de algum ecossistema aquático em particular, se faz necessária a compreensão 
da complexidade do nosso planeta. Somente assim as informações serão justificadas e compreendidas 
e sua plenitude. Chamar a Terra de “planeta” é pouco, não representa sua real condição. Poderíamos 
chamá-la de Sistema Terra, terminologia essa facilmente justificável. 
O conhecimento do planeta em que vivemos depende do entendimento de que existem diferentes 
elementos envolvidos interagindo e contribuindo para seu equilíbrio, ou seja, um sistema. Analogamente, 
conforme será apresentado a seguir, seria como os órgãos, tecidos e células de um ser vivo interagindo 
para manter sua homeostase. Esses elementos podem ser agrupados formando as quatro esferas do 
planeta, ou seja: hidrosfera, litosfera, atmosfera e biosfera (Figura 2) (RICKLEFS, 2012).
Biosfera
Biosfera
Ene
rgi
a
EnergiaEn
erg
ia
Hidrosfera
Atmosfera
Figura 2 – Interações entre os elementos formadores do planeta
Embora divididos em grupos de elementos naturais, a interação entre eles amplia muito seus efeitos 
sobre o planeta. Cada uma das esferas citadas fornece elementos para as demais, de modo a permitir 
uma série de processos e fenômenos que modelam e controlam a evolução de nosso planeta. Uma visão 
assim integrada e dinâmica combina com a Teoria de Gaia, de James Lovelock, William Golding e Lynn 
Margulis, da década de 1970, segundo a qual o planeta seria múltiplo em seus elementos, complexo 
em suas interações, dinâmico em seus processos e capaz de autorregulação (VEIGA, 2012). Sendo assim, 
parece evidente que, para conhecermos os ecossistemas, é necessário entendermos como seus elementos 
bióticos e abióticos interagem para definir suas características e sua dinâmica.
10
Re
vi
sã
o:
 V
irg
ín
ia
 -
 D
ia
gr
am
aç
ão
: F
ab
io
 -
 1
6/
11
/2
01
5
Unidade I
 Saiba mais
Para mais detalhes sobre essa teoria tão importante para a Biologia e as 
ciências da Terra, leia: 
VEIGA, J. E. Gaia: de mito a ciência. São Paulo: Senac, 2012. 176 p.
1.1.1 Hidrosfera
Essa esfera do planeta será estudada de maneira detalhada ao longo deste livro. Corresponde a 
toda a água do planeta, que pode estar na forma líquida, gasosa (ou de vapor) ou sólida (gelo e neve). 
Está armazenada em reservatórios naturais ou artificiais, como, por exemplo, os rios, lagos, oceanos, 
geleiras, aquíferos (água subterrânea), ar, nuvens, seres vivos etc. (Figura 3) (SALGADO-LABOURIAU, 
2001; KARMANN, 2009; GARRISON, 2010). 
Figura 3 – Calota polar. Exemplo de reservatório de água da hidrosfera
 Lembrete
Embora a hidrosfera reúna toda a água do planeta, é preciso considerar 
que existem tipos diferentes de água (salgada, salobra e doce), assim como 
é preciso saber que eles estão presentes em quantidades diferentes no 
planeta (GARRISON, 2010).
1.1.2 Litosfera
Representa toda a parte relacionada com as rochas, minerais e solos da superfície do planeta, 
seja sobre os continentes ou no fundo dos oceanos. Está, portanto, servindo de base para todos 
os ecossistemas aquáticos. Sobre ela e dentro dela há grande diversidade de seres vivos, servindo, 
11
Re
vi
sã
o:
 V
irg
ín
ia
 -
 D
ia
gr
am
aç
ão
: F
ab
io
 -
 1
6/
11
/2
01
5
ECOSSISTEMAS AQUÁTICOS
também, como sede de importantes processos, como os terremotos e a tectônica de placas (TEIXEIRA 
et al., 2009; RICKLEFS, 2012).
1.1.3 Atmosfera
É toda a massa gasosa que envolve o planeta. Embora muitas vezes invisível ao nosso olhar, ela 
é muito importante, pois protege o planeta e os seres vivos das radiações solares, além de ser a sede 
de muitos processos e fenômenos que controlam, entre outras coisas, o clima mundial (SALGADO-
LABOURIAU, 2001; OLIVEIRA; CORDANI; FAIRCHILD, 2009). Um desses processos associados à atmosfera 
é o ciclo da água, conforme será detalhado adiante.
 Saiba mais
Saiba mais sobre a estrutura, composição e processos que ocorrem na 
atmosfera através do documentário: 
TERRA, o poder do planeta: atmosfera. Reino Unido: BBC, 2007. 49 min. 
Episódio II. 
1.1.4 Biosfera
Diz respeito a toda matéria viva, desde microrganismos até gigantes como as baleias e as sequoias. 
Seus elementos interagem entre si e com o planeta, resultando num controle sobre diferentes processos 
como o ciclo hidrológico e o clima (ROSS, 2003; RICKLEFS, 2012).
2 CONHECENDO A ÁGUA
Qualquer que seja o tipo de ecossistema aquático, pode ser notada a predominância do elemento 
água. Embora seja muito familiar a nós, a água possui características notáveis que a tornam uma 
substância incomum. Basta lembrar que, até onde se sabe, água no estado líquido só é encontrada 
em nosso planeta, dentro do Sistema Solar (CORDANI; PICAZZIO, 2009). Ela participa de processos 
que vão além dos limites desses ecossistemas, atuando de modo bastante efetivo nos ecossistemas 
terrestres, onde é importante, mas não predominante (GARRISON, 2010). Graças às suas propriedades 
químicas e físicas, a água apresenta uma série de características que justificam seu papel decisivo na 
natureza. A seguir serão observados alguns aspectos básicos da água, importantes para entendermos 
os ecossistemas aquáticos. Embora sejam aspectos básicos e fundamentais, será necessário acessar 
conhecimentos prévios relacionados a disciplinas como Química, Física e Biofísica.
12
Re
vi
sã
o:
 V
irg
ín
ia
 -
 D
ia
gr
am
aç
ão
: F
ab
io
 -
 1
6/
11
/2
01
5
Unidade I
 Saiba mais
Água é um recurso natural importantíssimo, fundamental para a vida e 
para os processos que ocorrem no planeta. Para saber mais sobre esse bem 
renovável e finito recomenda-se:
SUGUIO, K. Água. Ribeirão Preto: Holos, 2006.
2.1 Características físicas e químicas
2.1.1 A molécula de água
Desde nossos primeiros contatos com as ciências, ainda na educação básica, aprendemos que a 
água é quimicamente representada por H2O, ou seja, possui um átomo de oxigênio e dois átomos de 
hidrogênio. É, portanto, uma molécula cujos átomos constituintes estão unidos por ligações químicas. 
Sua estrutura molecular é simples (SUGUIO, 2006).
É necessário relembrar aqui os fundamentos das ligações químicas para a compreensão das 
propriedades da água. Ligações químicas podem ser entendidas como relações energéticas entre 
átomos, fazendo com que eles permaneçam unidos. Estão baseadas nos elétrons compartilhados ou 
transferidos entre átomos (SUGUIO, 2006). No caso da água, cada átomo de hidrogênio compartilha 
elétrons com o átomo de oxigênio, formando uma ligação covalente (portanto, em uma mesma 
molécula de água existem duas ligações covalentes) (Figura 4). Muitas outras substâncias, como 
dióxido de carbono (CO2), gás metano (CH4) e oxigênio (O2), possuemligações desse tipo (GARRISON, 
2010). Tais características conferem à molécula de água uma forma típica e relativamente fixa 
(Figura 5), que pode ser alterada em situações bem particulares, como será visto adiante. Seus 
átomos formam um ângulo típico de cerca de 105º.
