Buscar

LEANDRO FERREIRA DOMICIANO

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 129 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 129 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 129 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

LEANDRO FERREIRA DOMICIANO 
 
 
 
 
 
 
 
 
 
 
Agronomic and physiological responses, and silage 
chemical indicators of corn in crop-livestock-forestry 
systems 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Cuiabá – MT 
March 2020 
 
 
 
LEANDRO FERREIRA DOMICIANO 
 
 
 
Agronomic and physiological responses, and silage chemical 
indicators of corn in crop-livestock-forestry systems 
 
 
Thesis submitted to the Graduate Program in 
Animal Science (Programa de Pós-Graduação 
em Ciência Animal - PPGCA), Faculty of 
Agronomy and Animal Science (Faculdade de 
Agronomia e Zootecnia - FAAZ) of Universidade 
Federal de Mato Grosso (UFMT) to obtain the 
degree of Doctor in Animal Science. 
 
Concentration: Forage and Pasture 
(Forragicultura e Pastagem) 
Advisor: Dr. Joadil Gonçalves de Abreu 
Co-advisor: Dr. Bruno Carneiro e Pedreira 
 Dr. Dalton Henrique Pereira 
 
 
 
 
 
 
 
 
Cuiabá – MT 
March 2020 
II 
 
 
 
 
 
 
 
 
 
 
 
International Cataloging Data 
Dados Internacionais de Catalogação na Fonte. 
 
 
 
 
 
 
 
 
 
Cataloging was drawn up automatically according to the data provided by 
the author. 
Ficha catalográfica elaborada automaticamente de acordo com os dados 
fornecidos pelo autor. 
 
Partial or total reproduction is allowed, provided the source is mentioned. 
Permitida a reprodução parcial ou total, desde que citada a fonte. 
D669a Domiciano, Leandro Ferreira. 
Agronomic and physiological responses, and silage chemical indicators 
of corn in crop-livestock-forestry systems / Leandro Ferreira Domiciano. – 
2020 
xvi, 112 f. : il. ; 30 cm. 
 
Orientador: Dr. Joadil Gonçalves de Abreu. 
Co-orientador: Dr. Bruno Carneiro Pedreira. 
 Dr. Dalton Henrique Pereira 
Tese (doutorado) - Universidade Federal de Mato Grosso, Faculdade 
de Agronomia e Zootecnia, Programa de Pós-Graduação em Ciência 
Animal, Cuiabá, 2020. 
 
Inclui bibliografia. 
1. agroforestry. 2. corn yield. 3. digestibility. 4. forage mass. 5. tree 
shading. I. Título. 
III 
 
 
 
MINISTÉRIO DA EDUCAÇÃO 
UNIVERSIDADE FEDERAL DE MATO GROSSO 
FACULDADE DE AGRONOMIA E ZOOTECNIA 
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA ANIMAL 
Av. Fernando C. da Costa, nº 2367 – Cidade Universitária- 78060-900 – Cuiabá – MT. 
Telefone/Fax (65) 3615-8675 - Email : pgca@ufmt.br 
_____________________________________________________________________ 
APPROVAL CERTIFICATE / CERTIFICADO DE APROVAÇÃO 
 
Student/ Discente: Leandro Ferreira Domiciano 
Advisor/ Orientador: Dr. Joadil Gonçalves de Abreu 
 
Thesis title/ Título: Agronomic and physiological responses, and silage chemical indicators of corn 
in crop-livestock-forestry systems. 
 
Thesis submitted to the Graduate Program in Animal Science 
(Programa de Pós-Graduação em Ciência Animal), Faculty of 
Agronomy and Animal Science (Faculdade de Agronomia e 
Zootecnia) of Universidade Federal de Mato Grosso to obtain the 
degree of Doctor in Animal Science (Doutor em Ciência Animal). 
 
Approved in / Aprovado em: March 09, 2020 
 
Examining Committee / Banca Examinadora 
 
 
IV 
 
 
To my parents, José B. Domiciano (Zezão) and Leni F. F. Domiciano (Dona Helena) 
and my brother, Charles F. Domiciano, for giving me all the support and assistance 
to face this challenge, always supporting and encouraging me. 
To my dignified wife, Ivete Ricken Domiciano, for always supporting and 
encouraging me in all decisions, and for being an example of companionship, love, 
and dedication. 
To my children, Yuri Ricken Domiciano and Yasmin Ricken Domiciano, my courage 
of hard days and reasons for my living, evolving and prospering. 
 
I DEDICATE 
 
Aos meus pais, José B. Domiciano (Zezão) e Leni F. F. Domiciano (Dona Helena) 
e meu irmão, Charles F. Domiciano, por me darem todo o apoio e auxílio para 
enfrentar mais este desafio, sempre me amparando e encorajando. 
À minha digníssima esposa, Ivete Ricken Domiciano, por sempre me apoiar e 
incentivar em todas as decisões, e por ser exemplo de companheirismo, amor e 
dedicação. 
Aos meus amados filhos, Yuri Ricken Domiciano e Yasmin Ricken Domiciano, meus 
alentos dos dias difíceis e motivos do meu viver, evoluir e prosperar. 
DEDICO 
 
V 
 
 
ACKNOWLEDGMENT 
I thank, 
First to God for the gift of life and for giving me wisdom and allowing me to complete 
one more goal in my life; 
To my family and friends for all the affection, encouragement, support and 
assistance in their different areas so that I could make this dream come true; 
To my advisors, Dr. Joadil Gonçalves de Abreu (advisor), Dr. Bruno Carneiro e 
Pedreira and Dr. Dalton Henrique Pereira (co-advisor), who I am very proud to 
take as examples; 
To Federal University of Mato Grosso Campus of Cuiabá, and the Postgraduate 
Program in Animal Science (PPGCA) and Embrapa Agrossilvipastoril for the 
available facilities; 
To supporting institutions Fundação de Amparo à Pesquisa do Mato Grosso 
(FAPEMAT) and Coordenação de Aperfeiçoamento de Pessoal de Nível 
Superior (CAPES), for funding my scholarship; 
And to everyone who at some point and in some way contributed to the realization 
of this work and/or to my personal and professional growth. 
 
My most sincere acknowledgment and my gratitude! 
 
 
VI 
 
 
AGRADECIMENTOS 
Eu agradeço, 
Primeiramente, agradeço a Deus pelo dom da vida e por dar-me sabedoria e 
permitir que concluísse mais um objetivo em minha vida. À Ele, toda hora e toda 
glória! 
Aos meus familiares, por todo carinho, encorajamento, apoio e auxílio em seus 
diferentes âmbitos para que eu pudesse realizar mais esse sonho. 
À Ivete, minha companheira de todos os momentos, a qual retirava forças 
“sobrenaturais” para ajudar-me e cuidar dignamente dos nossos filhos e ainda 
dos seus afazeres. 
À Universidade Federal de Mato Grosso Campus de Cuiabá, e Programa de Pós-
Graduação em Ciência Animal (PPGCA) pela infraestrutura disponibilizada e seu 
corpo docente, o que permitiu o desenvolvimento deste doutoramento em 
Ciência Animal. 
À Embrapa Agrossilvipastoril por toda a infraestrutura física e humana 
disponibilizada, o que permitiu o desenvolvimento e execução do projeto. 
À Fundação de Ampara à Pesquisa de Mato Grosso (FAPEMAT) e Coordenação 
de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), pelo financiamento 
da bolsa de estudos, sem à qual inviabilizaria meus estudos. 
Ao professor Dr. Joadil Gonçalves de Abreu (orientador) e Dr. Bruno Carneiro e 
Pedreira (coorientador) por me orientar durante todos esses anos, pela confiança 
em mim depositada e pelos ensinamentos transmitidos que foram fundamentais 
para meu crescimento pessoal e profissional, qual tenho muito orgulho de tomar 
como exemplos. 
Ao professor Dr. Dalton Henrique Pereira, pela coorientação e pela ajuda ao longo 
de todo o doutorado. Além das preciosas orientações “extracurriculares” de 
grande valia para meu desenvolvimento pessoal e profissional. 
Ao professor Dr. Arthur Behling pelas valiosas instruções e apoio à condução, 
execução e finalização deste trabalho. 
Ao Dr. Ciro Augusto S. Magalhães pelos dados cedidos, pelos ensinamentos e 
contribuição para melhoria do trabalho. 
Ao professor Dr. Fabiano A. Petter pelas valiosas dicas em fisiologia vegetal. 
VII 
 
 
Aos meus incondicionais amigos e companheiros de trabalho, Perivaldo de 
Carvalho e Mircéia Mombach, pela sincera amizade e apoio execução física e 
intelectual deste projeto. 
Aos amigos doutorandos Ana Paula S. Carvalho e Cátia G. Tesk, e mestrandas 
Alyce Monteiro e Denise C. Parisoto pelo auxílio nas análises laboratoriais. 
Ao meu amigo de longa data Janderson A. Rodrigues pelo incomensurável “suporte 
logístico e hospedagem” sempre que precisei. Obrigado irmão! 
Aos colegas do GEPI que auxiliaram grandemente na instalação e coletas de 
dados, nos quais seriam impossíveis fazer sem este apoio. 
Também não posso deixar de agradecer aoscolegas Hemython B. Nascimento, 
Fagner Jr. Gomes, Isadora Paraiso e Flabiele Soares pela amizade, por me 
encorajar, incentivar e também corrigir quando necessário. 
Aos técnicos e funcionários da Embrapa Agrossilvipastoril, em especial, Cledir M. 
Schuck, Diego B. Xavier, Fabio P. Silva, João C. Magalhaes, Valeria S. 
Moustacas, Bruno R. da Silva, Joyce M. A. Pinto e Rogerio C. Bicudo que muito 
colaboraram em diversas formas para que este projeto acontecesse. 
A todos os colegas de doutorandos do PPG Ciência Animal, que compartilharam 
de seu tempo e convivência ao longo destes quatro anos. 
Enfim, a todos que em algum momento e de alguma forma contribuíram para a 
realização deste trabalho. 
 
