Buscar

Integrals and series

Prévia do material em texto

INTEGRALS 
AND 
SERIES 
VOLUME 4: DIRECT LAPLACE TRANSFORMS 
A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev 
Gordon and Breach Science Publishers 
Digitized by the Internet Archive 
in 2022 with funding from 
Kahle/Austin Foundation 
https://archive.org/details/integralsseriesO004appr 
INTEGRALS AND SERIES 
INTEGRALS AND SERIES 
Volume 4 
Direct Laplace Transforms 
A.P. Prudnikov, 
Yu. A. Brychkov 
Computing Center of the USSR Academy of Sciences, 
Moscow 
O.I. Marichev 
Byelorussian State University, Minsk, USSR 
and Wolfram Research Inc., Champaign, Illinois, USA 
property of 
n isher College 
Rochester, N.Y. 
GORDON AND BREACH SCIENCE PUBLISHERS 
Australia « Canada ¢ China « France ¢ Germany « India « Japan e Luxembourg 
Malaysia « The Netherlands « Russia « Singapore ¢ Switzerland « Thailand 
Copyright © 1992 OPA (Overseas Publishers Association) Amsterdam B.V. 
Published under license under the Gordon and Breach Science Publishers imprint. 
All rights reserved. 
First published 1992 
Second printing 1998 
No part of this book may be reproduced or utilized in any form or by any 
means, electronic or mechanical, including photocopying and recording, or by 
any information storage or retrieval system, without permission in writing from 
the publisher. Printed in India. 
Amsteldijk 166 
1st Floor 
1079 LH Amsterdam 
The Netherlands 
Library of Congress Cataloging-in-Publication Data 
A Catalogue record for this book 
is available from the Library of Congress 
CONTENTS 
PREFACE 
Chapter 1. FORMULAS OF GENERAL FORM 
1.1. 
1.1.1. 
1.1.2. 
1.1.3. 
1.1.4. 
1.1.5. 
TRANSFORMS CONTAINING ARBITRARY FUNCTIONS 
Basic formulas 
/f(A(x)) and algebraic functions 
J (~p(x)) and non-algebraic functions 
Derivatives of f(x) 
Integrals containing f(x) 
Chapter 2, ELEMENTARY FUNCTIONS 
2.1. 
Peel let IE 
2.1.2. 
ald: 
2.1.4. 
2.1.5. 
2.1.6. 
INT 
2.2. 
2.2. 
2.2.2. 
22.3. 
2.2.4. 
2.2.5. 
2.2.6. 
24 P25I fe 
2.3. 
rdo1s 
2.3.2. 
THE POWER AND ALGEBRAIC FUNCTIONS 
Functions of the form x’, @(+x = a)x’, [x]” 
Functions of the form (x +z)", (a— x)! 
Functions of the form x"(x +z)", x#(a— x)! 
Functions of the form x#(x!/* +z)’, x#(a—x"/*)" for 1 Ak 
Functions containing /x + z 
Functions containing V x!/K + 2//k for lAk 
Functions of [x] 
THE EXPONENTIAL FUNCTION 
exp (—ax!/") and the power function 
exp (—ax~"/*) and the power function 
exp (—ax*"/*) and algebraic functions 
Functions of the form f(x, e~%,e7"*,e~, ...) 
Functions containing exp (av? a5 P) 
Functions containing exp (f(x)) 
Functions of [x] 
HYPERBOLIC FUNCTIONS 
Hyperbolic functions of ax 
Hyperbolic functions of ax and the power function 
xix 
20 
vi CONTENTS 
Hyperbolic functions of 
algebraic functions 
Hyperbolic functions of 
functions 
Hyperbolic functions of 
functions 
Hyperbolic functions of 
exponential functions 
Hyperbolic functions of 
and algebraic functions 
Hyperbolic functions of 
Hyperbolic functions of 
function 
Bets for [4k and 
2 f 
x +xz and algebraic 
74 2 
aitb”~+x~ and algebraic 
ax, the power and 
als for /#k, the power 
[x]_ 
f(e ‘) and: the exponential 
Functions containing the exponential function of 
hyperbolic functions 
TRIGONOMETRIC FUNCTIONS 
Trigonometric functions 
Trigonometric functions 
function 
Trigonometric functions 
algebraic functions 
Trigonometric functions 
function 
Trigonometric functions 
functions 
Trigonometric functions 
functions 
Trigonometric functions 
exponential function 
Trigonometric functions 
of ax 
of ax and the power 
of bee for [#k and 
“/k and the power 
of 1 x?+xz and algebraic 
2: FETE? 
of attb Fx 
of ax 
and algebraic 
of ax, the power and 
of ig te for. 1k, the 
power and exponential functions 
Trigonometric functions 
Trigonometric functions 
exponential function 
of [x]_. 
of f(e) and the 
Trigonometric and hyperbolic functions 
THE LOGARITHMIC FUNCTION 
In"(ax) and algebraic functions 
in" (axt/* 
algebraic functions 
+b) and algebraic functions 
Functions of the form ind x*! ma +4x7! m and 
In”x, the power and exponential functions 
The logarithmic function of f(e) and the 
exponential function 
The logarithmic and hyperbolic functions 
The logarithmic and trigonometric functions 
100 
102 
105 
107 
107 
112 
113 
2.6. 
2.6.1. 
ZO: 
2.6.3. 
2.6.4. 
2.6.5. 
2.6.6. 
2.6.7. 
2a. 
CONTENTS 
INVERSE TRIGONOMETRIC FUNCTIONS 
Inverse trigonometric functions of algebraic 
functions 
Inverse trigonometric functions of the 
exponential function $I/k 
Trigonometric functions of arccos(ax_’) 
Trigonometric functions of arccos f(e*) and the 
exponential function 
arctan (ax*/*), arccot(ax*!/*) and the power 
function _ = 
arctan f(e “i arccot f(e*) and the exponential 
function +I/k 
Trigonometric functions of arctan(a« ” ) 
INVERSE HYPERBOLIC FUNCTIONS 
Chapter 3. SPECIAL FUNCTIONS 
3.1. 
WW WWW WwW & nn RRDRD DD 
Anh wown — 
— 
THE GAMMA FUNCTION [(z) 
r"(x+a) and the power and exponential functions 
The gamma function of [x] 
THE RIEMANN ZETA FUNCTION (€(z) AND 
THE FUNCTION 6(z,v) 
€(n[x]+p) and various functions 
€([x]+p,v) and various functions 
THE POLYLOGARITHM Li, (2) 
Li, (-ax’) and the power function 
Li, f(e *)) and the exponential function 
THE EXPONENTIAL INTEGRAL Ei(z) 
Eitax’S and the power function 
Filan) the power and exponential functions 
Ei(f(e *) and the exponential functions 
Ei(+ax) and trigonometric functions 
Ei(tax) and the logarithmic function 
Products of Ei(tax) and the power function 
THE SINE si(z),Si(z) AND COSINE ci(z) INTEGRALS 
sian ae Silat Ni cea) and the power 
function 
si(f(e*)), Sif(e*)), ci(f(e”)) and the 
exponential function 
sitaxt”); ciax*!*) and hyperbolic functions 
+1/k 
sitax””, ci(ax) and trigonometric 
functions 
Vii 
114 
114 
116 
117 
119 
120 
122 
124 
126 
127 
127 
127 
128 
130 
130 
131 
131 
13] 
132 
134 
134 
137 
138 
142 
142 
143 
144 
144 
147 
149 
153 
CONTENTS 
si(ax™!), Si(ax*'), the exponential and 
trigonometric functions 
ci(ax) and the logarithmic function 
Products of iar) and Biehl 
THE HYPERBOLIC SINE shi(z) AND COSINE chi(z) 
INTEGRALS 
shi(ax!”*, chi(ax!/*) and the power function 
shi(f(e*)), chi(f(e*)) and the exponential 
function 
; 1/k ; 1/k , : 
shi(ax ’"), chi(ax ") and hyperbolic functions 
shitann chien) and trigonometric 
functions 
chi(ax) and the logarithmic function 
THE ERROR FUNCTIONS erf(z), erfc(z), AND erfi(z) 
The error functions of ax+5 and the power 
function 
Wk +b. 
he or of avx + b/Vx 
r +1/k 
The error “functions of ax and the 
exponential function ae 
The error functions of e~ and the exponential 
function 
The error functions and hyperbolic functions 
The error functions and trigonometric functions 
The error functions and the logarithmic function 
The error functions of ax 
The error functions of ax 
erf (ae sys the exponential function and inverse 
trigonometric functions 1/k 
Products of the error functions of ax _ 
Products of the error functions of f(e *) 
}The error functions and the exponential 
integral 
THE FRESNEL INTEGRALS S(z) AND C(z) 
stax, ciax 4) and the power function 
S(f(e~)), C(f(e~)) and the exponential 
function 
Stax yy Cast!’ and hyperbolic functions 
+1/k +1/k : F , 
S(ax ), Clax ) and trigonometric functions 
THE GENERALIZED FRESNEL INTEGRALS S(z,v) 
AND C(z,v) 
+1/k 
S(ax* Vv), Caxt* yy and the power function 
S(f(e*),v), C(f(e*),v) and the exponential 
function 
159 
160 
160 
160 
160 
163 
165 
167 
168 
169 
169 
171 
174 
177 
180 
186 
193 
200 
201 
202 
204 
205 
205 
205 
207 
209 
213 
217 
2d 
219 
3953! 
3.9.4. 
3.10. 
3.10.1. 
3.10.2. 
SeOrS: 
3.10.4. 
Sa0:5; 
3.10.6. 
SHIOSTe 
3.11. 
Stoll toile 
ab Ee 
Sel bias: 
3.11.4. 
Sululeos 
Salil:6- 
3.11.7. 
3.12. 
ayaa 
SUZ. 
el i ato & 
3.12.4. 
Sm2.5. 
JaZ.6; 
Bu 2:7: 
3.12.8. 
3.12.9. 
3.12.10. 
CONTENTS 
Stax yy,Crax!/*y) and hyperbolic functions 
stax! * yy, Craxi!*y) and trigonometric 
functions 
THE INCOMPLETE GAMMA FUNCTIONS [I\v,z) 
AND y(v,z) 
T,ax), (v,axt 5 and the power function 
I'([x]+v,a), y([x]+v,a) and various functions 
Tw,axt", (v,axt and the exponential 
function 
Tv, f(e*)), yw, f(e*)) and the exponential 
function 
Baas 7). y(v,axt*y and hyperbolic 
functions 
Tier”. (vax) and trigonometric 
functions 
Products of Tv,ax and 
y(v axel!) 
THE PARABOLIC-CYLINDER FUNCTION D(z) 
D (aVx) and the power function 
D tx) (a) and various functions 
D tax!) and the exponential function 
Dif (e ‘)) and the exponential function 
D (a¥x) and hyperbolic functions 
D (aVx) and trigonometric functions 
Products of D (ax) 
THE BESSEL FUNCTION J (z) 
J (ax) and the power function 
Jax’) and the power function 
J (ax) and the power function 
Jax) and the power function 
J, (af x? 4x2 } and algebraic functions 
J, (al +b 45x 2) and algebraic functions 
ey (ax"') and the power function 
ne) and the exponential function 
Jax”) and hyperbolic functions 
J (a(sinh x») and hyperbolic functions 
J (ax 
4 
J (ae 
Vv 
of 
+1/k 
+lx/k 
+lx/k 
e 
CONTENTS 
) and trigonometric functions 
) and trigonometric functions 
Jo (x)) and the logarithmic function 
J (ae *) and inverse trigonometric functions 
J (ax)J (bx) and the power function 
J (axe! 7 (ox in) and the power function 
+lx/k +lx/k 
dj u (ae 
function 
)J (ae ) and the exponential 
THE NEUMANN FUNCTION Y_ (z) 
Y (ax) and the power function 
Yx(ax 
v 
) and the power function 
-l/k 
) and the power function 
Y (f(x)) and algebraic functions 
-b/x 
e€ Y (ax™') and the power function 
Y¢f (e “)) and the exponential function 
Y (ax) and hyperbolic functions 
Y (ax") and trigonometric functions 
Ya(ax 
Vv 
THE HANKEL FUNCTIONS H‘ (2), H (2) 
i) 
v 
H 
+ 
(ax 
t1/k + 
) J tax*!*) and various functions 
Bhs and the power function 
HO? @ xan z) and algebraic functions 
THE MODIFIED BESSEL FUNCTION 1, @ 
I (ax) and the power function 
I/k 
I (ax ) and the power function 
1s (af x? 8.5 ") and algebraic functions 
2 
Is (a Se Sty 2) and algebraic functions 
+1/k 
exp(-bx™ )I. (ax ) and the power function 
Ife") and the exponential function 
Te (ax 
Vv 
m/2 
) and hyperbolic functions 
I (ae) and hyperbolic functions 
I (ax 
Vv 
m/2 
) and trigonometric functions 
277 
280 
281 
282 
283 
293 
296 
298 
298 
300 
301 
302 
304 
304 
305 
307 
309 
311 
311 
312 
313 
3 
317 
321 
322 
324 
326 
329 
331 
331 
CONTENTS 
4 ety 
+1x/k 
ee 
I,(f(~)) and the logarithmic function 
) and trigonometric functions 
i; (ae *) anes gRNETSS trigonometric functions 
m (ax ES (bx!! ‘) and the power function 
je pie yr, (ae) and the exponential function 
tat! 1 fax ) and the power function 
I (ax)I (bx) and the power function 
I (ax!1 (ox! and the power function 
1 Ge) Cae") and the exponential function 
THE MacDONALD FUNCTION K (2) 
K ae? end the power function 
Kas! » and the power function 
K (ax! as and the power function 
Be @ x 4x2 ) and algebraic functions 
K,, (al x 125 7 and algebraic functions 
exp(tbx"’)K (ax) and the power function 
K (f(e*)) and the exponential function 
K (ax) and hyperbolic functions 
K yf) and hyperbolic functions 
K. yar) and trigonometric functions 
i stax! OK, (bx : 
y (ax OK, (ox a and the power function 
. and the power function 
1 tax! yk (ox! fy and the power function 
I/k I/k 
K lax )K. (bx) and the power function 
THE STRUVE FUNCTIONS H, (z) AND L, (z) 
H (ax!) Ye L ax” alls and the power PariGtion 
H(f(e*)), L (f(e*)) ‘and the exponential 
function 
1/k 1/k ‘ F 
H (ax), L (ax) and hyperbolic functions 
/kisve 
H (ax 
Grdctions 
H, (ax) and the Bessel function J, (ax) 
Ye ‘ax!’ i — H (ax and the power function 
»S L (ax!) and trigonometric 
xi 
334 
335 
336 
337 
339 
340 
341 
346 
349 
349 
349 
352 
353 
355 
356 
357 
359 
363 
364 
365 
366 
368 
368 
370 
370 
370 
375 
377 
381 
383 
384 
xii 
Soldat: 
OnE: 
SoL7.9: 
3.18. 
3.18.1. 
Salse2: 
3.18.3. 
3.19. 
Spe he 
3.19.2. 
5:19.3. 
3.19.4. 
3319.5. 
3.19.6. 
S97: 
3.19.8. 
3.19.9. 
3.19.10. 
3.20. 
320.1, 
3.20.2. 
3.20.3. 
CONTENTS 
Yo (e*)) - H(f (e *)) and the exponential 
function 
Ba > and the modified Bessel function 
Tax) 
Ue L(f(e *)) and the exponential 
function 
THE ANGER FUNCTION JZ) AND THE WEBER 
FUNCTION E (2) 
Jax", B ax") and the power function 
J (ax), E, (ax) and hyperbolic functions 
J (ax), E(ax) and trigonometric functions 
THE KELVIN FUNCTIONS ber (2), bei, (z), ker, (z), 
kei_(z) 
Uk oo UR : 
ber (ax Ne bei, (ax ) and the power function 
ber (ae), bei, (ae ™*) and the exponential 
function 
ber (ax), bei, (ax!/*) and hyperbolic 
functions 
ber (ax!/*), bei, (ax!) and trigonometric 
functions 
Products of the functions ber (ax'’), 
bei, (ax), ber’ (ax'/, bei’ (ax! /*) 
ker (ax), kei (ax!/*) and the power function 
ker (ae~”"), kei (ae~””) and the exponential 
function 
1/k 
ker, (ax Ne kei (ax!/*) and hyperbolic 
functions 
1 : ‘ 2 
a kei (ax!) and trigonometric ker, (ax 
functions 
The Kelvin functions and the logarithmic 
function 
THE AIRY FUNCTIONS Ai(z) AND Bi(z) 
: I/k 2 
Aitax” Ns Bi(ax!”* and the power function 
; I/k 3 
Ai(ax!! ), Bi(ax!*) and the power function 
Ai(f(e *)), Bi(f(e*)) and the exponential 
function 
384 
386 
387 
390 
390 
391 
392 
392 
392 
394 
395 
397 
398 
401 
402 
404 
404 
405 
405 
406 
407 
408 
3.20.4. 