Ligações de 
hidrogênio
Ligações de covalentes polares
Figura 4 – Ligações covalentes e pontes de hidrogênio relacionadas à molécula de água
13
Re
vi
sã
o:
 V
irg
ín
ia
 -
 D
ia
gr
am
aç
ão
: F
ab
io
 -
 1
6/
11
/2
01
5
ECOSSISTEMAS AQUÁTICOS
M
ol
éc
ul
a 
de
 á
gu
a
Figura 5 – Característica da molécula de água
Sua configuração tridimensional apresentada anteriormente é, em parte, responsável por outra 
característica da molécula de água, que é ser polar (eletricamente assimétrica). Vale lembrar que o 
oxigênio também tem um par de elétrons não compartilhados, perfazendo um total de 4 pares de 
elétrons em torno do átomo de oxigênio (dois pares compartilhados com os átomos de hidrogênio e 
dois pares ainda livres). Essa distribuição faz com que a molécula de água tenha uma carga negativa 
parcial junto ao átomo de oxigênio e cargas positivas parciais junto aos átomos de hidrogênio. Isso a 
define como uma molécula polar, haja vista que, à semelhança dos imãs, possui extremidade negativa 
e positiva (GARRISON, 2010). O efeito prático dessa polaridade é que o átomo de oxigênio atrai carga 
positiva de outra molécula ou átomo, enquanto os átomos de hidrogênio atraem cargas negativas de 
outra molécula ou átomo. Tal dinâmica é importante para a ação da água como solvente, conforme será 
comentado mais adiante.
As cargas elétricas positivas e negativas de uma molécula de água podem ser atraídas por outra 
molécula de água. No caso, um hidrogênio de uma molécula se ligaria ao oxigênio de outra molécula, 
estabelecendo as ligações químicas chamadas de pontes de hidrogênio (Figura 4), responsáveis por 
outras características da água (por exemplo, ponto de ebulição e congelamento) (GARRISON, 2010), 
como considerado mais adiante.
Portanto, em função de suas características químicas, as propriedades físicas e químicas da água são 
muito diferentes das de muitas outras substâncias, o que a caracteriza como constituinte fundamental 
dos seres vivos e dos ecossistemas ao redor deles.
 Observação
Dificilmente poderemos atribuir uma característica química ou física da 
água a apenas um fator. Contudo, entender e gravar as características da 
molécula de água é um importante ponto de partida para que as demais 
características e funções da água sejam compreendidas.
2.1.2 Capacidade térmica
Nesse tema, um assunto importante é o calor específico, muito útil para entendermos processos 
dos ecossistemas aquáticos e terrestres, como é o caso do ciclo da água. Ele é definido como a 
quantidade de energia térmica necessária para elevar a temperatura de uma substância (qualquer) 
14
Re
vi
sã
o:
 V
irg
ín
ia
 -
 D
ia
gr
am
aç
ão
: F
ab
io
 -
 1
6/
11
/2
01
5
Unidade I
em 1oC (SUGUIO, 2006; GARRISON, 2010). Cada substância tem seu calor específico próprio, sempre 
medido em calorias por grama (veja Tabela 1). Nesse contexto, diferentemente do que é utilizado 
em Nutrição, uma caloria corresponde à quantidade de calor necessária para se elevar em 1oC a 
temperatura de um grama de água pura (GARRISON, 2010). Seguindo-se o mesmo raciocínio, ao se 
acrescentar duas calorias, a temperatura irá aumentar em 2oC, três calorias irão aumentar em 3oC, 
e assim por diante.
Tabela 1 – Calor específico de substâncias comuns
Substância Calor específico (em calorias/grama/oC)
Prata 0,06
Granito 0,20
Alumínio 0,22
Álcool (etílico) 0,30
Gasolina 0,50
Acetona 0,51
Água pura 1,00
Amônia (líquida) 1,13
Fonte: Garrison (2010).
 Observação
Vale lembrar que calor e temperatura são assuntos correlatos, porém, 
distintos. Conforme destacado por Garrison (2010), calor é a energia 
produzida pela vibração das moléculas/átomos, sendo medido pela 
observação de quantas moléculas estão vibrando e por quão rapidamente 
estão vibrando. Já temperatura é a resposta que se tem quando o calor 
entra ou sai da substância. Temperatura é medida em graus Celsius (oC) ou 
Fahrenheit (oF).
A atenta observação da Tabela 1 permite notar facilmente que a água tem um calor específico bem 
maior do que o da prata (um mineral metálico) e do granito (um tipo de rocha), por exemplo. Em termos 
práticos, isso significa que, ao receberem uma pequena quantidade de calor, a prata (0,06 caloria) e o 
granito (0,20 caloria) já aumentam suas temperaturas em 1oC, enquanto que a água, para variar sua 
temperatura no mesmo valor, deve receber uma quantidade bem maior de calor (1,00 caloria, ou seja, 5 
vezes mais do que o granito e cerca de 16 vezes mais do que a prata). Observe, ainda, que a amônia tem 
um calor específico ainda maior do que a água.
15
Re
vi
sã
o:
 V
irg
ín
ia
 -
 D
ia
gr
am
aç
ão
: F
ab
io
 -
 1
6/
11
/2
01
5
ECOSSISTEMAS AQUÁTICOS
 Observação
Ao esquentarmos água, observamos a diferença de calor específico das 
substâncias. Se colocarmos uma panela (metal) com água sobre o fogo, 
observamos que a panela se aquece em questão de segundos, enquanto a 
água demora vários minutos para se aquecer. Isso evidencia a diferença de 
calor específico entre a panela e a água dentro dela.
2.1.3 Densidade
Esse é um atributo dependente da massa de uma substância e do volume ocupado por ela. A 
densidade da água pura é de 1 grama por centímetro cúbico (1g/cm3), ou seja, se observarmos 
um cubo com 1 centímetro de lado e cheio de água pura, a massa dessa água será 1 grama 
(GARRISON, 2010). A exemplo do que aconteceu com o calor específico, cada substância tem sua 
densidade. Na prática, ao confrontarmos dois fluidos (líquido ou gás) ou um fluido e um sólido, 
com densidades diferentes, o que tiver densidade menor se posicionará em cima, e o de densidade 
maior, embaixo. Por isso, o navio flutua na água, as rochas afundam na água e o óleo sempre fica 
sobre a água quando colocados em contato. 
Até a água pode variar sua densidade. Como assim?
Note que a padronização é feita em relação à água pura. No entanto, na natureza, a água não tem 
sempre as mesmas características e quase nunca é pura. Basta notar a água doce dos rios e a água 
salgada dos oceanos (GARRISON, 2010). De fato, algumas características da água interferem em sua 
densidade e, portanto, afetam seu papel nos ecossistemas.
 Observação
Considera-se água pura aquela que é totalmente livre de outras 
substâncias, sendo representada apenas por H2O, como aquela derivada 
dos processos de destilação. A água que bebemos e usamos para higiene, 
chamada de potável, não é quimicamente pura, uma vez que possui 
uma série de substâncias e íons dissolvidos nela. A ingestão de água 
extremamente pura pode ser prejudicial à saúde, pois ela carece de sais 
minerais importantes para o funcionamento do nosso corpo.
Uma dessas características é a temperatura. A temperatura afeta a densidade da água. Considerando-
se ainda a água pura, se compararmos dois volumes iguais de água, um com temperatura maior e 
outro com temperatura menor, as densidades serão diferentes. O volume com temperatura menor terá 
densidade maior (e vice-versa) (GARRISON, 2010). Com relação a essa característica, a água nos reserva 
uma surpresa. Vejamos qual é analisando as quatro afirmações a seguir:
16
Re
vi
sã
o:
 V
irg
ín
ia
 -
 D
ia
gr
am
aç
ão
: F
ab
io
 -
 1
6/
11
/2
01
5
Unidade I
• a diminuição da temperatura da água aumenta sua densidade;
• a diminuição da temperatura da água, se chegar a 0oC ou menos, causa seu congelamento (a água 
se torna sólida);• substâncias em estado sólido costumam ter densidade maior do que a mesma substância em 
estado gasoso ou líquido;
• substâncias mais densas do que a água líquida afundam.
Assim, da análise das duas primeiras afirmativas anteriores depreende-se que a diminuição da 
temperatura da água faz com que ela se torne gradativamente mais densa ao mesmo tempo em 
que se torna sólida (gelo). Do gelo, sendo sólido e frio, espera-se que afunde quando colocado em 
contato com a água líquida. Pergunta-se: é isso o que você observa em um copo com água e gelo? 
De um ponto de vista ambiental, é isso o que se observa no mar que rodeia a Antártica, repleto 
de icebergs? A resposta para ambas as perguntas é não. Isso porque a água apresenta mais uma 
de suas particularidades.