Meus mais sinceros agradecimentos e minha gratidão! 
 
VIII 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
"Science never solves a problem without creating at least ten more" 
“A ciência nunca resolve um problema sem criar pelo menos outros dez” 
George Bernard Shaw 
IX 
 
 
ABSTRACT 
DOMICIANO, L. F. Agronomic and physiological responses, and silage chemical 
indicators of corn in crop-livestock-forestry systems. 2020, 112f. Thesis (Doctor in 
Animal Science), Graduate Program in Animal Science, Faculty of Agronomy and 
Animal Science, Federal University of Mato Grosso, Cuiabá, 2020. 
 
Corn is a very important crop around the world supporting food security, especially 
in developing countries. However, the increasing demand for food and renewable 
energy resources has been supported studies of competitiveness and 
complementarity interactions between trees, crops, and animals. Thus, the 
integrated systems, in its various combinations, should promote a synergic 
relationship between the components, which results in greater production of crops, 
animals, and forestry. We realized a literature review (chapter I) and reached the 
following conclusions. The increase in the soil organic carbon in integrated systems 
improves its physical, chemical, and biological properties. Great corn yield and 
resource savings are possible with the microbial inoculants use. In corn, the 
inoculants action is improved when associated with fertilizers and/or biochar. The 
biochar acts in soil conditioning, increasing the absorption and water and nutrients 
retention in the soil, favoring the corn developed. Corn grown between tree lines 
can adapt to moderate shade but reduces productivity. The corn silage production 
with great nutritive value in integrated systems is an alternative to grain production. 
Thus, we identified the need for research in the areas of maize genetic improvement 
less susceptible to shading, intercropped management to minimizes competition, 
quantification of the stratified light profile by system component (tree, corn, and 
grass) and more complex and accurate mathematical models for predicting the 
success possibilities of the integrated systems. In addition, we developed two 
X 
 
 
experiments with the objective of comparing the productive and physiological 
characteristics of maize (Zea mays L.) (chapter II), and losses, fermentative profile, 
and silage nutritive value (chapter III) in maize intercropped with Marandu 
palisadegrass [Brachiaria (syn. Urochloa) brizantha (Hochst. ex A. Rich.) R. D. 
Webster] growing in full sun (FS), or in crop-livestock-forestry with single-row (CLFs) 
and triple-row (CLFt) groves with eucalyptus (Eucalyptus urograndis; hybrid of 
Eucalyptus grandis W. Hill ex Maiden and Eucalyptus urophylla S. T. Blake). Trees 
rows (grove) were spaced in inter-row, intra-row, and inter-grove with 3.5×3.0×30 
m, currently (after thinning) with 135 tree ha–1 for CLFt and 37×3.0 m (inter-
row×intra-row) with 90 tree ha–1 for CLFs. In the crop-livestock-forestry, sampling 
occurred at 7 and 13 m south, central, 13 and 7 m north into the non-treed area from 
the central tree row in a grove. In chapter II we observed that the forage mass (maize 
+ palisadegrass) and corn yield per system area decreased according to light 
transmission and red: far-red ratio, with forage mass of 10.9, 9.5, and 6.2 Mg DM 
ha–1 in 2017 and 28.9, 21.5, and 14.0 Mg DM ha–1 in 2018 for the FS, CLFs and 
CLFt systems, respectively, while the grain yield was 3.38, 3.34, and 1.66 Mg DM 
ha–1 in 2017 and 7.90, 4.66, and 2.55 Mg DM ha–1 in 2018 for FS, CLFs and CLFt. 
It was observed that a reduction of up to 13% in light transmission did not affect 
grain yield. The forage mass (10.1 and 23.9 Mg DM ha–1 in 2017 and 2018) and 
grain yield (3.3 and 5.0 Mg DM ha–1 in 2017 and 2018) in the central and 13 m north 
distances were greater than in the 7 m north and south, distances with less light 
transmission and red: far-red ratio. The maize with great productive potential is more 
sensitive to light variations, reducing the forage mass and grain yield. The less 
values of forage mass and corn yield in the distances near to the trees were due to 
the lesser physiological processes, reducing the height, forage mass and corn yield. 
XI 
 
 
In chapter III we observed that the volatile organic compounds (63.3 g kg–1 DM) and 
effluents (46.2 g kg–1 forage) losses and ammonia-N content (64.3 g kg–1 total-N) in 
CLFt were greater than CLFs, which may be associated to the less dry matter 
content of silage in this system. The ash and crude protein contents, besides neutral 
and acid detergent fiber in the CLFs were similar to the FS but lesser than the CLFt. 
The less fiber content resulted in greater corn silage digestibility in the CLFs (594 g 
kg–1 DM) than in the CLFt and FS systems (550 g kg–1 DM). Thus, we concluded 
that forage mass and corn yield in crop-livestock-forestry systems is affected by 
incident light variations through trees and this reduction decreases the maize 
physiological activities. These morphophysiological changes, driven by the light 
transmission and red: far-red ratio reduction, impact on the fermentative and 
nutritive properties of corn silage in integrated systems, increasing the crude protein 
content but increases fermentative losses and cell wall content, reducing the 
digestibility of corn silage. 
 
Additional keywords: agroforestry, corn yield, digestibility, forage mass, red: far-red 
ratio, tree shading 
 
XII 
 
 
RESUMO 
DOMICIANO, L. F. Características agronômicas e fisiológicas e indicadores 
químicos da silagem de milho em sistemas lavoura-pecuária-floresta. 2020, 112f. 
Tese (Doutor em Ciência Animal), Programa de Pós-Graduação em Ciência Animal, 
Faculdade de Agronomia e Zootecnia, Universidade Federal de Mato Grosso, 
Cuiabá, 2020. 
 
O milho é uma cultura muito importante em todo o mundo como um dos principais 
alimentos para a segurança alimentar, especialmente nos países em 
desenvolvimento. No entanto, a crescente demanda por alimentos e recursos de 
energia renovável tem sido tratada em estudos sobre interações de competitividade 
e complementaridade entre árvores, culturas e animais. Assim, os sistemas 
integrados, em suas diversas combinações, devem promover uma relação 
sinérgica entre os componentes, o que pode resultar em maior produção pelas 
culturas, animais e silvicultura. Em revisão de literatura (capítulo I), chegou-se às 
conclusões que o aumento do carbono orgânico do solo em sistemas integrados 
melhora as suas propriedades físicas, químicas e biológicas. Maior rendimento de 
milho e economia de recursos são possíveis com o uso de inoculantes microbianos. 
No milho, a ação dos inoculantes é potencializada quando associada a fertilizantes 
e/ou biocarvão, pois o biocarvão atua no condicionamento do solo, aumentando a 
absorção e a retenção de água e nutrientes no solo. O milho cultivado entre as 
linhas das árvores pode se adaptar à sombra moderada, mas reduz a 
produtividade. A produção de silagem de milho com grande valor nutritivo em 
sistemas integrados é uma alternativaà produção de grãos. Com base nestas 
conclusões, identificou-se a necessidade de pesquisas nas áreas de melhoramento 
genético para a produção de milho menos suscetíveis a sombreamento, manejo do 
sistema integrado para minimizar a competição, quantificação do perfil de luz 
XIII 
 
 
estratificado por componente do sistema (árvore, milho e capim) e modelos 
matemáticos mais complexos e precisos para prever as possibilidades de sucesso 
dos sistemas integrados. Além disso, desenvolveu-se dois experimentos com o 
objetivo de comparar as características produtivas e fisiológicas do milho (Zea mays 
L.) (capítulo II) e as perdas, perfil fermentativo e valor nutritivo da silagem (capítulo 
III) em milho consorciado com capim-marandu [Brachiaria (syn. Urochloa) brizantha 
(Hochst. ex A. Rich.) R. D. Webster] cultivados a pleno sol (PS), ou em lavoura-
pecuária-floresta com renques de linhas simples (LPFs) e linhas triplas (LPFt) com 
eucalipto (Eucalyptus urograndis clone H13). As linhas de árvores (renques) foram 
espaçadas na entre-linhas, entre-árvores e entre-renques com 3,5 × 3,0 × 30 m, 
atualmente (após desbaste) com 135 árvores ha–1 para LPFt e 37 × 3.0 m (entre-
linhas e entre-árvores) com 90 árvores ha–1 para LPFs. Na lavoura-pecuária-
floresta, a amostragem ocorreu a 7 e 13 m ao sul, central, 13 e 7 m ao norte, na 
área não-arborizada, a partir da linha central das árvores em um renque. No 
capítulo II, observou-se que a massa de forragem (milho + capim-marandu) e a 
produtividade de milho por área do sistema diminuíram de acordo com a 
transmissão da luz e a razão vermelho: vermelho distante, com massa de forragem 
de 10,9, 9,5 e 6,2 Mg MS ha–1 em 2017 e 28,9, 21,5 e 14,0 Mg MS ha–1 em 2018 
para os sistemas PS, LPFs e LPFt, respectivamente, e produtividade de grãos foi 
de 3,38, 3,34 e 1,66 Mg MS ha–1 em 2017 e 7,90, 4,66 e 2,55 Mg MS ha–1 em 2018 
para PS, LPFs e LPFt. Observou-se que uma redução de até 13% na transmissão 
da luz não afetou a produtividade de grãos. A massa de forragem (10,1 e 23,9 Mg 
MS ha–1 em 2017 e 2018) e a produtividade de grãos (3,3 e 5,0 Mg MS ha–1 em 
2017 e 2018) nas distâncias central e 13 m norte foram maiores que nos 7 m norte 
e sul, distâncias com menos transmissão de radiação fotossinteticamente ativa e 
XIV 
 
 
razão vermelho: vermelho distante. Os menores valores de massa de forragem e 
produção de milho nas distâncias próximas às árvores foram devidos às menores 
taxas dos processos fisiológicos, reduzindo a altura, a massa de forragem e a 
produtividade do milho. No capítulo III, observou-se que as perdas de compostos 
orgânicos voláteis (63,3 g kg–1 MS) e efluentes (4,62 g kg–1 de forragem) e o teor 
de N-amoniacal (64,3 g kg–1do N total) no LPFt foram maiores que os LPFs, o que 
pode estar associado ao menor teor de matéria seca deste sistema. O teor de 
cinzas e proteínas brutas, além de fibra em detergente neutro e ácido no LPFs, foi 
semelhante ao PS, mas menor que o LPFt. O menor teor de fibra resultou em maior 
digestibilidade da silagem de milho no LPFs (594 g kg–1 MS) do que nos sistemas 
LPFt e PS (550 g kg–1 MS). Assim, conclui-se que a massa de forragem e 
produtividade do milho em lavoura-pecuária-floresta é afetada pela transmissão da 
radiação através árvores e essa redução reduz as atividades fisiológicas do milho. 
Essas mudanças morfofisiológicas, impulsionadas pela transmissão da luz e 
redução da razão vermelho: vermelho distante, impactam nas propriedades 
fermentativas e nutritivas da silagem de milho, aumentando o teor de proteína bruta, 
mas aumentando as perdas fermentativas e o teor de fibra da parede celular, 
reduzindo a digestibilidade da silagem de milho. 
 