3.20.5. 
3.21. 
3.20.1: 
521.2. 
3221).3. 
3.22. 
J 22.0. 
3.22.2. 
3.22.3. 
3.22.4. 
S220: 
3.22.6. 
3.23. 
3.23015 
D.23.2. 
323.3. 
3.23.4. 
3.23.5. 
3.23.0. 
3.24. 
3.24.1. 
3.24.2. 
3.24.3. 
CONTENTS 
Products of the Airy functions and the power 
function 
Products of the Airy functions and the 
exponential function 
THE INTEGRAL BESSEL FUNCTIONS Ji,(2), Yi,(), 
Ki (z) 
Ji (ax tl/k 
v 
+1/k 
M Yi (ax ), Ki fax", and the 
power function 
Jitax™), Yi(ax”), Ki,(ax””) and 
hyperbolic functions 
Ji (ax'"'), Yi (ax), Ki (ax) and trigonometric 
functions 
THE LEGENDRE POLYNOMIALS P, (z) 
P (axe) and the power function 
P(f(x)) and algebraic functions 
BM (e *)) and the exponential function 
Pig (y) and various functions 
P (cosh ax) and P (cos ax) 
Products of Pig (x)) and the power function 
THE CHEBYSHEV POLYNOMIALS 7 (z) AND U_ (2) 
Tee) and algebraic functions 
T ,F@)) and algebraic functions 
pm (e ~)) and the exponential function 
U eax) and algebraic functions 
U_(f(x)) and algebraic functions 
U fe *)) and the exponential function 
THE LAGUERRE POLYNOMIALS Li@) 
Ly (ax’) and the power function 
L*(ax.’) and the power function 
+1/k 
L\ (ax ) and the exponential function 
xiii 
411 
412 
413 
412 
416 
416 
419 
419 
420 
423 
424 
425 
425 
425 
425 
427 
428 
429 
430 
431 
431 
431 
435 
437 
Xiv 
3.24.4. 
3.24.5. 
3.24.6. 
3.24.7. 
3.24.8. 
3.25. 
Si apie 
Sion 
e293: 
3.25.4. 
S250). 
325.0. 
SPITE 
3.25.8. 
3.25.9: 
3.26. 
320.1. 
32622: 
3:20.35; 
3.26.4. 
SEZOr0: 
3.27. 
S271. 
ent. 2. 
3.28. 
3.28.1. 
CONTENTS 
Lae) and hyperbolic functions 
v +m . . : 
L (ax ) and trigonometric functions 
L} (ax) and Bessel functions 
+m/2 
Products of L\ (ax ) and the power function 
ie (y) and various functions 
THE HERMITE POLYNOMIALS H @) 
H (ax”’) and the power function 
+1/k : ‘ 
H (ax) and the exponential function 
H, (aes and hyperbolic functions 
H ax”), the exponential and hyperbolic 
> 
functions 
+m/2 : ‘ ; 
H (ax ) and trigonometric functions 
+m/2 : . , 
H (ax ), the exponential and trigonometric 
functions 
Products of H (avx) and the power function 
A ngen™ and various functions 
Products of Aig (y) and various functions 
THE GEGENBAUER POLYNOMIALS C’ (2) 
Z 
Can) and the power function 
CVF) and algebraic functions. 
CUE) and the exponentialfunction 
Vv 
[x] 
Products of Ci) 
C..(y) and various functions 
THE JACOBI POLYNOMIALS Be (a) 
pit) 
n 
(pu, i 5 
Pra (y) and various functions 
(f(x)) and algebraic functions 
THE BERNOULLI B (2), EULER E,@ AND NEUMANN 
O,,(2@) POLYNOMIALS 
+ 
B tax’), Big (y) and various functions 
438 
44] 
443 
444 
446 
448 
448 
450 
453 
455 
455 
458 
460 
461 
461 
461 
462 
465 
467 
468 
468 
468 
474 
476 
476 
3.28.2. 
3.28.3. 
3.29. 
3.29.1. 
O.L9.2. 
3129.3. 
3.29.4. 
o:29.. 
3.29.6. 
3.29.7. 
3.30. 
3.30.1. 
390.2. 
3.30;3; 
3.30.4. 
3.31. 
33h.1. 
3201.2. 
$.31.3. 
3.31.4. 
Sah Os 
3.32. 
oz.) 
5 Poy ie 
3732.35 
3.32.4. 
3.32.5. 
CONTENTS 
Ez. (ax* oy. Ex 1 and various functions 
O. (ax* ") and the power function 
THE BATEMAN FUNCTION _&_ (z) 
k, oe a the power function 
hy (ax! ‘ and the exponential function x 
ra +1x/k 
ae 
k (ax) and hyperbolic functions 
) and the exponential function 
k (ax) and trigonometric functions 
Products of k (ax) and the power function 
Products of k (ae) 
THE LAGUERRE FUNCTION L (2) 
L, (ax) and the power function 
L tax*! 5 and the exponential function 
L (ax) and hyperbolic functions 
L (ax) and trigonometric functions 
COMPLETE ELLIPTIC INTEGRALS D(z), E(z) 
AND K(z) 
Diax*), Bax 
function 
D(f(x)), E(f(x)), K((x)) and algebraic 
functions 
Dif(e*)), E¢(e)y, Kf(e*)) and the 
exponential function 
D(f(x)), E(f(x)), K(f(x)) and hyperbolic 
functions 
D(x), Ef), K(f(~)) and trigonometric 
functions 
THE LEGENDRE FUNCTIONS OF THE FIRST 
KIND P'(z) 
Ba, (x)) and algebraic functions 
ene K (ax*”* and the power 
Bog (e *)) and the exponential function 
Py (e~*) and various functions 
P* (cosh x), the exponential and hyperbolic 
functions 
Pe re and various. functions 
XV 
477 
477 
478 
478 
479 
480 
481 
481 
482 
483 
483 
483 
484 
484 
485 
485 
485 
487 
489 
489 
491 
492 
493 
497 
499 
501 
502 
Xvi 
3.32.6. 
3.33. 
Sy avoulle 
3r3322. 
BRA Bs 
3.34. 
aay baile 
3.34.2. 
3.34.3. 
3.35. 
Shayla 
Ska) eae 
Shobak 
3.35.4. 
Saher 
3.35.6. 
Dont 
3.36. 
3.36.1. 
a 00r2: 
3.36.3. 
3.36.4. 
3.56:9. 
3.36.6. 
CONTENTS 
Products of Pi(f(x)) 
THE LEGENDRE FUNCTIONS OF THE SECOND 
KIND Q'(z) 
O: (f(x)) and algebraic functions 
Q" (f(e*)) and the exponential function 
Q" (f(x)) and various functions 
THE LOMMEL FUNCTIONS sy) AND s. y?) 
taxt!4. s axtll# 
B,v bv 
function 
S lax), S (ax!/*) and hyperbolic 
pv Hv 
functions 
Ss lax), S fax! and trigonometric 
pv Hv 
) and the power 
functions 
THE KUMMER CONFLUENT HYPERGEOMETRIC 
FUNCTION iF, (asbs2) 
iF (a;b;0x/) and the power function 
FP (Gosh), the power and exponential 
functions 
|, (atm[x] ;b+m[x];o) and various functions 
F (ajbj0xe?) and hyperbolic functions 
40 (a;b;0x"”"”?) and trigonometric functions 
jf (G;0x) and various functions 
Products of pF, (45b30x) 
THE TRICOMI CONFLUENT HYPERGEOMETRIC 
FUNCTION YW (a,;z) 
V(absoxt! and the power function 
YW (a,b,f(x)) and the exponential function 
¥(a,b;f(e*)) and the exponential function 
W(a,b,0x~”) and hyperbolic functions 
W(a,box"”), the exponential and hyperbolic 
functions 
+ 
W(a,b;ox”) and trigonometric functions 
502 
502 
503 
503 
504 
504 
504 
506 
507 
508 
508 
512 
513 
514 
S15 
516 
syle) 
517 
S17 
520 
522 
527 
528 
529 
CONTENTS 
+ 
W(a,b;wx"") the exponential and trigonometric 
functions 
Products iF 1 (asbsax” \¥ (a,b;-0x!" and the 
power function 
Products iba (a;b;-we*) ¥ (a,b;we*") 
Products of ¥(a,b;0x!", the power and 
exponential functions 
Products of W(a,b;we~*) and the exponential 
function 
THE GAUSS HYPERGEOMETRIC FUNCTION 
F (a,b3c;z) 
z +1/k 
oF (a,b3¢;-ox ) and the power function 
pt oss (a,b;c;f(x)) and algebraic. functions 
oF (a,bicif(e *)) and the exponential function 
THE GENERALIZED HYPERGEOMETRIC FUNCTION 
zit and the power function F ((a_)3;(b_);wx 
mn m n Lg 
mk n(4,,)3,)sf(€ “)) and the exponential 
function 
mf 164, + [4]; ,)+ [4] 50) and various functions 
THE MacROBERT E-FUNCTION E(u;a 036 :2) 
(a) 
(b,) 
G-function and the power function 
G-function and the exponential function 
G-function with [x] in parameters 
Products of G-functions 
THE MEIJER G-FUNCTION Ge f 
THETA-FUNCTIONS 6((2,9), 8 (2,9) 
8(aVx,9), 8(v,e *) 
8,(v,ax) 
THE FUNCTIONS v(z), v(z,Q), m(z,A), “(z,A,Q), 
v(ax”"“),v(e ), the power and exponential 
functions 
vax? 9), v(e ”,9) and the power function 
XVii 
530 
530 
531 
532 
532 
533 
533 
535 
ays) 
546 
546. 
554 
557 
558 
559 
559 
560 
562 
563 
564 
564 
565 
566 
566 
566 
XViii 
3.42.3. 
3.42.4. 
3.42.5. 
3.43. 
3.43.1. 
APPENDIX. ELEMENTS OF THE THEORY OF THE LAPLACE 
CONTENTS 
a a) and the power function 
Gar 20S and the power function 
A(ax',o) and the power function 
THE CONFLUENT HYPERGEOMETRIC FUNCTIONS 
OF TWO VARIABLES 
Confluent hypergeometric functions and the power 
function 
TRANSFORMATION 
The Laplace transform and its basic properties 
The application of the Laplace transformation to the 
solution of differential and integral equations 
Some comments and references 
BIBLIOGRAPHY 
LIST OF NOTATIONS OF FUNCTIONS AND CONSTANTS 
LIST OF MATHEMATICAL SYMBOLS 
567 
568 
568 
568 
568 
571 
571 
584 
599 
601 
607 
619 
PREFACE 
This is Volume 4 of the series Integrals and Series. It contains tables of 
direct Laplace transforms 
co 
F(p) = [r (x)e *dx 
0 
and includes results. previously published in similar books and journals. 
However, many of the results were obtained by the authors and are being 
published for the first time. 
Volume 5 of this series contains tables of inverse Laplace transforms 
and tables of factorization of various integral transforms. 
The Laplace transformation is used extensively in various problems of 
pure and applied mathematics. Particularly widespread and effective is its 
application to problems arising in the theory of operational calculus and in 
its applications, embracing the most diverse branches of science and 
technology. An important advantage of methods using the Laplace 
transformation lies in the possibility of compiling tables of direct and 
inverse Laplace transforms of various elementary and special functions 
¢ommonly encountered in applications. 
In this volume the tables are arranged in two columns. The left-hand 
column of each page shows original f(x) and the right-hand column gives the 
corresponding image F(p). The main text is introduced by a fairly detailed 
list of contents, from which the required formulas can be easily found. 
A number of Larlace transforms are expressed in terms of the Meijer 
G-function. When combined with the table of special cases of the G-function 
[82], these formulas make it possible to obtain Laplace transforms of 
various elementary and special functions of mathematical physics. Some other 
PREFACE XX 
formulas, in particular Laplace transforms of general form and those of 
piecewise-continuous functions, can be found in [80-82]. 
For the sake of compactness, abbreviated notation is used. For example, 
the formula 
erf (ax) 2 [Oh =ao(elew(ta] erfc (ax) P 4a 
Re p>0; |arga|<n/4 
jarg a|<n/4 
is a contraction of the two formulas 
2 
erf (ax) A exp ae 
4a 
Pp 2 2a 
erfc [2] 
[Re p>0; |arg a|<n/4] 
(in which only the upper sign and the upper expression in the curly brackets 
are taken) and 
D 
re | Bs ps, erfc (ax) D teo(2| erte( 55] 
[|arg a|<n/4) 
(in which only the lower sign and the lower expression in the curly brackets 
are taken). 
References to formulas written in the form 3.7.1.1. denote Formula 1 of 
Subsection 3.7.1.; unless other conditions are indicated, k,/,m,n=0,1,2.... 
The Appendix contains a short survey of the theory of the Laplace 
transformation, and examples of its applications in problems of differential 
and integral equations. 
The bibliographicsources, notations of functions, constants, and 
mathematical symbols are listed at the end. of the book. 
We would be extremely grateful to any readers who draw our attention to 
oversights, which are inevitable in a work of this size. 
Chapter 1. FORMULAS OF GENERAL FORM 
1.1. TRANSFORMS CONTAINING ARBITRARY FUNCTIONS 
1.1.1. Basic formulas 
1. F(p) = feMrooae 
0 
ytioco 
1 px 
Ih ora J e F(p)dp F(p) 
Ye 
1.1.2. f(A(x)) and algebraic functions 
1 pfe 1. f (ax) a F(2} 
[a>0] 
a 
2. f(xta) e”? [F (p) vale, “F nds] 
0 
{a>0] 
b 
3. f(ax+b) cee fa [F [2] - foxes cds] 
0 
[a,b>0] 
4. @(x-a)f (x-a) e PF (p) 
[a>0] 
. 0, x<b/a ate (2) 
f(ax+b), x>b/a a 
[a,b>0} 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
. f (x+a)=f (x) 
- 7 \x+a)=-f (x) 
- F([x]) 
ee 
x "f (x) 
8(a—x)x’ f (x-a) 
f (x?) 
xf (x*) 
at (x?) 
xi (x”) 
fix!) 
FORMULAS OF GENERAL FORM 
a 
(eee a fePreax 
n-1 
[-[Fo@an" - {4-2} Fydu 
Dp ?p 
v+1 0 (v+l) ,,(-ap)/ath, 
Cd et he (v+2) , Bu 
wal 
co 
[re v>-l; f-S hx |x\|<r, r>00| 
k=0 
4u 
a 2 
f= [u??exp (? a F(u)du 
4vn 4 4u 
l/2 (one op a ea pu l 
BG fu e H,( 9) F i} 
0 
co 
po ae (2Vpu)F(u)du 
0 
TRANSFORMS CONTAINING ARBITRARY FUNCTIONS 3 
ie tae) [4,2vPwFwdu 
0 
18. x°f(x"') pee i uy Ovpu)Fwdu 
a 0 
[Re v>-2] 
19. vals [Pp reoax 
n=1 . 0 
yric 
20. f, (f(x) — [ F,@F-2dz 
2ni pe 
aie f(p(x)) and non-algebraic functions 
1. e F(x) F (pta) 
2. e *F (bx) $F [254] 
[b>0] 
(0) 2 Key) “a (=v) OEE) 
3. O(x-a) X ere) es ah 
P hig (Pt1) i yy j! k 
Se (ler) FO) 
co 
E v>-1; Re p>0; fi) he’ Je ‘<r, roe) 
k=0 
co 
5s 1 p —un{u 
4. f(ae -a) aripety |e (4) du 
0 
[a>0] 
5. f(a sinh x) [4,(qurF w du 
0 
[a>0] 
4 FORMULAS OF GENERAL FORM 
6. sinh ax f(x) 4 LF (p-a) ~ Fip+a)] 
7. cosh ax f(x) 4 [F (p-a) + F(p+a)] 
8. sin ax f(x) 7lF (-ia) - F(p+ia)}| 
9. cos ax f(x) iF (p-ia) + F (p+ia)] 
quite MbI2)" 
(y+vt+1) 0 (v4+1) 
oo CRY Te) oe eet 
10. 8(a—x)x" x x 
(=ap)’ 
jecing PTVF2ZY oy 
k Dare 1 
a (-a’b°/4) 
= iis wae 
co 
[Retwrn>-t fo) ne |x| <r, r>00| 
k=0 
(Gids Vee 
11. 8(x-a) x ~(p+vy Preval) * 
- oo (pt+v) CS) = 
x d-e*)" x x Bt aN f__ hn (p+v+1) Vanenou (v+1) 1 
x J (be F(x) (lata hed PE ipneme “7 4), ee k 
[Retr fn-V Hoe le ‘I<r, r>e°; oo] 
k=0 
x j 
12. (1-e™*)" x cl pa pee es 
prutl|,e-o (PUTT) 5,4) j7! 