Figura 6 – Iceberg. Água em estado sólido tem densidade menor do que no estado líquido
A água está presente em nosso planeta em três estados físicos (gasoso, líquido e sólido) que nada 
mais são do que os reflexos das suas características físico-químicas. Ao receber calor, a água deixa o 
estado líquido e se torna gás (vapor d’água). Por outro lado, ao perder calor, ela tende a se aproximar 
de seu ponto de congelamento (gelo). Ocorre que, contrariando o que ocorre com a maioria das outras 
substâncias químicas, o estado sólido da água tem uma densidade menor do que seu estado líquido 
(GARRISON, 2010). A maior densidade da água é atingida quando ela chega por volta dos 4ºC, sendo que, 
a partir daí, quanto mais ela se aproxima do zero grau, mais a densidade volta a diminuir. Isso faz com 
17
Re
vi
sã
o:
 V
irg
ín
ia
 -
 D
ia
gr
am
aç
ão
: F
ab
io
 -
 1
6/
11
/2
01
5
ECOSSISTEMAS AQUÁTICOS
que o gelo flutue sobre a água, sendo essa uma importante característica para regular a temperatura do 
planeta e dos ambientes aquáticos (GARRISON, 2010).
 Observação
Ao se aproximar do ponto de congelamento, cada vez mais o ângulo 
entre os átomos de hidrogênio e oxigênio da molécula de água se modifica, 
saindo dos originais 105º para alcançar até 109º, criando os cristais de 
gelo. Isso tudo diminui os espaços existentes de modo que o número de 
moléculas de água num mesmo volume diminui (densidade diminui) e, por 
isso, seu volume deve aumentar cerca de 9% (GARRISON, 2010).
2.1.4 Dissolução
A água líquida apresenta outra característica que a torna importante nos meios naturais, no 
nosso dia a dia e até mesmo na indústria. É conhecida por sua grande capacidade de dissolver 
outras substâncias (processo de solubilização), formando, assim, as soluções aquosas. Isso ocorre 
devido a suas características químicas (polaridade). Nessa solução, o material dissolvido fica 
representado por íons, o que aumenta bastante a condutividade elétrica da água (GARRISON, 
2010). Vale considerar que a água que está na natureza é, em sua grande maioria, uma solução 
aquosa e não água pura. Nela estão dissolvidas diferentes substâncias que fazem com que a 
composição dessa solução também varie de acordo com o local do planeta, os materiais com os 
quais teve contato etc. Gases como O2 e CO2 são comumente encontrados dissolvidos na água, em 
quantidades diferentes dependendo do ambiente (GARRISON, 2010).
Costumamos aprender (e dizer) que a água é um solvente universal. De fato, ela pode dissolver uma 
grande quantidade de substâncias, mas nem todas. Óleos não são dissolvidos pela água, por mais que 
sejam agitados. Por outro lado, substâncias bem mais resistentes, como rochas, podem ser dissolvidas 
pela água, sendo essa, inclusive, a origem do sal marinho (KARMANN, 2009). 
2.1.5 Tensão superficial
Esse curioso fenômeno também resulta das propriedades físicas e químicas da água. Na água líquida 
as moléculas estão em contato o tempo todo, fazendo com que se atraiam mutuamente. Contudo, as 
moléculas da superfície estão em contato com outras moléculas apenas em sua parte de baixo e dos 
seus lados, uma vez que acima delas existe ar. Essa atração entre as moléculas, quando vem de todos os 
lados, resulta numa força praticamente nula (a força exercida por uma molécula é anulada pela atração 
da outra molécula sobre ela). Contudo, na superfície, as moléculas de água não têm a mesma relação 
com as moléculas do ar, fazendo com que essa região se torne uma superfície mais resistente e, até certo 
ponto, elástica (GARRISON, 2010). Entre outros efeitos, a tensão superficial da água permite que alguns 
seres vivos se apoiem e até vivam sobre ela.
18
Re
vi
sã
o:
 V
irg
ín
ia
 -
 D
ia
gr
am
aç
ão
: F
ab
io
 -
 1
6/
11
/2
01
5
Unidade I
2.1.6 Viscosidade
É um tema também relacionado às características físico-químicas da água e se refere à resistência 
presente no momento do fluxo. Quando a água flui, ou seja, se movimenta, o deslocamento de suas 
moléculas define se a água terá uma dificuldade maior (menor velocidade) ou menor (maior velocidade). 
Normalmente seu aumento está relacionado com a diminuição da temperatura e com o aumento do 
teor de sais dissolvidos (SUGUIO, 2006).
2.1.7 Capilaridade
Diz respeito à capacidade que a água tem de penetrar em espaços reduzidos como aqueles existentes 
nos solos ou nas rochas. Isso permite que ela se movimente internamente nos materiais e em áreas que 
não estejam em contato direto com o maior volume de água do ambiente. Resulta da interação de 
alguns fatores ambientais, como a composição da solução aquosa, as dimensões do espaço por onde 
deve passar, viscosidade, temperatura, entre outras (KARMANN, 2009).
 Saiba mais
Para mais detalhes sobre as características físicas e químicas da água, 
não deixe de assistir ao documentário: 
COMO TUDO funciona: água. EUA: Discovery Communications, 2013. 
43 min.
2.2 Origem da água
A água nos cerca em diversas situações cotidianas, sendo fundamental para nossa existência e para 
o funcionamento do planeta. Vale lembrar que, no estado líquido, está presente apenas na Terra. E isso 
faz muita diferença. Mas, enfim, qual a origem da água em nosso planeta? Desde quando ela integra 
nossa natureza?
A origem desse bem tão precioso não é única, defini-la ainda é um assunto bastante controverso. 
Costuma-se considerar duas prováveis origens, sendo elas: terrestre e extraterrestre. A primeira se refere 
à água originada no próprio planeta, enquanto a segunda se refere à água que chegou ao planeta por 
meio de corpos extraterrestres, como asteroides (SUGUIO, 2006; KARMANN, 2009).
Quando tratamos da origem terrestre da água, é necessário voltarmos ao início do planeta, quando 
ele ainda estava em processo de formação. De acordo com os modelos científicos, a Terra teria se 
formado há aproximadamente 4 bilhões e 600 milhões de anos (4,6 bilhões de anos) por meio de um 
processo chamado acresção planetária (CORDANI; PICAZZIO, 2009). 
19
Re
vi
sã
o:
 V
irg
ín
ia
 -
 D
ia
gr
am
aç
ão
: F
ab
io
 -
 1
6/
11
/2
01
5
ECOSSISTEMAS AQUÁTICOS
 Observação
O processo da acresção planetária considera que os planetas rochosos 
do Sistema Solar teriam se formado através da colisão e fusão de partículas 
sólidas, ou seja, asteroides de diferentes tamanhos, com liberação de 
bastante energia e grande aumento de temperatura. Assim, enquanto os 
asteroides não acabaram, os planetas continuaram crescendo.
Como resultado a aparência do planeta era de uma imensa esfera de material em fusão e incandescente, 
desde a sua superfície até o interior. Aos poucos, à medida que os impactos de novos asteroides 
diminuíram, o planeta foi se resfriando de fora para dentro e sofrendo o processo de desgaseificação 
(também chamado de “degaseificação” por alguns autores). Assim, os gases contidos no material em 
fusão foram sendo liberados conforme o material endurecia, ficando acumulados ao redor da Terra e 
formando nossa atmosferaprimitiva (CORDANI; PICAZZIO, 2009; KARMANN, 2009; GARRISON, 2010). 
Entre esses gases, estaria a água na forma de vapor.
Todo esse raciocínio surgiu por analogia a um processo semelhante que ocorre desde aquela 
época. Quando o magma extravasa do interior do planeta pela abertura de um vulcão e chega à 
superfície terrestre, há liberação de gases contidos no material em fusão (Figura 7), à semelhança 
do ocorrido durante a desgaseificação nos primórdios do planeta. Esses gases correspondem 
a uma rica combinação de substâncias variadas como monóxido de carbono (CO), dióxido de 
carbono (CO2), nitrogênio (N2), hidrogênio (H2), amônia (CH4), água (H2O), entre outros (SALGADO-
LABOURIAU, 2001; CORDANI; PICAZZIO, 2009; OLIVEIRA; CORDANI; FAIRCHILD, 2009), algo muito 
semelhante ao que teria existido em nossa atmosfera primitiva.