Palavras-chave: agroflorestal, digestibilidade, massa de forragem, produtividade de 
milho, razão vermelho: vermelho distante, sombreamento das árvores 
 
XV 
 
 
CONTENTS 
 
INITIAL CONSIDERATIONS .....................................................................1 
Recent Advances in Maize Production in Integrated Systems: A Review ..6 
1. Introduction .........................................................................................7 
2. The maize ...........................................................................................9 
3 Maize in integrated systems ..............................................................10 
3.1. Soil quality in integrated systems and soil conditioner ................... 11 
3.2. Soil and plant microbiology ............................................................ 13 
3.3. Maize-grass intercropping ............................................................. 16 
3.4. Maize-forestry intercropping .......................................................... 18 
3.5. Maize silage quality in integrated systems ..................................... 21 
4. Considerations and future perspectives .............................................22 
References ..............................................................................................23 
Agronomic and Physiologycal Responses of Maize Growing in Crop-Livestock-
forestry Systems ................................................................................... 34 
Abstract ...................................................................................................34 
Material and Methods ..............................................................................37 
Site characteristics, historic and fertilization ............................................. 37 
System description and experimental design ........................................... 38 
Light measurements and agronomic evaluations...................................... 40 
Physiological responses ........................................................................... 42 
Statistical analyses ................................................................................... 43 
Results ....................................................................................................44 
System Responses .................................................................................. 44 
Crop-Livestock-Forestry System Responses ............................................ 46 
Discussion ...............................................................................................49 
XVI 
 
 
Summary and Conclusions ......................................................................54 
References ............................................................................................... 55 
Fermentation profile and nutritive value of corn silage in integrated crop-
livestock-forestry systems..................................................................... 73 
Introduction ..............................................................................................74 
Material and Methods ..............................................................................77 
Site characteristic ..................................................................................... 77 
Experimental design and system description ............................................ 78 
Light characterization ............................................................................... 79 
Forage evaluation and ensiling ................................................................. 80 
Forage characterization and silage fermentation profile ........................... 81 
Forage microbiological characterization ................................................... 82 
Fermentation losses ................................................................................. 83 
Nutritive value and in vitro digestibility in the forage and silage ................ 84 
Statistical analyses ................................................................................... 85 
Results ....................................................................................................86Forage mass responses ........................................................................... 86 
Corn silage responses by systems ........................................................... 87 
Corn silage responses at distances .......................................................... 87 
Discussion ...............................................................................................88 
Conclusions .............................................................................................94 
References ............................................................................................... 95 
 
 
 
1 
 
 
INITIAL CONSIDERATIONS 
Brazil occupies the third position in the world ranking of grain production (FAS-
USDA, 2019) due to its considerable territorial extension with large amounts of 
arable land and climatic diversity. Maize (Zea mays L.) is the second most cultivated 
cereal in the country, with 100 million tons in the 2018/2019 harvest (CONAB, 2019). 
The majority of maize production is destined for animal feed, mainly in 
developed countries (ERS-USDA, 2019), because this ingredient is the main source 
of low-cost energy, and without restrictions of use, for the most varied animal 
species. However, it is also used for human consumption either directly (cornmeal, 
starch, oil, etc.) or as an ingredient for the production of an abundance of other foods 
and products such as gummies, cookies, ice cream, hamburgers, sausages, 
medications, cosmetics, adhesives, greases, resins, etc. Corn starch also comes 
into the formulation of cleaning products, plastics, tires, paints, papers, and 
fireworks (Lotha et al., 2019). 
In this perspective, the maize demand to meet the consumption needs (human 
and animal) converge in two directions: increased production area and/or increased 
productivity. Although the area intended for corn production in Brazil is ~17.5 million 
hectares (FAS-USDA, 2019), the potential for spatial increase should occur mainly 
over degraded pasture areas, as there is a limited possibility of opening new areas 
(native vegetation suppression). There is a great potential for area increase in the 
time (two harvests in the same growing season), the total corn production was ~74% 
in the second harvest (CONAB, 2019). Thus, the production system intensification 
to increase productivity has been the most used way. 
2 
 
 
Advances in genetic research and development of more productive maize 
cultivars adapted to edaphoclimatic conditions are identified as the main responsible 
for effective productivity gains. However, these genetic gains have been 
accompanied by the development of sanitary, nutritional, and weed control 
(Manchanda et al., 2018). Additionally, new production system models were 
developed to intensify production, either by increasing productivity or increasing 
products from the same area (Pedreira et al., 2017) with lesser environmental 
impacts. 
In this sense, integrated systems are considered the greatest intensification 
level and diversification per area. However, the interaction among components is 
complex and changeable due to their diversification (Pedreira et al., 2018). These 
systems allow the soybean cultivation in summer, maize intercropped with grass in 
autumn-winter, and animal feed with pasture, resulted from the intercrop, and also 
the wood gains, generally, eucalyptus, when in integrated systems with trees 
(Magalhães et al., 2019). 
In integrated systems with trees, the trees exert the greatest influence on the 
other components. The shadow cast by the canopy, which varies between tree 
species, canopy structure and density, has beneficial effects on livestock 
production, especially reducing radiant heat load which minimizes heat stress 
(Domiciano et al., 2018). However, negative effects on plants are observed, 
associated with the photosynthetically active radiation (PAR) reduction on the crop 
and grain yield (Pezzopane et al., 2019; Magalhães et al., 2019). 
The PAR intercepted by trees causes a light deficit and reduces the red: far-
red ratio reduces on the crop in under-tree. This deficit may result in changes in their 
3 
 
 
plant morphophysiological characteristics to adapt to changing light conditions such 
as shade avoidance (Franklin, 2008). 
Given the above, our hypothesis is that the integrated systems with tree, as 
well as the intensity of shading arranged as a function of the tree row distance the 
corn crop, could exert effects on the corn physiological parameters. These effects 
could be to reflect in the crop productivity and the tissues cellular disposition which 
would culminate in the nutritive value of corn silage. In order to understand the 
research gap, we did a literature review (chapter I) describing recent advances in 
agricultural systems with corn production and how recent research can contribute 
to intensify and/or diversify the production system. Additionally, we developed two 
experiments with the objective of comparing the productive and physiological 
characteristics of maize (Zea mays L.) (chapter II), and losses, fermentative profile, 
and nutritive value of corn silage (chapter III) in maize intercropped with 
palisadegrass [Urochloa brizantha (Hochst. ex A. Rich.) 'Marandu'] growing in full 
sun, or in crop-livestock-forestry with single-row and triple-row groves with 
eucalyptus [Eucalyptus urograndis (hybrid of E. grandis W. Hill ex Maiden and E. 
urophylla S. T. Blake) clone H13]. 
 
REFERENCES 
CONAB. 2019. Acompanhamento da safra brasileira de grãos. Safra 2018/2019. 
CONAB, Brasília, DF. 
Domiciano, L.F., M.A. Mombach, P. Carvalho, N.M.F. da Silva, D.H. Pereira, et al. 
2018. Performance and behaviour of Nellore steers on integrated systems. 
Anim. Prod. Sci. 58(5): 920–929. doi: 10.1071/AN16351. 
ERS-USDA. 2019. Feedgrains Sector at a Glance. Washington, DC. 
FAS-USDA. 2019. World agricultural production. FAS/USDA, Washington, DC. 
4 
 
 
Franklin, K.A. 2008. Shade avoidance. New Phytol. 179(4): 930–944. doi: 
10.1111/j.1469-8137.2008.02507.x. 
Lotha, G., G. Young, M. Sampaolo, M. Petruzzello, and Y. Chauhan. 2019. Corn 
Plant. : Online. https://www.britannica.com/plant/corn-plant (accessed 8 
October 2019). 
Magalhães, C.A.S., B.C. Pedreira, H. Tonini, and A.L. Farias Neto. 2019. Crop, 
livestock and forestry performance assessment under different production 
systems in the north of Mato Grosso, Brazil. Agrofor. Syst. 93(6): 2085–2096. 
doi: 10.1007/s10457-018-0311-x. 
Manchanda, N., S.J. Snodgrass, J. Ross-Ibarra, and M.B. Hufford. 2018. Evolution 
and Adaptation in the Maize Genome. In: Bennetzen, J., Flint-Garcia, S., 
Hirsch, C., and Tuberosa, R., editors, The Maize Genome. Compendium of 
Plant Genomes. Springer, Cham. p. 319–332 
Pedreira, B.C., L.F. Domiciano, R.R. de A. Rodrigues, S.R.G. Moraes, C.A. de S. 
Magalhães, et al. 2017. Integração lavoura-pecuária: Novas tendências. In: 
Medeiros, F.H.V. [et al. ., editor, Novos sistemas de produção. UFLA, Lavras, 
MG. p. 128–160 
Pedreira, B.C., L.F. Domiciano, L. Vilela, J.C. Salton, W. Marchió, et al. 2018. O 
estado da arte e estudos de caso em sistemas integrados de produção 
agropecuária no Centro-Oeste do Brasil. In: de Souza, E.D., Silva, F.D. da, 
Assmann, T.S., Carneiro, M.A.C., Carvalho, P.C. de F., et al., editors, Sistemas 
Integrados de Produção Agropecuária no Brasil. Copiart, Tubarão, SC. p. 277–
300 
Pezzopane, J.R.M., A.C.C. Bernardi, C. Bosi, P.P.A. Oliveira, M.H. Marconato, et 
al. 2019. Forage productivity and nutritive value during pasture renovation in 
integrated systems. Agrofor. Syst. 93(1): 39–49. doi: 10.1007/s10457-017-
0149-7. 
 