X oF (esbe Ff) [re u>-1; Re p>0; fio) he eee “ler, r>e’: »o| 
k= 0 
TRANSFORMS CONTAINING ARBITRARY FUNCTIONS . 
Aaa es) (u+1) 
uel, j=o HTT) 
CB): j+k+ 
CoE 
13. 6(a—-x)x" x 
j+ke+l 
x PF, (5¢3 wx) f(x) 
De! Cody 
Gaaipy mad 
x jit! Ay 
co 
[re p>-l; fixe) hx |x| <r, ron] 
k=0 
a Powell oo Cae Pech Ww aoe 
14 41 -e 7)" | | ‘gdh j k 
i, 
ce 
p+ptl wo (PTLD, geo ae! 
x | F)(bsc;we “fF (x) 
foe} 
[re p>-1; Re p>0; f-y ne*| 
k=0 
eae fe CBee rs hy ST TESORO SP SRE TF PP 
Dare ena yen pee 15. 6(x-a) (1-e *)*« 
ay as (b;c;we >) f (x) x (-e (we fot hy 
x 
co 
[re p>0; fl-V tes vmleml<rjnse ns a) 
k=0 
P p, eth] eo? Cp), , Cad 2b oth 
16. (l-e *)#x | | poe j j k 
i, 
mY 
pt+ptl py Cpr prt). ey .7: 
PS; 
x oF | (asb;c; we yx ae 
[re u>-1; Re p>0; foo=V he | 
k= 0 
aac) 
l-e ? kp 
17. f([x]) f([x]=k)e 
: P ah 
1.1.4. Derivatives of f(x) 
ete) pF (p) -—f (0) 
6 FORMULAS OF GENERAL FORM 
(n-1) 2. fa p"F(p) ~ p" 'f 0) - p" f'O) -...- f"" O) 
a)" ‘a n 
3. [* $5] f (x) | F(p) 
dee\e : 4 (a5 x| f (x) [-» $5] F(p) 
eral eens fo J-eform an" a ae oe x), Pp |..-P| PF (p) (dp 
Pp Dp Dp 
Todsale 
if Le f(x) hes 
k=0,1,2,...,2-1 
6. xf" (x) (-5)"t "F(p)] : dp pip 
for mn, 
da ee er 5 ie 
A (PF ()] + (Di sax 
CH= 1 ) ! n-m-1 (n-2)! 
‘ Ges yr? 10) + Ti=m=2) 1 * 
x De O) aa Hf eae ©] 
for m<n 
d” m m_n_(m) 
Te sae f(x)] (-1) pF (p) 
x 
for m>n, 
_ yy npn) n-m-1 
(-1l) pF (p) =mlp f() - 
ij =? > F. on ! Ay m 26 i ee 
me (ral)! (n—m-1) 
(n-m-1)! f 0) 
for m<n 
FLA 
8. Ges f(x), (p-n) F(p-n) 
if f” ©) -0, 
k=0,1,2,...,2-1 
TRANSFORMS CONTAINING ARBITRARY FUNCTIONS 
9, am f (x,a) 
1.1.5. Integrals containing f(x) 
1. [rexurdu 
a 
iY) 
2. [rood 
4. jae ot No 
5. fu raodu 
é | uf (udu 
1. [F,wor,-wau 
i 
8. a |r, (u)f,(x-u)du 
0 
Ja F(p,a) 
a 
[Fowdu 
a 
10) 
0 
= ah a pire 
es F(p) 
[Re p>0] 
p “F(p) 
[Re a,Re p>0] 
1 
ae p)dp 
p 
Dp 
l 
— |F(p)d, i [Fierdp 
0 
F (p)F,(p) 
PF (p)F,(P) 
9. 
10 
12. 
13. 
14 
15. 
16. 
17. 
FORMULAS OF GENERAL FORM 
fe 
iat le (u) du 
0 
x 
; e™ [ox-we™/wrdu 
0 
x 
see fo-w 2s (u)du 
0 
2 
x 3/2 fue™ I du 
0 
_ 2 
: [exw exp - u rendu 
0 
x-Uu 
35 
fuce-w >? o, 
0 
2 
x exp| ~ as! f(u)du 
x 
[sinh” ew (u)du 
0 
co 
[u?sinn Vxu f(u)du 
0 
JE ravp 
[Re p>0] 
vn F(2Vp) 
[Re p>0] 
J Fp+2¥p) 
2vn F(p+vp) 
RQ LC 
a 
[-1<Re v<Re p] 
[Re p>0} 
=) 028) 
P(1+(pt+v)/2) 
F(p) 
TRANSFORMS CONTAINING ARBITRARY FUNCTIONS 9 
co 
-1/2 I 1 
18. x [cosh Vxu f(u)du EA ered 
0 
[Re p>0] 
19. for ?sin Vxu f(u)du 5 = Fla 
Pp 
0 p 
[Re p>0] 
-1/2 It 1 
20. x [cos vxu f(udu [2 Fi 
0 
{Re p>0] 
21 See aNd seria P) 
i IEE) p 
0 
[Re p>0] 
FS & au-1 
22; eae OE F(a In p) 
0 
[a,Re p>0] 
co i . 
xf Cw) AS 23. WO. du + 0) 5 In p Fln p) 
0 
[Re p>0] 
i 2 24, x r)/2 fexe[- 4] g 2” Vap 2p VyTp) 
0 
[Re p>0] 
x D [4] rena 
YAYX. 
x 
25. Gap x Sx cpea)” - -FiptV 2 p+ da) 
0 
i 2 (Re v<1/2; Re(p+a)>0] 
x exp [-2-0- ga] x 
x D, | u ) nau 
x-Uu 
10 
26 
27. 
28 
29. 
30. 
31. 
32. forwy av x—u)f(u)du 
FORMULAS OF GENERAL FORM 
co 
[rows wau 
0 
aL Ca a xu)f(u)du 
0 
x 
; [2 ec-wofwdu 
0 
x 
fonwy (acx-w yf udu 
0 
x 
[o-wy a (x-u))f (udu 
0 
XJ (av (x-u) (x-ut+b))x 
x f(u)du 
x 
0 
1 1 i onl fees 
Pp te 
[Re p>0] 
—VvE-v— ll 1 
2 Dp F(in] 
[Re v>-1; Re p>0] 
F(p) cer ene 
Pelee poe 
[Re v>-1; Re p>|Im a|] 
Vv 
+ Eas F(p) 
pre par 
[Re v>0; Re p>|Im a|] 
(2a) PRiv+1/29 
F(p) 
Vip Pacey eer 
[Re v>-1/2; Re p>|Im a|] 
Vv 
pel 
£xp[b(p-4p* +a’ 
| 2 D2 
Petea 
[Re v>-1; Re p>|Ima|; |arg b|<n]J 
4 \ oat a’ 
(5) p exp(- 45] F(p) 
[Re v>-1; Re p>0] 
)/2) Fp) 
33. 
34. 
35: 
37. 
38. 
39. 
TRANSFORMS CONTAINING ARBITRARY FUNCTIONS 
x 
[raced x? —u *)F(u)du 
0 
x+uU 
xX. 
v/2 
eS) 1 (al CM OY 
0 
ul (pines —u a 
ail ee 
0 em 
- , (4 a ) 
f(x)-ax{ 
7 2 
0 Be i) 
xJ (avu (x-u))f(u)du 
co 
i | (x+u) we 
0 
x J (av¥x (x+u))f(u)du 
(u)du 
f(u)du 
(p- ayn /2 
F¢ pa”) 
[Re p>|Im a}] 
11 
ae p?+a?) 
Gieap* +a 2 
[Re v>-1; Re p>|Im a|] 
F( pear) 
[Re p>|Im a|] 
——P__- FA p*+a*) 
2 2 
Peaa 
(Re p>|Im a|] 
1 
[Re p>0] 
[Re v>-1; 
COLA 
Tap? +a 
1 
alan 
Re p>0) 
bday? +a + 2B). x 
2 
2 2 
4p +a -p 
[Re v>-1; Re p>|Im a|/2) 
12 
40. 
41 
42 
43 
44. 
FORMULAS OF GENERAL FORM 
co 
-bu 
ee pee x 
0 xX+uU 
XJ (av x (x+u))f(udu 
~ 
a [1,@e-w)r du 
0 
x 
; fo-w" x 
0 
x I (avx —u)f(u)du 
x: 
: [o-w"x 
0 
x I (a(x—u))f (u)du 
XI (a¥ (x-u) (x-ut+b))x 
x f (udu 
x 
45. fo-w"? x 
0 
x1 (aVx-u)f(u)du 
x 
46. Jagat x? =u?) x 
0 
x f(u)du 
2 2 
lew -#(? 4p 4742-2] 
(Re p>|Im a|/2] 
Free greece 
[Re v>-1; Re p>|Re a|] 
leg F(p) 
gy pea 
[Re v>0; Re p>|Re a|] 
(2a)” T(vt+1/2) 
Sa a) 
Vu woe 
[Re v>-1/2; Re p>|Re a|] 
Vv 
Ded pa" 
2 2 ny ae x £xPlb (p-4 pa )/2) rw) 
2 Z 
Daa 
[Re v>-1; Re p>|Re a|;- |arg 6|<nx] 
Vv 9 ooo te 
{Re v>-1; Re p>0] 
praa)Y pdgeg 2) 
[Re p>|Re a|] 
TRANSFORMS CONTAINING ARBITRARY FUNCTIONS 
* Pa Fy v/2 
47. jie x 
0 
x L,(ad x? uf wdu 
48. f(x) + 
ered Cade on 
+af 
0 oa 
49. f(x) + 
ek (a a) vox | tebe 
0 ee 
50. [iave (xu) )f(wdu 
0 
x 
Tl os 
0 
x I (aVu (x-u))f(u)du 
a 
52. | gla 
x1 (av x (x+u))f(u)du 
-1/2 
2p a8) ed Ya?) 
(pray: -a ay 
[Re v>-1; Re p>|Re a}] 
F( p? Sar} 
[Re p>|Re a|] 
[Re p>|Re a|] 
1 
[Re p>0] 
[Re v>-1; 
<a 
[Re v>-1; 
ves 
Re p>0] 
oe 
Re p>|Re a|/2] 
13 
14 
53. x 
54. x 
SD. 
56. 
37. 
58. 
FORMULAS OF GENERAL FORM 
x I (avx (x+u))f(u)du 
- 1)/2 (n+ y 
«fs “I Xp) ae A) ide 
x 
[o-w" x 
0 
x ae (a;c;A(x—-u)) f (u)du 
IL 2 
oKn Foss 
om 8 
ah iesu) faodua 
2 2 4 | eee as ] -ro| 
[Re p>|Re a|/2] 
Sep FQVp) 
[Re p>0] 
T(c)p* EGS 
Cp= ye 
[Re c>0; Re p>max(0,Re A)] 
(Re p>0] 
ale Gg" n+l] u 
p Gra :9| Pp 
0 
[r<q; Im+2n>r+q; Re b 2-1, 
(a 
seas 
(6) 
k=1,2,...,m; Re p>0] 
k (-1)* 
(-1) —[coth (lvp)] F(p) = 
p 
[k=0,1; Re p>0] 
Chapter 2. ELEMENTARY FUNCTIONS 
2.1. THE POWER AND ALGEBRAIC FUNCTIONS 
2.1.1. Functions of the form x, 0(¢x¥a)x", [x] 
4. @(a-x)x” 
5. 8(a-x)x” 
6. Oca=xin 2 
n 
T(v+l1) 
v+1 
[Re v>-1; Re p>0] 
n! 
n+1 
[Re p>0] 
(2n-1)!!Vn 
non lee: 
2 P 
[Re p>0] 
1 
a heap) 
[Re v>-1; a@>0] 
n+1 n+1 
p 
n k 
n! n! —-ap (ap) 
peri S te » k! 
k=0 
[a>0] 
lie 
cp hap lay SAR On= oo 
Frais i pe) oes Cd a 
[a>0]} 
Vap) 
16 ELEMENTARY FUNCTIONS 
1 
v+1 
7. 0(x-a)x” T(v+1,ap) 
{a,Re p>0] 
A nt a n Ca so 
8. 6(x-a)x © ——e oar 
k=0 ‘ 
nal 
{a,Re p>0) 
-n-1/2 Bas ~ k 1) k-n-1/2_k 
9. O(x-a)x — hn LG ae r{n-k+3) a p+ 
(tye aN YR 
+ Tit+l/2) erfc(v ap) 
[a,Re p>0] 
1 Bae 
n 
== e k k-n-1_k 
10. 6(x-a)x nip DED (n-k)!a~” pe 
n 
- 2) Ei(—ap) 
[a,Re p>0] 
11. [x] A. 
pte —1) 
{Re p>0] 
p 
12. S[x17 1 
p(e?-1) 
[Re p>0] 
n Kuk 
itd" eb | co" (nt 
P ad le" d = 
[Re p>0] 
2.1.2. Functions of the form (x+z)”, (a-x). 
pz 
1. (x+z)” P(v+l, pz) v+l 
[Re p>0; larg z|<n] 
THE POWER AND ALGEBRAIC FUNCTIONS 174 
! n k 
ie y (pz) 
n+1 k! 
p = 
[Re p>0] 
e pees n-1 1 k és 
Si kesh 4) (ee Sie gil bt a e”’Ei(—pz) 
[Re p>0; |arg z|<n] 
Jz eerfc(Vp z) 
[Re p>0; |arg z|<x] 
= e”Ei(—-pz) 
[Re p>0; |arg z|<x] 
ee aia Vn pe erfc(Vpz) 
Vz 
[Re p>0;_ |arg z|<zxJ 
+ ae pe’ Ei(-pz) 
{Re p>0;, |arg z|<zx] 
-ap 
y(v+1,—ap) 
v+1 
[Re v>-l; a>0] 
e”* [Ei(—ap—pz) — Ei(-pz)] 
[Jarg z|<n or z>a, a>0] 
T(v+1) eo? 
v+1 
[a,Re p>0) 
ser? Ei(bp—ap) 
{a>b>0] 
18 ELEMENTARY FUNCTIONS 
be Jy PEED (—apy* - &In(ap) 
k=0 : 
[a,Re p>0} 
2.1.3. Functions of the form x" (x+z)”, xP (a>x), 
ptv+l 
1. x? (x+z)” T(pt+l)z Wut, wt+v+2; pz) 
[Re p>-1; Re p>0; |arg z|<nx) 
+1/2 
PBeesleai a TGs (2) P22 B 
ae p v+1/2{ 2 
[Re v>-1; Re p>0; |arg z|<n] 
: +1/2 Si ae ~ivn Zz) siap , ((141)/2) 
SEX CEL) Fa T(w+1) a e Ase (pz) 
[Re v>-1; Re p>0; -(2nt+n)/2<arg z<(2n¥n)/2] 
ca 2” +1/2 pz/2 
4. Pareienla - T(v+l)e D_,,_,6V2P2) 
[Re v>-1; Re p>0; |arg z|<x] 
v v +1 
5 92 pz/2 
2 ee Te Be Dew Doe cre 
[Re v>-1; Re p>0; |arg zj<x] 
papi r ree ee (v+1)z e T(-v,pz) 
[Re v>-1; Re p>0; |arg z|<zx] 
5 Be 1 n+l on pz. " (250 " es Gls zee EiGpa+ ) Ely 
k=] p 
[Re p>0; |arg z|<x] 
8 ge n__n-1/2 pz 
ean (-1) nz e erfc(v¥pz) + 
Yn 1/2-n< 
Renter AD, (2n-2k-3)!!(—2pz)" 
. k=] 
[Re p>0; |arg z|<z] 
THE POWER AND ALGEBRAIC FUNCTIONS 
9. ee se) -1/2 
p v 
10. x (a-x), 
v v 
Il. x (a-x), 
12. x2 (q-x) 1”? 
p v 
Kaa x) 
(ee ae 
(x+z)° 
6 (a-x) 
Vx (x+a) 
14. 
pb v 
15.. x (x-a), 
v Vv 
16. x (x-a) 
-v-1/2 : v 47. x! (x-a),, 
-v-3/2 
18. i(e= a). 
sf) (4 
[Re p>0; |arg z|<n] 
pt+v+l B(u+l,v+l)a fF, (ut, wt+v+2; —ap) 
[Re p,Re v>-1; a>0] 
v+1/2 
VnT(v+1) (<} 
(Re v>-1; a>0] 
[a>0] 
+v+1 
# Zz B(ptl,v+l)a °O, (2,0; p+v+2;— 2 ap) 
[Re p,Re v>-1; |arg(1+a/z)|<n; a>0] 
aay etl = erf’(Yap)] 
2Va 
{a>0] 
+v+1 
. e€ Tv+la ~@ PW y+], utv+2; ap) 
[Re v>-1; a,Re p>0] 
r(v+l1) (2) mM? aol 
vx VP 
[Re v>-1; a@,Re p>0} 
ap 
v+1/2 2 
EO gt p iy Tap) 
2° ¥ pi 
[Re v<1/2; a,Re p>0] 
T(-1/2-v) -ap/2 
avril? is2© D 
[Re v<-1/2; a,Re p>0] 
ave § 2ap) 
19 
20 
19. x! (x-a), 
1/2 
ELEMENTARY FUNCTIONS 
na erte(Vap) 
(a,Re p>0] 
PQ) 2 Got cap) nave "cot vn 
p 
[Re v>-1, v0; a,Re p>0] 
l/k.v 
2.1.4. Functions of the form sliney Medes x" (a-x es for 1Ak 
Werte 
Zs xP (xt 2?y” 
eae : ee 
[Re p,Re z>0] . 