Figura 7 – Vulcão liberando gases que irão compor a atmosfera, entre eles muito vapor de água
20
Re
vi
sã
o:
 V
irg
ín
ia
 -
 D
ia
gr
am
aç
ão
: F
ab
io
 -
 1
6/
11
/2
01
5
Unidade I
 Observação
Na década de 1950, o cientista norte-americano Stanley Miller realizou 
um experimento científico no qual simulava as condições da Terra primitiva 
e investigava a possibilidade de surgimento de matéria orgânica a partir de 
material inorgânico. Os gases selecionados para representar a atmosfera, 
entre eles o vapor de água, indicavam uma atmosfera primitiva bem 
diferente da atual (Figura 8).
A mistura de gases 
introduzida no 
sistema simulava a 
atmosfera primitiva 
da Terra.
O aquecimento do líquido 
presente no aparelho simulava 
as condições de temperatura 
reinantes na crosta terrestre, com 
a formação de vapor-d’água.
A água acumulada na base do aparelho – contendo 
moléculas orgânicas (aminoácidos, açúcares, 
álcoois) – simulava os mares e lagos primitivos.
As descargas 
elétricas aplicadas 
na mistura de 
gases simulavam 
os raios das 
tempestades.
A circulação de água 
fria simulava o processo 
de resfriamento dos 
gases nas grandes 
altitudes atmosféricas
Figura 8 – Experimento de Stanley Miller investigando a composição da atmosfera 
primitiva da Terra na geração de moléculas orgânicas
A partir das evidências apontadas anteriormente, é possível entender como vapor de água se acumulou 
na atmosfera. Mas como e quando a água líquida chegou à superfície? A água se manteve na atmosfera 
na forma de vapor, enquanto a temperatura do planeta esteve alta o suficiente para impedir que houvesse 
a condensação (CORDANI; PICAZZIO, 2009; KARMANN, 2009). Conforme mencionado, a Terra estava em 
processo de resfriamento de fora para dentro, o que atingiu a atmosfera, que foi resfriando até o momento 
(algo entre 4,4 e 4 bilhões e anos no passado) em que a água líquida de formou e as primeiras gotas de 
chuva caíram sobre a superfície e puderam infiltrar no solo e se acumular nas suas depressões, formando os 
primeiros lagos, rios e oceanos (BALL, 2015). Normalmente a água que se forma por esses meios é chamada 
de juvenil (KARMANN, 2009). Há autores que sugerem que essas primeiras chuvas do planeta tenham caído 
cerca de 20 milhões de anos em grande quantidade e de maneira incessante (GARRISON, 2010).
Ao longo dos anos de pesquisa científica, foram surgindo evidências de que os corpos rochosos que 
vagam no espaço (isto é, asteroides e cometas) e chegam até a superfície da Terra contêm pequenas 
e variadas quantidades de água em sua composição (MARLY, 2012). Cometas são formados por gases 
congelados e entre esses gases pode haver vapor de água. Os asteroides, por sua vez, são materiais sólidos 
21
Re
vi
sã
o:
 V
irg
ín
ia
 -
 D
ia
gr
am
aç
ão
: F
ab
io
 -
 1
6/
11
/2
01
5
ECOSSISTEMAS AQUÁTICOS
de natureza rochosa ou metálica e podem conter água na forma de minerais hidratados (KARMANN, 
2009). Essa corresponderia à origem extraterrestre da água no planeta, embora seja difícil calcular 
a exata contribuição dessa fonte para a Terra (MARLY, 2012). Vale lembrar, entretanto, que a Terra 
foi formada pela colisão e fusão de asteroides e que, durante muito tempo, sofreu com os impactos 
frequentes desses corpos. Sendo assim, esta pode ter sido uma importante fonte de água do planeta 
(GENDA; IKOMA, 2008; MARLY, 2012).
 Saiba mais
Uma boa fonte de informações sobre a origem do planeta e de seus 
constituintes é o documentário: 
CONSTRUINDO o planeta Terra. EUA: National Geografic, 2011. 94 min.
Há estimativas de que o volume de água do planeta tem se mantido praticamente o mesmo há 
bilhões de anos (KARMANN, 2009). Esta informação merece destaque pelo fato de se referir ao volume 
total de água (vapor, líquida e sólida) e não apenas a água líquida. Parece certo, de acordo com os 
registros geológicos, que a Terra passou por momentos de mais calor ou de mais frio e isso tudo alterou o 
estado físico da água (SALGADO-LABOREAU, 2001; TEIXEIRA et al., 2009). No entanto, há uma diferença 
importante entre alterar o estado físico e desaparecer com a água (ou destruí-la). Nos períodos em 
que a Terra esteve mais quente, a cobertura de gelo diminuiu (o gelo derreteu) e a água líquida foi 
transformada em vapor. Por outro lado, em momentos mais frios, a cobertura de gelo aumentou na 
superfície do planeta (FAIRCHILD, 2009). Repare que isso é diferente de destruir a molécula de água e 
usar seus átomos fundamentais para compor outras moléculas.
Por fim, mas não menos importante, ocorrem em nosso planeta alguns processos que trabalham 
com a geração e destruição de água. Os principais são as reações da fotossíntese e da respiração (Figura 
9). Na primeira, há consumo e destruição de água e gás carbônico para fabricação de carboidratos, 
oxigênio e mais água. Na segunda, água e carboidrato são degradados para formação de mais água e 
gás carbônico (KARMANN, 2009).
Fotossíntese Respiração
H2O
CO2
C6H12O6
O2
Figura 9 – Relação entre fotossíntese e respiração
22
Re
vi
sã
o:
 V
irg
ín
ia
 -
 D
ia
gr
am
aç
ão
: F
ab
io
 -
 1
6/
11
/2
01
5
Unidade I
 Observação
O microbiologista holandês C. Van Niel, em 1932, foi responsável 
por investigações iniciais a respeito da fotossíntese, sendo famoso seu 
experimento com sulfobactérias, por meio do qual comparou o processo 
desenvolvido por elas à fotossíntese, o que permitiu identificar a quebra da 
molécula de água e consequente liberação de oxigênio.
2.3 Água no planeta
2.3.1 Diversidade
Discutimos a questão da origem da água em nosso planeta. Mas quais as condições em que essa 
água se apresenta? Os primeiros corpos de água já tinham as mesmas características de hoje em dia? 
Para responder a essas e outras questões, temos que fazer analogias com os processos equivalentes 
que ocorrem atualmente. A chuva é resultado de um processo de condensação do vapor de água da 
atmosfera e posterior aglutinação das pequenas gotas formadas (Figura 10) (SALGADO-LABOURIAU, 
2001; KARMANN, 2009).
Figura 10 – Formação das nuvens a partir da condensação do vapor de água
O vapor é água em estado gasoso e livre de sais ou outras substâncias. Quando condensa, 
resulta em água pura, a qual, em seu trajeto até a superfície do planeta, acaba incorporando gases 
ou partículas sólidas dispersas na atmosfera. Ao chegar à superfície, tem características de uma 
solução levemente ácida, estando longe de ser uma água salgada ou salobra. Portanto, fica fácil 
perceber que os primeiros oceanos não eram formados por águas salgadas. De fato, os corpos 
d’água do início do planeta continham apenas água doce (KARMANN, 2009). Contudo, a realidade 
atual é outra.
23
Re
vi
sã
o:
 V
irg
ín
ia
 -
 D
ia
gr
am
aç
ão
: F
ab
io
 -
 1
6/
11
/2
01
5
ECOSSISTEMAS AQUÁTICOS
Na natureza,a água pode ser encontrada em três condições no que diz respeito à salinidade. Podemos 
encontrar água com baixíssima salinidade (próxima de zero), chamada de água doce, formando os rios e 
a maioria dos lagos, água com salinidade intermediária, chamada de salobra, formando lagunas, alguns 
lagos e regiões de estuário e por fim, a água com salinidade alta, chamada de salgada ou marinha, 
encontrada nos oceanos ao redor do mundo (GARRISON, 2010).
 Lembrete
Dependendo da área de estudo, a representação da salinidade pode ser 
feita usando-se a unidade “partes por mil” (%O), em vez de “partes por cem” 
(porcentagem, %). Isso porque as variações observadas na casa de 0,1% são 
bastante significativas, por exemplo, na Oceanografia.