5 
 
 
 
 
 
 
 
 
 
 
CHAPTER I 
 
RECENT ADVANCES IN MAIZE PRODUCTION IN INTEGRATED 
SYSTEMS: A REVIEW 
 
 
6 
 
 
Recent Advances in Maize Production in Integrated Systems: A Review 1 
 2 
Abstract 3Maize is a very important crop around the world supporting food security, especially 4 
in developing countries. However, the increasing demand for food and renewable 5 
energy resources has been supported studies of competitiveness and 6 
complementarity interactions between trees, crops, and animals. Thus, the 7 
integrated systems, in its various combinations, should promote a synergic 8 
relationship between the components, which results in greater production of crops, 9 
animals, and forestry. Our objective was to describe recent advances in integrated 10 
systems maize production and how recent research can contribute to intensify 11 
and/or diversify the production system. The current literature supports the following 12 
conclusions. The increase in the soil organic carbon in integrated systems improves 13 
the physical (density and aggregate stability), chemical (nutrient retention) and 14 
biological (greater diversity and microbial mass) properties. Great grain yield and 15 
resource savings are possible with the microbial inoculants use. In maize, the 16 
inoculants action is improved when associated with fertilizers and/or biochar. The 17 
biochar acts in soil conditioning, increasing the absorption and water and nutrients 18 
retention in the soil, favoring the maize growth. Maize grown between tree lines can 19 
adapt to moderate shade but reduces productivity. Thus, we identified the need for 20 
research in the areas of maize genetic improvement less susceptible to shading, 21 
intercropped management to minimizes competition, quantification of the stratified 22 
light profile by system component (tree, maize, and grass) and more complex and 23 
accurate mathematical models for predicting the success possibilities of the 24 
7 
 
 
integrated systems. Understanding these practices makes it possible to encourage 25 
and popularize integrated systems. 26 
 27 
Additional keywords: agroforestry, grain yield, forage mass, shade avoidance, soil 28 
quality 29 
1. Introduction 30 
Sustainable systems are recurring discussions topics in international forums, 31 
as well as rational land use, environmental issues and, mainly, deforestation of the 32 
Brazilian Amazon rainforest. Nevertheless, many of these discussions are more 33 
driven by economical protectionism rather than the search for socioenvironmental 34 
solutions, which should support sustainable production systems. 35 
Nevertheless, Brazil and other developing countries have strongly contributed 36 
to world food security, especially maize production, due to the increasing demand 37 
for food (FAO, 2010). The need to intensify production associated with breaking 38 
paradigms has transformed the world agricultural sector, which has invested efforts 39 
in diversifying and increasing productivity with less environmental impacts (Röös et 40 
al., 2017). Maize is one of the crops at the intensification vanguard, due to advances 41 
in genetic research and the development of cultivars adapted to broad 42 
edaphoclimatic conditions, followed by the development of nutritional management, 43 
pest, and weed control (Manchanda et al., 2018). Thus, maize became the most 44 
produced crop in the world with 1.12 billion tons, and the largest producers are the 45 
United States, China, and Brazil (FAS-USDA, 2019). 46 
In addition to the high consumption of maize for human and animal feed, there 47 
is an increased demand for renewable energy such as biodiesel and ethanol. This 48 
8 
 
 
demand boosted the number of companies installing large production industries in 49 
Brazil, enhancing the maize demand to produce ethanol and distilling co-products. 50 
As a result, there is a need to increase maize production to support this demand. 51 
However, the opening of new land should not occur for environmental reasons, 52 
leaving two potential options: increase production in degraded pasture areas; and 53 
the intensification of cropping systems. 54 
In both conditions, integrated systems appear as a promising strategy for the 55 
recovery of degraded areas, introducing row crops to intensifying forage-livestock 56 
systems (Carvalho et al., 2018). Although the practice of integrated systems dates 57 
back to the early days of agriculture (Anghinoni et al., 2013), in Brazil the current 58 
format is recent and has been incentivized by the Low Carbon Agriculture Plan 59 
(Brazil acronym, Plano ABC) of Minister of Agriculture, Livestock and Food Supply 60 
(Brazil acronym, MAPA) (Carvalho et al., 2014). 61 
The integrated systems should be arranged to address the particularities of 62 
each region in order to promote a synergistic relationship between the components, 63 
enhancing crops, animals and/or trees production, and consequently improving the 64 
social, economic and environmental aspects of the system (Costa et al., 2018). 65 
Thus, our objective was to describe the recent advances in integrated systems 66 
with maize production and the gaps that research needs to advance. We searched 67 
several databases throughout the world to identify manuscripts through keywords 68 
including integrated systems, integrated systems, and maize production, not limited 69 
by geographic region or climate. We do not intend to include all literature, but a 70 
representative subset that provides a recent advance and, in some cases, 71 
represents the diversity of opinion. 72 
9 
 
 
2. The maize 73 
Maize belongs to Poales order, Poaceae family, Panicoideae subfamily, 74 
Maydeae tribe, Zea genus, Zea mays species (Brieger and Blumenschein, 1966). 75 
The most accepted origin of maize is in the American tropical region, probably 76 
Mexico. This culture was initially cultivated by the Mayan and Aztec peoples, who 77 
not only fed on it but also had a religiously meaning (Iltis, 2009). 78 
Maize has a great worldwide importance, not only for the greatest producing 79 
countries such as the United States, Brazil, China, and the European Union as an 80 
export product, and broadly used for animal feed, but also in developing countries, 81 
mainly Africa and Asia, as a human food source (Sans and Combris, 2015). 82 
Maize, the first native American crop of global proportion, has a multipurpose 83 
use but has been mainly used for food (human and animal) and ethanol production 84 
(ERS-USDA, 2019). Regarding human food, the main consumption forms are flour 85 
(maizemeal), starch and oil. Also, maize products, especially starch, can be an 86 
ingredient to other foods, medicines, cosmetics, adhesives, resins, cleaning 87 
products, plastics, tires, paints, papers, and fireworks (Lotha et al., 2019). 88 
In recent decades, great advances have been made in maize genetic 89 
improvement (genome) and in the great agronomic knowledge of the plant 90 
(Manchanda et al., 2018), resulting in important advanced in production techniques. 91 
The optimum growing temperature is from 25 to 30 °C, wherein the germination 92 
period requires a minimum temperature of 10 °C. High temperatures (above 24 °C 93 
at night) contribute to the reduction of the net photosynthetic rate by increasing 94 
respiration, directly affecting production. In addition, the maize plant requires a 95 
minimum rainfall between 350 and 500 mm, when the water consumed by the plant 96 
10 
 
 
during the growing cycle is ~600 mm, with the water demand peak during the 97 
germination phase and the 15 days before and after flowering (Cruz et al., 2010). 98 
Maize productivity for both grain and silage is a function of the cultivar or hybrid 99 
used. The average Brazilian production was 5.71 Mg/ha of grains yield in the 100 
2018/2019 crop season, with the greatest productivity in the south region, averaging 101 
6.85 Mg/ha (MAPA, 2019), while the United States was 11.07 Mg/ha (FAS-USDA, 102 
2019). Maize silage forage mass range from 10 to 26 Mg DM/ha (Jaremtchuk et al., 103 
2005;Pariz et al., 2016; Fischer et al., 2020). 104 
3 Maize in integrated systems 105 
In integrated systems, the association of species and the use of conservation 106 
practices, such as no-tillage system, emerges as an option for system intensification 107 
and diversification, as well as the recovery of degraded pastures (Pedreira et al., 108 
2017b). Crops and/or pastures (animal production) can be integrated with woody 109 
tree species, simultaneously or sequentially, which increases land-use efficiency, 110 
resulting in greater income diversification (Pedreira et al., 2018). 111 
Priorly, accurate and systematic planning during the establishment of the 112 
integrated systems can define success or failure. During the planning, producers 113 
should take into account soil, climatic, agricultural, forage and forestry conditions 114 
(Pedreira et al., 2017b). Besides, analyze marketing, logistics, and availability of 115 
trained labor before making the decision to move towards integrated systems and 116 
define its arrange (Balbino et al., 2012) to guarantee economic and environmental 117 
returns. 118 
11 
 