1, p+l pt del Ae oad eae 3 wtl, 1 
2 - 2 2 
Pay 84 
p+3 Be “fale ~y-Ha 1} 20H? 
yO er | 
epee prim T(n+2v+1) 
sae bast 225 EVES 4 -) + oe x 
[Re p>-1; Re p,Re z>0] 
T(v) ( d lee Gaal 
(-2)""!athedz 
EU pore ef Srey | 
[Re v>-1; Re p,Re z>0] 
Sy AN tee . 
mre Pars es ee 
— COS pz si(p2))} 
(Re p,Re z>0] 
m+n (S10 ind sad)" (3/2 1 
nt2" iT dp m “ {: [eospe( 3 - Siva] = 
“an(t-cvo 
[Re p,Re z>0]} 
THE POWER AND ALGEBRAIC FUNCTIONS 21 
m-1/2 m+n_3/2 3m n 
x G2 NN) I d d 2) | pe. 
6. Ceoeec ye 4(2n-1)!! eas {ve|77,.[ 4 t 
2 (pz 
tial 5\]} 
{Re p,Re z>0] 
mt 
ale vd Pa [sin [o:-"5] ci(pz) — cos [p25] si(pa)| t 
[m/ 2] 
+t on 1-p72)*" 
Pp k=1 
[Re p,Re z>0] 
Reith ae 
(any ew 
! Fagard Ray te 
aml Te 
p Zz 
8. lh Nes rare: 
lr (=v) p" 
A(l,-p), iin) 
A(k,0) 
[Re p>-1; Re p>0; |arg z|<z]) 
v+1/2 
9. (a?-x?)* orev) (28) 7260) ~ Ly 1/260) 
[Re v>-1; a>0] 
p+2v+] 
10. x!(a’-x")” a —B| sa 
(Re p,Re v>-1; a>0] 
-1/2 (-1) "vn d" ap ap 
a aia pT. YP Ki p4(—3) [A1val- 2} * 
4 2=1/2 a 
xX (a -x'), +1444(2)]} 
[a>0] 
22 
12. 
13. 
14. 
15. 
x" (a-x 
Why 
abe 
ELEMENTARY FUNCTIONS 
(vel uae Lt? 
; x 
On ee ish conan 
k+l,k 
fag 1! A(l,-p), A(k,v+1) 
xKGe Sarraary 
a p |Atk,0) 
[Re p,Re v>-1;_a>0] 
(ap) 
/2 
T(v+l1) (2a vi 
Ee K isa Vn p 
[Re v>-1; a,Re p>0] 
Fle” Ei(-ap-bp) —e “PEi(ap—bp)] 
[O0<a<b; Re p>0] 
a ai” KS 2 » in 
ae ] 9) B[v+1-v- -1} tao 
Sot CD PGut2v 1) bw 
pps ss preyed Clee ae” 
(Re v>-1; a,Re p>0] 
v+3/2 n 
ah ee ae: 
2Vx dp" 
{Re v>-1; a,Re p>0] 
Bbw’ BY 2 2ealea 2 f(a 
“4? i [#5] “Ki74(“5| |} ¥V2n dp 
[a,Re p>0] 
Pp ap a 
a| In Ky B\K/4(25| 
[a,Re p>0] 
-v-1/2 
K .3/2(4P)] 
THE POWER AND ALGEBRAIC FUNCTIONS 23 
HM, 2) PEND [z= 2 fap 
19. x (ea ey) sd 5) 
[a,Re p>0] 
v,p+l/2 
20, alta) Sea) al ee 
(20) pa 
ee 1! ACU =p), Atkyv+1) 
PS Ew aE 
Nar NCE) 
[Re v>-1; a,Re p>0} 
v = 2am, 
x veils) SSV We Ge jal 
ae 272-32 eat Lae pay 4 )+ 
ae 2 Pe -a 
oes (ce? — @ “cos vn) 
[Re v>-1; a,Re p>0] 
on alts 1 eae Pop 
ee [ip Cee ap) se Eicap)| ate 
7 2 
x -a 
{m/ 2] 
l 2k-2 
jose car y (m-2k)! (ap) 
D k=] 
[a,Re p>0] 
m aak 3 ay ap 
23. ———. Se [e PRi(ap) — (-1)""e“PEi(-ap) + 
x -a 
+ 2 sin [av-"5) ci(ap) — 2 cos [av-"5} sicap)] 35 
[mn / 4] 1 4k-4 aca), (m-4k)!(ap) 
p k=] 
[a,Re p>0] 
ey iy ee -v-1 
24. TTk > CL any eS 
l-ax (207) 
ght! aki! A(1,-v) ,A(k,0) , A(k, 1/2) 
x 2k+1,2k [! 
p A(k,0) ,A(k,1/2) 
[Re v>-1; .a,Re p>Q] 
24 ELEMENTARY FUNCTIONS 
ph Rrperil2 -p-l vn ki kel k 
IA, = eh ee sec G,’ ax 
v - k+1,2k eax (ny U2 ey 2 ~ 2k+ 
am x 7 : 
p |Atk,0) ,ACk,(1-v)/2) 
[Re u>-1; Re v<1l; a@,Re p>0] 
! Osh, set 
2.1.5. Functions containing ¥x+z 
1. <a a erfc*(¥pz) 
(x+2z)Vx+z 2vz 
[Re p>0; |arg z|<n] 
2 2 
(V¥xt+z-vz) nf{d [pz 
Ze ray ie 5 dp erfc(V pz) 
{Re p>0; |arg z|<x] 
s 1 “1/2, -1/2 Re ee 
= meer (x+w) + ——..—— erfic(pw) erfc(pz) 
WZ 
gs Beye [Re p>0; |arg w],|arg z|<n] 
eu 2pz 2 {a [2 ro+ve PED (/2pz) 
(x+2z) ¥x+z . eve 
[Re v>-1; Re p>0; |arg z|<nx] 
v/2 / 
5. ((Vx+z+Vx)*- RATELY 
p v/2| 2 
= (Vx+z-Vx)"] {Re p>0; |arg z|<x] 
6. yal ( AY . T(v+l1) pr/2p Vips 
Vere Vee ee 2 DTR Cyst T2© ~y-(%2 Pz) 
[Re v>-1; Re p>0; |arg z|<x] 
Vere+V¥z]" 1/4 pz/2 
i: ge Vaz Ki(25) 
[Re p>0; |arg z|<n] 
THE POWER AND ALGEBRAIC FUNCTIONS 25 
2.1.6. Functions containing a Meer te for 1+k 
1. (xtdx 2422 i 
v 
x" eee Le 
(ieee ee) 
4. 
{r-0 or 1/2] 
x" 
5. —————; 
Gis i 
x(fi+zx! x ree ‘ 
x 
[r-0 or 1/2] 
De Vv 
za SUV Ze 
p psinvn 
[Re p,Re z>0] 
[J_ (pz) — J_,(pz)] 
Vv 
Iz 
sinvn [_,(p2) - J_(p2)] 
[Re p,Re z>0) 
(5} bere iz -2v)/4 (25) a 
AY (ia wld A ~ Jew /4 (*3] . 
XY ua /4 Gl 
[Re p,Re z>0] 
-2r,2r-1/2 p+i/2 (CRW amen 
Van t2ny** Fe T2 per. 
ye Gk Bat! : : l : 
2k+1, 2k l 
p 
x 
A(l,-p) ’ 
Atk, (v¥v)/2), 
Atk, (v+1)/2), ae oe 
Atk, (v+v)/2) 
[Re p>-1-(1¥1)//(2k); Re p>0; |arg z|<n] 
-2r,2r-1/2ppri/2 (ENP Doe ok 
= x 
A(l,-p), 
XG 
2k+1, 2k 1 
p 
A(k,l-rtv/2), Ack, al 
ak kel [2 "0! 
A(k,0), 
A(k,1/2) 
[Re p>-1; Re p>0; |arg z|<x] 
ELEMENTARY FUNCTIONS 
6. 6(x-a) [ (x+4 ends lee 
x [ (+4 leax" ‘ Dee 
a(t hia) | 
{r=0 or 1/2] 
10. ae ibe x 
< | (eee le ples 
Ze? ( apaies 
ees 
[r-0 or 1/2] 
2va”~ 
K (ap) 
[a,Re p>0] 
2a K . (ap) 
{a,Re p>0] 
§ [22 aP | K. ap 
g eat Aa | 5) 
[a,Re p>0) 
yin 2r cag 2rd epntil2Qayis! Pate 
2k, 1 ! 
a 
a (/5 =O) 
X Gore] 1 
p A(k,0), Atk,v) 
A(k, (v+1)/2), anid 
[Re(lv+kp)>-k; Re w>-1; a>0] 
nega 2 tee 
~ x 
(Qn i? 1 pee 
Delano ia sgh 
XG wm) OT p |Ak,0), Atk,1/2) 
A(k,1-r-v/2), a 
j2.Re p>0) 
THE POWER AND ALGEBRAIC FUNCTIONS 27 
2.1.7. Functions of [x] 
1 —— a 
({x]+a) * 
aa te 
({x]+1)” 
cael ER 
[x]+l 
1 
2[(x]+1 
4[x]+3 
leale! 
ie 
(2[x])! 
(+1) 1 
MP ixlti)! 
l-e "4 A-P 
D (e “, S, a) 
[Re p>0] 
p 
e- = (2, -p 
“pe Li (e ) 
[Re p>0] 
_— p -_ 
Ppa P) 
[Re p>0] 
-p/2 
sinh £ fete — ee 
p 2 pees? 
[Re p>0] 
y PE yD -p/2 
? sinh ) arctan e 
[Re p>0] 
eo) -p/l4 = 
gpl4 1 ens 7" (in Une FATT Ape Gion € sia 
P lea?! 4 
(Re p>0] 
IP -p/l4 oS e3P/4 1 e ia Ife => actinic p/4 
NG lee 
[Re p>0] 
_ mH J 
ai exp(e i) 
weit ol 4 xt l-e , cosh, eh, 
p cos 
2... p fsinh,-p/2 
2 sinn {$30 (e r} 
28 ELEMENTARY FUNCTIONS 
1 
ll. aTx])! 
[x] (le 
eres Pe 
1 
13. TaTxj+D! 
eae beet. 
14. TaTxI+1)! & 
Olin) 
15. ails 
{x] 1 
16. > eR 
Oy k+l 
k 
2.2. THE EXPONENTIAL 
[=eme —p/4 Zp )] feosh (er + cos(e 
v2 
—p/4 p/4 Le ) + sin(e 
p 
[sinh(e 
=e = = 
ip oe e) T(n,e P) 
= * Inte”) 
[Re p>0} 
FUNCTION 
Dp 43 be exp(-ax"/%) and the power function 
3. 6(b-x)xe 
1 
pta 
(Re(p+a)>0] 
T(v+1) 
(pta ) v+l 
[Re v>-1; Re(pt+a)>0] 
Re Er y y(v+1, ab+bp) 
[Re v>-1; 5>0) 
—p/4 
ela anes 
cosh (# Jos 
v2 
)] 
10. 
11. 
12. 
13. 
. O(x-b)x"e 
5 exp(-ax’) 
b xexp(—ax’) 
i x"exp(—ax’) 
5 2s exp(—ax’) 
6(x-b)exp(-ax’) 
(x-b) Yexp( -ax’) 
exp(-ax”) 
THE EXPONENTIAL FUNCTION 
1 
ae ee T'(v+1, ab+bp) 
[b,Re(p+a)>0) 
2 
ads ea) ene] 7 |— exp| 4s] erfc 
[Re a>0] 
2 
Cet s 73 Fa) 2 [ Ae oe a exp. JON as (Qa wd 2 8a seat My Ie 
[Re v>-1; Re a>0] 
2 PE fol) st exp erfc 
[Re a>0] 
mea exp( Fa 3) ete(—2- }] 
aa [ ple Va. 
[Re a>0] 
1{p tee De pa 
Hb exp [$5] [«sra( Ba] -Kia(Ea}] 
[Re a>0] 
1 ey Pele Ae. 
Wa Pl ga}*i/4| 8a 
[Re a>0] 
ab ale exo(4 Bete a} 
[b,Re a>0] 
2 
T(v+1) Diao) 
Paani tee exp [Fa prabry)|D_,_,[ 
[Re v>-1; 
3 
2 
3 Tha sual? 27a 
[Re a>0] 
b,Re a>0) 
2ab+p 
¥2a 
29 
} 
30 
14. xexp(—ax>) 
15. 
16. 
UTX 
18. 
19. 
20. 
21. 
exp(-avVx) 
x’exp(—aVx) 
(n-1)/2 
exp(-avx) 
x eexp(-a¥x) 
ji exp(—avVx) 
ELEMENTARY FUNCTIONS 
ii. (V1) yeWen/3> ee (veka T 29 eit pi are ee nah a 
era) yee oc) Art ae Hest ie Wile oe 4 
ni 
oe Lae ig e ape ee oa 6 (32) Jae Bele? (Se caesar 
(Re v>-1; Re a>0] 
le ™ exo( $5) ere ] p 2) 3 de Vp 
(Re p>0] 
2 
20 (v+2) E a ) 
SE Sm AT O40 Do. || 
(tay ae Pap 
[Re v>-1; Re p>0] 
2 
(-1) |e a = [exe($5 5) ert 
Pda” 2 
(Re p>0] 
mae +4— “22 Fe e(t5 sy ete(—4 
2p? 2Vp 
{Re p>0} 
4\p) “*P\8p) |*3/4| 8p 1/4(8p 
[Re p>0] 
Felten 
[Re p>0] 
2 2 ES Se OR is a” 
(spy ot esl a) Kval 80) 
[Re p>0] 
Al 
THE EXPONENTIAL FUNCTION 31 
1/2,v+1/2_ -v-1 k,1)AC,-v) 
22. x*exp(-ax") oom (k+l) 72-1 Gi, oe I 
(20) kept ACK-0) 
[Re v>-1; Re p>O for ‘kk, Re a>O for l>k, 
Re(pt+a)>0 for /=k] 
pg Ns exp(-ax and the power function 
nei a (v+1)/2 
l. xe 2($] K.,,(2¥ap) 
[Re a,Re p>0) 
n 
2. xt l/2-alx ees d ape *F,) 
dp 
[Re a,Re p>0] 
-n-1/2 -a/x n[{nd" -2vap 
ge X e (-1) et 
{Re a,Re p>0) 
4. xl/2e-alx apex A rapye2¥ 2? 
Dp 
(Re a,Re p>0] 
-3/2_-a/x 0 -2v ap 
S35 x e JEe 
[Re a,Re p>0] 
2 
Ay -| l- 
6. x"exp(-a/x’) pl Po+DgF,[- oo pa | id 
(v+1)/2 2 
a v+1 JU wees) 2 vay) 
= r{- FAG: a | 
[Re a,Re p>0) 
32 ELEMENTARY FUNCTIONS 
2 
7. x exp(—a/V¥x) p 'Tw+lF, (3. aye 24) * 
2 
-v-1/2 1 Op OE 
— ap r[v+3] oF vA apr | }+ 
+2a*r(-2-2) Ff, [S4y, 24y;- 22 a AAA) BIG ae | 
[Re a,Re p>0] 
NLR pores) Sam ~ -I/k k l Bh Seoqees *) (ke Dye - 10 
(2x) 
Spee 
k_1 
ap: 
[Re a,Re p>0] 
XGiito 
A(l,-v), 4) 
IIPABY. exp(-ax*/*y and algebraic functions 
I OE 20 (v+1) Ce Ly / E: 
. Ve CEI i ew a x (2p) 
xD. (Bee 
Vv2p 
[Re v>-1; 5,Re p>d! 
