Prévia do material em texto
Caro aluno
Ao elaborar o seu material inovador, completo e moderno, o Hexag considerou como principal diferencial sua exclusiva metodologia em período integral,
com aulas e Estudo Orientado (E.O.), e seu plantão de dúvidas personalizado. O material didático é composto por 6 cadernos de aula e 107 livros, totali-
zando uma coleção com 113 exemplares. O conteúdo dos livros é organizado por aulas temáticas. Cada assunto contém uma rica teoria que contempla,
de forma objetiva e transversal, as reais necessidades dos alunos, dispensando qualquer tipo de material alternativo complementar. Para melhorar a
aprendizagem, as aulas possuem seções específicas com determinadas finalidades. A seguir, apresentamos cada seção:
De forma simples, resumida e dinâmica, essa seção foi desen-
volvida para sinalizar os assuntos mais abordados no Enem e
nos principais vestibulares voltados para o curso de Medicina
em todo o território nacional.
INCIDÊNCIA DO TEMA NAS PRINCIPAIS PROVAS
Todo o desenvolvimento dos conteúdos teóricos de cada co-
leção tem como principal objetivo apoiar o aluno na resolu-
ção das questões propostas. Os textos dos livros são de fácil
compreensão, completos e organizados. Além disso, contam
com imagens ilustrativas que complementam as explicações
dadas em sala de aula. Quadros, mapas e organogramas, em
cores nítidas, também são usados e compõem um conjunto
abrangente de informações para o aluno que vai se dedicar
à rotina intensa de estudos.
TEORIA
No decorrer das teorias apresentadas, oferecemos uma cui-
dadosa seleção de conteúdos multimídia para complementar
o repertório do aluno, apresentada em boxes para facilitar a
compreensão, com indicação de vídeos, sites, filmes, músicas,
livros, etc. Tudo isso é encontrado em subcategorias que fa-
cilitam o aprofundamento nos temas estudados – há obras
de arte, poemas, imagens, artigos e até sugestões de aplicati-
vos que facilitam os estudos, com conteúdos essenciais para
ampliar as habilidades de análise e reflexão crítica, em uma
seleção realizada com finos critérios para apurar ainda mais
o conhecimento do nosso aluno.
MULTIMÍDIA
Atento às constantes mudanças dos grandes vestibulares, é
elaborada, a cada aula e sempre que possível, uma seção que
trata de interdisciplinaridade. As questões dos vestibulares
atuais não exigem mais dos candidatos apenas o puro co-
nhecimento dos conteúdos de cada área, de cada disciplina.
Atualmente há muitas perguntas interdisciplinares que abran-
gem conteúdos de diferentes áreas em uma mesma questão,
como Biologia e Química, História e Geografia, Biologia e Ma-
temática, entre outras. Nesse espaço, o aluno inicia o contato
com essa realidade por meio de explicações que relacionam
a aula do dia com aulas de outras disciplinas e conteúdos de
outros livros, sempre utilizando temas da atualidade. Assim,
o aluno consegue entender que cada disciplina não existe de
forma isolada, mas faz parte de uma grande engrenagem no
mundo em que ele vive.
CONEXÃO ENTRE DISCIPLINAS
Um dos grandes problemas do conhecimento acadêmico
é o seu distanciamento da realidade cotidiana, o que difi-
culta a compreensão de determinados conceitos e impede
o aprofundamento nos temas para além da superficial me-
morização de fórmulas ou regras. Para evitar bloqueios na
aprendizagem dos conteúdos, foi desenvolvida a seção “Vi-
venciando“. Como o próprio nome já aponta, há uma preo-
cupação em levar aos nossos alunos a clareza das relações
entre aquilo que eles aprendem e aquilo com que eles têm
contato em seu dia a dia.
VIVENCIANDO
Essa seção foi desenvolvida com foco nas disciplinas que fa-
zem parte das Ciências da Natureza e da Matemática. Nos
compilados, deparamos-nos com modelos de exercícios re-
solvidos e comentados, fazendo com que aquilo que pareça
abstrato e de difícil compreensão torne-se mais acessível e
de bom entendimento aos olhos do aluno. Por meio dessas
resoluções, é possível rever, a qualquer momento, as explica-
ções dadas em sala de aula.
APLICAÇÃO DO CONTEÚDO
Sabendo que o Enem tem o objetivo de avaliar o desem-
penho ao fim da escolaridade básica, organizamos essa
seção para que o aluno conheça as diversas habilidades e
competências abordadas na prova. Os livros da “Coleção
Vestibulares de Medicina” contêm, a cada aula, algumas
dessas habilidades. No compilado “Áreas de Conhecimento
do Enem” há modelos de exercícios que não são apenas
resolvidos, mas também analisados de maneira expositiva e
descritos passo a passo à luz das habilidades estudadas no
dia. Esse recurso constrói para o estudante um roteiro para
ajudá-lo a apurar as questões na prática, a identificá-las na
prova e a resolvê-las com tranquilidade.
ÁREAS DE CONHECIMENTO DO ENEM
Cada pessoa tem sua própria forma de aprendizado. Por isso,
criamos para os nossos alunos o máximo de recursos para
orientá-los em suas trajetórias. Um deles é o ”Diagrama de
Ideias”, para aqueles que aprendem visualmente os conte-
údos e processos por meio de esquemas cognitivos, mapas
mentais e fluxogramas.
Além disso, esse compilado é um resumo de todo o conteúdo
da aula. Por meio dele, pode-se fazer uma rápida consulta
aos principais conteúdos ensinados no dia, o que facilita a
organização dos estudos e até a resolução dos exercícios.
DIAGRAMA DE IDEIAS
© Hexag SiStema de enSino, 2018
Direitos desta edição: Hexag Sistema de Ensino, São Paulo, 2023
Todos os direitos reservados.
Coordenador-geral
Murilo de Almeida Gonçalves
reSponSabilidade editorial, programação viSual, reviSão e peSquiSa iConográfiCa
Hexag Editora
editoração eletrôniCa
Letícia de Brito
Matheus Franco da Silveira
projeto gráfiCo e Capa
Raphael de Souza Motta
imagenS
Freepik (https://www.freepik.com)
Shutterstock (https://www.shutterstock.com)
Pixabay (https://www.pixabay.com)
iSbn
978-85-9542-256-8
Todas as citações de textos contidas neste livro didático estão de acordo com a legislação, tendo
por fim único e exclusivo o ensino. Caso exista algum texto a respeito do qual seja necessária a in-
clusão de informação adicional, ficamos à disposição para o contato pertinente. Do mesmo modo,
fizemos todos os esforços para identificar e localizar os titulares dos direitos sobre as imagens pub-
licadas e estamos à disposição para suprir eventual omissão de crédito em futuras edições.
O material de publicidade e propaganda reproduzido nesta obra é usado apenas para fins didáticos, não rep-
resentando qualquer tipo de recomendação de produtos ou empresas por parte do(s) autor(es) e da editora.
2023
Todos os direitos reservados para Hexag Sistema de Ensino.
Rua Luís Góis, 853 – Mirandópolis – São Paulo – SP
CEP: 04043-300
Telefone: (11) 3259-5005
www.hexag.com.br
contato@hexag.com.br
QUÍMICA
ATOMÍSTICA 5
AULAS 9 E 10: LIGAÇÃO IÔNICA 007
AULAS 11 E 12: LIGAÇÕES COVALENTE E METÁLICA 013
AULAS 13 E 14: GEOMETRIA E POLARIDADE MOLECULARES 021
AULAS 15 E 16: FORÇAS INTERMOLECULARES 030
RADIOATIVIDADE E QUÍMICA ORGÂNICA 37
AULAS 9 E 10: RADIOATIVIDADE: EMISSÕES RADIOATIVAS E ENERGIA NUCLEAR 039
AULAS 11 E 12: CINÉTICA DOS DECAIMENTOS RADIOATIVOS 046
AULAS 13 E 14: INTRODUÇÃO À QUÍMICA ORGÂNICA 051
AULAS 15 E 16: HIDROCARBONETOS 059
GASES 71
AULAS 9 E 10: LEIS FÍSICAS DOS GASES 073
AULAS 11 E 12: TRANSFORMAÇÕES GASOSAS 078
AULAS 13 E 14: MISTURAS GASOSAS 084
AULAS 15 E 16: DENSIDADE DOS GASES, EFUSÃO E DIFUSÃO GASOSA 088
SUMÁRIO
Co
m
pe
tê
n
Ci
a
1
Compreender as ciências naturais e as tecnologias a elas associadas como construções humanas, percebendo seus papéis nos processos de
produção e no desenvolvimento econômico e social da humanidade.
H1 Reconhecer características ou propriedades de fenômenos ondulatórios ou oscilatórios, relacionando-os a seus usos em diferentes contextos.
H2 Associar a solução de problemas de comunicação, transporte, saúde ou outro, com o correspondente desenvolvimento científico e tecnológico.
H3 Confrontar interpretações científicas com interpretações baseadas no senso comum, ao longo do tempo ouem diferentes culturas.
H4
Avaliar propostas de intervenção no ambiente, considerando a qualidade da vida humana ou medidas de conservação, recuperação ou utilização
sustentável da biodiversidade.
Co
m
pe
tê
n
Ci
a
2 Identificar a presença e aplicar as tecnologias associadas às ciências naturais em diferentes contextos.
H5 Dimensionar circuitos ou dispositivos elétricos de uso cotidiano.
H6 Relacionar informações para compreender manuais de instalação ou utilização de aparelhos, ou sistemas tecnológicos de uso comum.
H7
Selecionar testes de controle, parâmetros ou critérios para a comparação de materiais e produtos, tendo em vista a defesa do consumidor, a saúde
do trabalhador ou a qualidade de vida.
Co
m
pe
tê
n
Ci
a
3
Associar intervenções que resultam em degradação ou conservação ambiental a processos produtivos e sociais e a instrumentos ou ações
científico-tecnológicos.
H8
Identificar etapas em processos de obtenção, transformação, utilização ou reciclagem de recursos naturais, energéticos ou matérias-primas, con-
siderando processos biológicos, químicos ou físicos neles envolvidos.
H9
Compreender a importância dos ciclos biogeoquímicos ou do fluxo energia para a vida, ou da ação de agentes ou fenômenos que podem causar
alterações nesses processos.
H10
Analisar perturbações ambientais, identificando fontes, transporte e(ou) destino dos poluentes ou prevendo efeitos em sistemas naturais, produ-
tivos ou sociais.
H11 Reconhecer benefícios, limitações e aspectos éticos da biotecnologia, considerando estruturas e processos biológicos envolvidos em produtos biotecnológicos.
H12 Avaliar impactos em ambientes naturais decorrentes de atividades sociais ou econômicas, considerando interesses contraditórios.
Co
m
pe
tê
n
Ci
a
4
Compreender interações entre organismos e ambiente, em particular aquelas relacionadas à saúde humana, relacionando conhecimentos científicos,
aspectos culturais e características individuais.
H13 Reconhecer mecanismos de transmissão da vida, prevendo ou explicando a manifestação de características dos seres vivos.
H14
Identificar padrões em fenômenos e processos vitais dos organismos, como manutenção do equilíbrio interno, defesa, relações com o ambiente,
sexualidade, entre outros.
H15 Interpretar modelos e experimentos para explicar fenômenos ou processos biológicos em qualquer nível de organização dos sistemas biológicos.
H16 Compreender o papel da evolução na produção de padrões, processos biológicos ou na organização taxonômica dos seres vivos
Co
m
pe
tê
n
Ci
a
5 Entender métodos e procedimentos próprios das ciências naturais e aplicá-los em diferentes contextos.
H17
Relacionar informações apresentadas em diferentes formas de linguagem e representação usadas nas ciências físicas, químicas ou biológicas,
como texto discursivo, gráficos, tabelas, relações matemáticas ou linguagem simbólica.
H18 Relacionar propriedades físicas, químicas ou biológicas de produtos, sistemas ou procedimentos tecnológicos às finalidades a que se destinam.
H19
Avaliar métodos, processos ou procedimentos das ciências naturais que contribuam para diagnosticar ou solucionar problemas de ordem social,
econômica ou ambiental.
Co
m
pe
tê
n
Ci
a
6
Apropriar-se de conhecimentos da física para, em situações problema, interpretar, avaliar ou planejar intervenções científicotecnológicas.
H20 Caracterizar causas ou efeitos dos movimentos de partículas, substâncias, objetos ou corpos celestes.
H21 Utilizar leis físicas e (ou) químicas para interpretar processos naturais ou tecnológicos inseridos no contexto da termodinâmica e(ou) do eletromagnetismo.
H22
Compreender fenômenos decorrentes da interação entre a radiação e a matéria em suas manifestações em processos naturais ou tecnológicos,
ou em suas implicações biológicas, sociais, econômicas ou ambientais.
H23
Avaliar possibilidades de geração, uso ou transformação de energia em ambientes específicos, considerando implicações éticas, ambientais,
sociais e/ou econômicas.
Co
m
pe
tê
n
Ci
a
7
Apropriar-se de conhecimentos da química para, em situações problema, interpretar, avaliar ou planejar intervenções científicotecnológicas.
H24 Utilizar códigos e nomenclatura da química para caracterizar materiais, substâncias ou transformações químicas.
H25
Caracterizar materiais ou substâncias, identificando etapas, rendimentos ou implicações biológicas, sociais, econômicas ou ambientais de sua
obtenção ou produção.
H26
Avaliar implicações sociais, ambientais e/ou econômicas na produção ou no consumo de recursos energéticos ou minerais, identificando transfor-
mações químicas ou de energia envolvidas nesses processos.
H27 Avaliar propostas de intervenção no meio ambiente aplicando conhecimentos químicos, observando riscos ou benefícios.
Co
m
pe
tê
n
Ci
a
8
Apropriar-se de conhecimentos da biologia para, em situações problema, interpretar, avaliar ou planejar intervenções científicotecnológicas.
H28
Associar características adaptativas dos organismos com seu modo de vida ou com seus limites de distribuição em diferentes ambientes, em
especial em ambientes brasileiros.
H29
Interpretar experimentos ou técnicas que utilizam seres vivos, analisando implicações para o ambiente, a saúde, a produção de alimentos, matérias
primas ou produtos industriais.
H30
Avaliar propostas de alcance individual ou coletivo, identificando aquelas que visam à preservação e a implementação da saúde individual,
coletiva ou do ambiente.
MATRIZ DE REFERÊNCIA DO ENEM
LIVRO
TEÓRICO
2 ATOMÍSTICA
QUÍMICA
6 CIÊNCIAS DA NATUREZA e suas tecnologias
V
O
LU
M
E
2
No Enem, os assuntos mais cobrados do
tema são as relações entre as ligações, a
geometria e a polaridade; é necessário en-
tender a influência que cada assunto tem
sobre o outro, uma vez que as questões
têm alta interdisciplinaridade.
Geometria molecular e forças intermole-
culares são assuntos recorrentes tanto nas
questões objetivas quanto nas dissertati-
vas; é importante ter um bom entendimen-
to da dinâmica das ligações, uma vez que
as questões são bem conceituais.
Questões que abordam geometria mole-
cular, polaridade e forças intermoleculares
são recorrentes, assim como questões em
que todos esses assuntos estão relaciona-
dos; é importante entender que os temas
das ligações e das forças intermoleculares
estão bem ligados um ao outro.
A prova apresenta questões bem diretas,
mas também interdisciplinares; é neces-
sário um bom entendimento de todos os
assuntos abordados neste volume, uma vez
que eles são totalmente interligados.
Os assuntos neste caderno se relacionam
de tal maneira que é necessário o enten-
dimento de todos os assuntos vistos até
agora; na UNESP os temas de geometria,
polaridade e forças intermoleculares são
muito cobrados; podem aparecer questões
interdisciplinares com Biologia.
Os assuntos deste volume podem ser co-
brados junto à outras matérias da química;
é importante entender como as ligações
podem mudar a geometria e consequen-
temente sua polaridade e força intermo-
lecular.
Os assuntos principais são a polaridade e
as forças intermoleculares, mas é preciso
ter em mente que todos os assuntos abor-
dados neste volume se correlacionam.
As questões envolvem todos os assuntos
abordados neste volume; os temas de
geometria molecular, polaridade e forças
intermoleculares são muito cobrados.
O vestibular da Santa Casa aborda princi-
palmente os assuntos de geometria, polari-
dade e forças intermoleculares; assim, para
uma melhor interpretação das questões, é
importante entender como esses três as-
suntos se relacionam.
Os assuntos de geometria, polaridade e for-
ças intermoleculares são muito cobrados; é
preciso entender a relação que existe entre
os temas.
Os temas de geometria molecular, polari-
dade e forças intermoleculares são muito
cobrados, uma vez que são assuntos muito
ligados.
Os assuntos principais são polaridade e for-
ças intermoleculares, mas é precisoter em
mente que todos os assuntos abordados
neste volume se correlacionam.
Geometria molecular e forças intermo-
leculares são assuntos recorrentes tanto
nas questões objetivas quanto nas disser-
tativas; é importante compreender bem os
temas, pois as questões são muito teóricas.
Todos os assuntos de Química 1 abordados
neste volume são cobrados; além disso,
eles podem aparecer relacionados na mes-
ma questão.
Geometria molecular e forças intermo-
leculares são assuntos recorrentes nas
questões; é importante ter um bom enten-
dimento da dinâmica das ligações.
INCIDÊNCIA DO TEMA NAS PRINCIPAIS PROVAS
CIÊNCIAS DA NATUREZA e suas tecnologias 7
V
O
LU
M
E
2
1. Ligação iônica ou eletrovalente
Fonte: Youtube
What are Ionic Bonds? | The Chemistry Journey
multimídia: vídeo
Ligação iônica, também denominada ligação eletrovalente,
é produzida entre íons positivos (cátions) e negativos
(ânions), por isso o termo “iônica”. Lembre-se de que os
íons são átomos que possuem uma carga elétrica por adi-
ção ou perda de um ou mais elétrons.
Assim, nas ligações iônicas, um cátion se une com um
ânion, formando um composto iônico por meio da atração
eletrostática existente entre eles (existem casos em que
mais de um cátion se une com um único ânion e vice-ver-
sa). Nesse tipo de ligação, a transferência de elétrons
é definitiva.