 
3.1. Soil quality in integrated systems and soil conditioner 119 
The integrated systems are complex systems in which interactions between 120 
system components must be deeply assessed. The soil in these systems plays a 121 
key role in influencing all other components. Thus, sustainable soil management in 122 
these systems requires a complex understanding of soil properties and functions. 123 
In western France, a region characterized by high stocking rates and 124 
integration between annual crops (cereals and grass) and permanent pasture, the 125 
physical, chemical and biological properties of the soil were evaluated in 164 sites 126 
distributed over several properties. Soil properties increments were 22, 5, 6, and 3% 127 
for aggregate stability, total nitrogen, organic carbon and microbial mass, 128 
respectively, from not integrating to pasture integrating systems (Viaud et al., 2018). 129 
The authors integrated these results into a soil quality index (SQI) and observed that 130 
crop rotations did not affect SQI in pasture-associated production systems. Thus, 131 
pasture-crop rotation with temporary pastures presented higher SQI than the annual 132 
crops under conventional monoculture. 133 
The SQI integrates the general aspects of a complex system and it can be 134 
effective in assessing the impact on qualitative and quantitative soil aspects, 135 
contributing to clarify the relationships among soil properties in cropping and 136 
livestock systems, and facilitating comparisons (Viaud et al., 2018; Rahman et al., 137 
2019). In this perspective, the SQI in integrated maize production systems with 138 
sheep and goats in West Africa increased by 51% when the animals (70-140 139 
animals ha–1) were introduced in the area (Rahman et al., 2019). 140 
The SQI is strongly influenced by soil microbial biomass. Thus, the importance 141 
of microbial quantification in the soil quality evaluation, as well as determining the 142 
12 
 
 
organic substrate availability (e.g. organic matter and/or organic carbon) for soil 143 
microbial growth is essential (Paz‐Ferreiro and Fu, 2016). 144 
There are some ways to increase soil organic matter (SOM) content, however, 145 
in tropical soils where mineralization rates are more intense, higher SOM-146 
efficiencies increase are achieved in no-till cropping systems with cover crops 147 
associated to crop-rotation or succession, especially when livestock is included as 148 
a component (Rahman et al., 2019; Paramesh et al., 2019; Sarto et al., 2020). 149 
The increase in SOM is essential to improve SQI and microbial activity, as well 150 
as mitigating greenhouse gases by sequestration organic carbon, making it a 151 
challenge for tropical agriculture. However, this challenge can be overcome with the 152 
use of biochar. A review, Sarfraz et al., (2019) demonstrates that the combined 153 
application of PGP microorganisms and biochar improved soil quality, carbon 154 
sequestration, and plant growth. 155 
Biochar is a derived compost from plant biomass, as woody materials or straw 156 
residues obtained by the pyrolysis process. The heterogeneous nature makes of 157 
biochar an excellent soil conditioner, capable of soil buffering (lower pH variation), 158 
great adsorption potential and water retention (great porosity), large specific surface 159 
area (lower particle size), and cation exchange capacity (large number of functional 160 
groups) (Sarfraz et al., 2017, 2019). In addition, it is highly stable in the soil, taking 161 
millions of years to be degraded and, consequently, release organic carbon in the 162 
atmosphere (Lehmann et al., 2006). 163 
The biochar as a soil conditioner on maize crops has increased water-use 164 
efficiency (WUE), with the reduction of evapotranspiration and increase of the water 165 
retention capacity in the soil through the total porosity increase (biochar + soil), 166 
minimizing the negative impacts of water stress (Faloye et al., 2019). In addition, 167 
13 
 
 
residual biochar together with fertilizer phosphorus and microbial inoculants 168 
(arbuscular mycorrhizal fungi) increased the extraction of nutrients by hyphae from 169 
the effective colonization of the roots. However, irrespective of microbial inoculants, 170 
biochar addition increased P, K and Ca absorption to maize plants (Rafique et al., 171 
2020). This maximizes the residual use of nutrients applied in the ancestor crop with 172 
productivity gain. Considering that the maintenance of soil microbial fauna also plays 173 
an important role in plant production, in biochar-conditioned soils the potential for 174 
nematode reduction, particularly bacterivorous groups, can be up to eight times 175 
greater than non-conditioned soils (Kamau et al., 2019). 176 
The biochar-conditioned soil (associated or not with mineral fertilizer and/or 177 
microorganisms) increases cation exchange capacity due to the increase in the total 178 
soil organic carbon, and reduction in soil pH. Also, increase photosynthetic rate, 179 
stomatal conductance, and WUE (Sarfraz et al., 2017), resulting in greater grain 180 
yield (Kätterer et al., 2019; Faloye et al., 2019; Kamau et al., 2019; Rafique et al., 181 
2020). In addition, biochar increases (1% w/w; ~25 kg DM biochar –1) the nitrogen-182 
use efficiency in maize crops, reducing nitrogen fertilization by up to 50% of the 183 
recommended dose, due to improved soil organic matter and cation exchange 184 
capacity (Sarfraz et al., 2017), minimizing production costs and greenhouse gases 185 
emissions. 186 
3.2. Soil and plant microbiology 187 
To understand the soil microbial relationships in integrated systems, the 188 
community and microbial activity of a tropical soil [Arenic Hapludult (Soil Survey 189 
Staff, 2014)], an integrated system with palisadegrass [Urochloa brizantha (Hochst. 190 
Ex A. Rich.) R. Webster ‘Marandu’] and eucalyptus (Eucalyptus sp.) tree was 191 
14 
 
 
analyzed by Sarto et al., (2019). Authors observed that the composition of the 192 
microbial community enzymatic activities (β-glucosidase and N-acetyl glucosidase) 193 
from soil reduced in areas at 0 and 6 m near to the trees in the soil profile at 5–20 194 
cm, while increase at 2 and 4 m of the tree. Microbial biomass (actinomycete, gram-195 
positive bacteria, mycorrhizal fungi arbuscular and fungal abundance) was greater 196 
in the Cerrado (Savannah) than in the pasture in monoculture and in the integrated 197 
system. Besides, the eucalyptus addition in the pasture resulted in soil carbon and 198 
nitrogen stocks similar to the native Cerrado. 199 
Although the importance of microbial activity on soil quality, especially in 200 
grazing integrated systems, the utilization of bacteria with special characteristics201 
(e.g. diazotrophic/endophytic), such as plant growth-promoting (PGP) or nutrient 202 
solubilizers and atmospheric nitrogen-fixers (BNF) is essential when cropping maize 203 
(Di Salvo et al., 2018; Youseif, 2018; Marag and Suman, 2018; López-Carmona et 204 
al., 2019). 205 
Evaluating the potential of bacteria isolated from maize plants with PGP activity 206 
and/or BNF indicated an effective reduction of ~25% of mineral nitrogen fertilizer 207 
input (Marag and Suman, 2018). It can contribute to mitigating the risks of 208 
environmental contamination (nitrate leaching to watershed), as well as reducing 209 
total system production costs. 210 
In this sense, Youseif (2018) isolated 49 rhizospheric/endophytic bacterial in 211 
vitro by restriction analysis of amplified ribosomal DNA using four restriction 212 
enzymes and evaluated for PGP characteristics and their beneficial effects on early 213 
maize growth. Thus, of the 49 isolates, seven produced high levels (32.1–82.8 μg 214 
mL–1) of indole-3-acetic acid; 11 had phosphate solubilization skills (101–163 μg 215 
mL–1) and 12 had potential acetylene reduction activities (100–1800 nmol C2H4 mg–216 
15 
 
 
1 protein h–1). Also, under greenhouse conditions, the inoculated plants showed 217 
greater biomass compared to non-inoculated plants due to the great BNF efficiency 218 
of these isolates and indol-3-acetic acid production (Youseif, 2018) and potential for 219 
biocontrol activity of fungal pathogens in maize such as Turcicum leaf rust 220 
(Exserohilum turcicum) and root rot (Rhizoctonia solani) (Marag and Suman, 2018). 221 
Discussions of structural and functional diversity of plant microbiota, as well as 222 
proteomic and host-specific site analysis in maize, are available in the literature 223 
(Lade et al., 2018; Vidotti et al., 2019; Hartmann et al., 2019) 224 
In Brazil, the main genus of endophytic bacteria used in grasses, especially 225 
maize (Schaefer et al., 2018; Galindo et al., 2019; Zeffa et al., 2019) and pasture 226 
(Pedreira et al., 2017a; Leite et al., 2019; Bourscheidt et al., 2019), is Azospirillum 227 
spp. This genus, as well as Azobacter spp., is an associative bacteria that release 228 
part of the nitrogen fixed to the associated plant and, unlike symbiotic bacteria, they 229 
do not nodule (Hungria, 2011). Thus, the mineral fertilizer nitrogen input can be 230 
reduced, but still needed to fill the plant´s requirements (Bourscheidt et al., 2019). 231 
Studies were carried out to elucidate the effect of maize seed inoculation with 232 
Azospirillum brasilense under different nitrogen levels and/or efficiency of nitrogen 233 
utilization intercropped or not with pasture. Schaefer et al., (2018) analyzed the 234 
maize inoculated or not with A. brasilense on a winter pasture (Avena strigosa + 235 
Lolium multiflorum Lam.) in an integrated system with a residual 10, 20 and 30 cm 236 
height post-grazing (continuous stocking) and fertilized with 0, 75, 150, 225 or 300 237 
kg N ha–1. It was observed resulted in increased biomass and grain yield, where, in 238 
the absence of bacteria, the responses were linear with maximum dose presenting 239 
the highest grain yield (10.2 Mg DM ha–1) regardless of post-grazing height, while 240 
16 
 
 
most of inoculated treatments responses presented quadratic effect for fertilization, 241 
with the curve vertex in 208-219 kg N ha–1. 242 
Similarly, when maize was inoculated with A. brasilense and evaluated 243 
different doses and sources of nitrogen fertilization, Galindo et al., (2019) observed 244 
that there was no difference between nitrogen sources (urea or urea with 245 
thiophosphoric N-(n-butyl) triamide urease inhibitor), but inoculation improved 246 
nitrogen use efficiency in 3.5-fold, with an increase of 14% on grain yield. Moreover, 247 
it was observed that although increasing the nitrogen dose up to 200 kg N ha–1 with 248 
inoculation increased grain yield, regardless of source, the economic viability was 249 
obtained with 100 kg N ha–1 with urea and A. brasilense inoculation. It supports that 250 
A. brasilense can be an alternative to reduce mineral fertilization input without 251 
reducing grain yield. 252 
3.3. Maize-grass intercropping 253 
Intercropping grasses with maize are a common practice in the tropical region, 254 
especially in those with high rainfall. The grass can be used as a cover crop or by 255 
grazing animals (Pedreira et al., 2018). However, intercropping should not affect the 256 
maize growing and yield, for that reason, competition for light, water, and nutrients 257 
should be minimized (Moreira et al., 2018). To avoid water and nutrients restrictions 258 
in the soil, the intercropped maize can be planted with a row spacing of from 0.45 to 259 
0.90 m without compromising forage or grain yield (Borghi et al., 2012). When 260 
intercropped maize is used for silage production, it should preferably be harvested 261 
above 0.45 m of height, thus ensuring a great nutrient concentration in maize leaves, 262 
resulting in maize forage mass with great nutritive value, as well as more soil 263 
coverage and N, P and K cycling (Pariz et al., 2016). 264 
17 
 