6 (b-x) -a/x lf{a | 2Vap a 2: = e 22 [e ert ¥Bp+]$ |- 
-e? “Pert ¥bp-[¢ 27°? +e 4 
[6,Re a>0] 
6(x-b) -a/x lf [ 2vap a 2 eb Af [oF Ffotr- 
or “Pert ([$-¥bp) -e” Oe ere ma 
[b,Re p>0] . 
etx * / 
4, ——____ adh QPF PRS ie Givpz 
Vx (x+z) , vz ll? je 
[Re a,Re p>0; |arg z|<n] 
THE EXPONENTIAL FUNCTION 
2.2.4. Functions of the form f(x, e”, eet early 
ey” 1 pie lis (LSS 4) + B(2, v1] 
[Re v>-1; Re a,Re p>0} 
v -ax,m v(m (Sa) E 2. x"(1l-e ) OEM Nd toon mane rare 
k=0 (pt+ak) 
[Re v>--1; Re a,Re p>0) 
noon 
Si xtc)" ted OL ey" a v+1] 
a aaa 
dp 
[Re v>-n-1; Re a,Re p>0] 
~aXxyv 1 pfe P esl 4.-x(-e ©.) 185041] [v[B+vet] »(2}] 
[Re v>-2; Re a,Re p>0] 
Vv 
x (Veta) Pp 
5. Ter 2* See ¢(v+1, 2} 
[Re v,Re a,Re p>0] 
n n+l 
x 2 1h I (n) { p 
ears, keane 
(Re a,Re p>0; n=1,2,...] 
i Civ+l al oa p+a Ge Ie] v4, — | v+l, 
‘Poesy epeeek 2a 2a 
[Re v>-1; Re a,Re p>0] 
yee ted 3” Pp 
8. Teenee wea a 
[Re a,Re p>0) 
1 Ab P 2 9 BS - 1B 
(is a x 2 a a a 
(Re a,Re p>0] 
33 
34 
10. 
11. 
12. 
13. 
14, 1 
x 
iss SS 
16. 
17. 
18. 
1 -ax 
lice )x 
xa Sees) 
~ax.m 
(ie yy se 
—bx.n 
—e x (1 ) 
ELEMENTARY FUNCTIONS 
-bp -ab 
e o(-£ hi 
az z a 
[b.Re a,Re p>0; |arg z|<n) 
Fuel) ofl, v+1,2| 
vtl 
a Z 
[Re v>-1; Re a,Re p>0; z¢[0,1]}] 
- 1 ml 
+ In P(p) + =) Inptpt qin(2n) 
[Re p>0] 
p(p+b) — In(p+a) 
[Re(p+a) ,Re(p+b)>0) 
pt+b 
In pta 
[Re p>-Re a,-Re }] 
2Vn(Vp+b-vVp+a) 
{Re p>-Re a,-Re }] 
(p+2a) In (p+2a) + (p+26) In (p+2b) — 
— 2(p+a+b)In(p+at+b) 
[Re p>-2Re a,-2Re b} 
in (29) (pt 5) 
p(pt+at+b) 
[Re p>0,-Re a,-Re b,-Re(a+d)} 
Cy ) co'(a) S co’(") 52 
k=0 k j=0 ] 
x In [p+ (m—-j)a+(n-k) 6] 
[Re p>0,-mRe a,-nRe b,-Re(matnb)} 
19. 1 
20. 
a. 4 
22. 
23. 
x 
24. 
toa -~e™) m x 
x 
~bx.n 
x(d-e -) 
m 
x 
nl 
x (1 ~exp(—ax)] 
THE EXPONENTIAL FUNCTION 35 
p \In p-(p+a)|n(p+a) —(p+6)In(p+b)+ 
+(p+a+b)|In(p+a+b) 
[Re p>0,-Re a,-Re b,-Re(a+b)] 
n mt a 
» co*(7) 2 c1y(") [p+ (m-j)a+(n—-k)b]x 
k=0 j=0 ) 
xX In[p+ (m-j)at+(n-k) 6] 
[Re p>0,-Re a,-—nRe b,-Re(ma+nb)] 
tf el A 
nN 
(NOE odin AWS 7g hen (CAEL! dp" Sa no 1) [pra,+a, +. 
n-1 
+a, | In [aja tata | 
Lin Peds i, 
[o<m<n Re p>0,Re p>-Re [- eo Tyee, : 
j 
iy Fe k 
the notation means that the kth member of the 
sum contains i terms which differ by the subsets 
of indices is i, Seen i, from the set j=1,2,...,7 
Iho (222) — » (ete 
Cc c ¢c 
[Re c>0; Re p>-Re a,-Re 6] 
(pta)/(2c), (pt+b+c)/ (2c) 
InT 
(p+b)/(2c), (p+at+c)/ (2c) 
[Re c>0; Re p>-Re a,-Re 6] 
1/,,(pt@ p+b)_,(p)_ [erated “eleaalt Sacelatle| <8 
[Re c>0; Re p>0,-Re a,-Re 6,-Re(a+b)]} 
plc, (ptatb)/c 
InT 
(pta)/c, (ptb)/c 
[Re c>0; Re p>0,-Re a,-Re b,-Re(a+b)] 
36 
26. 
27. 
28. 
29. 
30. 
31. 
32. 
(i-e ~) 
x 
[z+(e*-1) 
p 
l /k j 
ELEMENTARY FUNCTIONS 
n 
+ _ yep har(2 na ka} 
k=0 
(Re c>0; Re p>0,-nRe a] 
i Ipi2 1- Hl. ne PRET ba [2.1—v) Fy .-am ws p-vtls wo) 
[Re v<l; Re a>0; |arg(l—u)|,|arg(1—-v) |<m] 
B(utl, p/a) | ee 2 Ml 
v oF a’?™? qthtl; zy 
az - 
[Re p>-1; Rea>O; |arg(l+z )|<m] 
Vv po 
(k/z) é rex 
v 
A(l,1-p), i, 
x Gk ke! rigs 
A(k,0) , A(l,-—p-v) 
[Re p>-1; Re p>0; |arg z|<m] 
klay Fr f?] x 
v k-1 v 
(20) 
kee | 
iol: 
A(l,-p) , Ak, ual 
A(k,0) ,A(1,-p-v) 
[Re »>-1; Re p>0; |arg z|<m] 
pet eee 
k+1-2 x 
(20) z*T(v) P(pt+ptl) 
xG 
k+l,k+l} —k 
k+1,k+l 
A(,1-p), al 
A(l,u+1), A(k,0) 
(Re p>-i; Re p>0; |arg z|<m] 
A(l,1-p), P (pt) wk ok, k+l -k 
peas 2k+ 1,2k+1 
A(k,0) , 
A(k,0), A(k,1/2) | 
A(k,1/2), A(l,-p-p) 
[Re p>-1; a,Re p>0] 
THE EXPONENTIAL FUNCTION 37 
A(l,-p), Lae Ke = 
33, lac fh evs ee roe lat 
aie A(k,0), 
2k+1,2k+l 
A(k,0), ACk,1/2) 
A(k,1/2), A(l,-p-p) 
[Re p>-1; a@,Re p>0] 
34, joel Oot 2 ae UF 6 9 eee roe a 
a=€er A) © / (20) )~ ar(ptpt1) 2k+1l,2K+1 
A(i,u+1), A(k,0), A(k,1/2) 
A(l,1-p), A(k,0), ee 
[Re p>-1; a,Re p>0) 
Beats , 
5 ae — thle) p[wt] x 
ly Le” cos (vn/2) 
A(1,1—-p), ky k+l -k 
x Gore 1,2k+l f 
A(k,0) , 
Atk, lv), Atk, (1-v)/2) 
A(k,(1-v)/2), ACL,-p-p)) 
[Re p>-1; Re v<l; a,Re p>0] 
as he n(k/a)~ r[e] x 
LP-cos(vn/2) 
A(d,-p), 
2k+ 1 ,2k+l A(k,0), 
x Gi‘ k+l [." 
A(k,l-v), Atk, (l1-v)/2) 
A(k,(1-v)/2),A(l,-p-p) 
[Re p>-1; Re v<l; a@,Re p>v) 
38 ELEMENTARY FUNCTIONS 
qa Roa? secnh2) 
esi x 
2(2n) Pv) P(pt+ptt) 
INU M=o)- Gt"! k+l -k 
X Go kel, 2kel A(,p+)), 
A(k,l-v), Ak, (A-v)/2) 
A(k,0), A(k, (1-v)/2) 
[Re p>-1; Re v<l; a@,Re p>0} 
Vv 
38. Gime" ax a) 
SOUUGR al y 
k kane 
xX (a-e ) xG ; 
-lx/k.v kyl 1 
+ k+l,k+1 
A(,1-p), Hie 
a |A(k,0) , A(1,-p-p) 
[Re p>0; Re v>-1 for O<a<i, Re w>-1 for 
a>l, Re(u+v)>-1 for a=1) 
v 
39. (l-e *)"« a Eee b ata 
a= =e) xXxG rn 
-x.l/k,v kyl 1 
+ k+1,k+l 
A(dl,-p), A(k,v+l1) | 
a |A(k,0), A(l,—p-p) 
[Re p>-1; Re p>O for a>l, Rev>-1 for 
O<a<1, Re(p+v)>0 for a=1] 
2y v,nt+D 
40. (l-e Dex Gaal r| v+l1 |x 
(ame ee utpt+l 
_ Xtal ANE fy 
SER sh. ee 
Ad,l-p), A(k,v+1) 
A(i,u+1), A(k,0) 
[Re v>-1; a@,Re p>0] 
THE EXPONENTIAL FUNCTION 
41. (l-e *)*x (2) P (n+l) (v4+1) % 
hae 
-lx/k v 0, k+l ie Ad, l=p), A(k,v+l) 
ee eee XG). k+l 
A(k,0) , A(Z,-p-p) 
[Re p,Re v>-1; O0<a<1] 
42. (1-e *)*x (¢) POISE ps 
1? 
Sle 5 acy 0, k+l ie NCU AU) ame GK paves) 
CMe sal) OE ver A(k,0), ACL, -p-p) 
[Re v>-1; 9<a<1l; Re p>0] 
v,pt+p 
- 1 v+1 43. (l-e *)"x a ae | ]x (Qn) ! Pee: p+pt+l 
et oe ret (1 A(,1-p), A(k,v+1) 
(e-bay, XGuy a 
A(,u+1), A(k,0) 
(Re p,Re v>-1; a>0]} 
: 72 Cen / 2 PEP Gel) 44. (1-e *)*x Seer a WF Lane a we Cay 1/2 ,u+t t/2 PAT 
Vv 
yidieze 17 +1] ye Gk tke! | ok A(l,1-p), 
Clive oe r 2k+1, 2k+/ Atk, (v¥v)/2), 
([r-0 or 1/2] A(k, (1+v)/2), Atk, 1-2r+v/2) 
Atk, (vtv)/2), A(l,-p-p) 
[Re p>-1; 2kRe p>-(1¥1)/; |arg z|<x] 
40 ELEMENTARY FUNCTIONS 
45. (en x 
Vv 
Udez ine *) 1" +} 
rel keer 
[l+z(l-e ~) ] 
(r=0 or 1/2] 
x u 
Fen ca all 
[l+z(l-e ~) ] 
Nc Ae eee punts 
seGize ye: 
w/e) [r=0 or 
a at i 
x [[rdi-e-*)"- 
aerial te heer) | 
[r-0 or 1/2) 
VD (ELD) ep) e 
k= 2 2 
(22) i 
Aoi) ’ k,2k+1 k 
XG ake! : 
A(k, (v¥v)/2), 
Atk, (1+v)/2), ins 
Atk, (vtv)/2), A(l,-p-p) 
[2kRe p>-(1¥1)/-2k, Re p>0; |arg z|<x] 
V2 Gey) 2) PGs) 
(any Ro F/B ypwe ly l 2-23 
AN Wi sil=fD). Pasi Nf 
XG) kel c 
A(k,0) , 
Atk,l-rtv/2), A(k,1-r¥v/2) 
A(k,1/2), Ad,-p-p) 
[Re p>-1; Re p>0; |arg z|<z] 
[IED eel) 
Mien Sie et 
kizkel | ok 
X Gop) 24! c 
NCE |), 
A(k,0), 
A(k,1-r+v/2), pera 
A(k,1/2), Ad,-p-p) 
[Re p>-1; Re p>0; |arg z|<z] 
nviDp 22h, Eten 
2p+v+1-2r 
[Re p,Re(p+v)>0] 
THE EXPONENTIAL FUNCTION 4] 
49. dae alii l+e *+ 
itce Ve 
es id eae eae 
[r=-0 or 1/2] 
{r=0 or 1/2] 
-lx/k.-r 
+ 52, Gee )' a=e'). x 
Sl (Faxda mTR) is 
OM Valse) 
[r-0 or 1/2), 
v+2p+2r-2,, a Be 
p+v/2+1-2r 
[Re p,Re(p+v)>0] 
QP rep (221) 2PHB-D/4 7 
1/2-v 
x ea aS 
[Re p>0] 
OE atin Stage 
DA) me | x 
v 
1=p, sits 
Gas Gq 
{ OWsaP 
[Re p, Re(pt+v)>0; O<a<1 or a>l, Re p>-1]J 
2. v/2-r 
2 ¥nk v/2-r 
Cae 
v 1 
x Gk! we A(l,1—p), 
2k+1,2k+1 A(k,0) , 
A(k, (1+v) /2), A(k,1-2r+v/2) 
Atk,V) » ACL, =p=py 
[Re p,Re(kptlv)>0;, 0<a<1 or a=l, 
Re p>2r-3/2 or a>l, Re p>-1] 
42 
53.(1-e *)"x 
x Pe ees ox 
< varlaecincmt yee 
eeiyel ee 
eeat leer ee 
[r=-0 or 1/2] 
ELEMENTARY FUNCTIONS 
2k, -k 
x ae 
A(k,0), 
Atk, (1+v) /2), A(k,1-2r+v/2) 
INCE). NY) 
(Re p>-1; Re(kptiv)>-k,; O<a<1 or 
a=1, Re p>2r-1/2 or a>l, Re p>0] 
2.2.5. Functions containing exp (—cl x +5 a 
1/2 
Notation: ued? (5a4 2) , 
: =aelpe prea 
+ 
- exp(—b eet) 
rer 
1/2 
3. exp(-b1 x40") x 
2 
x Hay 
x 
1 
(ale cane Hh ff 2 
ae ue 
P as i Sie 
[ex,,| 2 |x, 2 ] 
(Re a,Re b,Re(p+b)>0} 
yuT2 1 exp(-ad b?-p”) erfew_)- 
fee 
= i. exp (af b*-p 2) erfotu,)} 
+ 
(Re a,Re b,Re(p+b)>0) 
— eerfc(u erfc(u_) 
Vv2a 
[Re a,Re b,Re(p+b)>0] 
THE EXPONENTIAL FUNCTION 43 
PSeciisa CA ae 1 ie ee ee [2 r{>~»] Dj y(V2u)D,_, (V7 2u) 
ty Sac 
x exp( <b x a 2) [Re v<1/2; Re.a,Re b,Re(p+b)>0] 
Sy (eeay 1? x b zal exp(-al p? 252) erfcw_)— 
b z 
; 2 v Ss 
x exp(- x? 4") 1 exp (ol p?=0Jenew,) 
+ 
[a,Re b,Re(p+b)>0] 
2 2 
2 2-3/4 (2 ae u 
oa a) ex Be | 2 \x,,| 2 | 
x exp (-s x ges a z) {a,Re b,Re(p+b)>0] 
-1/2 
(x-a) , 
It ap 
LD sear remem 75 —— e erfc(v, erfc(v_) 
a 
exp |= Peal [a,Re b,Re(p+b)>0) 
zh 2v+3 
8. (xtay"(x’-a?) * x 2s D. 070, 47,020) 
ae he ara ee GP v-1/2 ives ff) = 
scetp|_-t4 me) \ [Re v<1/2; Re a,Re b,Re(p+b)>0] 
v/2 
= p 24 2 
9. Gag, x 2a | 4 K (al p -b } 
p-b 
x [eke [a>0; Re p>0|Re b|) 
Mert t=? |* 
i aa. 
exp <b x72) | 
2.2.6. Functions containing exp(f(x)) 
1. exp(—ae”) a’T'(-p, a) 
[Re a>0] 
ELEMENTARY FUNCTIONS 
2. exp(-ae *) 
. (l-e *)exp(—ae”) 
. (l-e *)’exp(-ae *) 
Sed ~e *)"exp(-ae*") 
. d-e *)’x 
X exp( <gers 
. (l-e*)*x 
—x, l/k 
<exp[—a(l—e")) J 
(lene) 
x exp[-a(l-e *) Rule 
a ’y(p, a) 
[Re p>0] 
Pewee? P/,42y 
ay 
x Pare: (p+1)/2,-p/2 
[Re v>-1; Re p>0] 
(a) 
B(p,v+1) F, (p;p+v+1; —a) 
[Re v>-1; Re p>0] 
Bip,vt lz "®, [Pwr ia ia) 
[Re v>-1; Re p>0, Jarg(l+z")|<m] 
Costly ke ote 
(ln) tere 
x 
bal 
k 
a 
xG 
Ad,1-p), ie 
A(T) —p =v) 
[Re v>-1; Re a>0] 
a x 
(22) Ck =) 9/82 
kyl yf A(1,1-p) 
“Sino PTE 
‘ k A(k,0) ’ A(l,—p-v) 
{Re v>-1; Re p>0] 
1/2,-p 
(p)k l x 
(2n) CK aD 
k | A(l,-v) 
XG cee ona 
: kK} Ak,0), Ad,—p—v) 
[Re v>-1; Re p>0] 
r( Wee Lae 
(Quy eee 
k|AW@-v), AD _ 70, k+l) k ’ ? ’ 
a | 
A(l,—p-v) 
[Re a,Re p>0] 
THE EXPONENTIAL FUNCTION 45 
» 1/2,ptv 
10. (1-e "x Gee ~ 
(20) I (p+v+l ) 
k1AC,1-p), A(k,1) 
x exp[-a(e*—1) OE A 
“ta |A@,v+1) 
[Re v>-1; Re a>0] 
1/2,pt+v 
(21) I (pt+v+l1) 
x exp[—a(e*-1) oe RG £- 
. k- | Ad,v+1), A(k,0) 
[Re a,Re p>0] 
12. (1-e*)"exp| - Pipya” ew (a) : EXE eee P -p-v/2,(1+v)/2 
[Re v>-1; Re p>0] 
2.2.7. Functions of [x] 
-_ ToL - - 
1. a re (t-ae?)" 