É importante observar que, dos elementos que compõem a
tabela periódica, aqueles que apresentam maior facilidade
em perder elétrons são os metais dos grupos 1, 2 e 13;
por outro lado, os que possuem facilidade em ganhar elé-
trons são os ametais dos grupos 15, 16 e 17, incluindo
o hidrogênio (este último, exclusivo em ligação iônica).
2. Teoria do octeto
Na metade do século XIX, os cientistas já haviam obser-
vado que alguns átomos fazem sempre o mesmo número
de ligações. Por exemplo, o átomo de hidrogênio nunca se
liga a mais de um átomo; o de oxigênio pode se ligar a dois
átomos de hidrogênio; o de nitrogênio, a três átomos de hi-
drogênio; e o de carbono, a quatro átomos de hidrogênio.
Assim, surgiu a ideia de valência, compreendida como a
capacidade de um átomo se ligar a outros átomos. Afirma-
-se que o átomo de hidrogênio possui uma única valência
(monovalente); o oxigênio tem duas valências (bivalente); o
nitrogênio tem três valências (trivalente); e o carbono tem
quatro valências (tetravalente).
Contudo, somente em 1916 os cientistas Gilbert N. Lewis
e Walter Kossel chegaram a uma explicação lógica para
as uniões entre os átomos, criando a teoria eletrônica
de valência.
Considerando as configurações eletrônicas dos gases nobres,
tem-se:
Elemento K L M N O P
Hélio (He) 2
Neônio (Ne) 2 8
Argônio (Ar) 2 8 8
Criptônio (Kr) 2 8 18 8
Xenônio (Xe) 2 8 18 18 8
Radônio (Rn) 2 8 18 32 18 8
www.soq.com.br/conteudos/ef/ligacoesquimicas/p1.php
multimídia: site
Baseados na configuração eletrônica dos gases nobres, os
cientistas concluíram que os gases possuem pouca tendên-
cia a se unirem entre si ou com outros átomos devido ao
número máximo de elétrons na última camada (em geral 8
elétrons, ou 2 no caso do hélio). Assim, Lewis e Kossel lan-
çaram a seguinte hipótese: os átomos, ao se unirem, procu-
ram perder, ganhar ou compartilhar elétrons na última cama-
da até atingirem a configuração eletrônica de um gás nobre.
Essa hipótese costuma ser chamada de regra do octeto.
LIGAÇÃO
IÔNICA
COMPETÊNCIA(s)
4, 5 e 7
HABILIDADE(s)
15, 17, 18, 24 e 25
CN
AULAS
9 E 10
8 CIÊNCIAS DA NATUREZA e suas tecnologias
V
O
LU
M
E
2
Um átomo é estável se possuir 8 elétrons na camada de
valência (ou 2 elétrons, se a camada de valência for a K).
Os átomos tendem a adquirir uma configuração estável, ou seja,
uma configuração semelhante à de um gás nobre. Para isso, os
átomos ligam-se através dos elétrons de valência.
A formação do composto iônico pode ser representada
pela estrutura de Lewis e seu íon-fórmula.
Exemplos
1. Ligação entre o sódio 11Na e o cloro 17Cℓ.
Ilustração da reação entre átomos de sódIo e
cloro (Ilustração em cores-FantasIa)
Como é possível observar no exemplo, o átomo de sódio
cede definitivamente 1 elétron ao átomo de cloro. Assim,
forma-se um íon positivo (cátion Na+) e um íon negati-
vo (ânion Cℓ-), ambos com octeto completo, isto é, com
a configuração de um gás nobre (neônio e argônio, res-
pectivamente). Os íons formados, com a finalidade de se
estabilizarem, atraem-se, provocando uma união entre si.
Lembre-se!
O número total de elétrons cedidos deve ser igual ao
número total de elétrons recebidos.
2. Ligação entre o átomo de cálcio 20Ca e átomos de
cloro 17Cℓ:
cálcio (20Ca) ä 1s2 2s2 2p6 3s2 3p6 4s2 ä perde 2 e– ä
Ca2+ (2, 8, 8)
cloro (17Cℓ) ä 1s2 2s2 2p6 3s2 3p5 ä ganha 1 e– ä Cℓ– (2, 8, 8)
ä Ca2+ (Cℓ–)2 ä CaCℓ2
Cada átomo de cálcio perde 2 elétrons e cada átomo de
cloro só pode ganhar 1 elétron. São necessários 2 átomos
de cloro para receber os dois elétrons cedidos pelo átomo
de cálcio.
3. Ligação entre o metal alumínio 13Aℓ e o ametal oxigênio 8O:
alumínio (13Aℓ) ä 1s2 2s2 2p6 3s2 3p1 ä perde 3 e– ä
Aℓ3+ (2, 8)
oxigênio (8O) ä 1s2 2s2 2p4 ä ganha 2 e– ä O2– (2, 8)
ä (Aℓ3+)2(O
2–)3 ä Aℓ2O3
Cada átomo de alumínio perde 3 elétrons e cada átomo
de oxigênio ganha 2 elétrons. Para que o total de elétrons
perdidos seja igual ao total de elétrons recebidos, 2 alumí-
nios (perda de 6 elétrons) ligam-se a 3 oxigênios (ganho
de 6 elétrons).
Fonte: Youtube
Retículo cristalino
multimídia: vídeo
3. Fórmula eletrônica de Lewis
Essa fórmula representa os elementos e os elétrons do seu últi-
mo nível (elétrons de valência) indicando-os por • ou ×
ℓ ℓ• •
O composto iônico é constituído por várias partículas que
se distribuem no espaço, dando origem a uma estrutura
denominada retículo cristalino, como mostra a figura
para o sal de cozinha (NaCℓ):
CIÊNCIAS DA NATUREZA e suas tecnologias 9
V
O
LU
M
E
2
3.1. Regra para formulação
das substâncias iônicas
Os exemplos anteriores permitem afirmar que ligação iônica é
a união entre átomos imediatamente depois da transferência
definitiva de um, dois ou mais elétrons entre esses átomos.
Note que, na formulação de um composto iônico, é funda-
mental que a carga elétrica total do(s) cátion(s) neutralize a
carga elétrica total do(s) ânion(s). Somente dessa maneira o
aglomerado iônico ficará neutro, do qual resulta o esquema
geral de formulação:
Ax+ + By – ä AyBx
Exemplos
Na+ + Cℓ– ä NaCℓ; Mg2+ + Cℓ1– ä MgCℓ2;
Aℓ3+ + O2– ä Aℓ2O3
Aplicação do conteúdo
1. Efetue a ligação iônica entre o cálcio e o flúor, dados
Ca (Z = 20) e F (Z = 9).
Resolução:
Ca: 1s2 2s2 2p6 3s2 3p6 4s2
K = 2 L = 8 M = 8 N = 2
F: 1s2 2s2 2p5
K = 2 L = 7
•
•
•
2. Efetue a ligação entre o magnésio e o enxofre, dados
Mg (Z = 12) e S (Z = 16)
Resolução:
Mg: 1s2 2s2 2p6 3s2
K = 2 L = 8 M = 2
S: 1s2 2s2 2p6 3s2 3p4
K =2 L = 8 M = 6
•
•
•
4. Propriedades das
substâncias iônicas
Compostos iônicos apresentam ao menos uma ligação iônica
entre seus componentes. É o caso do cloreto de sódio (NaCℓ
– sal de cozinha), do nitrato de sódio (NaNO3), do sulfato de
sódio (Na2SO4), do carbonato de cálcio (CaCO3), entre outros.
Todos esses compostos apresentam ligações entre seus íons:
cátions e ânions se atraem significativamente. Por isso, essas
ligações são de natureza elétrica e dão origem a retículos ou
reticulados cristalinos – em grau microscópico. Um cátion atrai
vários ânions, e um ânion atrai vários cátions; assim, formam-
-se aglomerados com formas geométricas bem definidas.
a estrutura crIstalIna do cloreto de sódIo (nacℓ) é cúbIca.
Esses retículos fazem com que os compostos iônicos apre-
sentem as seguintes propriedades:
1. São sólidos em condições normais de temperatura
(25 °C) e pressão (1 atm.)
2. Quando submetidos a impacto, quebram-se facilmen-
te, produzindo faces planas; são, portanto, duros e que-
bradiços.
3. Possuem pontos de fusão e de ebulição elevados,
uma vez que a atração elétricaentre os íons é muito
forte; para quebrá-la, é necessário fornecer uma grande
quantidade de energia; é o caso do cloreto de sódio,
cujo ponto de fusão é 801 °C e o ponto de ebulição é
1.413 °C.
4. Em solução aquosa (dissolvidos em água) ou no estado
líquido (fundidos), eles conduzem corrente elétrica, uma
vez que seus íons ficam com liberdade de movimento
e fecham o circuito elétrico, permitindo que a corrente
continue fluindo.
5. Seu melhor solvente é a água, pois são polares como
ela; entretanto, apesar de polares, nem todos os com-
postos iônicos dissolvem-se na água; é o caso do car-
bonato de cálcio (CaCO3), de estrôncio (SrCO3), de bá-
rio (BaCO3) e do cloreto de prata (AgCℓ), praticamente
insolúveis em água.
10 CIÊNCIAS DA NATUREZA e suas tecnologias
V
O
LU
M
E
2
VIVENCIANDO
5. O tamanho dos íons
Quando um átomo perde elétron(s), o núcleo passa a atrair com maior intensidade os elétrons restantes; assim, o raio do cátion
é sempre menor que o raio do átomo original.
Quando um átomo ganha elétron(s), a carga total da eletrosfera (negativa) torna-se maior que a carga do núcleo (positiva),
diminuindo a atração do núcleo sobre o conjunto de elétrons; assim, o raio do ânion é sempre maior que o raio do
átomo original.
As ligações iônicas estão presentes no cotidiano em diversos compostos. É possível citar, por exemplo, o cloreto de sódio,
NaCℓ, ou sal de cozinha, e mais uma infinidade de compostos iônicos. É importante lembrar que, em química, um compos-
to iônico é um composto químico no qual existem íons ligados numa estrutura cristalina através de ligações entre metais
e ametais. O elemento metálico geralmente é um íon de carga positiva (cátion), e o elemento não metálico é um íon de
carga negativa (ânion).
Os íons que constituem um composto iônico podem ser simples átomos, como ocorre no sal de cozinha (composto basi-
camente por Na+ e Cℓ–), ou grupos mais complexos, como ocorre no carbonato de cálcio (ou calcário, composto por Ca2+
e CO3
2- ). O calcário é muito utilizado na construção civil. No revestimento de estradas ele atua como um cimento natural,
e misturado ao cal e à argila torna-se um bom cimento, como o que foi usado na construção de cidades maias, como
Chichen, Uxmal, Kabah, Labná, etc.
Em geral, os pedaços menores são utilizados como cascalho para construção em lajes e pisos; agregados maiores são
usados para construção de paredes de alvenaria e, em alguns casos, utilizados como enfeites nas fachadas das casas. O
calcário é uma rocha sedimentar porosa feita de carbonato, constituído principalmente de carbonato de cálcio. Quando
há alta proporção de carbonato de magnésio, ele é denominado dolomita, um tipo de mineral. O calcário possui uma
alta resistência ao intemperismo, o que permitiu que muitas esculturas e construções esculpidas com essas rochas antigas
sobrevivessem. Entretanto, a ação da água da chuva e dos rios provoca a dissolução do calcário, criando um tipo de erosão.
O gráfico abaixo apresenta a comparação entre raios atômicos e
iônicos:
Quando há vários íons, todos com o mesmo número de elé-
trons (íons isoeletrônicos), o raio iônico vai diminuir na
proporção em que a carga positiva do núcleo for
maior que a carga negativa da eletrosfera:
Íons O2- F- Na+ Mg2+ Aℓ3+
Número atômico 8 9 11 12 13
Número total de elétrons 10 10 10 10 10
Número de camadas eletrônicas 2 2 2 2 2
Raio iônico (pm) 140 133 97 66 51
CIÊNCIAS DA NATUREZA e suas tecnologias 11
V
O
LU
M
E
2
ÁREAS DE CONHECIMENTO DO ENEM
CONEXÃO ENTRE DISCIPLINAS
Na matéria feita pela Mundo Estranho (mundoestranho.abril.com.br/ambiente/por-que-o-mar-e-salgado/), explica-se por
que o mar é salgado. Nesse sentido, é preciso compreender o ciclo da água e as regiões geográficas. De forma geral, a água
do mar contém sais, como NaCℓ e MgCℓ2, o que faz com que ela seja salgada, contribuindo para processos industriais.
HABILIDADE 28
Relacionar propriedades físicas, químicas ou biológicas de produtos, sistemas ou procedimentos tecnoló-
gicos às finalidades que se destinam.
Compostos iônicos estão presentes no cotidiano, sendo compostos que contêm pontos altos de fusão e
ebulição. A identificação desses compostos deve-se às classificações da tabela periódica já apresentadas em
aulas anteriores.
Para o aluno, é fundamental poder definir o nome e a fórmula do sal e qual a sua classificação, pois se trata
de uma das matérias mais essenciais na química.
MODELO 1
(Enem) A fosfatidilserina é um fosfolipídio aniônico cuja interação com cálcio livre regula processos de trans-
dução celular e vem sendo estudada no desenvolvimento de biossensores nanométricos. A figura representa
a estrutura da fosfatidilserina:
Com base nas informações do texto, a natureza da interação da fosfatidilserina com o cálcio livre é do tipo:
Dado: número atômico do elemento cálcio: 20
a) iônica somente com o grupo aniônico fosfato, já que o cálcio livre é um cátion monovalente;
b) iônica com o cátion amônio, porque o cálcio livre é representado como um ânion monovalente;
c) iônica com os grupos aniônicos fosfato e carboxila, porque o cálcio em sua forma livre é um cátion divalente;
d) covalente com qualquer dos grupos não carregados da fosfatidilserina, uma vez que estes podem doar
elétrons ao cálcio livre para formar a ligação;
e) covalente com qualquer grupo catiônico da fosfatidilserina, visto que o cálcio na sua forma livre poderá
compartilhar seus elétrons com tais grupos.
12 CIÊNCIAS DA NATUREZA e suas tecnologias
V
O
LU
M
E
2
DIAGRAMA DE IDEIAS
8 ELÉTRONS NA
ÚLTIMA CAMADA
DOAM ELÉTRONS
RECEBEM ELÉTRONS
REGRA DO OCTETO LIGAÇÃO IÔNICA
CÁTION ÂNION
CÁTIONS DIMINUEM DE TAMANHO
ÂNIONS AUMENTAM DE TAMANHO
RAIO IÔNICO
ANÁLISE EXPOSITIVA
Nessa questão, há uma exigência do domínio do conteúdo para a sua resolução. É preciso que se tenha em
mente os mecanismos para a realização de uma ligação iônica, as diferentes formas e as forças presentes
nesse tipo de ligação.
A natureza da interação da fosfatidilserina com o cálcio livre é do tipo iônica devido às interações eletros-
táticas do cátion cálcio (Ca2+) com os grupos aniônicos fosfato e carboxila.
RESPOSTA Alternativa C
CIÊNCIAS DA NATUREZA e suas tecnologias 13
V
O
LU
M
E
2
1. Ligação covalente
A ligação covalente ocorre entre átomos de ametais (não
metais) – incluindo o hidrogênio – mediante compartilha-
mento de pares de elétrons.
Os ametais são os elementos mais eletronegativos da tabela
periódica. Quando dois ametais se aproximam, ambos atra-
em os elétrons das suas camadas de valência, bem como os
elétrons do outro. Entretanto, a atração que eles exercem
sobre os elétrons não é suficiente para que ocorra transfe-
rência definitiva de elétrons de um átomo para outro. Por
esse motivo, eles acabam compartilhando pares de elétrons
a fim de adquirirem estabilidade. Quando dois ou mais áto-
mos (iguais ou diferentes) de ametais se unem, formam-se
os aglomerados denominados moléculas.
Moléculas são aglomerados atômicos formados por áto-
mos ligados entre si por meio de ligações covalentes, isto é,
mediante o compartilhamento de pares de elétrons.
A ligação covalente pode ser representada assim:
Átomo A B
Tendência receber elétrons receber elétrons
Classificação ametal ou hidrogênio ametal ou hidrogênio
Exemplos:
1. Molécula formada por átomos de hidrogênio (Z = 1).
O hidrogênio tem um elétron na camada de valência. Para ficar
idêntico ao gás nobre hélio (Z = 2), com 2 elétrons na última
camada, é necessário mais um elétron. Assim, 2 átomos de
hidrogênio compartilham seus elétrons para ficarem estáveis.
Fórmula:
O traço (–) indica o par de elétrons compartilhado pelos
dois átomos de hidrogênio.
Nesse caso, é como se cada átomo tivesse 2 elétrons em
sua eletrosfera. Com efeito, os elétrons pertencem aos dois
átomos, ou seja, ambos compartilham os 2 elétrons.
Como a menor porção de uma substância resultante de
ligação covalente édenominada molécula, H2 é, portanto,
uma molécula ou substância molecular.
2. Molécula de água, formada por átomos de hidrogênio
e de oxigênio.
A ligação covalente também ocorre entre átomos de dife-
rentes elementos.
O oxigênio possui 6 elétrons na última camada de valência
e precisa receber 2 elétrons para completar o octeto na
camada de valência e ficar estável. O hidrogênio possui um
elétron na camada de valência e precisa receber 1 elétron
para completar a camada de valência – configuração do
gás nobre hélio – para se estabilizar. Ao se ligarem median-
te compartilhamento de seus elétrons, os átomos estabili-
zam-se, uma vez que completam as respectivas camadas
de valência de acordo com sua “necessidade”.
1.1. Representação da ligação covalente
A ligação covalente pode ser representada de várias formas:
a. Fórmula eletrônica, fórmula de Lewis ou estrutu-
ra de Lewis
O compartilhamento dos pares eletrônicos é representado
por bolinhas (•) dentro de retângulos.
b. Fórmula estrutural plana
Os pares eletrônicos compartilhados são representados por
traços (–) que unem os átomos participantes da ligação.