2.3.2 Definição da salinidade
A salinidade da água é definida pela concentração de sólidos inorgânicos presentes. Nos oceanos 
atuais, pode variar entre 3,3% e 3,7% (média de 3,5%) dependendo de fatores como evaporação, 
precipitação (chuva, por exemplo) e chegada de água doce pelos rios. É o equivalente a se dizer que 
cada litro da água do mar contém cerca de 35 gramas de sal. Regiões com altas taxas de evaporação 
possuem maior salinidade, enquanto seu valor diminui em áreas mais frias e com aporte de água doce. A 
água menos salina do planeta é encontrada no Golfo da Finlândia, no Mar Báltico. É possível que alguns 
corpos d’água tenham salinidade maior que a média (por exemplo, o Mar Morto), mas representam 
exceções (GARRISON, 2010).
 Observação
A evaporação de toda a água dos oceanos deixaria uma gigantesca 
cobertura de sal em nossa superfície. Estimativas apontam que toda a 
superfície ficaria debaixo de uma camada de mais de 40 metros de sal 
(GARRISON, 2010).
Apenas sete íons correspondem a 99% de todo material dissolvido na água. Destaque para os íons 
cloreto (Cl-) e sódio (Na+), que se combinam quando a água evapora, formando o cloreto de sódio ou sal 
de cozinha (NaCl) (Figura 11) (GARRISON, 2010).
24
Re
vi
sã
o:
 V
irg
ín
ia
 -
 D
ia
gr
am
aç
ão
: F
ab
io
 -
 1
6/
11
/2
01
5
Unidade I
Figura 11 – Representação dos íons (cloro e sódio) dissolvidos na água
Além dos íons considerados componentes principais dos oceanos, é possível encontrar nutrientes, 
gases (por exemplo, O2, CO2, N2, H2), compostos orgânicos (por exemplo, lipídios, proteínas, carboidratos, 
hormônios, vitaminas) e elementos “traço” (aqueles que apresentam concentrações inferiores a 1 parte 
por milhão – ppm; por exemplo, Mn, Pb, Hg, Au, I, Fe) (GARRISON, 2010).
Mas qual a origem desses sólidos dissolvidos, levando-se em conta que a chuva é de água 
doce? Para essa resposta, é necessário lembrarmo-nos da capacidade solvente da água. Durante 
os bilhões de anos em que a chuva tem caído no planeta ela escorre e se infiltra por rochas e solos 
de composição bastante variada. Muitos dos minerais que formam essas rochas são solúveis em 
água, liberando íons que irão fazer parte da composição da solução aquosa (GARRISON, 2010). 
Sempre que a água possui um fluxo (movimentação), se desloca das áreas mais altas para as mais 
baixas, carregando consigo os íons dissolvidos. Os oceanos representam exatamente essas áreas 
mais baixas e a água sai deles apenas por evaporação, deixando para trás os íons (principalmente 
cálcio e bicarbonato). 
Contudo, estudos têm demonstrado que a composição média das águas dos oceanos não combina 
exatamente com a composição média das águas dos rios que desembocam nos oceanos. Sendo assim, a 
salinidade tem outra fonte além daquela já descrita. Estudos apontam que o processo de desgaseificação 
que ocorre desde os primórdios do planeta contribui com a liberação de alguns compostos e elementos 
químicos (por exemplo, CO2, Cl, S, H) do manto terrestre, os quais completariam a composição da água 
salgada observada atualmente (GARRISON, 2010). Assim, dia após dia, desde o início das chuvas no 
planeta, a salinidade tem sido definida.
Era de se esperar, no entanto, que, pela quantidade de tempo envolvido nesse processo (bilhões de 
anos), a salinidade fosse maior do que a observada. No entanto, a natureza tem mecanismos que retiram 
o sal da água do mar e o deixam armazenado em rochas e minerais (TEIXEIRA et al., 2009; WICANDER; 
MONROE, 2009). Esse fenômeno pode ser visto ocorrendo atualmente nas margens do Mar Morto, 
cobertas por depósitos de sal.
25
Re
vi
sã
o:
 V
irg
ín
ia
 -
 D
ia
gr
am
aç
ão
: F
ab
io
 -
 1
6/
11
/2
01
5
ECOSSISTEMAS AQUÁTICOS
2.3.3 Gases dissolvidos
Nos ambientes aquáticos, as características químicas da água são importantes para definir os 
processos biogeoquímicos. Parte dessas características é dada pelos gases atmosféricos que se dissolvem 
nas águas superficiais de rios, lagos e oceanos. Os gases mais abundantes nas águas marinhas são o 
nitrogênio, o oxigênio e o dióxido de carbono. Deve ser mencionado que características físicas da água, 
como temperatura e densidade, afetam sobremaneira a solubilidade dos gases (GARRISON, 2010).
 Observação
A temperatura das águas é decisiva para a definição da solubilidade dos 
gases. Águas polares possuem maior volume de gases dissolvidos do que as 
águas tropicais.
Entre os gases mais abundantes, o nitrogênio aparece no topo da lista. Essencial aos seres 
vivos (faz parte das proteínas, por exemplo), está presente em grande concentração na atmosfera 
(aproximadamente 78%) e também de maneira saturada nas camadas superiores dos oceanos (cerca 
de 48% dos gases dissolvidos). Contudo, sua utilização pela maioria dos seres vivos não ocorre de 
maneira direta, dependendo de sua fixação em substâncias químicas por seres vivos específicos, como 
bactérias. Em segundo lugar, o oxigênio corresponde a cerca de 36% dos gases dissolvidos nas águas 
dos oceanos. Além de ser assimilado a partir da própria atmosfera, o oxigênio resulta da fotossíntese de 
algas, cianobactérias e vegetais (GARRISON, 2010).
Por sua vez, o dióxido de carbono é muito solúvel em água e corresponde a aproximadamente 15 
dos gases dissolvidos. Vale destacar que ele pode se combinar com a água, formando o ácido carbônico, 
pode ser rapidamente usado pelas plantas em seu crescimento, pode formar o íon carbonato que dará 
origem a minerais (calcários) e pode ser usado por animais para construir suas carapaças e conchas, o 
que faz com que a quantidade esteja sempre abaixo daquela que poderia estar. Ainda assim, existe mais 
dióxido de carbono dissolvido nos oceanos do que na atmosfera (GARRISON, 2010).
Levando-se em conta os ciclos biogeoquímicos que envolvem O2 e CO2, pode ser observado que 
seu comportamento na água, sobretudo oceânica, é bem diferente. Como o O2 é originado pela 
fotossíntese, as camadas mais superficiais da água, local de vida dos seres fotossintetizantes, são 
as mais ricas nesse gás, que diminui de quantidade em partes mais profundas. Já com o CO2 ocorre 
o inverso. Como ele é um composto muito usado pelos seres fotossintetizantes, sua concentração é 
pequena nas águas oceânicas superficiais e aumenta em direção ao fundo, onde há poucos seres que 
irão consumi-lo (GARRISON, 2010).
2.3.4 Balanço ácido-base
Com exceção da água pura, as demais formas da substância apresentam desequilíbrio em suas 
proporções de íons hidrogênio (H+) e hidróxido (OH-), tornando-se ácidas ou básicas. A água marinha é, 
na maioria das vezes, levemente alcalina (pH 7,8). Esse valor depende, sobremaneira, da solubilidade do 
26
Re
vi
sã
o:
 V
irg
ín
ia
 -
 D
ia
gr
am
aç
ão
: F
ab
io
 -
 1
6/
11
/2
01
5
Unidade I
CO2 e, conforme visto anteriormente, ela pode variar com a profundidade e a temperatura da água, por 
exemplo. Sendo assim, o pH da água dos oceanos também se altera nesses termos, podendo variar entre 
7,0 e 8,5 (GARRISON, 2010).Observação
Água ou solução, quando é ácida, possui excesso de íons H+, e quando é 
básica (também chamada alcalina), possui excesso de íons OH-, o que pode 
ser medido pela escala de pH, sendo pH 7 considerado neutro.
Por sua vez, as águas continentais têm pH variando entre 6,0 e 8,0, embora possam ser 
encontrados valores mais extremos. A influenciar essa variação estão os ácidos orgânicos (por 
exemplo, ácido sulfúrico, nítrico, oxálico) resultantes da decomposição da matéria orgânica nos 
continentes ou na própria água. Exemplos brasileiros de áreas com águas ácidas (podendo chegar 
a 4,0) são a Amazônia, as áreas de restinga no litoral e regiões com turfeiras. Nesses locais, a 
água tem a cor de chá típica, resultante também do tanino presente na vegetação decomposta 
(ESTEVES, 2011).