 
In Brazil, grasses of the genus Brachiaria (syn. Urochloa) spp. has been 265 
predominantly used to maize intercropping in integrated systems (Borghi et al., 266 
2012; Pariz et al., 2016, 2017; Almeida et al., 2017), with or without trees due to lag 267 
initial growth of the grass and great adaptation under limited irradiance (Gomes et 268 
al., 2019; Nascimento et al., 2019). The cultivars of the species B. brizantha (Hochst. 269 
Ex A. Rich.) have been largely used due to the rapid growth after maize harvesting, 270 
increasing forage and animal production and nutrient cycling. This cultivar has more 271 
response when rainfall conditions are favorable (rainy season), while B. ruziziensis 272 
and B. decumbens are most used in the offseason (less favorable water conditions) 273 
(Oliveira et al., 2019; Pezzopane et al., 2020). Moreover, common management in 274 
grass-maize intercropping is the application of the herbicides (atrazine and 275 
nicosulfuron) in sub-doses for weed control and delay forage growth minimizing the 276 
competition with maize growth and yield loss (Santos et al., 2015). 277 
The productivity of the maize-grass intercropping is variable depending on the 278 
maize variety, maize and grass density plants, and management practices. Borghi 279 
et al. (2012) compared the maize-palisadegrass intercropping and observed that the 280 
grain yield in monoculture (10.3 Mg DM ha–1) did not differ from the intercropped 281 
(9.7 Mg DM ha–1). Similarly, Almeida et al. (2017) evaluated the nitrogen fertilization 282 
rates on the grain yield and total forage mass in a maize-palisadegrass intercropping 283 
and observed that the grain yield was affected by intercropping when the N doses 284 
were lesser than 100 kg ha–1, but above that rate, grain yield in the intercropping 285 
and monoculture were similar, reaching 10 Mg DM ha–1 of grain yield and 19.0 Mg 286 
DM ha–1 in total forage mass. 287 
18 
 
 
3.4. Maize-forestry intercropping 288 
In integrated systems with forestry (also called agroforestry system), crop, livestock 289 
and forestry activities need to be established, considering the distinct management 290 
characteristics of each component and the need for temporal and spatial 291 
management adjustments, which will allow the system to present long-term 292 
sustainability (Macedo et al., 2019). 293 
There are several aspects to be considered in the planning of agroforestry 294 
systems (Pedreira et al., 2018). Among the essential planning parameters for the 295 
success of agroforestry systems, there is the choice of the species that will compose 296 
the system (forestry and crop/pasture), the arrangement and the temporal 297 
sequencesof implantation and management of the system (Macedo et al., 2019). 298 
The tree species choice, as well as their spatial arrangement, requires 299 
attention because the trees will be the most influencer over the other system 300 
components, which may cause deleterious effects rather than synergic (Pedreira et 301 
al., 2019). The excessive shading, trees litter deposition, and the allelopathic effect 302 
can negatively affect the system (Melotto et al., 2019). In addition, it is essential to 303 
consider the site-specificities characteristics (climate, soil, relief, trade, and logistics) 304 
for wood and/or non-wood products such as fruits, seeds, tannins, oils, and others 305 
that may be used as raw material (Leakey and Page, 2006). 306 
The spatial arrangement of trees in the agroforestry system mainly influences 307 
the understory microclimate conditions, reducing the temperature (Domiciano et al., 308 
2018), wind speed (Karvatte Jr et al., 2016) and mainly photosynthetically active 309 
radiation (PAR) (Gomes et al., 2019; Nascimento et al., 2019). Thus, in agroforestry 310 
systems, especially in situations where there is an increase in shade levels near to 311 
19 
 
 
the trees, a reduction in forage production has been reported (Gomes et al., 2019; 312 
Nascimento et al., 2019; Pezzopane et al., 2019, 2020) and crop yield (Pardon et 313 
al., 2018; Moreira et al., 2018; Nardini et al., 2019). These factors are potentiated 314 
when associated with water competition (Jose et al., 2004). However, moderate 315 
shading also may be positive for forage quality characteristics, increasing mainly the 316 
crude protein concentration (Orefice et al., 2019; Pezzopane et al., 2019, 2020; 317 
Pang et al., 2019). 318 
Maize intercropping with trees and other grasses, shading, and competition for 319 
soil resources may directly affect maize growth and development (Pardon et al., 320 
2018; Pontes et al., 2018). Maize is a C4 plant, which concentrates CO2 at Rubisco 321 
activity site and reduces O2 concentration, greatly reducing photorespiration, and 322 
ensuring a better photosynthetic efficiency (Taiz et al., 2017). Although plants with 323 
C4 metabolism can responses to moderate shade (Mugunga et al., 2017; 324 
Nascimento et al., 2019; Pezzopane et al., 2019) when grown under reduced PAR 325 
over long periods, a decrease in crop growth rates is expected (Mathur et al., 2018), 326 
because adaptation mechanisms are not able to increase the processes efficiency 327 
to follow the PAR reduction. 328 
Shading adaptation mechanisms are regulated by phytohormones and 329 
signaling molecules, mainly red and far-red light signals, such as phytochromes, 330 
photosensitive phosphoproteins that have crucial roles in plant development 331 
responses to light throughout the life cycle (Franklin and Quail, 2010). 332 
Phytochromes, especially B, D, and E (Franklin, 2008), driven the plant plasticity in 333 
response to changes in the light environment, regardless of species (Gururani et al., 334 
2015). 335 
20 
 
 
Plants can respond to moderate shading (red: far-red ratio [R:FR] reduction) 336 
or intense shading (R:FR reduction plus PAR reduction) at greater planting densities 337 
(Wu et al., 2019) or in agroforestry systems, with several adaptive responses 338 
including increased stem elongation, reduced branching or tillering, reorientation of 339 
leaf growth direction and early flowering (increased apical dominance) (Franklin and 340 
Quail, 2010). This reaction set is known as ‘shade avoidance syndrome’ (Franklin, 341 
2008). In addition to these responses, C4 metabolism plants under light-limited 342 
(moderate shade) may have greater photosynthetic efficiency (Nascimento et al., 343 
2019) due to the increase in the antenna complex, especially chlorophyll b and 344 
carotenoids (Baig et al., 2005). Thus, these responses increase the chances of plant 345 
individual success under limited irradiance, which may be insufficient to support 346 
grain yield compared to full sun (Wu et al., 2019). 347 
The productivity of maize-forestry intercropping responds greatly to the 348 
species, arrangement, density, and orientation of the trees, also to the maize 349 
management grown in the understory. In this sense, Moreira et al. (2018) evaluated 350 
the grain yield and total forage mass of maize-forestry (Eucalyptus sp.) intercropping 351 
and monoculture system and observed that averaging of three years, the 352 
intercropped and monoculture systems presented grain yield of 5.4 and 7.5 Mg DM 353 
ha–1 and total forage mass of 12.1 and 16.1 Mg DM ha–1, respectively. Similarly, 354 
Pardon et al. (2018) evaluated the influence of trees distance and age (varying tree 355 
species) on maize grain yield and forage mass in Western Europe and observed 356 
that in the average of the distances in systems with young, middle-aged, and long-357 
standing trees presented forage mass of 11.8, 13.5, and 9.1 Mg DM ha–1, 358 
respectively, while the monoculture produced 19.9 Mg DM ha–1, and grain yield 359 
presented 9.1, 5.8, and 6.5 Mg DM ha–1, respectively, and 10.2 Mg DM ha–1 in the 360 
21 
 
 
monoculture. The lesser yields were reported in the distance near the trees (2.5 m) 361 
than in the far (30 m), where the forage mass was 6.1 and 17.9 Mg DM ha–1, while 362 
the grain yield was 4.8 and 9.2 Mg DM ha–1, respectively. 363 
3.5. Maize silage quality in integrated systems 364 
In the same way that there is a tendency to reduce maize productivity with trees 365 
proximity (Mugunga et al., 2017; Pardon et al., 2018; Nardini et al., 2019), there is 366 
a tendency to nutritional value increase, mainly of crude protein (CP), and dry matter 367 
(DM) decreases in pasture (Pezzopane et al., 2019; Lima et al., 2019) and in maize 368 
forage mass for silage (Pardon et al., 2018; Pontes et al., 2018). In general, the 369 
increased CP concentration in shaded plants is attributed to an increase in the N 370 
concentration due to the absorption of mineralized N from the soil organic matter 371 
under the trees (Dollinger and Jose, 2018) and physiological changes (Reynolds et 372 
al., 2007). 373 
Pontes et al. (2018) evaluated the nutritive value of maize silage in a maize-374 
forestry intercropping and monoculture system under 90 and 180 kg N ha–1 and 375 
observed a 13% reduction in DM and a 35% increase in CP of the intercropping 376 
system to monoculture with 90 kg N ha-1 fertilized. When 180 kg N ha–1 fertilized, 377 
the CP in the systems was similar (78 g DM kg–1), as well as among doses in the 378 
intercropping (80 g DM kg–1). This allows us to infer that the maize-forestry 379 
intercropping system is more N-use efficient, making it possible to reduce the N-380 
fertilization and obtain silage of the same nutritive value. 381 
 382 
 383 
22 
 