LIGAÇÕES
COVALENTE
E METÁLICA
COMPETÊNCIA(s)
1, 2, 3, 5, 6 e 7
HABILIDADE(s)
4, 7, 8, 12, 17, 18, 20, 24 e 25
CN
AULAS
11 E 12
14 CIÊNCIAS DA NATUREZA e suas tecnologias
V
O
LU
M
E
2
Fórmula
eletrônica
Fórmula
estrutural
Pares
eletrônicos Classificação
A A A – A 1 par eletrônico Ligação simples
A A A = A 2 pares eletrônicos Ligação dupla
A A A ; A 3 pares eletrônicos Ligação tripla
c. Fórmula molecular
Mostra apenas quais e quantos átomos a molécula possui.
Fórmula Estrutural
1.2. Representação da ligação
covalente coordenada ou dativa
1.2.1. Ligações covalentes adicionais usando
pares eletrônicos de um único átomo
A ligação covalente em que ambos os elétrons vêm de um
só átomo é denominada ligação coordenada ou liga-
ção dativa. Na fórmula estrutural, ela é representada por
uma seta (é).
§ SO2
O par eletrônico destacado (que está ligando o enxofre ao
segundo oxigênio), pertencia, de início, apenas ao enxofre.
Não se trata mais de ligação covalente usual, em que cada
ligação – par eletrônico compartilhado – é formada por um
elétron de cada átomo, mas de uma covalência especial,
em que o par eletrônico compartilhado é constituído por
elétrons de apenas um dos átomos da ligação.
Esse tipo de ligação era denominado ligação covalente dati-
va e representado por uma seta (é) partindo do átomo que
“oferece” o par eletrônico em direção ao átomo favorecido.
1.3. Representação da ligação
coordenada ou dativa
A molécula SO2 fica:
§ Fórmula estrutural atual: O = S – O
§ Forma antiga, mas ainda bastante usual nos exames
vestibulares: O = S é O
§ Outros exemplos:
H2SO4
HCℓO4
H3PO4
HNO3
A formação do íon amônio (NH4
+) ocorre mediante a reação:
NH3 + H+ é N H 4
+
A princípio, o NH3 possuía um par eletrônico livre, e o íon
hidrogênio (H+) não tinha elétrons (uma vez que, regular-
mente, o H+ provém de outra molécula, na qual deixou seu
próprio elétron). Por isso, o NH3 compartilha o par eletrôni-
co livre que inicialmente era exclusivo do nitrogênio.
Considerando ainda o exemplo do NH4
+, observe que, de-
pois da formação do NH4
+, não há diferença alguma entre
as quatro ligações covalentes.
Ou seja, os quatro hidrogênios tornam-se perfeitamente
equivalentes entre si. Por esse motivo, é mais correto repre-
sentar o NH4
+ assim:
CIÊNCIAS DA NATUREZA e suas tecnologias 15
V
O
LU
M
E
2
VIVENCIANDO
Fórmula estrutural por escrito:
Colunas 14 15 16 17
Estrutura eletrônica
na camada externa
Distribuição
2. Exceções à teoria do octeto
Certos átomos não necessitam possuir oito elétrons na ca-
mada de valência para se estabilizarem; outros comportam
mais do que oito elétrons na camada de valência. Por isso,
são considerados exceções à teoria do octeto:
a. Boro (B)
Forma compostos estáveis por meio de três ligações simples
e se estabiliza com seis elétrons na camada de valência.
b. Berílio (Be)
Forma compostos estáveis por meio de duas ligações sim-
ples e se estabiliza com apenas quatro elétrons na camada
de valência.
No dia a dia, é possível encontrar com facilidade a ligação covalente. Substâncias de uso muito comum possuem em
sua estrutura átomos com essa característica de ligação, como a água, o gás oxigênio, a solução de vinagre, o álcool
etílico, o açúcar e o grafite.
Por outro lado, existem substâncias com átomos que possuem essa característica de ligação e que não são tão
evidentes no cotidiano.
O ozônio (O3), por exemplo, é o principal gás situado na atmosfera, responsável pela proteção do planeta Terra contra
os raios ultravioletas (UV) emitidos pelo Sol. Sem essa camada de gás existente na atmosfera, a vida na Terra não
seria possível.
Outro exemplo é o elemento carbono (C), que pode ser encontrado na forma de diamante, passando por processos
de formação diferentes do carbono encontrado no grafite, sendo essa a diferença fundamental entre essas substân-
cias constituídas por átomos desse mesmo elemento químico.
c. Número maior do que oito elétrons na última camada
Em alguns casos, os átomos de fósforo e enxofre (existem outros
átomos) aparecem com mais de 8 elétrons na camada de va-
lência, que, em certas moléculas, possuem 10 e 12 elétrons, res-
pectivamente. Esses casos só ocorrem quando o átomo central
é relativamente grande para que possa acomodar mais elétrons
ao seu redor. Essa camada de valência expandida só apare-
ce em elementos do 3º período da tabela periódica para baixo.
d. Número ímpar de elétrons na última camada
Há casos em que a camada de valência é completada com
número ímpar de elétrons. Alguns exemplos são os
compostos NO, NO2 e CℓO2, que apresentam 7 elétrons ao
redor do átomo central (nitrogênio e cloro).
16 CIÊNCIAS DA NATUREZA e suas tecnologias
V
O
LU
M
E
2
e. Compostos dos gases nobres
Embora os gases nobres não tenham ou tenham pouca
tendência de se unir a outros elementos, existem compos-
tos de gases nobres estáveis (eles reagem em condições
especiais). Alguns exemplos são o XeF2 e o XeF4.
Fórmula
Átomo Molecular Eletrônica Estrutural
B BF3
Be BeF2
P PCℓ5
ℓ
ℓ
ℓ
ℓ
ℓ
S SF6
N NO
Gás
nobre
(Xe)
XeF4
3. Propriedades das substâncias
moleculares (covalentes)
Embora as propriedades das substâncias moleculares difi-
cilmente sejam generalizáveis, é possível apontar algumas
características bastante comuns:
1. São encontradas nos três estados físicos.
2. Apresentam ponto de fusão e ponto de ebulição meno-
res que os dos compostos iônicos.
3. Caso sejam puras, não conduzem eletricidade, à exce-
ção do grafite, que é condutor.
4. Caso estejam em estado sólido, apresentam retículos
moleculares ou retículos covalentes.
Retículo cristalino covalente: ocorre quando todos os átomos
estão ligados por uma rede significativa de ligações covalentes.
ÁTOMO DE CARBONOLIGAÇÃO COVALENTE
retículo crIstalIno do dIamante (átomos unIdos medIante lIgações covalentes)
Retículo cristalino covalente: formado pela união de molé-
culas mediante interações ou forças intermoleculares.
OXIGÊNIO HIDROGÊNIO
retículo crIstalIno molecular do gelo (moléculas de água)
Aplicação do conteúdo
1. O número total de elétrons em uma molécula de água
é igual a:
a) 10.
b) 8.
c) 6.
d) 4.
e) 2.
Resolução:
Consultando os números atômicos na tabela periódica, obtém-se:
Hidrogênio (Z = 1) ä 1 elétron
Oxigênio (Z = 8) ä 8 elétrons
Na molécula de H2O há ao todo 10 elétrons, ou seja, 1 de cada
hidrogênio e 8 do oxigênio.
Alternativa A
Observação: é comum, mas incorreta, a resposta 8 elé-
trons para esse exercício. Lembre-se de que 8 elétrons são
apenas os elétrons nas camadas de valência dos átomos,
ou seja, os que aparecem na fórmula de Lewis (fórmula
eletrônica). Além deles há mais 2 na primeira camada do
oxigênio que não aparecem na fórmula de Lewis.
2. Qual dessas fórmulas é prevista para o composto for-
mado porátomos de fósforo e flúor, considerando o nú-
mero de elétrons da camada de valência de cada átomo?
a) P ; P
b) P — F ; P
c) F — P ; F
F
|
d) F — P — F
P
|
e) P — F — P
CIÊNCIAS DA NATUREZA e suas tecnologias 17
V
O
LU
M
E
2
Resolução:
O fósforo possui 5 elétrons na camada de valência e tende,
portanto, a ganhar 3 elétrons. O flúor possui 7 elétrons na
camada de valência e tende, portanto, a ganhar 1 elétron.
Assim, os dois elementos deverão formar um composto
covalente com o fósforo (P) na posição central.
Alternativa D
3. Os metais, explorados desde a Idade do Bronze, são
muito utilizados até hoje, por exemplo, na aeronáutica,
na eletrônica, na comunicação, na construção civil e na
indústria automobilística.
Sobre os metais, pode-se afirmar que são:
a) Bons condutores de calor e de eletricidade, assim
como os não metais.
b) Materiais que se quebram com facilidade, caracte-
rística semelhante aos cristais.
c) Materiais que apresentam baixo ponto de fusão, tor-
nando-se sólidos na temperatura ambiente.
d) Encontrados facilmente na forma pura ou metálica,
sendo misturados a outros metais, formando o mineral.
e) Maleáveis, transformando-se em lâminas, por exem-
plo, quando golpeados ou submetidos a rolo compressor.
Resolução:
a) Falso, pois os não metais têm propriedades opostas
às dos metais, ou seja, não são bons condutores de
calor nem de eletricidade.
b) Falso, pois os metais são resistentes à quebra, dife-
rentemente dos cristais.
c) Falso, pois os metais possuem alto ponto de fusão
(exceto o mercúrio). Por isso, eles são sólidos à tem-
peratura ambiente.
d) Falso, pois a maioria dos metais não é encontra-
da pura ou na forma metálica na natureza (exceto
metais nobres, como ouro e platina), normalmente
estando na forma de óxidos metálicos. Podem vir
combinados com outros metais, mas não puros ou na
forma metálica.
e) Verdadeiro, pois os metais são dúcteis, podendo ser
transformados em fios, e maleáveis, transformando-
-se em lâminas, por exemplo, quando golpeados ou
submetidos a um rolo compressor.
Altenativa E
4. (UnB) O ouro é o mais maleável e dúctil dos metais.
Possui o número atômico 79, ponto de fusão igual a
1064,43 °C e ponto de ebulição igual a 2807 °C. Sobre
o ouro, julgue os itens abaixo em verdadeiro ou falso.
1) Uma peça metálica de platina é mais facilmente
convertida em fios que uma peça metálica de ouro.
2) O isótopo 198
79 Au, utilizado no tratamento de doen-
ças cancerígenas, possui 198 nêutrons.
3) A notação 79Au3+ representa um íon que tem 82
prótons e 79 elétrons.
4) Os elevados pontos de fusão e de ebulição são justificados
pelo fato de as ligações metálicas dos átomos do ouro serem
muito fortes, mantendo os átomos intensamente unidos.
Resolução:
1) Falso. O ouro é mais facilmente convertido em fios,
pois é o metal mais dúctil (transformado em fios) e ma-
leável (transformado em lâminas ou chapas) dos metais.
2) Falso. N = A – Z → N = 198 – 79 → N = 119
3) Falso. A notação 79Au3+ indica que o átomo apre-
senta 79 prótons e 76 elétrons
4) Verdadeiro. A ligação metálica é estabelecida
através da interação entre os prótons do núcleo e os
elétrons do átomo vizinho.
4. Ligação metálica
A condução fácil da eletricidade é uma das principais ca-
racterísticas dos metais. Considerando que a corrente elé-
trica é um fluxo de elétrons, foi criada a chamada teoria
da nuvem eletrônica ou teoria do mar de elétrons.
Em princípio, os átomos dos metais possuem apenas 1, 2 ou
3 elétrons na última camada eletrônica. Uma vez que essa
camada fica afastada do núcleo, os elétrons sofrem pouca
força de atração. Em consequência, os elétrons escapam fa-
cilmente do átomo e transitam livremente pelo retículo cris-
talino metálico. Assim, os átomos que perdem elétrons trans-
formam-se em cátions; esses cátions podem receber elétrons
e voltar à forma de átomo neutro, e assim sucessivamente.
Conclusão: segundo essa teoria, o metal é um aglome-
rado de átomos neutros e cátions mergulhados em uma
nuvem (ou mar) de elétrons livres e mantidos unidos – afir-
ma-se também que esses elétrons estão deslocalizados.
ELÉTRON LIVRE
agrupamento dos átomos dos metaIs dá
orIgem ao retículo crIstalIno metálIco.
CÚBICO DE CORPO CENTRADO (CCC)
CÚBICO DE FACES CENTRADAS (CFC)
HEXAGONAL COMPACTO (HC)
18 CIÊNCIAS DA NATUREZA e suas tecnologias
V
O
LU
M
E
2
CONEXÃO ENTRE DISCIPLINAS
4.1. Propriedades dos metais
As substâncias metálicas, ou simplesmente metais, são úteis
ao ser humano graças às suas propriedades genéricas:
1. Brilho característico – quando polidos, os metais
refletem muito bem a luz; propriedade observada em
bandejas e espelhos de prata.
2. Alta condutividade térmica e elétrica, graças aos elé-
trons livres. O movimento ordenado dos elétrons cons-
titui corrente elétrica que, se agitada, permite rápida
propagação de calor mediante substâncias metálicas.
3. Altos pontos de fusão e ebulição característicos dos
metais, à exceção do mercúrio, PF = –39 ºC; gálio,
PF = 30 ºC; e potássio, PF = 63 ºC. Graças a essa pro-
priedade e à boa condutividade térmica, alguns metais
são utilizados em panelas e radiadores de veículos.
4. Maleabilidade – os metais são facilmente maleáveis.
O ouro é o mais maleável dos metais e permite a ob-
tenção de lâminas muito finas.
5. Ductibilidade – os metais também são facilmente
transformados em fios. Esse também é o caso do ouro.
5. Ligas metálicas
Existem materiais com propriedades metálicas formados
por dois ou mais elementos, sendo que ao menos um
desses elementos é um metal. As características das li-
gas metálicas não coincidem com as características dos
metais puros. Por esse motivo, elas são muito utilizadas
na indústria.
§ Ouro 18 quilates – mistura formada por 75% de
ouro e 25% de cobre e prata.
§ Amálgama – liga de Hg, Ag e Sn usada antigamente
em obturações.
§ Bronze – liga de Cu e Sn usada na produção de sinos,
medalhas, moedas e estátuas.
§ Aço inox – liga de Fe, C, Cr e Ni usada em talheres,
peças de carros e brocas.
§ Latão – liga de Cu e Zn usada na produção de tubos,
armas, torneiras e instrumentos musicais.
alunosonline.uol.com.br/quimica/ligas-metalicas.html
multimídia: site
As ligações covalentes estão presentes em grande proporção na natureza; os elementos que são responsáveis por
essas ligações (os não metais) estão na composição de grande parte dos compostos orgânicos. Mas também é pos-
sível encontrá-los na forma de minerais em compostos inorgânicos. Ou seja, estudando-se a geomorfologia de uma
região, é possível inferir quais elementos possuem maior probabilidade de serem encontrados no solo daquela área;
assim, depois da extração desses minerais, eles são tratados para se obter os seus elementos constituintes da forma
mais proveitosa possível.
O elemento fósforo (P) é um exemplo de elemento que, em grande parte, vai ser encontrado no solo
através de seus fosfatos.
Os elementos metálicos, por sua vez, também passam por processos de purificação para se obter substâncias apenas
constituídas por átomos de um determinado elemento. Entretanto, metais podem passar por reações em que são
formadas ligas, misturas homogêneas resultantes da fundição de dois ou mais metais constituintes.
CIÊNCIAS DA NATUREZA e suas tecnologias 19
V
O
LU
M
E
2
ÁREAS DE CONHECIMENTO DO ENEM
HABILIDADE 25
Caracterizar materiais ou substâncias, identificando etapas, rendimentos ou implicações biológicas, sociais,
econômicas ou ambientais de sua obtenção ou produção.
A maneira como as substâncias são relacionadas e nomeadas é fundamental no ramo da Química. Com o
passar do tempo e com a descoberta e síntese de novos elementos, mais classificações foram necessárias
para se distinguir diferentes substâncias. Uma das classificações mais corriqueiras é a polaridade, conside-
rando as interações intermoleculares.
Essas interações intermoleculares regem as propriedades físico-químicas conhecidas e sãode extrema
importância para a compreensão do funcionamento da matéria no âmbito molecular.
MODELO 1
(Enem) Quando colocamos em água, os fosfolipídeos tendem a formar lipossomos, estruturas formadas por
uma bicamada lipídica, conforme mostrado na figura. Quando rompida, essa estrutura tende a se reorganizar
em um novo lipossomo.
Esse arranjo característico se deve ao fato de os fosfolipídeos apresentarem uma natureza:
a) polar, ou seja, serem inteiramente solúveis em água;
b) apolar, ou seja, não serem solúveis em solução aquosa;
c) anfotérica, ou seja, podem comportar-se como ácidos e bases;
d) insaturada, ou seja, possuírem duplas-ligações em sua estrutura;
e) anfifílica, ou seja, possuírem uma parte hidrofílica e outra hidrofóbica.
ANÁLISE EXPOSITIVA
Nessa questão, são trabalhados os conceitos de interações intermoleculares e de polaridade.
Esse arranjo característico se deve ao fato de os fosfolipídeos apresentarem uma natureza anfifílica, ou seja,
possuírem uma parte polar (hidrofílica) e outra apolar (hidrofóbica).
RESPOSTA Alternativa E
20 CIÊNCIAS DA NATUREZA e suas tecnologias
V
O
LU
M
E
2
DIAGRAMA DE IDEIAS
LIGAÇÃO
METÁLICA
LIGAÇÃO
COVALENTE
LIGAÇÃO
IÔNICA
SUBSTÂNCIA
METÁLICA
SUBSTÂNCIA
MOLECULAR
SUBSTÂNCIA
IÔNICA
RETÍCULO
CRISTALINO
METÁLICO MOLÉCULAS
RETÍCULO
CRISTALINO
IÔNICO
EXISTE EM EXISTE EMEXISTE EM
TEM FORMADA
POR
TEM
NELE HÁ NO ESTADO
SÓLIDO
FORMADO
POR
LIGAÇÃO QUÍMICA
CONDUZ
CORRENTE
ELÉTRICA
ELÉTRONS
LIVRES
RETÍCULO
CRISTALINO
MOLECULAR
NÃO CONDUZ
CORRENTE
ELÉTRICA
BAIXO
PONTO DE
EBULIÇÃO
BAIXO
PONTO DE
FUSÃO
ÍONS
APRESENTA
SE
E
ST
IV
ER
L
ÍQ
UI
DO
O
U
SÓ
LID
O
SE
E
ST
IV
ER
L
ÍQ
UI
DO
CIÊNCIAS DA NATUREZA e suas tecnologias 21
V
O
LU
M
E
2
1. Geometria molecular
Geometria molecular é o estudo da distribuição espacial dos
átomos em uma molécula. Dependendo dos átomos que a
compõem, essa distribuição pode assumir diferentes formas
geométricas. Entre as principais classificações estão a linear,
a angular, a trigonal plana, a piramidal e a tetraédrica.