[Re p>In|a|] 
Se LY 8 
2. a“ en—x) ize l-ae— 
B l-ae 
se ny 
3 [xja"*! L ; ae ’(1-ae ”) < 
[Re p>In|a|]} 
[x] Spl i 
A ae l-€ o(ae P 's,b) 
({x]+)° 
[Re p>in|a|; |arg 5|<z) 
be l-e ? -p h-ay (na-P 
5, —4£—_—. §(n-x) ————-[M(ae “,s,b)-a e “(ae “,s,n+b)] 
([x]+5)° P 
ex} Lda = 
6. —_4+—__ £1 Lita P) 
([x]+1) 
[Re p>In|a|] 
46 
[x]+m 
az lk) 
9, ———___ 
2(xi+1 
i | : 
10. AC sl) AE qe! 
2 (x) +1 
Ae] 
ie 2 
4[x]+1 
4[x] 
Za 
4[x]+3 
tx] 
a 
13. ean: 
fea] 
14, Txpee 
Lexa) 
a 
arg CEA OT 
[x] 
(ET) 2[x] 16. (ZIxp)t 2 
xa 
id (= = 0 eye) 
a C2ir eink 
ELEMENTARY FUNCTIONS 
ieeu 
Indl -ae ”) 
[Re p>inja|] 
nt 
“2 ie eS m=1 k mys 
en? & inc -ae P) - Lae e€ 4 
k 
[Re p>In|a|] 
-p/2 
a) sinh 8 in +42 —__ 
ap 2) lop eee 2 
[Re p>2In|a|] 
/2 
2. sinh 5 arctan(ae °’“) 
ap 
{Re p>2In|a|] 
pisdieee:. if rae Gy 
4ap -p/4 
+2 arctan?) 
[Re p>4In|a]] 
‘ 3 = -p/4 : SYN ten In itae —___4 arctan(ae "| 
{Re p>4In|a|] 
m= /P. = 
oes nae ey 
[|arg a|<n] 
eee = 7 
Tra ty Tp exPlae Pn, ae?) 
Dp 
Cia = Pe 
ap [exp(ae “) - 1] 
[larg a|<n] 
=e" {cosh -p/2 
D bee (ae ) 
[larg a|<x]} 
2, dp (sink, =pi2 
ap ae 2 1a =< } 
[|arg a|<n] 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. 
THE EXPONENTIAL FUNCTION 
mesa 
(4[x])! 
(x ] 
(St) 4[x] 
(4 fee” 
ae! 
(4[x]+1)! 
[x] 
(-1) 4[x] 
(Atxieiyi” 
qisn) 
(4[x]+2)! 
tex) 
(1b) 4[x] 
CATH eR 
4[x “ene 
(4[x]+3)! 
[x] 
(-1) 4[x] 
© WESE hee 
(ety le 
(erttteteey# 
B _ - 
l [cosh(ae play + cos(ae pA, 
[arg a|<x} 
Pe sah 
Ine cosh 7 eth) cos [+ oy] 
P Ua Sp id 
[larg a|<z] 
Pak |- A =p © —p 
tae Sa ) + sin(ae “)] 
[|arg a|<zx) 
-p 
eo 1-2 I sin Be | cos = | + 
¥2ap v2 v2 
+ cosh (-£ | sin (2 "|| 
v2 v2 
{larg a|<n] 
sinh P fcosh(ae ”’*) — cos ae ?'4y) 
1 
2 
a 
[larg a|<zx] 
2 
2 
sinh 7 § sinh {2 e a sin(—2 an] 
a’ p v2 v0 
[|arg a|<x] 
Bes te z, 
Pls ee sinh ie 4 
Zigh sp 
[|arg a|<x] 
pipe sin(ae?’*)] 
47 
—se 4 - 
ert eo [sin ie e? ) cosh [4 f ‘" = 
Y2a° p v2 v2 
— cos & e | sinh (Ze oy] 
{larg a|<x] 
-p . 
e. ine _ y(v, ae Py 
ap 
[|arg a|<x] 
48 
27. 
28. 
29. 
30. 
31. 
32. 
33: 
34. 
Shy 
ELEMENTARY FUNCTIONS 
(1p §21 Qt) 
Qes Ee Dy aliens) 
qgi*! 
[x] ! ([x]+n) 
[exo qzi*) 
ROAEIES® 
(£10 ee 
GEES yee) 
1) 9213 
(2x42)! Cl x41) 
(+1) 1%) 
(ixleiyt * 
qzi*) 
XTHx1ED 
ee 
COTEDP RECT EEI OD 
Cae 4[x] 
PAEVOMT LUGS 
ei (ex) 
QixsteptT™ 
qi kel 
EBSD 
lees ee ee 
+ ap [C + Ina — p~ Ei(tae “)] 
{larg a|<zx] 
Kou. 
x(t - exp(ae ”) D Spee et) 
(larg a|<x] 
icy 
au sinh erfi (a6 
ap 2 \ erf 
A We -p/2 erfi(, ~p/2, - 
| mae orf (2e 5 
{larg a|<z] 
a“p 
F exp(ta’e ?) + 1 
{larg a|<zx] 
Da . 
+ 2£ —* 5 : [{ CF ae 
a” p 
[|arg a|<z] 
{arg a|<n] 
Vn MH Pl4iy 
4ap ad > [erf(ae ? 
{larg a|<z] 
n p/4l-e- ~p/2, 
[Be i C(a’e 
{larg a|<n] 
% 3p/4l—-e ° ee 
Re” a Se of, 
a p 
(larg a|<x] 
EK + erfi(ae °/4 )] 
36. 
Sil 
38. 
39. 
40. 
41. 
42. 
43. 
THE EXPONENTIAL FUNCTION 49 
(41) '*) any 
[x]! ([x]+n) % 
(+1) (*) “Als 
WON Ss aoa 
(Ca ks a ae | 
“Coane ode 
ree 
(2ix])! [x] 1q71 
(ry) 
Qi a1p)s! 
[x] 1q2l41 
(2[x])! oid) 
Claisive 
(2[x]+1)! [1 
2 
Cl xc ale) 
(2[x ytql*) 
LonuGialaips 
Qixtria 
Cis) (isla 1) 
2 A & "(2ae? ues 
ail ce 
{larg a|<n] 
eet? J, (dae?!) +1, (2ae?/*) 
2P \2 ber (dae?! 4) 
[|arg a|<x] 
\ i (Qae~?!) J (ae?!) 
sas sinh 7 ora 
a’ p 2 bei (2ae ) 
[Jarg a|<x] 
area + |B ae Pleexp [= ’) x 
(alse) 
{larg a|<x] 
5 
2 a sinh exp [egre#] x 
{ls} 
[|arg a|<nx] 
_ ply - - 
Hees ae he 
(Re p>In(4]a|)] 
fe -3/2 (1-4ae ”) 
[Re p>In(4]a|)] 
p a 
hae ii—(i-4ae") 
[Re p>In(4]a])] 
-p 
e ‘-1 -p,1/2 Sis eid F) ( ae“) 
[Re p>In(4|a])] 
50 
45. 
46. 
47. 
48. 
49. 
50. 
Se 
$2. 
53. 
ELEMENTARY FUNCTIONS 
(+1) ! EG eek. 
Clecla!s) PPIX a1) 
Gen) xepet) 
See ! 
x 2 
Del» 
eae 2 ots) 
Chilechoiie 
{x ] 
-1) 
isnt 
Chatty: 2[x] 
TONES EN BUS: 
-phly 
2 
[all 2[x] 
icine 2 
21x) I 
Glxtiye 
yx A Qalecile) 
CUPS) ~ 
x a2) 
(eTEONE ey ts 
Chali s 
UESLEBLS Y 
Che rts= 
qzi*) 
Su ES ET 
lee arcsin -p/2 
ap inh Abie io »} 
(Re p>2In(2|a|)] 
5 e?-1 farcsin (poe \ 
ss oe arcsinh | 2 
[Re p>2In(2/|a|)] 
= -p/2 
l-e ? _ nae g a_-p/2 
p [ 4 H (Je 
[larg a|<n] 
ean) 
[larg a|<x] 
2n p -p/2 ap sinh 5H es 
[larg a|<zx] 
lee ? 
p 
{larg a|<n] 
exp(2ae ")I,(2ae ”) 
=Hy 
2 Fe Qae?! : 
Dp 
{larg a|<n} 
2 Ne -p/2 
x ? K(4a ) 
[Re p>2In(4|a|)]} 
i ea 1 -p/2 
K D E(4 ) 
[Re p>2In(4}a|)] 
HYPERBOLIC FUNCTIONS 
-p 
4. n [x] l-e —p.n 
5 (eg x D (1+ae *) 
x 6(n+1-x) 
n.)?-1 el? -pn, ler+a 55. a x (ae ?)"py | £2 
[x] p n 
e'-a 
x 6(n+1-x) 
2.3. HYPERBOLIC FUNCTIONS 
2.3.1. Hyperbolic functions of ax 
sinh ax 1 a 
cosh ax Fiche Dp 
[Re p>|Re a|] 
— 
mila [n/ 2] 
oT] te? 2k+ 09707) 
Pp k=0 
E boat Re p>n|Re a] 
. n 
2. sinh ax 
[(n-1)/2] # 1 
3. cosh"ax ee [i] 
2 k=0 —(n-2k) 
1+(-1)" n 
ets ee Re) 
[Re p>n|Re a|] 
sinh ax 2 1 2a” 
4. 
cosh ax p(p?-4a’) p’-2a* 
(Re p>2|Re a|] 
5 L i ,(ere 
“ coshax a 2a 
(Re p>-|Re a|] 
l joe 1 7" 2 (84) -2 
cosh7ax 2¢ . 
[Re p>-2|Re a|] 
52 ELEMENTARY FUNCTIONS 
sinh ax 1 a ete sinh ab 
7. 8(b-x) Memon pews) a 
cosh ax Da— Ga) Da a cosh ab 
cosh ab 
+a 
sinh ab 
(6>0] 
sinh ax sinh ab 
ss 2 2 ae 
+ 
cosh ax pa=a cosh ab 
are cosh ab 
- sinhac 
a (a -e Pp 4 
0 [0<x<b.or x>c] sinh ab 
cosh ac 
cosh ac 
+a 
sinh ac 
9. sinh ax sinh bx oy: ea pees 2 Fon 
[p?-(a+b) 7) [p?-(a-b) 7] 
[Re p>|Re a|+|Re 5|] 
2 2 2 
10. sini ax cosh bx tb a th) 
[Data Dy) lip tab) s) 
[Re p>|Re a|+|Re b}) 
11. cosh ax cosh bx aL Peete 8) eee 
[p°-(a+b)“] [p°-(a-b)*} 
[Re p>|Re a|+|Re 6|] 
Sinhax 1 .({ptat+b p-a+b 
12. Sinhbx 75|¥| 2b el 2b =I 
[Re p>|Re a|-|Re b|) 
13. tanh 85 ( 2 el nh ax aba 5 
[Re p>0] 
14. (cosh ax-1)” 2 3(2=4 2ve1] a ’ 
[Re a>0; Re v>-1/2; Re p>Re(va)] 
15. (cosh x—cosh by, 
HYPERBOLIC FUNCTIONS 53 
P'(v+1)P(p-v)sinh”b P’? (coth 5) 
[-1<Re v<Re p; 6>0] 
2.3.2. Hyperbolic functions of ax and the power function 
sinh ax 
| ee, 3 
cosh ax 
<3 sinh ax 
2s \X 
cosh ax 
sinh ax 
Shy bs 
cosh ax 
2 sinh ax 
4. x 
cosh ax 
n-1/2{ Sinh ax 
53 x. 
cosh ax 
_1/2{Simh ax 
x 
cosh ax 
1k 1 sinh ax 
a 
Piya ) lp=a z Gay] 
[Re v>-(3+1)/2; Re p>|Re al] 
n+l i eae 
2 2 
Daa 
{ (n+1-6)/2j {n+] a 2k+5 
x F) Ds 2k+6] \? 
[re p>|Re al; {5} 
1 2ap 
(peat)? ee a 
[Re p>|Re a|] 
2 a(3p? +a’) 
Cp a4) : p(p?+3a’) 
[Re p>|Re a|] 
ane re =] =|" 
2 n 2 2 
dp p —a@ 
[Re p>|Re a|] 
[Re p>|Re a|] 
1), peta 2 In o=a 
[Re p>|Re a|] 
54 
=f y/7) 
my BS sinh ax 
ns sinh ax)n 
9, x 
cosh ax 
me. n 
x sinh ax 
ret 
= sinh ax x S 
ELEMENTARY FUNCTIONS 
Tepe pe -a2y!/? 
[RE p>|Re al] 
Wer ob. reyes! 
a cap ist (Z| x 
2 k=0 
x [(p-na+2ka)” 'F (ptna—2ka)"7} + 
1+(-1)" n 
a Na tht rob | inf] 
[Re v>-1-(1+1)n/2; Re p>n|Re al) 
m! n {n oe 
? m+ 
DS PSO (p-nat+2ka) 
[Re p>n|Re a] 
n=1 
-2n k-1{2n Foe) 
ah k 
x In [p?-4(n-k) a7] = Fl aleaae 
2 
[Re p>2n|Re a|] 
n 
-2n-] k(2n+1) 
2 (-1) ( x 
me k J 
Dar (a= 94 ete) )) Gi 
so a aay HS Dw 
[Re p>(2n+1)|Re a|] 
2 
l 4a -4in(i 423) 
p 
[Re p>2|Re a|] 
2 
2 
@arccoth = ie 
p 4 p 
(Re p>2|Re a|] 
a) arccoth 4 + 1 arccoth 3a 
p 4 p 
[Re p>3|Re a}]} 
16. 
as 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
HYPERBOLIC FUNCTIONS 55 
1 sinh?ax 
v 
x 
sinhax 
v 
x 
coshax 
Vv 
x tanh ax 
x coth ax 
a sinh ax 
6(b-x) x 
cosh ax 
sinh ax 
Ne sinh ax 
cosh ax 
6(b-x) 
x 
aye arccoth 3a + 3p arccoth 4 - 
4 4 p 
2 
p -a 
[Re p>3|Re a] 
GSB SE vets 
v wea 
[Re v>0; Re p>-|Re a|] 
[(v+1) ar@t\) +3a FOL ffoontis) -e(oone24] 
[Re v>-1; Re p>-|Re a|] 
-v-]1 
CS ga ee pta Ssearrorh|[s[v+1 4a] eve, za\| 
[Re v>-2; Re p>0] 
eee in D2 | 2 ine ee 
4a 4a 4a 
[Re p>0) 
-v-1 a 1 
2” ¢(v+1. 85] at 
[Re v,Re p>0] 
Tv+l) E 
Fltp-ay yw, bp-ab) ¥ 
F (pta) ” 'y(v+l, bp+ab)] 
[Re v>-(1+1)/2; 6>0] 
i 5) Ei(—bp-ab) yin BES + 5 Bi(-bp+ab) - 
[b>0} 
Flip-ay el, bp-ab) ¥ 
¥ (pta)” 'T(v+l, bp+ab) 
[Re p>|Re a|; 5>0) 
56 
25. 
26. 
27 
28. 
29. 
30. 
31. 
32. 
33: 
ELEMENTARY FUNCTIONS 
Mesa sinh ax 
= cosh ax 
McComas 
x 
l-coshax 
2 
a5 
ax-sinhax 
2 
x 
ax-sinhax 
2 
2 
x 
coshax-coshbx 
x 
coshax-coshdbx 
2 
x 
sinhax-axcoshax 
x 
Sinhax-axcoshax 
2 
x 
fel 
2 
(Re p>|Re al; 5>0) 
1 a’ 
x in{1-25} 
2 ne 
[Re p>|Re a|] 
Ei(-bp+ab) + 4 Ei(-bp-ab) 
ea = a, pra 
pin p 7 IN =a 
(Re p>|Re a|]} 
a oe Py, Pa ine 
2) 
[Re p>|Re a|] 
| ae eK a 
[er in[t- $5} «Pe in B*2 — ap] 
[Re p>|Re a|] 
ib 2»? 