 
4. Considerations and future perspectives 384 
In recent years, large effort in scientific research has been done to support maize 385 
production in integrated systems as an economically viable and environmentally 386 
sustainable land use practice, which may be applicable for either small and/or large 387 
producers. 388 
The maize production in a more complex system like integrated systems 389 
requires, a comprehensive understanding of tree-crop interactions to guarantee 390 
system sustainability in the long-term. Although science has made progress in our 391 
understanding of complex interactions, studies generating basic and applied 392 
information is needed to establish guidelines for tree-crop interactions in integrated 393 
systems. 394 
The evidence presented here contributes to understanding the state of the art 395 
in maize production in integrated systems. However, we also indicated some 396 
research gaps, which are critical to support deeper knowledge and then incentivize 397 
more crop-forestry systems adoption. Thisrequires future research in various 398 
knowledge areas, including: 399 
1. Genetic improvement with genomic modification of tree, maize and grass 400 
components to increase productivity. For example, selection and/or morphogenic 401 
modifications for vertical growth of tree roots and maize leaves, or genetic 402 
manipulation of phytochrome expression for greater shade tolerance; 403 
2. Research in management practices to minimize competition and maximize 404 
yields, for example, deepening of planting furrows and soil conditioners use to 405 
deepen trees rooting, also the fertilization and/or differential harvesting maize 406 
(silage or grain) at a function of irradiance availability (e.g. tree-row distances), etc.; 407 
23 
 
 
3. Use of tree species (native and exotic) arranged at low density (e.g., greater 408 
tree-row distances) with maize in integrated systems to favor maize production; 409 
4. Quantification of light extinction coefficients in both quantity (photosynthetic 410 
photon flux density) and quality (spectral wavelength) in the integrated system (tree, 411 
crop, and grass) to identify the most appropriate management strategies; 412 
5. Development and validation of mathematical models that allow the 413 
integration of different interaction vectors (positive and negative) in the complex 414 
integrated systems. It could improve the chances to design a successful system 415 
predicting yields based on available resources. 416 
 417 
Acknowledgments 418 
The autor acknowledge CAPES (Coordenação de Aperfeiçoamento de Pessoal de 419 
Nível Superior, Brazil, finance code 001) and FAPEMAT (Fundação de Amparo à 420 
Pesquisa do Estado de Mato Grosso) for granting a scholarship to the first author. 421 
Conflict of Interest 422 
The authors declare that there is no conflict of interest. 423 
References 424 
Almeida, R.E.M. de, J.L. Favarin, R. Otto, C.P. Junior, S.M. de Oliveira, et al. 2017. 425 
Effects of nitrogen fertilization on yield components in a corn-palisadegrass 426 
intercropping system. Aust. J. Crop Sci. 11(03): 352–359. doi: 427 
10.21475/ajcs.17.11.03.pne273. 428 
Anghinoni, I., P.C.D.F. Carvalho, S.E. Valadão, and G. de A. Costa. 2013. 429 
Abordagem sistêica do solo em Sistemas Integrados de Produção Agrícola e 430 
Pecuária no subtrópico brasileiro. In: Araújo, A.P. and Avelar, B.J.R., editors, 431 
24 
 
 
Tópicos em Ciência do Solo. UFV, Viçosa, MG. p. 325–380 432 
Baig, M.J., A. Anand, P.K. Mandal, and R.K. Bhatt. 2005. Irradiance influences 433 
contents of photosynthetic pigments and proteins in tropical grasses and 434 
legumes. Photosynthetica 43(1): 47–53. doi: 10.1007/s11099-005-7053-5. 435 
Balbino, L.C., A.N. Kichel, D.J. Bungenstab, and R.G. de Almeida. 2012. Sistemas 436 
de integração: o que são, suas vantegens e limitações. In: Bungenstab, D.J., 437 
editor, Sistemas de integração lavoura-pecuária-floresta. 2nd ed. Embrapa, 438 
Brasília. p. 256 439 
Borghi, É., C.A.C. Crusciol, A.S. Nascente, G.P. Mateus, P.O. Martins, et al. 2012. 440 
Effects of row spacing and intercrop on maize grain yield and forage production 441 
of palisade grass. Crop Pasture Sci. 63(12): 1106. doi: 10.1071/CP12344. 442 
Bourscheidt, M.L.B., B. Carneiro e Pedreira, D.H. Pereira, M.C. Zanette, and J. 443 
Devens. 2019. Nitrogen input strategies in pastures: mineral fertilizer, bacterial 444 
inoculant and consortium with forage peanuts. Sci. Electron. Arch. 12(3): 137. 445 
doi: 10.36560/1232019784. 446 
Brieger, F.G., and A. Blumenschein. 1966. Botânica e origem do milho. Cultura e 447 
adubação do milho. Instituto Brasileiro de Potassa, São Paulo, SP. p. 81–107 448 
Carvalho, P.C. de F., R.S. Barro, A. Barth Neto, P.A. de A. Nunes, A. de Moraes, et 449 
al. 2018. Integrating the pastoral component in agricultural systems. Rev. Bras. 450 
Zootec. 47(0): 1–12. doi: 10.1590/rbz4720170001. 451 
Carvalho, P.C. de F., A. de Moraes, L. da S. Pontes, I. Anghinoni, R.M. Sulc, et al. 452 
2014. Definições e terminologias para Sistema Integrado de Produção 453 
Agropecuária. Rev. Ciência Agronômica 45(5): 1040–1046. 454 
www.ccarevista.ufc.br (accessed 23 July 2017). 455 
Costa, M.P., J.C. Schoeneboom, S.A. Oliveira, R.S. Viñas, and G.A. de Medeiros. 456 
2018. A socio-eco-efficiency analysis of integrated and non-integrated crop-457 
livestock-forestry systems in the Brazilian Cerrado based on LCA. J. Clean. 458 
Prod. 171: 1460–1471. doi: 10.1016/j.jclepro.2017.10.063. 459 
Cruz, J.C., I.A.P. Filho, R.C. Alvarenga, M.M.G. Neto, J.H.M. Viana, et al. 2010. 460 
Cultivo do Milho. Sistemas de Produção. 6th ed. Embrapa Milho e Sorgo. p. 1–461 
10 462 
Dollinger, J., and S. Jose. 2018. Agroforestry for soil health. Agrofor. Syst. 92(2): 463 
213–219. doi: 10.1007/s10457-018-0223-9. 464 
25 
 
 
Domiciano, L.F., M.A. Mombach, P. Carvalho, N.M.F. da Silva, D.H. Pereira, et al. 465 
2018. Performance and behaviour of Nellore steers on integrated systems. 466 
Anim. Prod. Sci. 58(5): 920–929. doi: 10.1071/AN16351. 467 
ERS-USDA. 2019. Feedgrains Sector at a Glance. Washington, DC. 468 
Faloye, O.T., M.O. Alatise, A.E. Ajayi, and B.S. Ewulo. 2019. Effects of biochar and 469 
inorganic fertiliser applications on growth, yield and water use efficiency of 470 
maize under deficit irrigation. Agric. Water Manag. 217(December 2018): 165–471 
178. doi: 10.1016/j.agwat.2019.02.044. 472 
FAO. 2010. An international consultation on integrated crop-livestock systems for 473 
development the way forward for sustainable production. FOOD AND 474 
AGRICULTURE ORGANIZATION OF THE UNITED NATIONS, Roma. 475 
FAS-USDA. 2019. World agricultural production. FAS/USDA, Washington, DC. 476 
Fischer, J., H. Böhm, and J. Heβ. 2020. Maize-bean intercropping yields in Northern 477 
Germany are comparable to those of pure silage maize. Eur. J. Agron. 478 
112(August 2019): 125947. doi: 10.1016/j.eja.2019.125947. 479 
Franklin, K.A. 2008. Shade avoidance. New Phytol. 179(4): 930–944. doi: 480 
10.1111/j.1469-8137.2008.02507.x. 481 
Franklin, K.A., and P.H. Quail. 2010. Phytochrome functions in Arabidopsis 482 
development. J. Exp. Bot. 61(1): 11–24. doi: 10.1093/jxb/erp304. 483 
Galindo, F.S., M.C.M. Teixeira Filho, S. Buzetti, P.H. Pagliari, J.M.K. Santini, et al. 484 
2019. Maize Yield Response to Nitrogen Rates and Sources Associated with 485 
<i>Azospirillum brasilense. Agron. J. 111(4): 1985. doi: 486 
10.2134/agronj2018.07.0481. 487 
Gomes, F.J., C.G.S. Pedreira, C. Bosi, J. Cavalli, S.G. Holschuch, et al. 2019. 488 
Shading Effects on Marandu Palisadegrass in a Silvopastoral System: Plant 489 
Morphological and Physiological Responses. Agron. J. 111(5): 1–9. doi: 490 
10.2134/agronj2019.01.0052. 491 
Gururani, M.A., M. Ganesan, and P.-S. Song. 2015. Photo-biotechnology as a tool 492 
to improve agronomic traits in crops. Biotechnol. Adv. 33(1): 53–63. doi: 493 
10.1016/j.biotechadv.2014.12.005. 494 
Hartmann, A., D. Fischer, L. Kinzel, S.P. Chowdhury, A. Hofmann, et al. 2019. 495 
Assessment of the structural and functional diversities of plant microbiota: 496 
Achievements and challenges – A review. J. Adv. Res. 19: 3–13. doi: 497 
26 
 