Para se determinar a geometria de uma molécula, é preciso
conhecer a teoria da repulsão dos pares eletrônicos (TRPE)
da camada de valência.
1.1. Teoria da repulsão dos
pares eletrônicos
Essa teoria se fundamenta na ideia de que, estejam ou não
fazendo ligação química (sendo compartilhados), os pares
eletrônicos da camada de valência de um átomo central se
comportam como nuvens eletrônicas que se repelem, man-
tendo a maior distância angular possível uns dos outros.
Uma nuvem eletrônica pode ser formada por ligação sim-
ples, dupla, tripla ou mesmo por um par de elétrons não
ligantes (que não estão fazendo ligação química).
A teoria da repulsão dos pares eletrônicos funciona bem
para moléculas do tipo ABx, em que A é o átomo central, e
B é denominado elemento ligante. Nessa molécula, os pa-
res de elétrons (nuvens eletrônicas) da camada de valência
do átomo central A se repelem, determinando o formato
da molécula ou íon.
Dessa forma, se houver duas nuvens eletrônicas ao redor de
um átomo central, a maior distância angular que elas podem
assumir é de 180°; se houver três nuvens, 120°, etc. É funda-
mental analisar se a ligação é covalente ou iônica.
Assim:
§ a geometria das nuvens, ou seja, a orientação espa-
cial dessas nuvens (pares eletrônicos), depende do
número total de nuvens eletrônicas ao redor do áto-
mo central A; e
§ a geometria molecular é determinada pela posição dos
núcleos dos átomos ligados ao redor do átomo central.
Não confundir geometria dos pares eletrônicos (nuvens
eletrônicas) com geometria da molécula.
Considerando, pois, a orientação das nuvens e o número
de átomos ligados ao átomo central, existem possíveis
geometrias moleculares de acordo com a posição dos nú-
cleos desses átomos.
1.1.1 Moléculas e suas geometrias
BeH2
Linear
BeH H
H H
O
H2O
Angular
H
H H
B
BH3
Trigonal Plana
NH3
Piramidal
H
H
H
N
H
H
H
H
C
CH4
Tetraédrica
beH2 lInear
bH3 trIgonal plana nH3 pIramIdal
cH4 tetraédrIca
H2o angular
1.1.2. Roteiro para determinação
da geometria molecular
1. Determinar a fórmula eletrônica da substância contando
os pares eletrônicos (nuvens eletrônicas) ao redor do áto-
mo central. Considere como par eletrônico:
§ cada ligação dupla, tripla ou coordenada/dativa
(–, =, ≡, →);
§ cada par de elétrons não ligantes.
GEOMETRIA E
POLARIDADE
MOLECULARES
COMPETÊNCIA(s)
6 e 7
HABILIDADE(s)
18, 24 e 26
CN
AULAS
13 E 14
22 CIÊNCIAS DA NATUREZA e suas tecnologias
V
O
LU
M
E
2
2. Os pares eletrônicos repelem-se ao máximo.
Número de nuvens
ao redor do átomo
central
Fórmula eletrônica
Orientação
(geometria) das
nuvens (pares
eletrônicos)
Disposição
dos ligantes
Geometria
molecular
2
Linear O = C = O
H — C ; N
Sempre
Linear
3
2 átomos ligantes Trigonal plana
(triangular)
Angular
Trigonal plana
4
2 átomos ligantes
NN
3 átomos ligantes
4 átomos ligantes
Tetraédrica
Angular
Piramidal
Tetraédrica
Observe:
§ a geometria linear das nuvens determina somente mo-
léculas lineares;
§ a geometria trigonal plana das nuvens pode determi-
nar moléculas angulares ou trigonais planas;
§ a geometria tetraédrica das nuvens pode determinar
moléculas angulares, piramidais ou tetraédricas.
Observação: existem ainda duas geometrias possíveis
quando o átomo central ultrapassar os 8 elétrons na
camada de valência (existem mais tipos de geometria que,
no entanto, não terão seus detalhes analisados aqui):
§ Bipirâmide trigonal: ocorre quando há cinco nuvens
eletrônicas na camada de valência do átomo central,
todas fazendo ligação química. O átomo central assu-
me o centro de uma bipirâmide trigonal, sólido forma-
do pela união de dois tetraedros por uma face comum.
É possível citar como exemplo a molécula PCℓ5.
§ Octaédrica: ocorre quando há seis nuvens eletrônicas
na camada de valência do átomo central e todas fa-
zem ligações químicas. Os átomos periféricos assumem
os vértices de um octaedro, e o átomo central fica no
centro do octaedro. É possível citar como exemplo a
molécula SF6.
moléculas de pcℓ5 e sF6 com geometrIa bIpIrâmIde
trIgonal e octaédrIca, respectIvamente.
CIÊNCIAS DA NATUREZA e suas tecnologias 23
V
O
LU
M
E
2
2. Geometria de íons
Como foi visto, átomos podem se transformar em íons ao
perder ou ganhar elétrons, tornando-se cátions e ânions,
respectivamente. Existem muitos íons denominados polia-
tômicos, ou seja, que são formados por mais de um átomo.
A determinação de sua geometria segue exatamente as
mesmas regras utilizadas para a geometria das moléculas.
Aplicação do conteúdo
1. Se dissolvido em água, o ácido nítrico (HNO3) sofre
ionização, produzindo o ânion nitrato NO – 3 . Determine a
geometria desse ânion.
Resolução:
Fórmulas do ácido e do ânion:
No rompimento da ligação, o hidrogênio perde seu elétron e o
oxigênio recebe esse elétron.
Ao redor do átomo central do ânion (N) há três nuvens eletrônicas
e três ligantes. Como há três nuvens eletrônicas, a geometria das
nuvens é trigonal plana. Como o átomo de nitrogênio está no
centro de um triângulo com os três vértices ocupados por átomos
de oxigênio, a geometria molecular também é trigonal plana.
A geometria molecular coincide com a geometria das nu-
vens se o número de átomos ao redor do átomo central
é igual ao número de nuvens (pares eletrônicos) ao redor
desse átomo central.
2. Na molécula da amônia (NH3) há quatro nuvens ele-
trônicas (quatro pares eletrônicos, dos quais um deles
é não ligante) ao redor do átomo central (N). Portanto,
a geometria das nuvens é tetraédrica. Como há apenas
três átomos (ligantes) ao redor do átomo central, a ge-
ometria molecular é piramidal.
Fórmula eletrônIca
dIsposIção dos átomos geometrIa molecular pIramIdal
orIentação das nuvensFórmula molecular
3. Polaridade molecular
3.1. Polaridade das ligações
O acúmulo de cargas elétricas em determinadaregião é
denominado polo, que pode ser de dois tipos:
+ d = região de menor densidade eletrônica, que corres-
ponde ao átomo menos eletronegativo.
– d = região de maior densidade eletrônica, que corres-
ponde ao átomo mais eletronegativo.
Exemplo
3.2. Polaridade versus tipo
de ligação química
a. Ligações iônicas
Em uma ligação iônica ocorre transferência definitiva de elé-
trons, fator que acarreta a formação de íons positivos (cátions)
e negativos (ânions), os quais, por sua vez, dão origem aos
compostos iônicos. Como todos os íons apresentam excesso de
cargas elétricas positivas ou negativas, eles sempre terão polos.
nacℓ: exemplo de composto IônIco, em que a
transFerêncIa de elétron é deFInItIva.
24 CIÊNCIAS DA NATUREZA e suas tecnologias
V
O
LU
M
E
2
Assim:
As ligações iônicas apresentam máxima polarização.
Toda substância iônica é polar por natureza.
b. Ligações covalentes
Nessas ligações, a existência de polos está associada à de-
formação da nuvem eletrônica e depende da diferença de
eletronegatividade entre os elementos.
Caso a ligação covalente ocorra entre átomos de mesma
eletronegatividade, não haverá distorção da nuvem ele-
trônica, ou seja, não ocorrerá formação de polos. Por esse
motivo, essas ligações são denominadas apolares.
cℓ2: não Há dIFerença de polo; portanto, é uma molécula apolar.
Na ligação covalente entre átomos de eletronegatividades
diferentes, ocorre deformação da nuvem eletrônica em de-
corrência do acúmulo de carga negativa (–d) em torno do
elemento de maior eletronegatividade. Essas ligações são
denominadas polares.
Hcℓ: Há dIFerença de polo; logo, a molécula é polar.
Por essa razão, conclui-se que:
Ligação entre átomos de mesma eletrone-
gatividade ä ligação covalente apolar.
Ligação entre átomos de diferentes eletrone-
gatividades ä ligação covalente polar.
Para comparar a intensidade de polarização das ligações,
recorre-se à escala de eletronegatividade de Pauling:
F O N Cℓ Br I S C P H
eletronegatividade crescente
Considerando os itens já discutidos, é possível estabelecer
a seguinte relação:
ligação covalente apolar < ligação co-
valente polar < ligação iônica
polaridade crescente
4. Vetor momento dipolar
A polaridade de uma ligação se caracteriza por uma
grandeza denominada momento dipolar (m), ou di-
polo elétrico, que é representada por um vetor orienta-
do no sentido do elemento menos eletronegativo para o
elemento mais eletronegativo, ou seja, do polo positivo
para o polo negativo.
4.1. Polaridade das ligações covalentes
Para verificar a polaridade das ligações covalentes, é utili-
zada a escala de eletronegatividade de Pauling:
Se a diferença de eletronegatividade entre os átomos li-
gados for diferente de zero (geralmente átomos diferen-
tes), o vetor μ estará definido (não é nulo) e a ligação será
polar, isto é, haverá distorção da nuvem eletrônica entre
os dois átomos envolvidos na ligação covalente. A nuvem
eletrônica ficará deslocada para o lado do elemento mais
eletronegativo.
§ Se a diferença de eletronegatividade entre os átomos
envolvidos na ligação for nula (geralmente átomos
iguais ou átomos com eletronegatividades muito pró-
ximas), o vetor μ também será nulo e a ligação será
apolar, isto é, não haverá distorção da nuvem eletrônica
entre os dois átomos envolvidos na ligação covalente.
CIÊNCIAS DA NATUREZA e suas tecnologias 25
V
O
LU
M
E
2
Quando o ∆ (diferença) for maior que 1,7, o composto
terá caráter iônico (ou seja, a ligação é iônica); abaixo de
1,7, o composto terá caráter covalente (ou seja, a ligação
será covalente).
Exemplos
lIgação polar
lIgação apolar
Fonte: Youtube
Misteriosa areia que tem medo de água...
multimídia: vídeo
4.2. Polaridade molecular
Como determinar a polaridade ou apolaridade de uma
molécula?
a) Experimentalmente
Se orientada na presença de um campo elétrico externo,
uma molécula é considerada polar; se não orientada, é
considerada apolar. O polo negativo da molécula é atraído
pela placa positiva do campo elétrico externo e vice-versa,
como é possível observar na figura a seguir:
b) Teoricamente
Pode-se determinar a polaridade de uma molécula pelo
vetor momento dipolar resultante
_____
›
mR , ou seja, pela soma
dos vetores de cada ligação polar da molécula.
Para determinar o vetor momento dipolo resultante,
_____
› mR ,
dois fatores devem ser considerados:
§ a escala de eletronegatividade, que determina a orien-
tação dos vetores nas ligações polares; e
§ a geometria molecular, que determina a disposição es-
pacial dos vetores
_____
› mR .
Exemplos
Fórmula
molecular
Geometria/
Vetores
____
›
mR Molécula
HCø
_____
›
mR ≠
___
›
0 Polar
CO2
_____
› mR =
___
›
0 Apolar
H2O
_____
›
mR i
___
›
0 Polar
NH3
_____
›
mR i
___
›
0 Polar
phet.colorado.edu/sims/html/molecule-shapes/latest/molecule-
-shapes_pt_BR.html
multimídia: site
26 CIÊNCIAS DA NATUREZA e suas tecnologias
V
O
LU
M
E
2
VIVENCIANDO
c) Método alternativo para determinação da pola-
ridade molecular
Outra maneira – bem mais simples – de analisar a polari-
dade de uma molécula é comparar o número de nuvens
eletrônicas (pares eletrônicos) ao redor do átomo central
com o número de átomos iguais (de um mesmo ele-
mento químico) ligados ao átomo central. Caso os valores
sejam iguais, a molécula será apolar; se os valores não fo-
rem iguais, será polar.
Número de nuvens eletrônicas ≠ do núme-
ro de átomos iguais ä molécula polar
Número de nuvens eletrônicas = ao núme-
ro de átomos iguais ä molécula apolar
Exemplos
A principal causa da ação dos detergentes é a polaridade das moléculas. Tudo se deve ao caráter anfifílico desses
produtos, formando uma micela com a sujeira.
Caráter anfifílico: afirma-se que uma substância é anfifílica quando existem na mesma molécula regiões predomi-
nantemente polares (região hidrofílica) e regiões predominantemente apolares (região hidrofóbica).
Por exemplo:
Parte hidro�lica
MICELA Parte hidrofóbica
H2O
Assim, quando um detergente entra em contato com uma gordura, a região apolar do detergente envolve a gordura,
que tem caráter apolar, e o detergente forma uma micela em torno da gordura, deixando exposta a sua região polar,
que terá contato direto com a água, arrastando a gordura da superfície em que estiver localizada.
CIÊNCIAS DA NATUREZA e suas tecnologias 27
V
O
LU
M
E
2
CONEXÃO ENTRE DISCIPLINAS
Em Biologia, todas as reações ocorridas no aspecto celular só são possíveis graças à polaridade que existe em cada
uma das moléculas envolvidas.
Existem vitaminas que são lipossolúveis, como a vitamina A, e vitaminas como a vitamina C, que são hidrossolúveis,
isto é, o meio em que elas estão é fator determinante para que qualquer reação aconteça, permitindo que o organis-
mo se comporte normalmente ou de forma anômala.
Pare para pensar... Se o cabelo humano, que é composto de uma proteína denominada queratina, tivesse caráter
hidrofílico, ele seria dissolvido pela água! Você não iria querer isso, certo?
O cabelo umedece porque é poroso e permite a passagem da água por seus poros. Mas não se engane! Isso só é
possível porque o cabelo tem em sua estrutura molecular regiões de baixa polaridade, permitindo, assim, uma pe-
quena atração pelas moléculas de água.
ÁREAS DE CONHECIMENTO DO ENEM
HABILIDADE 24
Utilizar códigos e nomenclatura da Química para caracterizar materiais, substâncias ou transformações químicas.
Com o passar do tempo, foi necessária a criação de substâncias diversas para uso industrial, médico, farmaco-
lógico, cotidiano, etc. Com isso, foi criada a nomeação e a nomenclatura dessas substâncias.
Os ácidos exercem função importantíssima em todas as áreas supracitadas e são os compostos responsáveis
por impactos ambientais gigantescos, como a chuva ácida. Seus precursoressão os óxidos, que, em contato
com a água, causam a acidificação das chuvas, causando danos ambientais e ecológicos graves.
MODELO 1
(Enem) O processo de industrialização tem gerado sérios problemas de ordem ambiental, econômica e social, entre
os quais se pode citar a chuva ácida. Os ácidos usualmente presentes em maiores proporções na água da chuva
são o H2CO3, formado pela reação do CO2 atmosférico com a água, o HNO3, o HNO2, o H2SO4 e o H2SO3. Esses
quatro últimos são formados principalmente a partir da reação da água com os óxidos de nitrogênio e de enxofre
gerados pela queima de combustíveis fósseis.
A formação de chuva mais ou menos ácida depende não só da concentração do ácido formado, como também do tipo
de ácido. Essa pode ser uma informação útil na elaboração de estratégias para minimizar esse problema ambiental. Se
consideradas concentrações idênticas, quais dos ácidos citados no texto conferem maior acidez às águas das chuvas?
a) HNO3 e HNO2.
b) H2SO4 e H2SO3.
c) H2SO3 e HNO2.
d) H2SO4 e HNO3.
e) H2CO3 e H2SO3.
28 CIÊNCIAS DA NATUREZA e suas tecnologias
V
O
LU
M
E
2
ANÁLISE EXPOSITIVA
Como de costume, as questões do Enem abordam situações-problemas, as quais apresentam a preservação
do meio ambiente como preocupação principal.
Os ácidos citados no texto que conferem maior acidez às águas das chuvas são o ácido sulfúrico e o nítrico,
pois são ácidos fortes.
Uma maneira de descobrir que esses ácidos são fortes é lembrando que:
D = quantidade de átomos de oxigênio – quantidade de átomos de hidrogênios ionizáveis.
Conforme o valor de D encontrado, obtém-se a seguinte classificação:
oxiácidos valor de D
fracos 0
semifortes ou moderados 1
fortes 2 ou 3
Assim:
H2SO4 ⇒ 4 – 2 = 2 (ácido forte)
HNO3 ⇒ 3 – 1 = 2 (ácido forte)
RESPOSTA Alternativa D
CIÊNCIAS DA NATUREZA e suas tecnologias 29
V
O
LU
M
E
2
DIAGRAMA DE IDEIAS
APOLAR POLAR
GEOMETRIA
MOLECULAR
PODE SER
DETERMINADA
USANDO A
LIGAÇÃO COVALENTE
PODE SER
INFLUÊNCIA
MOMENTO DE DIPO-
LO (DA LIGAÇÃO)
EXPRESSA
DEPENDE DA
DIFERENÇA DE
MOLÉCULA
TEORIA DA
REPULSÃO DOS PARES
ELETRÔNICOS DA
CAMADA DE VALÊNCIA
POLARIDADE DAS LIGAÇÕES
GEOMETRIA
MOLECULAR
MOMENTO DIPOLO
RESULTANTE
LINEAR ANGULAR
TRIGONAL
PLANA
TETRAÉ-
DRICA
PIRAMIDAL
NULO
MOLÉCULA
APOLAR
MOLÉCULA
POLAR
NÃO NULO
TEM
NELA, ÁTOMOS
UNEM-SE POR
PODE SER
DEPENDE DADE
PE
ND
E
DA
A SOM
A FORNECE
ELETRONEGATIVIDADE
30 CIÊNCIAS DA NATUREZA e suas tecnologias
V
O
LU
M
E
2
1. Forças intermoleculares
Forças ou interações intermoleculares são forças de
atração que ocorrem entre as moléculas das substâncias
(daí o termo “intermoleculares”, que significa “entre molé-
culas”), que as mantêm unidas no estado sólido e líquido.