Jia sp 
pea 
(Re p>|Re a|,|Re 5|) 
2 2 
H On poy ni is paby Nant pa 
pie 2 2 eb” 2 bee 
{Re p>|Re a|,|Re 5] 
A pi de td Jee 
2 D=a 2? 
Pa 
[Re p>|Re a|] 
a =f jyypete 
2° p-a 
[Re p>|Re a}] 
35. 
36. 
37. 
38. 
39. 
40. 
41. 
42. 
43. 
HYPERBOLIC FUNCTIONS 
sSinhax-axcoshax 
3 
x 
sinhax-2axcoshax 
2 
x 
ey list « 
x xcoshax 
a 1 
x sinhax 
L —acoth ax 
2 
2 ee: 6 a 
2 F 2 
x sinh ax 
sinhaxsinhdbx 
x 
sinhaxsinhbx 
2 
x 
sinhaxcoshbx 
x 
3 2 
sinh ax 
xcosh(2ax) 
il 7 Zak PHS 
aK @ yin =a 2ap| 
[Re p>|Re a] 
2 2 
B jn B44 
p 
[Re p>|Re a|} 
2inr(2434) -2inr(2*2) - nF 
4 4a 
{a,Re p>0] 
Pea Aa pes 
| a Ino 
(a,Re p>0) 
[a,Re p>0] 
Igo fa-)” 
tos i) 2 
Dima (Cat0)) 
(Re p>|Re a|+|Re 5|] 
1 
4 
57 
ee Dig, 2 
4 jy (PO) ~a- , Big (pray db , 
Cp-h ya (p-a) *-5" 
2 2 
+f in? —(at+b) 
poe Ca by - 
(Re p>|Re a|+|Re 5|] 
1, (pt+a)~-b 
4h MIPS) 
(p-a) -6b 
{a,Re p>0] 
58 ELEMENTARY FUNCTIONS 
2.3.3. Hyperbolic functions of ax s for Zk and algebraic functions 
1. sinh aVvx 
2. cosh aVvx 
» sinhavx 
SK 3% 
cosh avx 
4. x"sinh aV¥x 
7. x sinh aVx 
8. x cosh aVvx 
2 
a\nx a 
a oe (45) 
[Re p>0] 
an + ae exp fa ne }] 
P 24p 4p Wn 
[Re p>0] 
2 
me2 = 
2} exp ($5 | Pear . B 
(2p) 2Vvp 
=D CS 
-2v-2 2Vp 
[Re v>-(5+1)/4; Re p>0] 
(C1) var en ae ia 
pe Le Saas |e 
[Re p>0] 
PES Ip 
(Re p>0} 
2 [Sem 
25[5+$5+ "ae (3+ 3a pce )x 
4p - ee) 
2 eee) 2¥p. 
{Re p>0] 
Yna (6p+a*sexp (47) 
Pre 4p 
[Re p>0] 
1 [i+ + gf ex0( 22) et a )] 
2 4 yrs 
[Re p>0] 
HYPERBOLIC FUNCTIONS 59 
9 1/2¥ a 22 “ie Tt at a 
. x “sinh av¥x 5 gees 5 exp} Z| ert 
2p Pp p 2vp. 
[Re p>0] 
2 2 
10. x! cosh aVx 2p ia Foal 
» 4p 
[Re p>0] 
1/4 sinhavx Kika 3/2 a2 ac 
11. Se se Gs. 
‘ fatiin® lb exo $5] Bawa 
2 
eeiell 
[Re p>0} 
12 bal seinhiav x FF exo (45) ex( a 
Pp 4p 
[Re p>0} 
2 
-1/2 EL ame 
13. x ‘“coshavx JF exe($5} 
[Re p>0] 
aA sinh avx am ( ) (35)2 we eral nf 5 ex? 8p) +1/4|8p 
[Re p>0] 
15 1 sinh ax n erfi[ 
x 2vp 
[Re p>0] 
sinh a -2/3 3 ni/2 3ni/2, _ 
16. x ses oak aale S.1/3 42 )F 551/30 
-1/2 {u-2p *(a/3)>”: ; Re p>0] 
60 ELEMENTARY FUNCTIONS 
sinh yey vti/2_-v-t 
‘ 2k 
17. x" (ax) Bet Clot): a2 ie Ez) as 
cosh i(2n) 
] 1)}AC,-v) 
x (5) P) | A(k,5/2),A(k, (1-8) /2) 
[pe Re v>- 1-58, Re p>0; {i \] 
18. —- sinh avx aE AG inh ay amean ert pues + 
xX+zZ 2 2Vp. 
” orf Ee }] 
2Vp. 
[Re p,Re z>0] 
yr i/2 avi 
19. == cosh avx x 2 [2 cosh ave" “ent [¥pz+44 i|= 
2vz 2vp 
- €™ ert{ voz a }] 
2Vp 
[Re p,Re z>0] 
20. se coshavx vn AP sinh’B 
cosh bx vx ne ba cosh B 
2 
a 
[+-- =a 4B-in 2* 5 -2Ab; Re pine bi| 
a1, Sinh[(2n+1) avx] 74 Free ea 
¥xsinhavx Fl ext 0: 
{Re p>0] 
22. cosh{[(2n+1) avx] 
(<1) at 22 
¥xcoshavx 34 PX 1) ‘expika"/p)} 
{Re p>0]} 
HYPERBOLIC FUNCTIONS 
2.3.4. Hyperbolic functions of dee? Hee and algebraic functions 
Notation: z,= 2 zped p 7) 
an 
- — cosh( 
i (x+z)! f x 
F sinh (as x 2 4+xz) 
| ¥74x2z) 
x 
2 
sinh(a4 x ~+xz) 
x 
cosntae x ae z) 
-1/2 
. see hal x7+x2z) 
ted yeas 
v 
x 
en Le 
sinh(a ~ 74x27) 
x 2 
cosh(a4 x +xz) 
yee sinh(a@ x7+xz) 
i cosh( x? +xz) 
[Re p>|Re a]; |arg z|<n} 
HZ, 
IO 
Cp —a~)z 
[Re p>|Re al; |arg z|<nx] 
72 
IE asn/2(PttP -@) 
ae 
ee 
p“-a 
[Re p>|Rea|; |arg z|<n] 
2x, (§ pone 
[Re p>|Re al; |arg z|<nx) 
G2 18) / 2 
2 
zva 
<M (z_)W 
v+3/4,+1/4 —v-3/4,1/4 
¥#1/2 
U[vesge| ox 
(z,) 
61 
exp(z_) 
[Re v>-(5+1)/4; Re p>|Rea|; |arg z|<nx] 
erf(¥z_) 
2 ete¥= 
1 Zz 
[Re p>|Re a]; |arg z|<x) 
62 ELEMENTARY FUNCTIONS 
2... =3/4 ee 2/2 Fie Faas 
TOG RRAN 52s “re heb ne 
sinh(a x2+xz) 
< 7} [Re p>|Re a|; |arg z|<nx] 
cosh(@aax +xz) 
1 v 2)" ays v/2 ype —v/2 pel 
. ae [(+3 é tx2] ¥ 3] ie Sleed) | 2 
XX: Z 
# (x45 1x? 4x2] | x xK 4 [#e?- p a’
 
sinh(aa x Le 2 
x (Re p>|Re a|;_ |arg z|<x] 
cosh(ad x2 +Z .) 
-1/2 GES 7) 9) Af AO) 
oe Seal ue ly ise 4 
sinh(a x 7427) 
2 2 94 
\cosh(atx +z") 
[Re p>|Re a|; Re z>0; ved Dp 2 —a ? +ia)] 
2.3.5. Hyperbolic functions of oleh eax? and algebraic functions 
Notation: u,= aod p?+a 2+), 
= biptd ) 2 —a a 
2, - ri 1. (bx-x yy me gals pr+az 
x cosh(at bx -x 7) [b>0} 
HYPERBOLIC FUNCTIONS 63 
=) 
x costed bx-x aN 
. O(x-b) x’ sinh(a pee ea 
» by? x 
X cosh(a rh} 
; 6(x-b) x 
Vx+b 
ee x 2 5 | 
x 
cosh(ad x 4 -—b a) 
(x-b) | 
(eeb) Sue 
sinh(a 6p 2 al OF 
x ae 
cosh(atx~-5b”) 
2 
Gaby ats 
x x+b 
sinh(a -h 5 
x 
coshta x ny zy 
3 
_ANN p 
EU gt ;4%) ~ 
Sfp) 
[5>0] 
head “be bd 2a 
(prema?) (oot) 72 wont PeReS? 
[o=0 or 1; 6>0; Re p>|Re al] 
2 2 
p -a 
2 2)1/2 
[2 eee seh ored) 
[b>0; Re p>|Re a}} 
qeitly/2, 21/2 F1/2 
It soe 
2 x 
pasa 
X exp(-Hi p ‘ =a 25 
[b>0; Re p>|Re a}] 
4 ) M,,3/4,41/40 X 
AW 3/4ipae 
[b>0; Re v>-1; Re p>|Re a|] 
erfc(Vvv_) 
x ePeric(V ,) * 
¥26 1 
[b>0; Re p>|Re a|] 
64 ELEMENTARY FUNCTIONS 
o 
= bp) 2g? 
8. x0 (x?-B?) x > 3 s72 Ko! D— a.) 
(p= —a™) 
xX cosh (a eb) [o-0 or 1; 6>0; Re p>jRe al] 
eye : ”), o 
9. ve ae Ort 1/4| 2 1/4|2 
xX cosh( eSB) [b>0; Re p>|Re al] 
v v 
20 2 =3 14 a _- Mae 
he ae hil )Kunalz 
7) 7) [b>0; Re p>|Re a|) 
cosh(aix -b”) 
es at 
x 
2.3.6. Hyperbolic functions of ax, the power and exponential functions 
_by. y{ Simh ax 1 ye a 
1. (l-e) F518 [v+t, 254] -B(v+1, 2¢4)] 
(cosh ax 26 b b 
[Re v>-(3+1)/2; Re p>|Re a|,|Re a|-Re(bv)] 
nebx ie. ee pra) >. | psa 2. (l-e’”) sinh ax 5 ¥( ; vf b }] 
[Re p>|Re a|,|Re a|+Re 5) 
85 -cx 2 2 
oh a cosh ax doi pte) as aa 
(p+b)~-a 
[Re p>|Re a|-Re b,|Re a|-Re c] 
= 2 a4 
sinh ax Sy eee By aed In erate + : (ped) eee 2 p-atb 
a bse in Ptare 
p-atc 
(Re p>|Re a|-Re 6,|Re a|-Re c] 
HYPERBOLIC FUNCTIONS 65 
5. ehh Se oo shax 1, (pte)? =a” 
. (p+b)? 
[Re(p+b)>0; Re(ptc)>|Re al] 
6. x (ae *sinh cx - Ly oe, + fi ptd) ; ptatd _ 
(oes) 2 22 p-a+d 
Ere ainian) _a(prtb) ) ptbte 
2) p+b-c 
[Re(p+b)>|Re c|; Re(p+d)>|Re a|] 
2 sinh ax 
7. exp(—bx’) LF exw 252) erfe{2=2] + 
cosh ax 2WVd 
2 . 
Pexb ane ae ae) 
2vd. 
[Re 4>0] 
sinh ax 2 2 
(v+l1) +a a 8. x*exp(—bx”) ee EXD (2552-] [exe(- $3) x 
eashiae 2(2b) 6% t!)/2 85 46 
x. (55) #0 [75]>_.. (Z| —~v-1 YIb 46 ~-l YI5. 
[Re 6>0; Re v>-(3+1)/2] 
sinh ax 2 
9. x exp(-bx’) ee (p-a)exp Cer ertcl ao = 
8} ,.3 4b 
cosh ax b 2Vvb 
+ (pt+a)exp (‘eze2-) erfc bal + ie 
2vb 
[Re 5>0) 
sinh ax J 10. x vb/x pre ipa) eT Rs (bp-ab) 
cosh ax 
= (tay eK (2¥b p+ab)) 
[Re b>0; Re p>|Re a|] 
66 ELEMENTARY FUNCTIONS 
sinh ax a : = 
He 7/2678! ee = [o-o 3/4,-20bp-ab ~ 
cosh ax 26 : 
¥ (pta) (o-3)/4 -2¥ bpt+ab | 
{[o-0 or 1; Re d>0; Re p>|Re al] 
l+ax-e"* p+a)_ p_)_..(pta 
12. xsinhax 2inr [Fe 2int 2a a! 2a 
[a,Re p>0} 
2.3.7. Hyperbolic functions of Bee for I#k, the power and algebraic 
functions 
a sinh avx ape 2 e 
lie oe 3 [85 [@-wer (5S Jerte( 4 2 + 
cosh avx Pp P 2Vvp. 
2 = 
+ tarexp( PFO] erte( +4} ve eas 
[Re p>0] 
2, Pert * grat POMD op (5) [exe(- $2] x 
cosh avx (Qn; | SP # 
b-a) — ab b+a Dav a(2=2) #ex0(24) 0, (24) 2v-2 von 4p} -2v-2 YIp 
[Re v>-(5+1)/4; Re p>0] 
inh 
Gel mG 2] [exo( 2 erte(®=2) 7 
vx cosh avx 24 p 4p Vp. 
2 of ot) 
[Re p>0] 
HYPERBOLIC FUNCTIONS 67 
_b/x | Sinh(a/x) 
4. xen seme aA (2Vbp-ap) ¥ 
cosh(a/x) Becks My 
¥ (b+a) CK avbprap)| 
[Re b>|Re a|; Re p>0] 
5, x 0/22 b/ xy : —- = [o-a (o-3)/4,-2V°b p-ap ~ 
2p o- r 
sinh(a/x) 
x begs (o-3)/4 -2¥ bpt+ap | 
cosh(a/x) 
[o=1 or 3; 6>0; Re b>|Rea|; Re p>0} 
% : sinhd 
6. x ee DLR YO exp(—u,) 
coshd 
sinh(ax+c/x) , fei 
x [a- mr in2 tt wars ((b+c) (pta) / (b-c) (p-a)) “4+ 
cosh(ax+c/x) F a Fe 
+rs((b-c) (pa) / (b+c) (p+a)) 
re(prea®y'4; sa(b-c?)"”4; 
Re b>|Rec|; Re p>|Re ai] 
2.3.8. Hyperbolic functions of [x] 
aD =p. 
‘is 6"! sinh ax] l-e Be sinha — 
P 1-2be "coshat+b“e “? 
[Re p>In|b|+|Re a|) 
-_ ae = me 2. bl cosh a[x] l-e l-be ‘“cosha 
Dy toane Ceosharh e 7" 
[Re p>In|b|+|Re a|] 
He ne
e t-2.0. 
3. sayin a(x] 474 — arctanh —¢ S
t aha 
x] 1-be ?cosha 
(Re p>In|b|+|Re a|] 
68 ELEMENTARY FUNCTIONS 
[x] ca ee = x 
4. b cosh a[x] “ if u In(1-2be Pcosh atb’e 2» ) 
[Re p>In|b|+|Re aj] 
—£ exp (be cosh a) X 
Mee a 
y, 
5. 