Corpos d’água com grande alcalinidade (podendo chegar a 8,9) se desenvolvem em locais onde 
as condições de decomposição de matéria orgânica não são muito desenvolvidas, em regiões com 
precipitação menor do que a evaporação, em regiões continentais muito influenciadas pelo mar 
(lagunas) e em regiões com relevo cárstico, que inclui cavernas (ESTEVES, 2011).
 Observação
Basta uma ida à loja de aquário e peixes ornamentais para constatar 
que cada espécie necessita de um pH ideal para viver. Tal fato é reflexo do 
pH específico do local original de vida desses animais.
Comunidades biológicas em corpos d’água de qualquer parte do planeta apresentam grande 
interação com o pH. As comunidades interferem no pH, bem como o pH interfere no desenvolvimento 
e funcionamento dessas comunidades. O pH atua diretamente nos processos de permeabilídade da 
membrana celular, interferindo, portanto, no transporte iônico intra e extracelular e entre os organismos 
e o meio (ESTEVES, 2011).
2.4 Distribuição da água no planeta
Sem pensarmos em um ecossistema específico podemos avaliar como a água está distribuída em 
nosso planeta. Primeiro é preciso lembrar que ela pode se apresentar na forma de vapor, gelo ou líquido. 
Especificamente para esta última condição, devemos considerar também sua salinidade. Em seguida, 
deve-se considerar todos os possíveis reservatórios de água da hidrosfera (SUGUIO; BIGARELLA, 1990). 
O resultado está sintetizado na figura a seguir.
27
Re
vi
sã
o:
 V
irg
ín
ia
 -
 D
ia
gr
am
aç
ão
: F
ab
io
 -
 1
6/
11
/2
01
5
ECOSSISTEMAS AQUÁTICOS
Oceanos 97% Calota de gelo e 
geleiras 79%
Água
doce 3%
Vapor d’água 
atmosférico 8%
Umidade do 
solo 38%
Lagos 52%
Água
subterrânea 
20%
Água doce 
superficial de 
fácil acesso 1%
Água no interior 
de organismos 
vivos 1%
Rios 1%
Toda a água Água doce Água doce superficial 
de fácil acesso
Figura 12 – Relação dos reservatórios de água da hidrosfera e as respectivas porcentagens
Logo de cara é possível observar a supremacia da água salgada (97%) sobre a água doce (Figuras 
12 e 13) (SUGUIO; BIGARELLA, 1990). Vale lembrar que os oceanos são o lar de incontáveis espécies e 
desempenham papel fundamental no controle da temperatura do planeta. Contudo, para os ecossistemas 
terrestres e para a maioria das atividades humanas, a água salgada não pode ser usada diretamente. 
O volume relativamente pequeno e a importância da água doce para a humanidade fazem desse um 
recurso natural precioso e ameaçado.
Figura 13 – Mapa-múndi evidenciando o predomínio de água salgada no planeta. Distribuição dos oceanos também representada
Levando-se em conta o volume total de água, a pequena porcentagem de água doce (Figura 
12) ainda assim representa um grande volume. No entanto, a água doce não está apenas nos rios e 
lagos. Pelo contrário, cerca de 99% de toda água doce está aprisionada na forma de geleiras e água 
subterrânea. Concluindo-se a análise, é possível observar que apenas 1% de toda a água doce líquida 
da superfície está nos rios (Figura 12) (SUGUIO; BIGARELLA, 1990). Ainda assim, esse corresponde a um 
grande volume.
28
Re
vi
sã
o:
 V
irg
ín
ia
 -
 D
ia
gr
am
aç
ão
: F
ab
io
 -
 1
6/
11
/2
01
5
Unidade I
A Organização Mundial da Saúde (OMS), órgão da Organização das Nações Unidas (ONU), estima 
cerca de 1500 m3/habitante/ano de água doce como a quantidade mínima para cada ser humano manter 
um nível confortável de saúde e higiene. Se for feito o cálculo repartindo-se sobre toda a água doce 
líquida do planeta pela estimativa da população mundial, pode-se observar facilmente que essa meta é 
superada em muitos metros cúbicos, havendo cerca de 6500 m3/habitante/ano (HIRATA; VIVIANI-LIMA; 
HIRATA, 2009). Por que, então, ainda hoje em dia são comuns cenas de escassez de água em diferentes 
partes do mundo, como o Nordeste brasileiro e algumas regiões africanas (Figura 14)? 
Figura 14 – Realidade do Nordeste brasileiro submetido a condições de estiagem
Para a compreensão desses cenários de seca, deve-se levar em conta o fato de que a existência de um 
grande volume de água doce líquida no planeta não significa que ela esteja distribuída de forma igual por 
todos os continentes e nem por todos os países. A água doce, que se apresenta na forma de rios, lagos e 
aquíferos, depende de uma série de variáveis que incluem desde condições climáticas, passando por relevo e 
indo até a porosidade das rochas da região. Por exemplo, grande parte da região Sudeste brasileira apresentou 
diminuição dos seus reservatórios de água doce líquida na metade da segunda década do século XXI, devido 
a variações climáticas que causaram diminuição das chuvas, fazendo com que grande parte da população 
tivesse seu acesso à água limitado pelas autoridades (HIRATA; VIVIANI-LIMA; HIRATA, 2009). 
 Saiba mais
A Agência Nacional de Águas (ANA) é um órgão do governo que 
tem como missão “implementar e coordenar a gestão compartilhada e 
integrada dos recursos hídricos e regular o acesso á água, promovendo seu 
uso sustentável em benefício das atuais e futuras gerações”. Em seu site, 
estão disponíveis várias publicações sobre o tema. Vale a pena conferir em:
<http://www2.ana.gov.br/Paginas/imprensa/Publicacoes.aspx>.
29
Re
vi
sã
o:
 V
irg
ín
ia
 -
 D
ia
gr
am
aç
ão
: F
ab
io
 -
 1
6/
11
/2
01
5
ECOSSISTEMAS AQUÁTICOS
Apenas a conjunção de condições ótimas poderá garantir à localidade ou região o aporte de água 
necessário para atingir as metas da OMS. Além disso, questões culturais, algumas delas milenares, fazem 
com que existam populações de seres humanos vivendo nas áreas em que sabidamente há pouca água 
disponível.
Contornar situações de escassez como as mencionadas anteriormente depende de ações 
governamentais ou de mobilização da sociedade civil, mas são necessárias para levar mais qualidade de 
vida às populações na forma de água potável e irrigação, por exemplo. Existem muitos casos pelo mundo 
(HIRATA; VIVIANI-LIMA; HIRATA, 2009), mas um exemplo brasileiro merece atenção. A região Nordeste 
do Brasil sofre sabidamente com a estiagem duradoura, especialmente em sua região semiárida. Medidas 
mitigadoras sugeridas envolvem a transposição das águas do Rio São Francisco. Essa é uma ideia que, 
embora apenas recentemente tenha sido colocada em prática, circula na sociedade brasileira desde a 
metade do século XIX (CRISPIM; WATANABE, 2000).
Ao longo do século XX, algumas medidas governamentais (criação de órgãos e programas para lidar 
com a questão da seca) foram realizadas, embora os resultados tenham ficado aquém das expectativas e 
a vida pouco tenha mudado no Semiárido (CASTRO, 2011). Na primeira década do século XXI, teve início 
o desenvolvimento de um projeto que visa garantir água a cerca de 12 milhões de habitantes até 2025, 
em vários estados do Nordeste. Trata-se do Projeto de Integração do Rio São Francisco com as Bacias 
Hidrográficas do NordesteSetentrional, popularmente conhecido como Projeto de Transposição do Rio 
São Francisco (CASTRO, 2011).
 Observação
A região Nordeste possui apenas 3% da disponibilidade de água do País, 
mas conta com cerca de 28% da população. Contudo, apesar da grande 
irregularidade na distribuição dos seus recursos hídricos, o rio São Francisco 
representa 70% de toda a oferta (CASTRO, 2011).