Elas são bem mais fracas que as interações intramolecu-
lares (dentro das moléculas) ou interatômicas (entre áto-
mos), que unem átomos (na ligação covalente) ou íons (na
ligação iônica e na metálica).
As forças intermoleculares determinam os pontos de
fusão e de ebulição e a solubilidade das substâncias
umas nas outras; além disso, determinam também a
tensão superficial e a viscosidade dos líquidos.
§ Tensão superficial é uma propriedade que faz com que
a camada superficial de um líquido se comporte como
uma membrana elástica. Os efeitos dela são as gotas
de água, as bolhas de sabão ou a possibilidade de os
insetos caminharem sobre a superfície da água.
§ Viscosidade é a propriedade física que caracteriza a re-
sistência de um fluido (líquido ou gás) ao escoamento,
a uma dada temperatura. O óleo, por exemplo, é mais
viscoso que a água.
As forças intermoleculares são também conhecidas
como forças de Van der Waals (físico holandês que pre-
viu sua existência). São três as forças intermoleculares
mais importantes.
1.1. Forças de dipolo-dipolo
ou de dipolo permanente
Se determinadas moléculas possuem dipolo permanente
(devido à polaridade de uma ou mais de suas ligações co-
valentes), então é possível observar como essas moléculas
se atraem: o lado positivo do dipolo de uma das moléculas
atrai o lado negativo do dipolo da outra molécula. Assim,
essa força existe entre moléculas polares (μtotal ≠ 0).
Exemplo
§ Moléculas de cloreto de hidrogênio (HCℓ) no estado
gasoso.
dIpolo permanente entre duas moléculas de Hcℓ
Outros exemplos: HBr, SO2, NH3, etc.
1.2. Forças de dipolo instantâneo
+ dipolo induzido ou forças de London
Essas forças também têm natureza elétrica e ocorrem entre
moléculas apolares. Numa molécula apolar como o H2, os
elétrons estão equidistantes dos núcleos. Entretanto, em de-
terminado instante (por isso o nome dipolo instantâneo), a
nuvem eletrônica pode se aproximar mais de um dos núcleos
e estabelecer um dipolo instantâneo, o qual, por sua vez,
induz (por isso o nome dipolo induzido) as demais moléculas
a formarem novos dipolos, originando uma força de atração
elétrica de pequena intensidade entre elas.
FORÇAS
INTERMOLECULARES
COMPETÊNCIA(s)
4, 5, 6 e 7
HABILIDADE(s)
14, 18, 21, 24, 25 e 27
CN
AULAS
15 E 16
CIÊNCIAS DA NATUREZA e suas tecnologias 31
V
O
LU
M
E
2
Exemplo
§ O gelo seco (CO2), o iodo (I2), as pedras de naftalina
e as de cânfora sofrem sublimação, ou seja, passam
diretamente do estado sólido para o gasoso, uma vez
que as interações de dipolo instantâneo-dipolo induzi-
do que as unem são fracas.
gelo seco
pedras de naFtalIna
crIstaIs de Iodo
pedras de cânFora
Outros exemplos: H2, N2, O2, F2, Cø2, Br2, P4, S8, CH8 e todos
os hidrocarbonetos.
Observação: o termo forças de Van der Waals
inclui três tipos de interações distintas: forças entre
dois dipolos permanentes (ou dipolo-dipolo), entre
dipolo permanente e induzido (instantâneo) e entre
dois dipolos induzidos (força de dispersão de London
ou forças de London). Apesar de a força de dispersão
de London ser quase 10 vezes mais fraca do que as
forças dipolo-dipolo, ela é fundamental para explicar
diversas propriedades, como solubilidade, viscosida-
de, temperatura de fusão, ebulição, entre outras.
2. Ligações ou pontes
de hidrogênio
Trata-se de um caso particular das forças de dipolo perma-
nente (dipolo-dipolo), em que a intensidade é tão grande
que recebe um nome particular. Ocorre em moléculas que
apresentam átomos de hidrogênio (elemento com baixa
eletronegatividade) com elementos muito eletronegativos,
como o flúor, o oxigênio ou o nitrogênio.
Os exemplos mais frequentes são as moléculas formadas
pela combinação do hidrogênio com os elementos muito
eletronegativos mencionados:
HF H2O NH3
Observe a formação das ligações de hidrogênio em cada
uma das moléculas:
a) HF
b) H20
As ligações de hidrogênio explicam uma propriedade mui-
to particular da água. Ao contrário da maioria das subs-
tâncias, a água sólida é menos densa que a água líquida.
água líquIda
água sólIda
Observe que o arranjo desordenado das moléculas no es-
tado líquido é mais compacto, há menos espaços vazios
entre elas, razão pela qual a substância é mais densa nesse
estado. Por outro lado, o arranjo ordenado do estado sólido
cria espaços vazios maiores entre as moléculas, o que torna
a substância mais “leve”, menos densa.
c) NH3
32 CIÊNCIAS DA NATUREZA e suas tecnologias
V
O
LU
M
E
2
A dupla hélice do DNA é estabilizada por pontes de hidrogênio entre as bases presas às duas cadeias.
3. Temperaturas de fusão (TF ou PF) e de ebulição (TE ou PE)
3.2. Segundo caso
Moléculas com mesmo tipo de interação e tamanhos (mas-
sas moleculares) diferentes.
Aumenta a massa molecular.
Aumenta o ponto de fusão e o ponto de ebulição.
Exemplos
Substância
Massa
molecular (u)
Interação
PE
(°C)
CH4 16
dipolo instantâneo-
-dipolo induzido
–162
C4H10 58
dipolo instantâneo-
-dipolo induzido
–1
CH3 – OH 32
ligação de
hidrogênio
+65
CH3 – CH2 – OH 46
ligação de
hidrogênio
+78
HCℓ 36,5
dipolo
permanente
–85
HBr 81
dipolo
permanente
–67
3.1.Primeiro caso
Moléculas com tamanhos (massas moleculares) semelhantes.
Aumenta a intensidade da interação:
dipolo instantâneo-dipolo induzido
< dipolo permanente < ligação de hidrogênio
Aumenta o ponto de fusão e o ponto de ebulição.
Exemplos
Substância
Massa
molecular (u)
Interação
PE
(°C)
CH4 16
dipolo instan-
tâneo-dipolo
induzido
–162
H2O 18
ligação de
hidrogênio
+100
CH3 – O – CH3 46
dipolo
permanente
–24
CH3 – CH2 – OH 46
ligação de
hidrogênio
+78
CIÊNCIAS DA NATUREZA e suas tecnologias 33
V
O
LU
M
E
2
VIVENCIANDO
No dia a dia, é possível identificar facilmente a atuação de forças moleculares realizando rapidamente uma “mistura”
de água com óleo em um recipiente. Na verdade, não ocorrerá nenhuma mistura, uma vez que essas substâncias
possuem polaridades muito distintas e, portanto, não interagem bem entre si.
Outro aspecto do estudo das forças moleculares é o conhecimento dos pontos de fusão e ebulição de compostos;
isso pode ser observado em relação a óleos e gorduras.
Como é possível diferenciar essas duas substâncias?
Óleos e gorduras são basicamente lipídeos, diferenciando-se apenas por seus estados físicos.
Óleos são líquidos enquanto gorduras são sólidas.
Isso ocorre devido às interações intermoleculares existentes em suas cadeias moleculares. Em geral, gorduras pos-
suem menor quantidade de duplas, desencadeando, assim, uma cadeia mais retilínea que permite maior interação
de suas moléculas, aumentando seus pontos de fusão e ebulição. Os óleos, por sua vez, tendem a possuir mais
insaturações, produzindo o efeito reverso, distanciando suas cadeias e diminuindo os pontos de fusão e ebulição.
cadeias carbônicas saturadas e insaturadas
a presença de ligações duplas - insaturações - entre átomos de carbono diminui o ponto de fusão
Ácido Esteárico
18 átomos de carbono
Saturado
Ponto de fusão: 70ºC
Ácido Oleico
18 átomos de carbono
Monoinsaturado
Ponto de fusão: 13ºC
3.3. Terceiro caso
Moléculas com mesmo tipo de interação e mesma massa
molecular.
Diminui a ramificação.
Aumenta a área de contato entre as moléculas.
Aumenta o ponto de fusão e o ponto de ebulição.
Exemplos
Substância
Massa
molecular (u)
Interação
PE
(°C)
Metilpropano
CH3
|
H3C — CH — CH3
58
dipolo
instantâ-
neo-dipolo
induzido
–12
Butano
H3C — CH2 — CH2 — CH3
58
dipolo
instantâ-
neo-dipolo
induzido
–0,5
Nota: apesar de possuir a mesma massa molecular e o
mesmo tipo de interação (dipolo instantâneo-dipolo indu-
zido) entre suas moléculas, o metil-butano é ramificado. A
área de contato entre suas moléculas é menor do que no
butano, cuja cadeia é normal. Quanto maior a área de con-
tato entre as moléculas, mais intensas são as interações, e,
portanto, maior é o ponto de ebulição.
metIl-butano butano
34 CIÊNCIAS DA NATUREZA e suas tecnologias
V
O
LU
M
E
2
4. Solubilidade
Por que o óleo não se dissolve na água? É necessário con-
siderar que os processos de dissolução estão associados às
interações moleculares.
O tipo de força intermolecular da água deve ser diferente
do tipo de força intermolecular do óleo.
Como a água é uma substância polar, conclui-se que as
moléculas do óleo devem ser apolares, mesmo sem conhe-
cer as estruturas delas.
A partir desse fato, é possível afirmar que:
Substâncias polares tendem a se dissolver em solven-
tes polares.
Substâncias apolares tendem a se dissolver em sol-
ventes apolares.
Exemplos
§ Os derivados do petróleo – querosene, gasolina, óleo
diesel e óleo lubrificante – são formados por hidrocar-
bonetos apolares, solúveis (miscíveis) entre si e insolú-
veis (imiscíveis) na água, que é polar.
§ O etanol (álcool) comum se dissolve tanto na gasoli-
na (apolar) quanto na água (polar). Isso ocorre porque
o etanol apresenta uma molécula com cadeia apolar
(CH3 – CH2 –), que interage com a gasolina (mistura de
moléculas apolares), e extremidade muito polar (– OH),
que estabelece ligações intensas de hidrogênio com a
água.
Fonte: Youtube
Testamos o repelente de líquidos NeverWet
multimídia: vídeo
Aplicação do conteúdo
1. As pontes de hidrogênio formadas entre moléculas
de água HÖH podem ser representadas neste modelo.
Com base nele, represente as pontes de hidrogênio en-
tre moléculas de amônia: NH3.
Resolução:
A água possui dois pares de elétrons livres e pode apresentar
uma arrumação espacial como a apresentada no enunciado. O
NH3 tem somente um par de elétrons livres; em consequência,
pode apresentar apenas uma arrumação linear. Observe:
2. Considere os processos I e II representados pelas
equações:
ℓ
Indique quais as ligações são rompidas em cada um
desses processos.
Resolução:
Em (I) são rompidas as pontes de hidrogênio da água líquida, o
que lhe permite a passagem para o estado gasoso.
Em (II) são rompidas as ligações covalentes entre o hidrogênio e o
oxigênio (H – O – H), “quebrando” as moléculas de água e dando
origem ao hidrogênio e ao oxigênio atômicos.
3. (UFU) As substâncias SO2, NH3, HCℓ e Br2 apresentam as
seguintes interações intermoleculares, respectivamente:
a) forças de London, dipolo-dipolo, ligação de hidro-
gênio e dipolo induzido-dipolo induzido;
b) dipolo-dipolo, ligação de hidrogênio, dipolo-dipolo
e dipolo induzido-dipolo induzido;
c) dipolo-dipolo, ligação de hidrogênio, ligação de hi-
drogênio e dipolo-dipolo;
d) dipolo instantâneo-dipolo induzido, dipolo-dipolo,
ligação de hidrogênio, dipolo-dipolo.
CIÊNCIAS DA NATUREZA e suas tecnologias 35
V
O
LU
M
E
2
CONEXÃO ENTRE DISCIPLINAS
Resolução:
SO2: molécula angular e polar (dipolo-dipolo ou dipolo perma-
nente-dipolo permanente)
NH3: molécula piramidal e polar (ponte de hidrogênio ou ligação
de hidrogênio)
HCℓ: molécula linear e polar (dipolo-dipolo; em vários casos a
atração intermolecular é classificada como ligação de hidrogê-
nio)
Br2: molécula linear e apolar (dipolo induzido-dipolo induzido ou
força de Van der Waals)
Alternativa B
4. (Unirio) Uma substância polar tende a se dissolver em
outra substância polar. Com base nessa regra, indique
como será a mistura resultante após a adição de bromo
(Br2) à mistura inicial de tetracloreto de carbono (CCℓ4)
e água (H2O).
a) Homogênea, com o bromo se dissolvendo comple-
tamente na mistura.
b) Homogênea, com o bromo se dissolvendo apenas
no CCℓ4.
c) Homogênea, com o bromo se dissolvendo apenas
na H2O.
d) Heterogênea, com o bromo se dissolvendo princi-
palmente no CCℓ4.
e) Heterogênea, com o bromo se dissolvendo princi-
palmente na H2O.
Um paralelo que pode ser feito com as forças intermoleculares está relacionado com as mudanças de estado físico.
Quando substâncias mudam de estado, é necessário que haja troca de calor; no entanto, em física afirma-se que, quan-
do uma substância está mudando de estado físico, sua temperatura permanece constante. Como isso pode acontecer?
Isso ocorre porque, quando uma substância atingiu seu ponto de fusão ou ebulição, essa substância atingiu a tem-
peratura necessária para romper suas ligações intermoleculares. Dessa forma, nos pontos de fusão e ebulição de
qualquer matéria, a energia térmica que está sendo fornecida é aproveitada para romper as interações existentes
entre as moléculas, permitindo a mudança de estado.
Resolução:
Como o exercício fala que uma substância polar tende a se dis-
solver em outra substância polar, logo o seu oposto também é
válido – uma substância apolar tende a se dissolver em outra
substância apolar.
Verificando a polaridade das moléculas, temos:
Br2 – molécula apolar
CCℓ4 – molécula apolar
H2O – molécula polar
Na mistura inicial (CCℓ4 + H2O), ambas não estavam misturadas
entre si. Quando o Br2 foi adicionado, a maior parte se dissolveu
no CCℓ4 devido a sua semelhança de polaridade (uma pequena
parte foi dissolvida em água). Logo, a solução final será hetero-
gênea (mais de uma fase), com maior parte dissolvida no CCℓ4.
Alternativa D
36 CIÊNCIAS DA NATUREZA e suas tecnologias
V
O
LU
M
E2
DIAGRAMA DE IDEIAS
MOLÉCULA
INTERAGE
POR MEIO DE
DIPOLO
PERMANENTE-DIPOLO
PERMANENTE
ENTRE
MOLÉCULAS
LIGAÇÃO DE
HIDROGÊNIO
LIGAÇÃO
ENTRE
DIPOLO
INDUZIDO-DIPOLO
INDUZIDO
ENTRE
MOLÉCULAS
FORÇAS (OU LIGAÇÕES
OU INTERAÇÕES)
INTERMOLECULARES
POLARES APOLARES
PONTO
DE EBULIÇÃO
SOLUBILIDADE
F, O, N com H
INFLUENCIAM
LIVRO
TEÓRICO
2 RADIOATIVIDADE
E QUÍMICA
ORGÂNICA
QUÍMICA
38 CIÊNCIAS DA NATUREZA e suas tecnologias
V
O
LU
M
E
2
Em geral, o assunto principal é a química
orgânica, que envolve os temas de nomen-
clatura e propriedades; mesmo sendo ape-
nas a parte introdutória, ela serve de base
para os assuntos posteriores.
Na FUVEST, os assuntos relacionados com
radioatividade tem uma baixa incidência;
no entanto, o assunto principal é a orgâ-
nica, que tem seus fundamentos apresen-
tados neste volume.
Mesmo com a baixa incidência do tema
radiação, o assunto principal é a parte de
química orgânica, que é abordada neste
volume de maneira introdutória, servindo
de base para toda a orgânica.
O tema da radioatividade, mesmo com
baixa incidência, é importante, pois as suas
questões são de nível médio ou baixo. O
assunto principal abordado é a orgânica,
que é estudada neste volume de maneira
introdutória, servindo de base para para os
assuntos posteriores.
Em Química 2, os assuntos de radiação são
cobrados de maneira simples, mas é impor-
tante que o aluno os conheça bem. O tema
principal é a orgânica, que é trabalhada de
forma introdutória neste volume, pois serve
de base para o entendimento correto da
química orgânica.
O assunto principal é a química orgânica,
que tem alta incidência; mesmo sendo ape-
nas uma parte introdutória, ela serve como
base para assuntos posteriores.
O assunto mais recorrente é a química
orgânica; por mais que seja abordada a
parte introdutória, ela serve de base para
os assuntos posteriores.
O assunto de radioatividade, mesmo com
baixa incidência, é importante. O assunto
principal abordado é a orgânica, que é es-
tudada neste volume de maneira introdutó-
ria, servindo de base para para os assuntos
posteriores.
O assunto mais recorrente é a química
orgânica; por mais que seja abordada a
parte introdutória, ela serve de base para
os assuntos posteriores.