5 fx) ieee Taeae 
[x]! cosh(a[x] +c) 
cosh(be "sinh a+c) 
2.3.9. Hyperbolic functions of f (e*) and the exponential function 
1 
Notation: 6= 
0 
sinh 6 2 : -x a (DEP), NN i DEO a ag 
f oc } p+6 ey pay Saban y ae 27 
[Re p>-(1+1)/2} 
Sinn 
I (lee (ae *) B ¢ VED) | FO; pt+v+l1; a) ¥ 
cosh 
+ \F (p; ptv+1;-a)] 
(Re v>-1; Re p>-(1+1)/2] 
% sinh _ 5 
3) eam (ae) 5-8 (255,v+1] x 
cosh 
2 
p+6,1 45 p+6 ae x, 9] 37 +6, 9) tv+1; 7 
[Re v>-1; Re p>-(1+1)/2] 
4. (en) ¥nkT(v+1) ct! ta 2k 
i 6 1 v+l 1,2k+l k 
sinh _ A(i,1-p) , fos mal P 
cosh A(k, 5/2) ,A(k, 1-8) /2) ,A(l,-p—v) 
(Re v>-1; Re p>-/8/(2k)] 
wr 
eet fe) a (oe) me a ‘SJ = a 
= 
& ~ — 
| bss) 
1 * 
~ 
ye 
10. tanh 2 
) 
HYPERBOLIC FUNCTIONS 
-x, 1/ (2k) | 
—e J 
Pp hy Seas 
[Re p>0] 
v¥n(2 as ) PVT had el 
a i 2) P 
+1/2 
[Re p>0] 
a°B [F+v+1.7] x 
5 8 lind x ,F, (5 tv+]; 7 +v+p+1,6+5; +} 
(Re v>-(5+1)/4; Re p>0] 
f 2k 
Y¥UKT(p) Gk! (52) 
re pe 1,2k+1] | 2k 
A(,-v) 
A(k, 5/2), A(k, (1-6) /2) ,A(,-p-v) 
[Re v>-1-/5/(2k); Re p>0] 
(1+1)/2 2 
hal F (151+ Reed 2) 
p+ pe: 4 
70 ELEMENTARY FUNCTIONS 
2.3.10. Functions containing the exponential function of hyperbolic 
functions 
1. exp(-a sinh x) 
2. exp(-— a cosh x) 
ee exp(—a cosh Vx) 
vx 
ie eS exp(—a sinh x) 
¥vVsinhx 
ee exp|- 
¥Vsinhx sinhx 
6. sinh“bx exp(-a coth bx) 
qt CSC prt [J (a) - J (a) 
(Re a>0] 
Tt 
CSC pr f cos (px)exp(a cos x)dx — 
0 
- nt (a) 
(Re a>0] 
120 aa R 
e'sec FKaia(3| 
[Re a>0} 
| 3 
ua a a 
8 ly (1-2p)/4 [5] J s2p)/4 [5] ss 
a a 
* OEE Y “(sop /4 (5)] 
(Re a>0] 
v2T [> 5 Den ay 2a) xX 
-ni/4 
XD_) 1/2 ¥2a) 
{Re a>0; Re p>-1/2] 
neh 
46 
-—vb 
x Roos oe ae 
x W 
—(b+p) / (2b) ,v/ 120)| 
(v-2)/4 
lear): TeJES) 
[Re a>0; Re p>Re(vb)] 
TRIGONOMETRIC FUNCTIONS 
2.4. TRIGONOMETRIC FUNCTIONS 
2.4.1. Trigonometric functions of ax 
a 
Notation: a 
jee 
' (| 
1‘ 
are 
cos ax 
ny ap 
[Re p>|Im al] 
2. |sin ax| 
se = coth 32 
Deira 
[Re p>|Im a|] 
3. | cos ax| 7} 5 [0+ acsch 32 
p +a 
[Re p>|Im a}] 
Prantl [n_/ 2] 
- 
4. sin"ax 
sie: I] [p24 
(ka) 202] 1 
24-1 
Pp k=0 
[Re p>n|Im a}] 
[(n-1)/2] 
5. cos"ax 
a (;) 
bd 
2 rhe po+(n-2k) 
“a 
Eo | n 
9 htehy [n/2] 
[Re p>n|Im a|} 
2 
sin ax 4 
; oe 
6. 
por es ae 
COS ax 
p(p?+4a’) pie2e 
[Re p>2|Im a|} 
x inh 22 7. |sin ax|” 2 
——[sint . 
| | 7 Seta 
Va 
xB( 12 gee yaa ia)” 
a 
[Re p>Re v Im a] 
71 
10. 6 [3--] cos x 
sinx 
11. 6(n-x) 
cos x 
. sin ax 
2: 
COS ax, 
[b<x<c] 
0 [0<x<b or x>c] 
13. 6 [5-5] sin” x 
ELEMENTARY FUNCTIONS 
1 a gaoP sinab 
ren - f 
pape p p ag cos ab 
cos ab 
a @ 
sin ab 
(=) / 2 eee 
D ——____ 
p?+l 
sinab 
cos ab 
cos ab sinac 
+a 
sinab cos ac 
cos ac 
ta 
sin ac 
[n/2] 
n! 2 P< 
Pa [p +4(k+))"] {1- pz 1 abl 
n-1 [n/2) 
ine, *exp| (- 1) os] [i y (p* ANA) 
X (p or fers Ns )...(p 2401)" ix 
x [(21+2A)!] “yi 
TRIGONOMETRIC FUNCTIONS 73 
14. 8 (3-+) cos”"x 
15. 
16. 
17: 
18. 
19. 
20. 
6(n-x)sin’x 
eEEew, 
6(m-x)sin xcos x 
-_ tt 
6(mn—x) sin ‘ax 
sin ax sin bx 
sin ax cos bx 
cos ax cos bx 
[n/2] 
! = 
a I] [p? + 4(k+a)7] 7! x 
k'=0 
2-1 
Pp 
{terns pi ag 
[n/ 2] 
+ Y (p2+4n) (p?+4(041)%)...x 
1 
X wn (D-+4(A41-1)7) [(21+24) 1] “y} 
z -pxn/2F¢ a ae -1 
ue ——_[p(2452 + 1, 2-2, 1) 
2” (v+1) 
[Re v>-1] 
heey -pn/2 -= = 
D : mpe : [a(t 4 =|, 
Pp +(V+1) 
[Re v>-1] 
n! 2m _-mpx 
ear) e )x 
p 
[n/ 2] i 
x |] 4ceyy 7 
k=0 
2abp 
[p= (AHRe ) [p74 (apes 
(Re p>|Im a|+|Im 5}]} 
api +a"—b7) 
[p?+(a+b) 7] [p*+(a-b) 7] 
[Re p>|Im a|+|Im 5}] 
p(p’+a*+b") 
(paar) 1 tp +(a-6) °} 
[Re p>|Im a|+|Im 5}] 
74 
21. 
22. 
23. 
24. 
25. 
26. 
27. 
28. 
ELEMENTARY FUNCTIONS 
sin bx -n-2 ae 
Lon 2 1¥#142n_. 
sin of ‘| PES IP exp aes ni} x 
b+ipt+na ,|ociptna - 
x 2a + (-1) 2a 
n+l n+1 
[a,6,Re p>0] 
sinax Le les O_o ((W=O=a ie 
sinbx 25|¥| 25 vl 36 
[b0; a,Re p>0] 
. [n/ 2] ny 24-1 
sinnx 2 _ Ise Geil} 
sinx 2p py [p+ (2k 2 \] m 
esl (a Ts 
Fea Te 
[Re p>0] 
2n+1 foe ae eel cos [(2n+1)x]tan a Se Se ae y C2 eet) 
p +(2n+1) k=0 p Det Dy 
[Re p>0] 
co = k -kb 
1 i (Fl) e 
a Te csch o[ 4+ 2p = coshbtsinax P ay one 
[a,Re p>0} 
3 OO: yn k kb sinax a (F1) “ke 
Goshhisa nae + 2a — coshdb+sinax ye eee 
[a,Re p>0] 
oe eee 1 [2s y (-b)* 
1+2bcosaxt+b’ Bi ba k=0 p +kig- 
(15|<1; @,Re p>0] 
oo k-1 sinax = error.) a 1+2bcosax+b k=1 p'+ka 
L15|<1; @,Re p>0] 
TRIGONOMETRIC FUNCTIONS 
2.4.2. Trigonometric functions of ax and the power function 
sin ax 
I. 5 Fixet ) fe ten tia) a 
COS ax 
¥ (p-ia) |) = 
: Piv+l) sinu 
On ag 5 aah Re ah eae 
[u=(v+l)arctan(a/p); Re v>-(3+1)/2; Re p>|Im a|] 
sin ax n+] 
Dax nt rear x 
COS ax pas 
[ (n+1-5)/2] k n+] e 2k+5 
x y (-1) [<] 
k=0 2k+6] \? 
[5=(1+1)/2; Re p>|Im a] 
sin ax 2ap 
3% _Lin bi infos: 
7 2 DRAB) 2 2 
COS ax (peta =) Daa 
{Re p>|Im a|] 
2 Sin ax 2 a(3p?-a’) 
4. x a Te 
COS ax (p +a’) 4 p(p?-3a’) 
{Re p>|Im a|] 
ifs sin ax Cyn | 2 at 1/2 
SX Me 2 2 
cOS ax "ey eae! 
[Re p>|Im a}] 
i = 1/2 
cOS ax p +a 
(Re p>|Im a}] 
7 Af in a: arctan 4 - Sina: Pp 
[Re p>|Im a|]} 
76 
8. 
2: 
=3/ 2m 
x sin ax 
simax)n 
Vv 
x 
cOS ax 
ELEMENTARY FUNCTIONS 
Via peepee 
(Re p>|Im a|] 
((n-1)/2] 
T(v+l1) —,. (n/2]-k 
ale Ae (+1) x 
[p24 (n-2k)2y OP? 5 
sinu n 
n Nata Ga) n 
(ie. } 2 epee oD (72) 
(u=(v+1)arctan((n-2k)a/p); Re v>-1-(1+1)n/2; 
Re p>n|Im a}] 
n+1n-1 
oo Esler 
2 k=0 
2n 
x In preain-ntt | | 7) In p 
n 
ipy| 2 
[Re p>2n|Im a] 
(-1)" ee 
(-1) x a2 Dy. k 
x arctan 22=2k+1) @ 
p 
[Re p>(2n+1) |{m a] 
2 
qia(1 +42) 
p 
[Re p>2\Im a}]} 
2a_p 4a’ @ arctan — -* In} 1 + pein(t +425) 
[Re p>2|Im a}] 
farctan 2 - } arctan 3a 
a) 
[Re p>3|Im a|] 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
TRIGONOMETRIC FUNCTIONS 
Liaw. 
—> sin ax 
x? (26-x)1/? x 
sin(ax—ab) 
x 
cos (ax—ab) 
Oe: sin ax 
COS ax 
a[x- Ab sin x 
PB 3a_3p a 4 arctan P 4 arctan D + 
Zz 2 
3a, p_+3a + In 
8 DED 
p ta 
[Re p>3|Im a|] 
jAtelyi2 + 
3 | pia)” yp(v+1, bptiab) F 
¥ (p-ia) gl wrt, bp-iab)} 
[Re v>-(3+1)/2; 6>0] 
j (ll /2,2 Fe ‘ 
— aoe [1 (p—iab) rs I, (optiab)] 
[b>0] 
Ses ewe: a 
Sg Kae I'(v+1, bp+iab) + 
¥ (p-ia) “'T(v+l, bp-iad)] 
[Re p>|Im a|; 5>0} 
-pxn/2 
£230" p+9"-1] 
(p +1) 
(Re p>0] 
-pxn/2 
£ 7) 5[Fu*+D+29] 
(p +1) 
[Re p>0] 
2 
in{1 | 
p 
[Re p>|Im a|] 
brRo|— 
77 
78 
22. 
23. 
24. 
25. 
26. 
27. 
28. 
29. 
30. 
ELEMENTARY FUNCTIONS 
l=cosax 
2 
x 
39S INGE 
2 
x 
ax-sinax 
3 
x 
cosax-cosbx 
x 
cosax-cosbx 
2 
x 
SUNGX=@xC O'S'G% 
x 
Sinax-axcosax 
24 
x 
Sinax-axcosax 
sinax 
X (2ax cos ax-sin ax) 
2 
[@ias Pi a_ a arccot pao in{1 + “| 
{Re p>|Im a|] 
2 
a as Le $ in( +5] + p arccot © a 
{Re p>|Im a}] 
1 ap Inj 1+ a + (p*+a’)arccot oe ap 
Bee Ae a 
(Re p>|Im a|] 
is pith? 
pees 2 
pero, 
(Re p>|im a|,|Im 5] 
Dee? 
|, yy es arctan “ + b arctan 4 
2 ee aed P 
{Re p>|Im a|,|Im 5] 
arccot 1g a 
Dea 
[Re p>|Im a|] 
= 12 a — parccot - 
[Re p>|Im a]] 
1 DED 
AKG +a) arccot = = ap| 
[Re p>|Im a|] 
2 
Pia| tees 
p 
[Re p>|Im a|] 
TRIGONOMETRIC FUNCTIONS 79 
. E 2 2 
31. Sinaxsinbx qinb thar b) 
Dt GaeD)) 
[Re p>|Im a|+|Im |] 
32. Soe 4 arctan —2bp__ + arctan “22+ 2 Dy 2 2 
pta —b Vat Si 
p +(atb) 
[Re p>|Im a|+|Im }|} 
33. singxcoshx F arctan $22 eels 
p-a a is 
[Re p>|Im a|+|Im 5]; +p +b'¥a>0] 
: ; : 1/k : , 
2.4.3. Trigonometric functions of ax ~ for /4#k and algebraic functions 
F 22 
sin ax sinu cos u 
1. 2 [z. [7 -sw| + [2 
COS ax COS uu sinu 
x [5 = zu 
(u=p’/ (4a); a,Re p>0] 
7 Z 
sin ax a itale) ey) 2 2 
v i iv+l) Victor De 
2. x 2 aay 2 {exp -i{ 4 n=) | x 
cos ax 2(2a) 
xD | p ew") s 
Pe) a 
(Re v>-2¥1; a,Re p>0] 
ELEMENTARY FUNCTIONS 
2 5 
sin ax 1 sinu 
3.x 2 : ,—Vap 
[2 -cw] = 
a 3/2 2 
cos ax 0 (2a) cos u 
cos u 1 
F{ E - sw 
Sinu 
[u=p’/ (4a); a.Re p>0] 
Sie anyl De 
a n| 1 p? 2 
yx SS pera Eolas eal 
[a,Re p>0) 
2 
. sinavx 3[23 e(- nl 
Pp 
{Re p>0] 
2 
- cos avx ari ks [Fs ( a ] p erfi 
Pape We 2vp 
[Re p>0] 
4 2,2 
- lanavx 2/5 yy Dk exp(-4 K ) 
p” k=) P 
[Re p>0] 
10. 
ex 
13. 
14. 
16. 
Ww. 
x sinavx 
n-1/2 
cos aVx 
é x?! "sin avx 
x sin avx 
x cos avx 
Wiran 
» x Sin av x 
x! 2695 avx 
TRIGONOMETRIC FUNCTIONS 81 
a sec vit vi,@ 
9 Rel es, 9% CAP 8p . 
CSC VIt 
a 
x Ean ee Rese (- =i) 
[Re v>-(5+1)/4; Re p>0] 
(-1) "va ( -] ( a 
A a ONY Roe pel == 
7 ae 4p) 2n+1 2p. 
[Re p>0] 
2 
[Re p>0] 
(-1) "Va a’ a 
2n AytH 2? |” ap H,, 
Pp 2vp 
2 
=F Seegyt Tela 3a" AR 
4p° P P bag? 
2 
xX exp - | erfi Gal 
4p 2Vp 
[Re p>0] 
e 2 
ts (6p =a “exp - ss] 
p 
[Re p>0] 
[Re p>0] 
2 2 
4, + Pee a [Fs exp(- $5} erfi[ a }] 
4 p> 4p 2VD. 
2p? 
[Re p>0] 
[Re p>0] 
82 
sinavx 
ieee 
cos aVx 
18. pa avx 
19. x W205 avx 
sinavx 
20. 3/4 
bese avx 
Di ei avx 
x 
sin ax! 
ip, gel wt 
cos ax '~) 
23. 
sin 
Fu es C 
cos 
ELEMENTARY FUNCTIONS 
[Re p>0] 
It a 2 a a — 4 _| erfi [5 exe ie ee 
[Re p>0] 
2 Freo(- 43 Pp 4p 
[Re p>0] 
2 2 
a a a 
n] $5 exp(- D ler 
[Re p>0] 
x erf ES 
2Vp 
[Re p>0] 
+ 3, (itl /2 
ni/4 3ni/4. _ 
2a [e So1jg4e) F 
{u=2(a/3)"p ”*; Re p>0] 
G 4 ate 
(2n) 2k EI) r 2 1,2k 
. (4) L AC, v) 
\P) | A(k,6/2),A(k, 1-8) /2) 
[S5=(1+1)/2; Re v>-1-/5/(2k); a,Re p>0] 
vaE eos 2 Stays (5 yx 
TRIGONOMETRIC FUNCTIONS 
24. a sin aVx 
Pa 
25. ao = COSY 
sin bx VE 
26. cosavx 
cos bx Vx 
D7 oS, 
x Sin[(2n+1) avx] 
sinaVvx 
oR) 
y £08 [(2n+1) avx] 
cosavx 
ie el 2 
29. 
1-2bcosavx+b" 
ia i g |i: 
2Vp. 
~ 6 ert[¥pz- Z } - 2sinn av7] 
Vp 2Vvp 
[Re p,Re z>0] 
= fle ert[¥pe+ 3 )+ 
2Vz 2Vp 
+ oe" erte| ¥pz- Z }] 
2vp 
[Re p,Re z>0] 
Vie oA sinB 
CN eal SE cos B 
[4(p +6) A=a’, 2B=arctan(b/p)-Ab; 
a>0; Re p>|Im d{] 
felt +2 Y exe(- ms ]] 
{Re p>0] 
n 
(-1)" alt 2) -rytexp(-452]] 
P ei P 
{Re p>0] 
2 iss 2 
2 | 1 k ka 
saatale oe exp(- Zp 
(|d|<1; a,Re p>0) 
83 
84 
2.4.4. Trigonometric functions of ax 
sin(a/x) 
cos

Continue navegando