3 CICLO HIDROLÓGICO
Também conhecido como ciclo da água, corresponde a um dos importantes ciclos que mantém o 
planeta funcionando e em equilíbrio. Avaliando ainda seus resultados, é responsável pela reciclagem 
da água no planeta, realizando o intercâmbio entre os diferentes reservatórios de água da hidrosfera 
(SUGUIO; BIGARELLA, 1990; SALGADO-LABOURIAU, 2001). É fundamental não apenas para os 
ecossistemas aquáticos, mas também para os terrestres.
Para compreender sua abrangência e importância, é necessário observar seus processos, produtos e 
interações. A figura a seguir ilustra o ciclo.
30
Re
vi
sã
o:
 V
irg
ín
ia
 -
 D
ia
gr
am
aç
ão
: F
ab
io
 -
 1
6/
11
/2
01
5
Unidade I
Figura 15 – Ciclo hidrológico. Destaque para as etapas descritas no texto e indicadas como evaporação, 
transpiração, precipitação, infiltração e escoamento
Existem vários reservatórios de água na superfície e no interior do planeta. Entre eles podemos 
citar rios, lagos, oceano, açudes, vegetação, animais, piscinas, entre tantos outros locais. Durante o ciclo 
hidrológico, algumas condições fazem com que a água saia desses reservatórios e se posicione em outro 
local. A variação da temperatura ambiente e do gradiente de umidade do ar (quantidade de umidade no 
ar em relação ao reservatório) são fatores reguladores dessa parte do ciclo (SUGUIO; BIGARELLA, 1990).
Quando está muito calor ou o ar está muito seco (baixa umidade relativa), a água disponível 
nos reservatórios começa a se transformar em vapor e se desloca para longe da superfície, na 
atmosfera. Quando esse vapor se forma a partir de corpos d’água, diz-se que ocorreu evaporação 
(ou vaporização) (Figuras 15 e 16). Por outro lado, quando se forma a partir de um ser vivo, diz-se 
que ocorreu transpiração (Figura 15). Frequentemente, entretanto, estudos tratam do total de água 
que virou vapor e usam o termo evapotranspiração. Há, também, embora em menor quantidade, um 
processo semelhante que atua sobre o gelo, fazendo com que a água nele contida passe diretamente 
do estado sólido para o gasoso. Esse processo é chamado de sublimação (Figura 16) (SUGUIO; 
BIGARELLA, 1990; SALGADO-LABOURIAU, 2001).
 Observação
Todo o ciclo hidrológico é baseado nas características da água, em especial 
suas mudanças de estado físico. Ocorrem de maneira natural, alimentadas 
pela energia do Sol, e realizam a transferência e armazenamento dessa 
energia entre os reservatórios de água do planeta.
31
Re
vi
sã
o:
 V
irg
ín
ia
 -
 D
ia
gr
am
aç
ão
: F
ab
io
 -
 1
6/
11
/2
01
5
ECOSSISTEMAS AQUÁTICOS
Transformações exotérmicas
Transformações endotérmicas
Sublimação
Ressublimação
Sólido Líquido Gasoso
Fusão
Solidificação
Vaporização
Liquefação
Figura 16 – Mudança de estado físico da água
O vapor de água sobe na atmosfera porque tem densidade menor do que o ar, além de receber 
ajuda dos ventos. Esse vapor corresponde à umidade do ar e se distribui por toda a atmosfera. 
Assim, locais com maior presença de corpos d’água e/ou vegetação tendem a apresentar índices 
maiores de umidade. Quando é levado para regiões mais altas da atmosfera, o vapor se condensa, 
ou seja, passa para o estado líquido, processo governado pelas baixas temperaturas dessa região 
da atmosfera. É o chamado processo de condensação (ou liquefação) (Figura 16) (SALGADO-
LABOURIAU, 2001).
Esse líquido recém-formado está representado por minúsculas gotículas de água que, de tão leves, 
podem facilmente ficar suspensas no ar, formando as nuvens, a neblina, a serração ou o nevoeiro. 
 Observação
Em duas situações domésticas podemos ver as minúsculas gotas de 
água sendo levadas pelo vento. A fumaça que sai de uma panela com água 
em ebulição não é vapor de água, mas sim gotinhas. De maneira similar, 
no banheiro, podemos ver gotinhas de água tomando conta do ambiente e 
deixando todo o local nublado, especialmente nos dias frios.
Condições especiais podem fazer com que essas gotículas se concentrem ao redor de um núcleo 
higroscópico (com afinidade pela água), dando início ao processo de precipitação (Figura 15) (SALGADO-
LABOURIAU, 2001). Esses núcleos de atração das gotículas são os aerossóis dispersos pela atmosfera (por 
exemplo, sal marinho, poeira). Quanto mais elas são atraídas, maior e mais pesado fica o conjunto, até se 
tornar sem sustentação no ar e cair em direção à superfície. No caminho, gotas de diferentes tamanhos 
podem se juntar a ela. É isso que identificamos como chuva.
Outros produtos da precipitação são a neve e o granizo, embora bem menos frequentes do que 
a chuva. O primeiro tipo se forma quando o vapor de água passa diretamente para o estado sólido, 
mediante temperaturas muito baixas (Figura 17). Esse processo também é conhecido como sublimação. 
32
Re
vi
sã
o:
 V
irg
ín
ia
 -
 D
ia
gr
am
aç
ão
: F
ab
io
 -
 1
6/
11
/2
01
5
Unidade I
Já o granizo se forma quando as gotas de chuva são submetidas a temperaturas baixas e congelam, 
formando pedras de gelo de diferentes tamanhos (Figura 17) (WICANDER; MONROE, 2009).
A B
C D
Figura 17 – Tipos de precipitação: A) chuva, B) neve, C) granizo e D) granizo
 Saiba mais
O processo de formação dos flocos de neve e informações sobre o 
estudo dessas estruturas podem ser vistos no documentário O Poder da 
Água, que deixa claro o fato de que cada floco de neve é único no mundo. 
Vale a pena conferir:
O PODER da água. Japão: DreamLand filmes, 2005. 45 min.
 Observação
Algumas regiões do planeta passam por momentos em que as nuvens 
se formam, mas não o suficiente para gerarem chuva. Nesse contexto 
existem técnicas de pulverização ou semeadura de nuvens com partículas 
bem pequenas de substâncias, como o Iodeto de prata, ao redor das quais 
as gotículas de água irão se acumular. 
33
Re
vi
sã
o:
 V
irg
ín
ia
 -
 D
ia
gr
am
aç
ão
: F
ab
io
 -
 1
6/
11
/2
01
5
ECOSSISTEMAS AQUÁTICOS
A neve pode se acumular no alto das montanhas e permanecer assim durante séculos. Em 
outros locais, a chegada de temperaturas mais elevadas faz com que a neve acumulada durante 
o inverno derreta e forneça água para o ambiente. Toda a água líquida resultante do processo 
de precipitação tem dois caminhos a seguir: infiltração e escoamento superficial (Figura 15) 
(WICANDER; MONROE, 2009).
Na infiltração a água se move para o subsolo através de poros, fendas ou qualquer tipo de abertura 
existente no solo, areia ou rochas. É dependente, portanto, da porosidade e permeabilidade da superfície. 
Uma vez no subsolo, pode se movimentar livremente em todas as direções e, dessa forma, abastecer 
aquíferos ou alimentar corpos de água na superfície como lagos e rios. No escoamento superficial, a 
água se move sobre a superfície do terreno, sob influência da força da gravidade e, portanto, sempre 
de um local mais alto para outro mais baixo. Com isso, a água chega até os corpos d’água da superfície 
(WICANDER; MONROE, 2009).
Dessa forma, o ciclo se completa e a água abastece os mesmos corpos d’água e seres vivos de 
onde se tornou vapor um dia. Mas quanto tempo demora para que ele se complete? A resposta 
para essa questão não é precisa, uma vez que depende do reservatório onde a água se acumulou. 
Podem ser horas ou séculos. Diz-se que um ciclo hidrológico é curto quando ele ocorre apenas 
pela evaporaçãoda água e longo quando ele ocorre pela evapotranspiração, uma vez que o tempo 
que passa dentro dos seres vivos pode ser muito grande (KARMANN, 2009).