Mesmo com baixa incidência na parte de
radiação, o assunto principal é a parte de
química orgânica; sua parte introdutória
serve de base para assuntos posteriores.
A parte de química orgânica tem alta fre-
quência na UFPR. Neste volume é apresen-
tada sua parte introdutória, que serve de
base para toda a orgânica.
O assunto principal é a orgânica. Mesmo
sendo apenas uma introdução, ela pode
ser cobrada com assuntos relacionados à
Química 1.
O assunto de radioatividade, mesmo com
baixa incidência, é importante, já que suas
questões são de nível médio ou baixo. O
principal assunto é a orgânica, com nível de
dificuldade geralmente alto. Mesmo sendo
apenas a parte introdutória, ela serve como
base para os assuntos poste-
riores.
O assunto principal é a orgânica. Mesmo
sendo apenas uma introdução, ela pode
ser cobrada com assuntos relacionados à
Química 1.
Mesmo com baixa incidência na parte de
radiação, o assunto principal é a parte de
química orgânica; sua parte introdutória
serve de base para assuntos posteriores.
INCIDÊNCIA DO TEMA NAS PRINCIPAIS PROVAS
CIÊNCIAS DA NATUREZA e suas tecnologias 39
V
O
LU
M
E
2
1. Introdução
Radioatividade é o processo pelo qual um núcleo instável
emite espontaneamente radiação, transformando-se em
outro núcleo mais estável. Esse fenômeno deve-se exclu-
sivamente ao núcleo do átomo.
Estado físico, fatores químicos, pressão e temperatura não
influem na radioatividade de um elemento, uma vez que
ela não depende da eletrosfera do átomo, mas apenas do
fato de seu núcleo ser instável.
É o caso da radioatividade do urânio, que é sempre a mesma. Não importa o estado físico do elemento ou as ligações que
ele faz, se o fizer.
Em 1896, o físico francês Antoine-Henri Becquerel (1852-1908) percebeu que um sal de urânio (o sulfato duplo de po-
tássio e uranila: K2(UO2)(SO4)2) era capaz de sensibilizar o negativo de um filme fotográfico recoberto com papel preto
e uma fina lâmina de metal. As radiações emitidas pelo material apresentavam propriedade semelhante à dos raios X.
Em 1897, a física Marie Sklodowska Curie (1867-1934) provou que a intensidade da radiação é proporcional à quantidade
de urânio na amostra e concluiu que a radioatividade é um fenômeno atômico.
Nesse mesmo ano, o físico Ernest Rutherford (1871-1937) criou uma aparelhagem para estudar a ação de um campo ele-
tromagnético sobre as radiações.
O esquema mostra o comportamento das radiações , e em um campo eletromagnético.
bloco de chumbo
substância radioativa
campo magnético
raios
raios
raios
(+)
(–)
Fonte: Youtube
Documentário - Radiotividade - Os Curie
multimídia: vídeo
Das três radiações apresentadas na figura, a gama (g) é a
mais penetrante e a mais perigosa para o ser humano; a beta
(b) tem penetração média; e a alfa (a) é a menos penetrante.
Uma vez que os raios alfa e beta sofrem desvio no campo
magnético, Rutherford concluiu que eles devem apresentar
carga elétrica, ao passo que os raios gama não. Os raios
beta são atraídos pela placa positiva; devem, assim, possuir
carga negativa. Com o mesmo raciocínio, deduziu-se que
os raios alfa têm carga positiva. Estudos posteriores possi-
bilitaram caracterizar os três tipos de radiação.
RADIOATIVIDADE:
EMISSÕES
RADIOATIVAS
E ENERGIA
NUCLEAR
COMPETÊNCIA(s)
3 e 6
HABILIDADE(s)
11 e 12
CN
AULAS
9 E 10
40 CIÊNCIAS DA NATUREZA e suas tecnologias
V
O
LU
M
E
2
VIVENCIANDO
2. Emissões radioativas
As principais emissões radioativas são apresentadas a seguir:
Emissão Constituição Massa
alfa 2 prótons e 2 nêutrons 4 u
beta 1 elétron > 0
gama onda eletromagnética 0
Carga Representação Velocidade
+2 4
+2a 1/10 c
–1 0
–1b 9/10 c
0 0
0g c
c = velocIdade da luz no vácuo = 300 mIl km/s
Outras emissões muito comuns são:
Emissão Constituição Massa
próton 1 próton 1 u
nêutron 1 nêutron 1 u
pósitron “elétron positivo” > 0
Carga Representação
+1 1
+1p
0 1
0n
+1 0
+1b
3. Leis das emissões
radioativas
3.1. Primeira lei: lei de Soddy –
emissão de partículas a
Caso um átomo X emita uma partícula a, seu núme-
ro de massa diminuirá em 4 unidades, e seu número
atômico diminuirá em 2 unidades:
AZX +2
4a + A –4 Z – 2 Y.
Observe: Como há alteração no número atômico (Z), o
átomo Y criado pertence a um novo elemento químico, di-
ferente do átomo X original.
As partículas a coincidem com o núcleo do hélio ( 4 2 He).
Esse fato foi demonstrado em 1909 por Rutherford, que
observou um recipiente contendo material emissor de
partículas a. Mais tarde, notou que o recipiente estava
impregnado do elemento hélio. As partículas a captu-
ravam elétrons do ambiente e transformavam-se em
átomos de hélio.
As equações nucleares obedecem a um balanço dos
números de massa (A) e das cargas nucleares (Z), que
são conservados:
Exemplo
§ Se um átomo de 239 94 Pu emitir uma partícula a, ele se
transformará em 235 92 U. Essa reação nuclear pode ser
representada da seguinte maneira:
239 94 Pu 4 2 a + 235 92 U
Veja:
SAReagentes = SAProdutos ä 239 = 4 + 235
SZReagentes = SZProdutos ä 94 = 2 + 92
3.2. Segunda lei: lei de Soddy-Fajans-
Russel – emissão de partículas b
Caso um átomo X emita uma partícula b, seu número
de massa permanecerá inalterado, e seu número atô-
mico aumentará em 1 unidade:
A Z X 0 –1 b + A
Z + 1 Y.
Caso entre em contato com radiações, a fisiologia humana pode ser extremamente comprometida. Na matéria indi-
cada, há uma explicação para os casos mais comuns quando se é exposto à radiação.
Http://veja.abrIl.com.br/saude/os-eFeItos-da-radIoatIvIdade-no-corpo-Humano/
CIÊNCIAS DA NATUREZA e suas tecnologias 41
V
O
LU
M
E
2
Como ocorre alteração do número atômico (Z), o átomo Y ge-
rado pertence a um novo elemento químico, diferente do áto-
mo X original. Como o número de massa (A) permanece inal-
terado, na emissão beta, X e Y sempre serão átomos isóbaros.
As partículas b, também denominadas raios b ou radiação
b, são partículas negativas iguais aos elétrons. Elas apre-
sentam carga –1 e massa 0. A partícula b forma-se por
meio da desintegração de um nêutron no núcleo:
1 0 n 1 +1 p + 0 –1 b + 0 0 n
nêutron próton beta neutrino
Exemplo
§ Se um átomo de 14
6 C emitir uma partícula b, ele se
transforma em 14 7 N. A reação nuclear pode ser repre-
sentada da seguinte maneira:
14 6 C 0 –1 b + 14 7 N
Observe.
SAReagentes = SAProdutos ä 14 = 0 + 14
SAReagentes = SAProdutos ä 6 = (–1) + 7
3.3. Raios gama
As emissões, radiações ou raios gama ( 0 0 g) não são par-
tículas, mas ondas eletromagnéticas semelhantes à luz, em-
bora com comprimento de onda muitíssimo menor e energia
muito mais elevada, superando inclusive os raios X. Eles não
sofrem desvio ao atravessar um campo elétrico ou magné-
tico, uma vez que não possuem massa nem carga elétrica.
Ainda que dependam do átomo emissor, as emissões g têm
sempre um poder de penetração bem maior do que as partí-
culas a e b. Geralmente, uma emissão g atravessa 20 cm do
aço ou 5 cm do chumbo (quanto mais denso o metal, mais
ele detém as radiações). Assim, as emissões g representam o
perigo máximo sob o ponto de vista fisiológico.
Com efeito, uma emissão g não altera nem o número atômico
(Z) nem o número de massa (A) do elemento. Por esse motivo,
não se costuma escrever a emissão g nas equações nucleares.
4. Transmutações
O fenômeno em que um elemento químico emite esponta-
neamente uma radiação e se transforma em outro elemen-
to é denominado transmutação natural.
Se as transmutações forem obtidas através do bombar-
deamento de núcleos estáveis com partículas a, prótons,
nêutrons, etc., serão chamadas de transmutações artifi-
ciais. A primeira delas foi obtida por Rutherford.
Transmutação artificial por meio da qual Chadwick (1932)
descobriu o nêutron:
Atualmente, a maioria dos radioisótopos utilizados na me-
dicina, na indústria, na agricultura, entre outras áreas, é
produzida a partir de transmutações artificiais.
5. Energia nuclear
A partir da segunda metade do século XX, uma das grandes
preocupações da humanidade tem sido os meios de obtenção
de energia. Dentre as soluções encontradas, uma delas é a
energia proveniente dos núcleos atômicos, a energia nuclear,
obtida mediante reações de fissão e fusão nucleares.
5.1. Fissão nuclear
Fissão nuclear é o processo em que ocorre ruptura do nú-
cleo que é bombardeado com partículas.
A primeira evidência da fissão nuclear foi obtida em 1932,
quando o físico italiano Enrico Fermi (1901-1954) obser-
vou que átomos de urânio bombardeados com nêutrons
produziam um material radioativo. Em 1938, os químicos
alemães Otto Hahn (1879-1968) e Fritz Strassman (1902-
1980) constataram a presença de bário (Z = 56) na expe-
riência de Fermi. No ano seguinte, a física austríaca Lise
Meitner (1878-1968) e o físico Otto Frisch (1904-1979)
observaram que o núcleo bombardeado dividia-se e libe-
rava energia. Nesse mesmo ano, Niels Bohr e John Wheeler
enunciaram a teoria da fissão nuclear.
Atingido pelo nêutron, o núcleo de 235U divide-se em dois
outros núcleos radiativos e produz nêutrons livres, liberan-
do simultaneamente uma grande quantidade de energia.
235 92 U + 1 0 n 140 56 Ba + 94 36 Kr + 2 1 0 n + energia
Em lugar de 140 56 Ba e 94 36 Kr, podem formar-se outros núcleos,
cujos números de massa variam entre 72 e 158. Essa for-
mação pode chegar a dois, três ou mais neutros livres.
235 92 U + 1 0 n 140 54 Xe + 94 38 Sr + 2 1 0 n + energia
235 92 U + 1 0 n 142 56 Ba + 91 36 Kr + 3 1 0 n + energia
A humanidade deposita esperanças nesse método de obten-
ção de energia à medida que as pesquisas se desenvolvem.
42 CIÊNCIAS DA NATUREZA e suas tecnologias
V
O
LU
M
E
2
Contudo, seus efeitos podem ser desastrosos. A energia pode
ser útil caso seja controlada em um reator ou usina nuclear,
mas, caso seja aplicada sem controle, desenvolve-se uma rea-
ção em cadeia, acompanhada de explosão: a bomba atômica.
Enrico Fermi (1901-1954) e Leo Szilard (1898-1964) cons-
truíram o primeiro reator. Hoje existem centenas deles em
funcionamento. O Brasil também iniciou seu programa de
energia nuclear construindo reatores em Angra dos Reis (RJ).
A primeira bomba atômica de teste foi detonada em 16
de junho de 1945, no deserto de Alamogordo, no Novo
México (EUA). A bomba foi usada militarmente no final da
Segunda Guerra Mundial contra as cidades japonesas de
Hiroshima (bomba de 235 92 U, em 6 agosto de 1945) e Naga-
saki (bomba de 239 94 Pu, em 9 agosto de 1945).
No processo de fissão ocorre uma reação em cadeia. Na
teoria, bastaria apenas um nêutron para iniciar o proces-
so. Na prática, entretanto, exige-se uma massa mínima
acima da qual há denotação com reação em cadeia. Essa
massa mínima é denominada massa crítica. Um átomo de
urânio ( 235 92 U) é atingido por um nêutron e se quebra para
formar dois nêutrons. Esses dois nêutrons atingem outros
dois átomos de urânio, que se quebram, formando quatro
nêutrons, que, por sua vez, atingirão mais quatro átomos
de urânio, que formarão oito nêutrons, e assim por diante,
sucessiva e incontrolavelmente.
Peter W. Atkins e Loretta Jones - Princípios de Química
– Questionando a Vida Moderna e o Meio Ambiente
O livro encoraja estudantes a pensar e desenvolver com-
preensão sólida da Química, desafiando-os a questionar
e a obter nível mais alto de entendimento da matéria. A
obra apresenta a Química como algo atual e dinâmico, ao
mostrar a relação entre ideias químicas fundamentais e
suas aplicações.
multimídia: livro
reação em cadeIa do urânIo-235
A energia liberada graças a uma explosão nuclear é medida em comparação com o efeito energético produzido pelo explo-
sivo TNT.
§ 1 quiloton: efeito energético igual a 1 mil toneladas de TNT.
§ 1 megaton: efeito energético igual a 1 milhão de toneladas de TNT.
A bomba lançada sobre Hiroshima tinha a potência de 20 quilotons.
Na fissão nuclear, a energia gerada por um reator nuclear transforma a água líquida em vapor; o vapor, por sua vez, movi-
menta uma turbina que produz energia elétrica por meio de um gerador.
CIÊNCIAS DA NATUREZA e suas tecnologias 43
V
O
LU
M
E
2
CONEXÃO ENTRE DISCIPLINAS
Radiofármacos e radiotraçadores
Essas substâncias recebem esse nome porque, ao serem transportadas pelo corpo da pessoa, emitem radiações que
possibilitam seu monitoramento, indicando por onde passaram e onde se depositaram. Isso permite que o radiolo-
gista faça um mapeamento dos órgãos.
Um exemplo de radioisótopo é o iodo-131, que é usado no tratamento de câncer de tireoide, uma vez que, ao se
acumular nesse órgão, suas radiações gama destroem as células cancerígenas.
Irradiação por raios gama
A irradiação por raios gama é utilizada para esterilização de produtos e descontaminação ou redução de carga mi-
crobiana nos segmentos de alimentação, embalagens, fármacos, cosméticos e produtos veterinários. A esterilização
e a descontaminação por energia ionizante através de raios gama consiste na exposição dos produtos à ação de
ondas eletromagnéticas curtas, geradas a partir de fontes de Cobalto 60 em um ambiente especialmente preparado
para esse procedimento. Visto que as ondas eletromagnéticas possuem grande poder de penetração, os organismos
podem ser alcançados onde quer que estejam, tanto em embalagens lacradas quanto em produtos armazenados das
mais diversas maneiras, o que garante a total eficácia do processo.
Durante oprocesso, os produtos já embalados são encaminhados em uma esteira para a sala de esterilização. Nesse
ambiente protegido por espessas paredes de concreto (bunker), encontra-se a fonte de Cobalto 60, que emite os
raios gama responsáveis pela quebra de DNA dos microrganismos. O processo pode ser considerado similar ao de um
micro-ondas, isto é, o produto é tratado e pode ser utilizado imediatamente depois do tratamento. A diferença está
no comprimento de onda, que, no caso do micro-ondas, tem energia o suficiente para agitar as partículas e aquecer
o produto, enquanto na radiação através de Cobalto 60 tem energia para quebrar a cadeia de DNA dos microrga-
nismos. O processo de esterilização por irradiação mata os microrganismos e previne sua reprodução; no entanto, o
material irradiado é incapaz de acumular radiação, não se tornando radioativo por ter sido irradiado.
A energia liberada em uma reação de fissão nuclear é imen-
samente maior do que as liberadas em reações químicas. A
fissão do urânio-235 libera na ordem de 2 ·1010 kJ/mol de
energia. Comparando com outra fonte de energia (ex.: eta-
nol), a energia liberada na reação de combustão é de “ape-
nas” 1.360 kJ/mol.
A energia liberada na queima de um mol de etanol (46 g)
consegue aquecer aproximadamente 4 kg de água de 20 a
100 °C, enquanto que para aquecer a mesma quantidade
de água no mesmo intervalo de temperatura, é necessário
”somente” 0,00003 gramas, isto é, de 0,03 mg de urânio.
5.2. Fusão nuclear
O processo no qual ocorre a união de núcleos para formar um núcleo maior é denominado fusão nuclear. É o que ocorre no Sol,
onde núcleos de hidrogênio se fundem para formar núcleos de hélio, liberando grande quantidade de energia.
Um dos processos que ocorrem no Sol é:
4 1 1 H 4 2 He + 2 0 - 1 b + 2 0 0 n + energia
Essa reação não pode ser realizada artificialmente, uma vez que ela exige temperatura elevadíssima. Contudo, a partir de
1950 os cientistas iniciaram pesquisas para obter uma reação semelhante.
Em 1952, conseguiram realizar a primeira fusão não controlada, que gerou a primeira bomba de hidrogênio.
44 CIÊNCIAS DA NATUREZA e suas tecnologias
V
O
LU
M
E
2
ÁREAS DE CONHECIMENTO DO ENEM
HABILIDADE 22
Compreender fenômenos decorrentes da interação entre a radiação e a matéria em suas manifestações em
processos naturais ou tecnológicos, ou em suas implicações biológicas, sociais, econômicas ou ambientais.
Atualmente há uma grande preocupação em relação aos meios de produção de energia. Um dos assuntos
mais debatidos é a energia nuclear.
A habilidade 22 contempla os riscos causados pela radiação e quais os principais efeitos que a exposição
às partículas e à radiação podem causar no ser humano. Um caso muito citado como situação-problema
é o caso de Chernobyl.
MODELO 1
(Enem) A falta de conhecimento em relação ao que vem a ser um material radioativo e quais os efeitos, con-
sequências e usos da irradiação pode gerar o medo e a tomada de decisões equivocadas, como a apresentada
no exemplo a seguir.
“Uma companhia aérea negou-se a transportar material médico por este portar um certificado de esterilização por
irradiação”.
FísIca na escola, v. 8, n. 2, 2007 (adaptado).