 
10.1016/j.jare.2019.04.007. 498 
Hungria, M. 2011. Inoculação com Azospirillum brasilense: inovação em rendimento 499 
a baixo custo. Embrapa Soja, Londrina, PR. 500 
Iltis, H.H. 2009. Origin of Polystichy in Maize. In: Staller, J., Tykot, R., and Benz, B., 501 
editors, Histories of maize: multidisciplinary approaches to the prehistory, 502 
linguistics, biogeography, domestication, and evolution of maize. Left Coast 503 
Press, Walnut Creek, CA. p. 21–53 504 
Jaremtchuk, A.R., C.C. Jaremtchuk, B. Baglioli, M.T. Medrado, L.A. Kozlowski, et 505 
al. 2005. Características agronômicas e bromatológicas de vinte genótipos de 506 
milho (<em>Zea mays</em> L.) para silagem na região leste paranaense. Acta 507 
Sci. Anim. Sci. 27(2). doi: 10.4025/actascianimsci.v27i2.1220.508 
Jose, S., A.R. Gillespie, and S.G. Pallardy. 2004. Interspecific interactions in 509 
temperate agroforestry. Agrofor. Syst. 61–62(1–3): 237–255. doi: 510 
10.1023/B:AGFO.0000029002.85273.9b. 511 
Kamau, S., N.K. Karanja, F.O. Ayuke, and J. Lehmann. 2019. Short-term influence 512 
of biochar and fertilizer-biochar blends on soil nutrients, fauna and maize 513 
growth. Biol. Fertil. Soils 55(7): 661–673. doi: 10.1007/s00374-019-01381-8. 514 
Karvatte Jr, N., E.S. Klosowski, R.G. de Almeida, E.E. Mesquita, C.C. de Oliveira, 515 
et al. 2016. Shading effect on microclimate and thermal comfort indexes in 516 
integrated crop-livestock-forest systems in the Brazilian Midwest. Int. J. 517 
Biometeorol. 60(12): 1933–1941. doi: 10.1007/s00484-016-1180-5. 518 
Kätterer, T., D. Roobroeck, O. Andrén, G. Kimutai, E. Karltun, et al. 2019. Biochar 519 
addition persistently increased soil fertility and yields in maize-soybean 520 
rotations over 10 years in sub-humid regions of Kenya. F. Crop. Res. 521 
235(March): 18–26. doi: 10.1016/j.fcr.2019.02.015. 522 
Lade, S.B., C. Román, A.I. Cueto-Ginzo, L. Serrano, E. Sin, et al. 2018. Host-523 
specific proteomic and growth analysis of maize and tomato seedlings 524 
inoculated with Azospirillum brasilense Sp7. Plant Physiol. Biochem. 525 
129(June): 381–393. doi: 10.1016/j.plaphy.2018.06.024. 526 
Leakey, R.R.B., and T. Page. 2006. The ‘ideotype concept’ and its application to the 527 
selection of cultivars of trees providing agroforestry tree products. For. Trees 528 
Livelihoods 16(1): 5–16. doi: 10.1080/14728028.2006.9752542. 529 
Lehmann, J., J. Gaunt, and M. Rondon. 2006. Bio-char Sequestration in Terrestrial 530 
27 
 
 
Ecosystems – A Review. Mitig. Adapt. Strateg. Glob. Chang. 11(2): 403–427. 531 
doi: 10.1007/s11027-005-9006-5. 532 
Leite, R.D.C., J.G.D. dos Santos, E.L. Silva, C.R.C.R. Alves, M. Hungria, et al. 2019. 533 
Productivity increase, reduction of nitrogen fertiliser use and drought-stress 534 
mitigation by inoculation of Marandu grass (Urochloa brizantha) with 535 
Azospirillum brasilense. Crop Pasture Sci. 70(1): 61. doi: 10.1071/CP18105. 536 
Lima, M.A., D.S.C. Paciullo, M.J.F. Morenz, C.A.M. Gomide, R.A.R. Rodrigues, et 537 
al. 2019. Productivity and nutritive value of Brachiaria decumbens and 538 
performance of dairy heifers in a long-term silvopastoral system. Grass Forage 539 
Sci. 74(1): 160–170. doi: 10.1111/gfs.12395. 540 
López-Carmona, D.A., A. Alarcón, E. Martínez-Romero, J.J. Peña-Cabriales, and J. 541 
Larsen. 2019. Maize plant growth response to whole rhizosphere microbial 542 
communities in different mineral N and P fertilization scenarios. Rhizosphere 543 
9(November 2018): 38–46. doi: 10.1016/j.rhisph.2018.11.004. 544 
Lotha, G., G. Young, M. Sampaolo, M. Petruzzello, and Y. Chauhan. 2019. Corn 545 
Plant. : Online. https://www.britannica.com/plant/corn-plant (accessed 8 546 
October 2019). 547 
Macedo, R.L.G., R.P. Venturin, M.C.M. Viana, N. Venturin, F. de Carvalho, et al. 548 
2019. O componente arbóreo e suas interações no sistema de integração 549 
lavoura-pecuaria-floresta. In: Bungenstab, D.J., Almeida, R.G. de, Laura, V.A., 550 
Balbino, L.C., and Ferreira, A.D., editors, ILPF: inovação com integração de 551 
lavoura, pecuária e floresta. Embrapa, Brasília, DF. p. 473–492 552 
Manchanda, N., S.J. Snodgrass, J. Ross-Ibarra, and M.B. Hufford. 2018. Evolution 553 
and Adaptation in the Maize Genome. In: Bennetzen, J., Flint-Garcia, S., 554 
Hirsch, C., and Tuberosa, R., editors, The Maize Genome. Compendium of 555 
Plant Genomes. Springer, Cham. p. 319–332 556 
MAPA. 2019. Sumário Executivo - Milho em grãos. Ministério da Agric. Pecuária e 557 
Abast. 9: 12. http://www.agricultura.gov.br/assuntos/politica-agricola/todas-558 
publicacoes-de-politica-agricola/sumarios-executivos-de-produtos-559 
agricolas/milho-pdf (accessed 10 October 2019). 560 
Marag, P.S., and A. Suman. 2018. Growth stage and tissue specific colonization of 561 
endophytic bacteria having plant growth promoting traits in hybrid and 562 
composite maize (Zea mays L.). Microbiol. Res. 214(April): 101–113. doi: 563 
28 
 
 
10.1016/j.micres.2018.05.016. 564 
Mathur, S., L. Jain, and A. Jajoo. 2018. Photosynthetic efficiency in sun and shade 565 
plants. Photosynthetica 56(1): 354–365. doi: 10.1007/s11099-018-0767-y. 566 
Melotto, A.M., V.A. Laura, D.J. Bungenstab, and A.D. Ferreira. 2019. Espécies 567 
florestais em sistemas de produção em integração (In Portuguese). In: 568 
Bungenstab, D.J., Almeida, R.G. de, Laura, V.A., Balbino, L.C., and Ferreira, 569 
A.D., editors, ILPF: inovação com integração de lavoura, pecuária e floresta. 570 
Embrapa, Brasília, DF. p. 835 571 
Moreira, E.D.S., M.M. Gontijo Neto, Â.M.Q. Lana, E. Borghi, C.A. dos Santos, et al. 572 
2018. Production efficiency and agronomic attributes of corn in an integrated 573 
crop-livestock-forestry system. Pesqui. Agropecuária Bras. 53(4): 419–426. 574 
doi: 10.1590/s0100-204x2018000400003. 575 
Mugunga, C.P., K.E. Giller, and G.M.J. Mohren. 2017. Tree-crop interactions in 576 
maize-eucalypt woodlot systems in southern Rwanda. Eur. J. Agron. 86: 78–577 
86. doi: 10.1016/j.eja.2017.03.004. 578 
Nardini, C., J. Sgarbossa, F. Schwerz, E.F. Elli, S. Luiz, et al. 2019. Growth and 579 
solar radiation use efficiency of corn cultivated in agroforestry systems. 580 
Emirates J. Food Agric. 31(7): 535–543. doi: 10.9755/ejfa.2019.v31.i7.1977. 581 
Nascimento, H.L.B. do, B.C. Pedreira, L.E. Sollenberger, D.H. Pereira, C.A. de S. 582 
Magalhães, et al. 2019. Physiological characteristics and forage accumulation 583 
of grazed Marandu palisade grass (Brachiaria brizantha) growing in 584 
monoculture and in silvopasture with Eucalyptus urograndis. Crop Pasture Sci. 585 
70(4): 384. doi: 10.1071/CP18403. 586 
Oliveira, S.M. de, R.E.M. de Almeida, C. Pierozan Junior, A.F. de B. Reis, L.F.N. 587 
Souza, et al. 2019. Contribution of corn intercropped with Brachiaria species to 588 
nutrient cycling. Pesqui. Agropecuária Trop. 49: 1–9. doi: 10.1590/1983-589 
40632019v4955018. 590 
Orefice, J., R.G. Smith, J. Carroll, H. Asbjornsen, and T. Howard. 2019. Forage 591 
productivity and profitability in newly-established open pasture, silvopasture, 592 
and thinned forest production systems. Agrofor. Syst. 93(1): 51–65. doi: 593 
10.1007/s10457-016-0052-7. 594 
Pang, K., J.W. Van Sambeek, N.E. Navarrete-Tindall, C.-H. Lin, S. Jose, et al. 2019. 595 
Responses of legumes and grasses to non-, moderate, and dense shade in 596 
29 
 
 
Missouri, USA. II. Forage quality and its species-level plasticity. Agrofor. Syst. 597 
93(1): 25–38. doi: 10.1007/s10457-017-0068-7. 598 
Paramesh, V., R. Parajuli, E.B. Chakurkar, G.B. Sreekanth, H.B.C. Kumar, et al. 599 
2019. Sustainability, energy budgeting, and life cycle assessment of crop-dairy-600 
fish-poultry mixed farming system for coastal lowlands under humid tropic 601 
condition of India. Energy 188: 116101. doi: 10.1016/j.energy.2019.116101. 602 
Pardon, P., B. Reubens, J. Mertens, K. Verheyen, P. De Frenne, et al. 2018. Effects 603 
of temperate agroforestry on yield and quality of different arable intercrops. 604 
Agric. Syst. 166(August): 135–151. doi: 10.1016/j.agsy.2018.08.008. 605 
Pariz, C.M., C. Costa, C.A.C. Crusciol, P.R.L. Meirelles, A.M. Castilhos, et al. 2016. 606 
Production and Soil Responses to Intercropping of Forage Grasses with Corn 607 
and Soybean Silage. Agron. J. 108(6): 2541–2553. doi: 608 
10.2134/agronj2016.02.0082. 609 
Pariz, C.M., C. Costa, C.A.C. Crusciol, P.R.L. Meirelles, A.M. Castilhos, et al. 2017. 610 
Production, nutrient cycling and soil compaction to grazing of grass companion 611 
cropping with corn and soybean. Nutr. Cycl. Agroecosystems 108(1): 35–54. 612 
doi: 10.1007/s10705-016-9821-y. 613 
Paz‐Ferreiro, J., and S. Fu. 2016. Biological Indices for Soil Quality Evaluation: 614 
Perspectives and Limitations.

Outros materiais