A observação atenta do ciclo da água revela que a água, num sentido amplo, é um bem infinito e 
renovável no planeta. No entanto, quando nos referimos à água doce, essa relação pode ser diferente, 
desde que acabe com os reservatórios desse recurso ou prejudique sua qualidade. A água doce pode 
se esgotar e pode não se renovar rapidamente, mas água sempre existirá no planeta (HIRATA; VIVIANI-
LIMA; HIRATA, 2009).
4 INTERAÇÕES DA ÁGUA COM O MEIO
4.1 Chuva ácida
A água, independente do estado físico em que se apresente, desempenha diferentes papéis no 
meio aquático e terrestre. Sobre o primeiro papel da água, este livro irá dedicar as próximas duas 
unidades a desvendar seus caminhos e efeitos. Tratemos, então, de algumas intervenções da água 
nos ambientes terrestres.
Ao precipitar-se na forma de chuva, a água dissolve ou incorpora alguns dos componentes da 
atmosfera, sejam eles gases ou partículas sólidas, formando assim uma solução aquosa que pode ser 
levemente ácida. Trata-se da chuva ácida. Seus componentes mais comuns são o dióxido de enxofre (SO2), 
os óxidos de nitrogênio (NOx) e o ozônio (O3) (Figura 18), são compostos que naturalmente ocorrem na 
atmosfera, mas cujas concentrações podem ser muito aumentadas pelas atividades humanas. Desde que 
a emissão de gases e material particulado resultantes das atividades humanas aumentaram, de acordo 
com indícios a partir da revolução industrial, a chuva ácida tem sido a responsável por graves problemas 
ambientais, tendo sido chamada de praga invisível da Era Industrial (SUGUIO, 2006; PARK, 2013).
34
Re
vi
sã
o:
 V
irg
ín
ia
 -
 D
ia
gr
am
aç
ão
: F
ab
io
 -
 1
6/
11
/2
01
5
Unidade I
Figura 18 – Esquema representativo das reações responsáveis 
pela formação da chuva ácida na atmosfera
A chuva ácida é incolor e não tem gosto ou cheiro característico. Devido à sua composição 
representa, inclusive, benefício para alguns ambientes que apresentam deficiência natural em, por 
exemplo, enxofre. No entanto, seu efeito devastador não é rápido ou dramático, mas sim lento e 
cumulativo. Acidificação de corpos d’água, de solos, a destruição de vegetação (florestas e culturas) e 
de monumentos são alguns desses efeitos (Figuras 19 e 20) (SUGUIO, 2006; PARK, 2013).
Figura 19 – Efeito corrosivo da chuva ácida em escultura de mármore
35
Re
vi
sã
o:
 V
irg
ín
ia
 -
 D
ia
gr
am
aç
ão
: F
ab
io
 -
 1
6/
11
/2
01
5
ECOSSISTEMAS AQUÁTICOS
Figura 20 – Efeito da chuva ácida em floresta
4.2 Intemperismo ou meteorização
A chuva, enquanto produto da precipitação, participa do processo de intemperismo do ambiente, 
também conhecido como meteorização. Sua ação pode ser física (intemperismo físico) ou química 
(intemperismo químico), além de estimular o crescimento de seres vivos que irão fazer também seu 
papel no intemperismo (intemperismo biológico). Todo processo de intemperismo age sobre alguns dos 
elementos abióticos do planeta, especificamente as rochas, os minerais e o solo, causando modificações 
nesses materiais. Há outros elementos que agem como agentes de intemperismo (por exemplo, o vento), 
mas apenas o efeito da água será tratado neste livro (GIANNINI; MELO, 2009; WICANDER; MONROE, 2009).
 Saiba mais
Maiores detalhes sobre todas as fontes de intemperismo podem ser 
obtidos em ótimos livros disponíveis em língua portuguesa, como, por 
exemplo:
TEIXEIRA, W. et al. Decifrando a Terra. São Paulo: Companhia Editora 
Nacional, 2009.
WICANDER, R.; MONROE, J. S. Fundamentos de geologia. São Paulo: 
Cengage Learning, 2009.
No intemperismo físico, a água age por meio do impacto, fazendo valer o ditado popular: “Água 
mole em pedra dura, tanto bate até que fura.” O impacto da água ocorre através das gotas da chuva, 
da água que cai de uma cachoeira, ou da ação das ondas do mar. Em qualquer um dos casos, o que 
se observa é o impacto sobre o material mineral, podendo arrancar pequenas partículas deste e 
fazendo com que ele seja desgastado, quebrado ou fragmentado (GIANNINI; MELO; 2009, WICANDER; 
MONROE, 2009). Como resultado (Figura 21), temos:
36
Re
vi
sã
o:
 V
irg
ín
ia
 -
 D
ia
gr
am
aç
ão
: F
ab
io
 -
 1
6/
11
/2
01
5
Unidade I
• A formação ou evolução dos solos, importante para que a vegetação e a fauna edáfica possam se 
desenvolver.
• Modelagem do relevo, criando formas variadas na superfície do planeta que irão interagir com os 
ventos e a água, gerando ecossistemas particulares.
• Formação de material particulado, chamado genericamente de sedimentos (areia, silte, cascalho), 
presente em diferentes ambientes, como praias, assoalho marinho, leitos de rios etc.
A B
Figura 21 – Efeitos do intemperismo: A) modelagem de rocha na superfície terrestre; 
B) formação de sedimentos de tamanhos variados
Mas não apenas a água liquida é responsável pelo intemperismo físico. O gelo no alto das montanhas 
ou nas calotas polares é o agente de intemperismo mais eficiente que existe. Pela movimentação das 
geleiras (também chamadas de glaciares), pedaços de rocha de diferentes tamanhos são arrancados 
das encostas das montanhas e pressionados contra outros pedaços de rocha, fazendo com que eles 
sejam literalmente triturados. Como resultado, formam-se sedimentos característicos chamados de 
morenas (originalmente chamadas de morainas) com fragmentos de rochas de diferentes tamanhos. 
Outra evidência da eficiência desse intemperismo são os vales em forma de “U” entre montanhas e 
pavimentos ou encostas de montanhas com rochas lisas e estriadas pela passagem do gelo (ROCHA-
CAMPOS; SANTOS, 2009; WICANDER; MONROE, 2009).
 Saiba mais
Embora o Brasil seja um país tropical, o interior de São Paulo guarda 
um verdadeiro tesouro geológico em um parque no município de Salto. 
São rochas com centenas de milhões de anos que guardam as marcas do 
intemperismo do gelo. Vale a pena uma visita:
SALTO. Parque Rocha Moutonnée. Portal da Câmara Municipal, [s.d.]. 
Disponível em: <http://www.camarasalto.sp.gov.br/sample-sites/parque-
rocha-moutonnee>. Acesso em: 1 dez. 2015.
37
Re
vi
sã
o:
 V
irg
ín
ia
 -
 D
ia
gr
am
aç
ão
: F
ab
io
 -
 1
6/
11
/2
01
5
ECOSSISTEMAS AQUÁTICOS
Por sua vez, o intemperismo da água pode ser químico. Nesse caso ocorre a dissolução das rochas 
e minerais, mediante uma reação química na qual a água atua como solvente. Diferentemente 
do intemperismo físico, nesse caso não ocorre quebra ou fragmentação dos materiais, eles são 
desgastados aos poucos, numa taxa que varia de acordo com a composição de cada rocha, uma 
vez que os minerais constituintes podem ou não ser dissolvidos pela água (WICANDER; MONROE, 
2009). O resultado, além do desgaste do material, é a formação de solução aquosa com íons variados, 
que podem ser carregados para diferentes ambientes ou para o subsolo. Muitos desses íons gerados 
podem representar nutrientes para animais e vegetais, o que aumenta a importância desse processo 
na natureza (GIANNINI; MELO, 2009).
4.3 Erosão
Embora seja tratada por muitas pessoas como sinônimo de intemperismo, erosão é um processo 
distinto, porém complementar. Corresponde ao transporte de algum material natural como íons, 
sedimentos ou solo (Figura 22). É realizada pela água líquida ou pelo gelo, além de outros agentes 
que não serão tratados neste livro (por exemplo, o vento) (GIANNINI; MELO, 2009, WICANDER; 
MONROE, 2009).
Figura 22 – Mecanismo de erosão pela água e consequente assoreamento de um rio
O escoamento superficial e a infiltração da água no solo são os caminhos principais de erosão 
em água doce. Ondas e correntes

Outros materiais