A decisão tomada pela companhia é equivocada, pois
a) o material é incapaz de acumular radiação, não se tornando radioativo por ter sido irradiado;
b) a utilização de uma embalagem é suficiente para bloquear a radiação emitida pelo material;
c) a contaminação radioativa do material não se prolifera da mesma forma que as infecções por microrganismos;
d) o material irradiado emite radiação de intensidade abaixo daquela que ofereceria risco à saúde;
e) o intervalo de tempo após a esterilização é suficiente para que o material não emita mais radiação.
ANÁLISE EXPOSITIVA
Esse tipo de questão propõe ao aluno que seja realizada, utilizando-se os conceitos vistos em sala de
aula, uma análise crítica quanto à afirmação proposta.
O material médico não pode acumular radiação, isto é, não se torna radioativo por ter sido irradiado.
A decisão tomada pela companhia foi equivocada.
RESPOSTA Alternativa A
Algumas reações de fusão possíveis:
2 1 H + 3 1 H 4 2 He + 1 0 n + energia
2 1 H + 1 1 H 3 2 He + energia
3 2 He + 3 2 He 4 2 He + 2 1 1 H + energia
Para iniciar esses processos de fusão, usa-se, como energia de ativação, a energia proveniente da explosão de uma bomba
atômica. Atualmente, são desenvolvidas pesquisas que visam a obter outros métodos de ativação. Até agora, essa fusão não
pode ser controlada a fim de obter-se energia útil.
Digamos que a bomba atômica é a “espoleta” da bomba de hidrogênio, que libera a energia necessária para a fusão. Ocorri-
da essa fusão, a energia liberada é extremamente intensa. Já foram detonadas bombas de hidrogênio de até 500 megatons.
Há alguns anos, sonha-se com a construção de um reator nuclear de fusão, que exigiria uma temperatura mínima de 300 milhões
de graus Celsius para a fusão. Até agora só se conseguiu atingir 200 milhões de graus Celsius por uma fração ínfima de tempo.
CIÊNCIAS DA NATUREZA e suas tecnologias 45
V
O
LU
M
E
2
DIAGRAMA DE IDEIAS
NUCLÍDEO
PARTÍCULAS
SE INSTÁVEL RADIONUCLÍDEO
RADIAÇÃO
ALFA ( α)4
2 BETA ( β)0
-1 GAMA ( γ)0
0
LIBERA
46 CIÊNCIAS DA NATUREZA e suas tecnologias
V
O
LU
M
E
2
1. Meia-vida ou período
de semidesintegração
A Cinética Radioativa é a matéria da Química Nuclear que es-
tuda a velocidade de desintegração dos materiais radioativos.
A velocidade (v) com que ocorre a emissão de partículas
(desintegração) é diretamente proporcional ao número de
núcleos radioativos (N), a cada instante considerado.
v = k · N
k = constante radioativa, característica de cada isótopo
Depois de certo intervalo de tempo, o número de núcle-
os radioativos de cada isótopo é reduzido à metade. Esse
intervalo, característico de cada isótopo, é denominado
meia-vida ou período de semidesintegração.
Meia-vida ou período de semidesintegração (P ou
t1/2) é o tempo necessário para que a metade dos nú-
cleos radioativos se desintegre, ou seja, para que uma
amostra radioativa se reduza à metade.
Exemplos de meia-vida:
Isótopo radioativo Meia-vida
137 55 Cs 30 anos
90 38 Sr 28 anos
95 40 Zr 65 anos
Isótopo radioativo Meia-vida
140 56 Ba 12,8 anos
131 53 I 8 dias
99 42 Mo 67 horas
235 92 U 710 milhões de anos
Na explosão de uma bomba atômica ou em um acidente
com vazamento numa usina nuclear, é liberado um número
incalculável de isótopos radioativos. Muitos deles apresen-
tam uma meia-vida muito curta. Por esse motivo, seu de-
caimento radioativo impede que eles sejam fixados no solo,
na vegetação ou nas águas.
Entretanto, outros isótopos radioativos apresentam uma
meia-vida muito longa, permitindo que eles se fixem no
meio ambiente, contaminando-o e o tornando-o radioativo
por longos períodos. Além disso, os nêutrons liberados no
processo de fissão podem agir sobre os constituintes da
atmosfera, gerando espécies radioativas, como 14 6 C, 3 1 H.
1.1. Vida-média
Não é possível prever a duração de vida de determinado
átomo; no entanto, pode-se calcular um tempo estatístico
de sua duração. Por exemplo, se o elemento rádio tem vi-
da-média de 2,3 mil anos, estatisticamente é possível con-
cluir que um núcleo de rádio levará 2,3 mil anos para se
desintegrar. Esse fator não exclui a probabilidade de ele se
desintegrar antes ou depois desse tempo. É importante não
confundir vida-média com meia-vida.
Fonte: Youtube
Acidente radioativo com o
Césio-137 em Goiânia, 1987.
multimídia: vídeo
1.2. Curva de decaimento radioativo
Considere uma amostra de material radioativo de massa
inicial m0. A cada meia-vida decorrida, a massa da mostra
se reduz à metade.
CINÉTICA DOS
DECAIMENTOS
RADIOATIVOS
COMPETÊNCIA(s)
6 e 7
HABILIDADE(s)
20, 21, 22,23, 24, 25, 26 e 27
CN
AULAS
11 E 12
CIÊNCIAS DA NATUREZA e suas tecnologias 47
V
O
LU
M
E
2
VIVENCIANDO
Quando a diminuição da quantidade de átomos radioati-
vos, em razão de sua desintegração e em função do tempo,
é representada graficamente, obtém-se uma curva expo-
nencial denominada curva de decaimento radioativo.
De uma quantidade de material radioativo inicial m0, de-
pois de n meias-vidas decorridas, chega-se a uma quanti-
dade m, que será dada por:
m =
m0 ___
2n
E o tempo total decorrido Dt, desde o valor inicial m0 até
se atingir o valor m, será de:
Dt = n · P
Na equação, P é o tempo de meia-vida.
Esquematicamente:
∆t = n · P
m =
m0 ___
2n
Nota: a quantidade de material radioativo pode ser dada
de várias maneiras: em massa (grama, miligrama), em nú-
mero de átomos, em porcentagem, em fração ou em ativi-
dade radioativa.
A datação de matéria orgânica é realizada por meio da constituição de carbono-14 (carbono com número de
massa 14) na matéria orgânica. O tempo de meia-vida do carbono 14 (14C) é de 5.730 anos. Isso significa que, se
um organismo morreu há 5.730 anos, ele possuirá a metade do conteúdo de 14C. Assim, é possível obter a idade
aproximada de qualquer matéria orgânica. Com o objetivo de ser o mais exato possível no trato com a história
da humanidade, dos animais e das plantas, essa técnica já foi utilizada de diversas formas por historiadores do
mundo todo. Essa técnica possibilitou descobertas importantes para os campos da biologia e da história, recons-
tituindo épocas e trajetórias dos seres vivos. Do ponto de vista da biologia, a datação da matéria orgânica é um
fator preponderante, uma vez que a evolução das espécies está diretamente relacionada ao período em que elas
viveram, às condições a que estavam submetidas e à fauna e à flora do ambiente naquele momento.
Aplicação do conteúdo
1. Numa amostra radioativa, a massa dos átomos ra-
dioativos é de 40 g. Depois de 63 h, a massa desses
átomos radiativos se reduz a 5 g. Calcule a meia-vida
do elemento.
Resolução:
Dt = n · P ä 63 h = 3 · P ä P = 21 h
Resposta: a meia-vida é de 21 horas.
2. O tempo de meia-vida do criptônio-89 é igual a 3,16
minutos. Dispondo-se de uma amostra com 4,0 · 1023
átomos desse isótopo, ao fim de quanto tempo restarão
1,0 · 1023 átomos?
a) 3,16 minutos
b) 6,32 minutos
c) 9,48 minutos
d) 12,64 minutos
e) 15,8 minutos
Resolução:
Dt = n · P = 2 · 3,16 min = 6,32 min
Alternativa B
48 CIÊNCIAS DA NATUREZA e suas tecnologias
V
O
LU
M
E
2
CONEXÃO ENTRE DISCIPLINAS
3. (PUC) Carbono-11 é utilizado na medicina para diag-
nóstico por imagem. Amostras de compostos contendo
carbono-11 são injetadas no paciente obtendo-se a ima-
gem desejada após decorridas cinco “meias-vidas” do
radiosótopo. Nesse caso, a porcentagem da massa de
carbono-11, da amostra, que ainda não se desintegrou é:
a) 1,1%.
b) 3,1%.
c) 12%.
d) 50%.
e) 75%.
Resolução:
Partindo-se de 100% como a quantidade inicial de carbono-11,
depois de cinco meias-vidas, tem-se:
100% → 50% → 25% → 12,5% → 6,25% → 3,125%
ou
m =
m0 ___
2n , sendo n = 5 → m = 100 ___
32
→ m = 3,125%
Alternativa B
pt.energia-nuclear.net/acidentes-nucleares/
chernobyl
notic ias.uol .com.br/c iencia/ult imas-notic ias/
redacao/2017/01/12/a-lua-e-mais-muito-mais-velha-do-
que-os-cientistas-imaginavam.htm
www.bbc.com/portuguese/noticias/2015/08/150808_
hiroshima_nagasaki_chernobil_rm
phet.colorado.edu/pt_BR/simulation/legacy/radioactive-
dating-game
multimídia: site
Em setembro de 2016, a Coreia do Norte realizou testes nucleares. Os testes foram realizados na base de Punggye-ri,
no nordeste do país, o mesmo lugar onde a Coreia do Norte detonou bombas atômicas em 2006, 2009, 2013 e em
janeiro do mesmo ano. Em 2016, em vez de uma bomba atômica, o teste foi feito com uma bomba de hidrogênio.
Embora ambas sejam muito destrutivas, elas apresentam reações diferentes.
Bomba atômica
1. O funcionamento da arma começa quando uma carga de explosivo convencional, como dinamite, é acionada à
distância e explode.
2. O choque da explosão impulsiona uma bala de urânio-235 sobre uma esfera feita do mesmo material. Esse
impacto inicia as reações de fissão, ou seja, a quebra dos núcleos dos átomos que vão liberar energia.
3. Com o impacto, os instáveis e pesados átomos de urânio-235 arrebentam, liberando energia e nêutrons que dão
continuidade à reação. Cada átomo que se rompe solta novos nêutrons que quebram mais núcleos, gerando um
efeito em cadeia que desprende cada vez mais energia.
Bomba de hidrogênio
1. Na bomba de hidrogênio, a espoleta utilizada não é um explosivo convencional, mas uma bomba atômica como
a de Hiroshima. Novamente, o momento do estouro dessa carga é determinado por meio de um controle remoto.
2. Essa explosão atinge um compartimento cheio de composto de lítio, transformando essa substância em deutério
e trítio. Os átomos desses elementos são isótopos do hidrogênio. Todos possuem apenas um próton, mas com
quantidades diferentes de nêutrons.
3. Por serem muito leves e estarem submetidos a altíssima temperatura, os átomos de deutério e trítio tendem a se
unir, criando um átomo de hélio mais leve que os dois anteriores somados. A massa que resta dá origem à energia
colossal da bomba.
CIÊNCIAS DA NATUREZA e suas tecnologias 49
V
O
LU
M
E
2
ÁREAS DE CONHECIMENTO DO ENEM
HABILIDADE 22
Compreender fenômenos decorrentes da interação entre a radiação e a matéria em suas manifestações em
processos naturais ou tecnológicos, ou em suas implicações biológicas, sociais, econômicas ou ambientais.
Atualmente há uma grande preocupação em relação aos meios de produção de energia. Um dos assuntos
mais debatidos é a energia nuclear.
A habilidade 22 contempla os riscos causados pela radiação e quais os principais efeitos que a exposição
às partículas e à radiação podem causar no ser humano. O caso de Chernobyl, na Ucrânia, e o caso do
Césio-137, em Goiânia, são muito citados como situação-problema.
MODELO 1
(Enem) Glicose marcada com nuclídeos de carbono-11 é utilizada na medicina para se obter imagens tridimen-
sionais do cérebro, por meio de tomografia de emissão de pósitrons. A desintegração do carbono-11 gera um
pósitron, com tempo de meia-vida de 20,4 min, de acordo com a equação da reação nuclear:
11 6 C → 11 5 B + 0 1 e
(pósitron)
A partir da injeção de glicose marcada com esse nuclídeo, o tempo de aquisição de uma imagem de tomografia
é cinco meias-vidas.
Considerando que o medicamento contém 1,00 g do carbono-11, a massa, em miligramas, do nuclídeo restan-
te, após a aquisição da imagem, é mais próxima de
a) 0,200.
b) 0,969.
c) 9,80.
d) 31,3.
e) 200.
ANÁLISE EXPOSITIVA
Nesse tipo de questão, o aluno é convidado a raciocinar utilizando os conhecimentos adquiridos sobre
decaimentos radioativos.
A partir da injeção de glicose marcada com esse nuclídeo, o tempo de aquisição de uma imagem de tomo-
grafia é cinco meias-vidas.
Assim:
RESPOSTA Alternativa D
50 CIÊNCIAS DA NATUREZA e suas tecnologias
V
O
LU
M
E
2
DIAGRAMA DE IDEIAS
NUCLÍDEO
INSTÁVEL
PODE SER
PARTICIPA DE
DECAIMENTO
RADIOATIVO
MEIA-VIDA
(PERÍODO DE
SEMIDESINTEGRAÇÃO)
APLICAÇÕES
BÉLICAS
APLICAÇÕES
MEDICINAIS
TÊM
TEM
REAÇÕES
NUCLEARES
POR EXEMPLO
CIÊNCIAS DA NATUREZA e suas tecnologias 51
V
O
LU
M
E
2
1. Introdução
1.1. Origem da expressão Química Orgânica
O químico sueco Torbern Olof Bergman (1735-1784) foi quem
empregou pela primeira vez a expressão Química Orgânica.
§ Compostos orgânicos: substâncias de organismos vivos.
§ Compostos inorgânicos: substâncias do reino mineral.
Na época, a crença de que só era possível extrair subs-
tâncias orgânicas de organismos vivos (animais e vegetais)
prejudicava o desenvolvimento da Química Orgânica. Acre-
ditava-se que compostos obtidos a partir de organismos
vivos eram complexos demais para serem sintetizados.
Tratava-se de umateoria conhecida pelo nome de teoria
da força vital, formulada por Jöns Jacob Berzelius (1779-
1848), que afirmava: “A força vital é própria da célula viva
e o homem não poderá criá-la em laboratório”.
Em 1828, um dos discípulos de Berzelius, Friedrich Wöhler
(1800-1882), conseguiu, depois de várias tentativas, obter
uma substância encontrada na urina e no sangue, conheci-
da pelo nome de ureia, por meio do aquecimento de ciana-
to de amônio, um composto inorgânico. Assim, começava a
queda da teoria da força vital:
calorNH4OCN
Cianeto de amônio ureia
reação de aquecImento do cIaneto de amônIo para obter a ureIa.
essa reação FIcou conHecIda como síntese de WöHler.
Com o êxito da experiência de Wöhler, diversos cientistas vol-
taram ao laboratório para obter outras substâncias orgânicas
(em 1862, foi obtido o acetileno e, em 1866, foi obtido o ben-
zeno). Assim, a teoria da força vital foi totalmente derrubada.
Com o tempo, os estudiosos perceberam que a definição de
Bergman para a Química Orgânica não era adequada; então,
o químico alemão Friedrich August Kekulé (1829-1896) pro-
pôs uma nova definição, aceita até hoje: “Química Orgânica
é o ramo da Química que estuda os compostos do carbono”.
De fato, essa afirmação está correta; entretanto, nem todo
composto que contém carbono é orgânico, como o dióxido de
carbono (CO2), o ácido carbônico (H2CO3), o grafite, etc.; mas
a maioria dos compostos orgânicos contém carbono (atual-
mente, já foram sintetizados compostos “orgânicos” que não
contêm carbonos). Essa parte da Química estuda a estrutura,
as propriedades, a composição, as reações e a síntese de com-
postos orgânicos que, por definição, contêm carbono, embora
possam conter também outros elementos, como o hidrogênio
(na sua maioria) e o oxigênio. Alguns deles contêm nitrogênio,
halogênios e, mais raramente, fósforo e enxofre.
Linha do tempo de acontecimentos e prepara-
ções depois da síntese de Wöhler
1828: Hennel prepara o álcool etílico.
1846: O doutor John C. Warren realiza, no Hospital
Geral de Massachusetts (EUA), a primeira in-
tervenção cirúrgica de grande porte com o em-
prego de éter como anestésico, inaugurando a
era dos anestésicos na Medicina.
1847: O doutor James Simpson, cirurgião em Edimbur-
go, usa pela primeira vez o clorofórmio como
anestésico.
1848: Frankland e Kolbe preparam o ácido acético.
1854: Berthelot prepara o gás metano.
1929: A penicilina é descoberta por Alexander Fleming.
1935: Químicos do Instituto Pasteur, na França, desco-
brem a sulfanilamida: substância de ação bacte-
ricida. A seguir, foram descobertas outras sulfas.
1945: Químicos e físicos da Inglaterra e dos Estados
Unidos descobrem diversas penicilinas – agen-
tes antibacterianos mais eficazes que as sulfas
– e sintetizam a Penicilina G.
2. Características gerais
das moléculas orgânicas
Quais são as inúmeras propriedades e a significativa di-
versidade dos compostos do carbono tão exploradas na
biologia e na indústria?
§ Em primeiro lugar, deve-se distinguir compostos orgâ-
nicos de inorgânicos.
INTRODUÇÃO
À QUÍMICA
ORGÂNICA
COMPETÊNCIA(s)
5 e 7
HABILIDADE(s)
17, 18, 24 e 26
CN
AULAS
13 E 14
52 CIÊNCIAS DA NATUREZA e suas tecnologias
V
O
LU
M
E
2
Os orgânicos são constituídos fundamentalmente por qua-
tro elementos – carbono (C), hidrogênio (H), oxigênio (O)
e nitrogênio (N) – denominados elementos organógenos.
§ Os orgânicos são capazes de sofrer combustão, uma
vez que, em grande parte, são compostos de C e de H.
A queima completa dessas substâncias produz CO2 e
H2O; a queima incompleta produz CO; e a queima par-
cial, apenas C (fuligem). Um composto orgânico que
contenha C e H ou C, H e O corresponde a:
Nota: a combustão incompleta dos combustíveis pro-
duz CO, que, ao ser inalado, une-se à hemoglobina
e impede que ela exerça seu papel de transportar
oxigênio para o sangue. Produz também carvão, que
caracteriza fuligem, liberada principalmente pelos ca-
minhões desregulados.
§ Ligações e forças intermoleculares. Parte consi-
derável dos compostos orgânicos apresenta apenas
ligações covalentes. Por isso, as forças de atração inter-
moleculares predominantes são as forças de dipolo ins-
tantâneo-dipolo induzido. Posteriormente, aparecem as
forças de atração entre dipolos permanentes, além das
ligações de hidrogênio.
§ Estabilidade. Em princípio, os compostos orgâ-
nicos apresentam pouca estabilidade diante de
agentes externos, como temperatura, pressão, áci-
dos concentrados, etc. Quando aquecidos, a maioria
deles sofre combustão completa, produzindo CO2;
incompleta, gerando CO; ou carbonização, originan-
do carbono.
§ Ponto de fusão e de ebulição. Em sua maioria mo-
leculares, os compostos orgânicos apresentam pontos
de fusão e de ebulição baixos, o que justifica a predo-
minância do estudo de compostos gasosos e líquidos
pela Química Orgânica. Os sólidos, em grande parte,
são facilmente fusíveis.
§ Solubilidade. Em geral, os compostos orgânicos são
solúveis em solventes apolares e insolúveis em solven-
tes polares, como a água.
§ Velocidade das reações. As reações orgânicas
da maioria das substâncias moleculares e de grande
massa molar são lentas. Por isso, requerem o uso de
catalisadores. O aquecimento para aumentar essa velo-
cidade deve ser cuidadoso, uma vez que temperaturas
elevadas podem degradar os compostos orgânicos.
3. Características do
átomo de carbono
Em 1852, o químico inglês Edward Frankland (1825-1899)
publicou um trabalho em que apresentava a expressão
“valência”, relacionada à provável capacidade de ligação
dos átomos. Poucos anos depois, o químico alemão August
Kekulé defendeu hipóteses extraordinárias que causariam
um grande avanço no estudo das substâncias orgânicas.
3.1. Postulados de Kekulé
1. O carbono teria quatro valências.
2. Os átomos de C poderiam formar cadeias.
3. Os átomos de C poderiam unir-se entre si utilizando
uma ou mais valências.
C — C C = C C ; C
lIgação sImples lIgação dupla lIgaçao trIpla
Os átomos de C possuem uma significativa capacidade de
se unir a outros átomos de C ou a átomos de diferentes
elementos, formando sequências estáveis. Uma sequência
de átomos ligados entre si é denominada cadeia.
Observa-se, em todas as cadeias carbônicas, que o número
de ligações covalentes de um átomo de C é igual a quatro.
Contudo, dois átomos de C podem ligar-se entre si por li-
gações simples, duplas ou triplas.
4. Representação de
cadeias carbônicas
A representação da cadeia carbônica mediante segmentos de
reta (bond line formula) chama-se, em português, de fórmula
bastão. Essa representação obedece ao seguinte código:
§ A cadeia deve ser representada como um zigue-zague.
§ As pontas nas extremidades de uma cadeia correspon-
dem ao grupo CH3.
CIÊNCIAS DA NATUREZA e suas tecnologias 53
V
O
LU
M
E
2
VIVENCIANDO
§ A junção de dois traços na extremidade de uma cadeia
corresponde a um grupo CH2.
§ A junção de três traços na extremidade de uma cadeia
indica um grupo CH.
Exemplos
5. Classificação dos carbonos
5.1. De acordo com os átomos a ele ligados
Um átomo de carbono pode ser classificado de acordo com
o número de átomos de carbono ligados diretamente a ele:
§ primário: ligado a 1 ou a nenhum átomo de carbono;
§ secundário: ligado a 2 átomos de carbono;
§ terciário: ligado a 3 átomos de carbono;
§ quaternário: ligado a 4 átomos de carbono.
Exemplo
p = prImárIo
s = secundárIo
t = tercIárIo
q = quaternárIo
Observe que não importa o tipo de ligação – simples,
dupla ou tripla – de um átomo de carbono. O que importa
são quantos átomos de carbono estão diretamente
ligados a ele.
Fonte: Youtube
Química - Hidrocarbonetos, Petróleo, Gás, Plástico
multimídia: vídeo
Quem nunca se pegou lendo a embalagem do refrigerante ou de outros produtos industrializados enquanto se alimen-
tava? Ou rótulos dos produtos enquanto tomava banho? Pois bem, qualquer pessoa que tenha feito isso terá reparado
quenos rótulos das embalagens estão descritas as misturas realizadas para se chegar àquele determinado produto
que está sendo consumido ou utilizado. As substâncias que constituem esses produtos sempre estarão descritas de
uma forma padrão, respeitando a “norma culta” da linguagem química, para que não haja complicações durante a
leitura de uma fórmula de um determinado produto. Isso garante que, em qualquer lugar, seja possível saber, no caso
de compostos químicos, do que determinado produto é constituído.
5.2. De acordo com o tipo de ligação (sigma - s e pi - p) e com o tipo de hibridação (hibridização)
Ligação do
átomo
de carbono
Hibridação
do átomo
de carbono
Geometria
4 simples sp3 tetraédrica
2 simples e 1 dupla sp2 trigonal plana
1 simples e 1 tripla sp linear
2 duplas sp linear
Ângulo entre as
ligações
Exemplo
109º28’ CH4
120º H2C = O
180º H — C ; N
180º O = C = O
54 CIÊNCIAS DA NATUREZA e suas tecnologias
V
O
LU
M
E
2
6. Classificação das
cadeias carbônicas
A grande variedade de cadeias orgânicas exige que se faça
a classificação delas segundo determinados critérios.
1. Quanto ao fechamento da cadeia
§ Cadeia aberta ou acíclica: quando percorrida num
sentido qualquer para chegar a uma extremidade.
§ Cadeia fechada ou cíclica: quando houver fecha-
mento na cadeia em forma de ciclo, núcleo ou anel.
§ Cadeia mista: quando um composto apresenta, ao
mesmo tempo, cadeia carbônica com uma parte cíclica
e outra parte acíclica na molécula em questão.
3
§ Cadeia alifática: à vezes confundida com a cadeia
aberta, a cadeia alifática significa cadeia não aromá-
tica, isto é, pode ser cadeia aberta, fechada ou conter
ambas (cadeia mista), mas não pode conter aromatici-
dade na molécula em questão.
§ Cadeia alicíclica: apresenta anéis (cadeia fechada), sa-
turados ou insaturados, sem a presença de aromaticidade.
2. Quanto à disposição
§ Cadeia normal, reta ou linear: se contiver apenas
átomos de carbono primários e/ou secundários.
§ Cadeia ramificada: se contiver átomos de carbono
terciários e/ou quaternários.
3. Quanto à saturação
§ Saturada: se entre átomos de carbono houver apenas
ligações simples.
essa cadeIa é saturada porque a dupla lIgação está Fora da cadeIa,
ocorrendo entre o carbono e o oxIgênIo.
§ Insaturada: se entre átomos de carbono houver liga-
ções duplas e/ou triplas.
4. Quanto à natureza
§ Homogênea: se entre átomos de carbono houver
apenas átomos de carbono.
esta cadeIa é Homogênea porque o oxIgênIo está Fora da cadeIa.
§ Heterogênea: se entre átomos de carbono houver
algum átomo diferente do carbono.
CIÊNCIAS DA NATUREZA e suas tecnologias 55
V
O
LU
M
E
2
7. Compostos aromáticos
O núcleo (ou anel) benzênico é uma das mais importantes
cadeias cíclicas da Química Orgânica. Trata-se do composto
mais simples que esse anel apresenta – o benzeno (C6H6).
1. Compostos aromáticos mononucleares ou mono-
nucleados: se contiver um único anel benzênico.
2. Compostos aromáticos polinucleares ou polinu-
cleados: se contiver vários anéis benzênicos subdivididos
em:
§ polinucleares isolados: se os anéis não tiverem áto-
mos de carbono em comum;
§ polinucleares condensados: se os anéis tiverem
átomos de carbono em comum.
8. Resumo das cadeias carbônicas
CADEIA
CARBÔNICA
FECHADAS
OU
CÍCLICAS
MISTAS
ABERTA
OU ACÍCLICA
ALICÍCLICA
NORMAL ou RAMIFICADA
SATURADA ou INSATURADA
HOMOGÊNEA ou HETEROGÊNEA
NORMAL ou RAMIFICADA
SATURADA ou INSATURADA
HOMOGÊNEA ou HETEROGÊNEA
MONONUCLEAR
POLINUCLEAR
CONDENSADAS
ISOLADAS
AROMÁTICA
Quando a classificação da cadeia carbônica é aromática,
geralmente não é necessário classificar em mononuclear/
polinuclear ou condensada/isolada.
Aplicação do conteúdo
1. (FGV) A indústria de alimentos utiliza vários tipos de
agente flavorizante para dar sabor e aroma a balas e
gomas de mascar. Entre os mais empregados estão os
sabores de canela e de anis.
A fórmula molecular da substância I, que apresenta sabor
de canela, é:
a) C9H8O. d) C8H7O.
b) C9H9O. e) C8H8O.
c) C8H6O.
Resolução:
A fórmula molecular da substância I, que apresenta sabor de ca-
nela, possui 9 átomos de carbono, 8 átomos de hidrogênio e 1
átomo de oxigênio. Assim, a fórmula molecular é C9H8O.
2. (UFMG) A estrutura dos compostos orgânicos pode
ser representada de diferentes modos.
Analise estas quatro fórmulas estruturais:
(CH3)2CHCH2OH H
H
OH
CH3
CH3
OH
H3C
H3C
CH
OH
H
C HH
A partir dessa análise, é correto afirmar que o número de
compostos diferentes representados nesse conjunto é:
a) 1. c) 3.
b) 2. d) 4.
Resolução:
Todas as quatro fórmulas representam a mesma molécula.
H3C — CH — CH2 — OH
|
CH3
Alternativa A
56 CIÊNCIAS DA NATUREZA e suas tecnologias
V
O
LU
M
E
2
CONEXÃO ENTRE DISCIPLINAS
3. (PUC-RS) O ácido etilenodiaminotetracético, conheci-
do como EDTA, utilizado como antioxidante em marga-
rinas, de fórmula:
Fórmula do edta (ácIdo etIlenodIamInotetracétIco)
apresenta cadeia carbônica:
a) acíclica, insaturada, homogênea;
b) acíclica, saturada, heterogênea;
c) acíclica, saturada, homogênea;
d) cíclica, saturada, heterogênea;
e) cíclica, insaturada, homogênea.
Resolução:
De acordo com a estrutura acima, podemos ver que a cadeia é
aberta ou acíclica, pois não há fechamento da cadeia; é satu-
rada, pois apresenta somente ligações simples entre carbonos (a
dupla entre carbono e oxigênio não é considerada insaturação); é
heterogênea, pois há heteroátomos (N) entre os carbonos.
Logo, apresenta cadeia carbônica acíclica, saturada e heterogênea.
Alternativa B
A Química Orgânica é uma área de conhecimento muito vasta. Dessa forma, foi necessário criar e padronizar uma
“linguagem” para que tudo o que seja tratado nessa área possa ser entendido em qualquer parte do mundo.
A partir de várias reuniões internacionais, foi definida uma linguagem oficial e mundial para a química, denominada
nomenclatura IUPAC (International Union of Pure and Applied Chemistry), que deve ser padronizada e compreendida
por todos, com regras para organizar e descrever qualquer substância orgânica em qualquer parte do mundo.
Essa forma de nomeação dos compostos se assemelha à língua nativa dos países devido ao fato de poder ser enten-
dida em qualquer parte do mundo. Por exemplo, em países onde o português é a língua oficial, há comunicação entre
o falante e o ouvinte, desde que seja falada a língua padrão para aquele ambiente, isto é, um brasileiro consegue
transmitir tranquilamente sua mensagem a alguém que reside em Cabo Verde. Na química não é diferente. Esse
padrão é fundamental para a cooperação entre pesquisadores de todo o mundo, ajudando a proliferar bons frutos
na área da pesquisa.
CIÊNCIAS DA NATUREZA e suas tecnologias 57
V
O
LU
M
E
2
ÁREAS DE CONHECIMENTO DO ENEM
HABILIDADE 17
Relacionar informações apresentadas em diferentes formas de linguagem e representação usadas nas
ciências físicas, químicas ou biológicas, como texto discursivo, gráficos, tabelas, relações matemáticas ou
linguagem simbólica.
A linguagem na química é essencial, ainda mais se tratando de química orgânica. O composto representa-
do na questão a seguir é um clássico exemplo de por que a nomenclatura do composto é tão importante.
Seu nome oficial é dado como 2-(4-{2-[3,5-bis (pent-1-in-1-il)fenil]etinil}-2,5-bis(3,3-dimetilbut-1-in-1-il)
fenil)-1,3-dioxolano1,3-dioxolane, 2-[2,5-bis(3,3-dimetil-1-butin-1-il)-4-[2-(3,5-di-1-pentin-1-ilfenil)etinil]
fenil], usualmente conhecido como Nanokid. Por causa de nomes como esse é que as nomenclaturas na
química orgânica foram se aprimorando cada vez mais para a adequação e facilitação da pronunciação
desses compostos.
MODELO 1
(Enem) As moléculas de nanoputians lembram figuras humanas e foram criadas
para estimular o interesse de jovens na compreensão da linguagem expressa em
fórmulas estruturais, muito usadas em química orgânica. Um exemplo é o NanoKid,
representadona figura:
Em que parte do corpo do NanoKid existe carbono quaternário?
a) Mãos. b) Cabeça. c) Tórax. d) Abdômen. e) Pés.
ANÁLISE EXPOSITIVA
A química orgânica é uma das áreas com as maiores descobertas no mundo da química. Por esse
motivo, é de extrema importância uma padronização da nomenclatura dos compostos, além de uma
caracterização de algumas funções dela.
Carbono quaternário é aquele que se liga a outros quatro átomos de carbono. Isso ocorre nas
mãos do nanokid. Assim:
RESPOSTA Alternativa A
58 CIÊNCIAS DA NATUREZA e suas tecnologias
V
O
LU
M
E
2
DIAGRAMA DE IDEIAS
SUBSTÂNCIA
ORGÂNICA
CADEIA
CARBÔNICA
PODE SER
TEM
INCLUI
CONTÉM OU
PODE SER
PODE SERABERTA
FECHADA
HOMOGÊNEA
MISTA
INSATURADA
SATURADA
HETEROGÊNEA HETEROÁTOMO
NÃO
AROMÁTICA
NORMAL
AROMÁTICA
RAMIFICADA
DUPLA
C = C
TRIPLA
C = C
CIÊNCIAS DA NATUREZA e suas tecnologias 59
V
O
LU
M
E
2
1. Introdução
Como na Química Inorgânica, a Química Orgânica agru-
pa as substâncias com propriedades químicas semelhan-
tes em razão das características estruturais comuns. Cada
função orgânica é caracterizada por um grupo funcional,
uma combinação específica de átomos que conferem suas
propriedades químicas, como –COOH, grupo funcional que
caracteriza a função ácido carboxílico.
O desenvolvimento da Química Orgânica determinou o es-
tabelecimento de uma nomenclatura das funções orgânicas
padronizada internacionalmente.
Essa nomenclatura, criada para evitar confusões, vem
sendo desenvolvida pela União Internacional de Química
Pura e Aplicada (em inglês: International Union of Pure and
Applied Chemistry, IUPAC) e é considerada a nomencla-
tura oficial. Entretanto, algumas substâncias ainda são
identificadas pelos nomes consagrados pelo uso comum: é
a nomenclatura usual.
2. Hidrocarbonetos
Hidrocarbonetos são compostos formados unicamente por
carbono e hidrogênio, que podem ser representados ge-
nericamente por CxHy, cuja nomenclatura leva o sufixo o.
2.1. Alcanos ou parafinas –
fórmula geral CnH2n + 2
São hidrocarbonetos alifáticos saturados, isto é, apresentam
cadeia aberta (acíclica) apenas com ligações simples. De-
rivado dos termos latinos parum, “pequena”, e affinis, “afi-
nidade”, o termo “parafina” significa “pouco reativo”.
Exemplos
Fórmula estrutural
Fórmula molecular
ä fórmula geral
C3H8 ä CnH2n + 2
n = número de átomos de
carbono = 3
2n + 2 = número de átomos de
hidrogênio = 8
C4H10
n = número de átomos de
carbono = 4
2n + 2 = número de átomos de
hidrogênio = 10
2.1.1. Propriedades físicas dos alcanos
Os alcanos são pouco reativos, isto é, não reagem com
quase nenhuma substância. Por essa razão, são chamados
também de parafinas ou parafínicos.
Eles não são muito reativos porque as ligações entre C – H e
C – C são muito estáveis e difíceis de serem quebradas. Os al-
canos são mais utilizados para a queima (combustão), ou seja,
são usados como combustíveis para o fornecimento de energia.
Os alcanos são compostos apolares, apresentando interação
dipolo induzido-dipolo induzido entre as moléculas. Assim,
os alcanos de até 4 átomos de carbono são gases em condi-
ções ambientes (de 25 °C e 760 mmHg); alcanos com 5 a 17
átomos de carbono são líquidos, e os demais, sólidos.
Eles são insolúveis em água e solúveis em solventes apola-
res, como o clorofórmio e o benzeno. Possuem densidades
menores que 1 g ∙ cm-3 e flutuam sobre a água.
2.2. Alcenos (alquenos) –
fórmula geral CnH2n
Também conhecidos como olefinas, são hidrocarbonetos
acíclicos que possuem uma única ligação dupla entre
os carbonos em sua cadeia carbônica.
HIDROCAR-
BONETOS
COMPETÊNCIA(s)
5, 6 e 7
HABILIDADE(s)
18, 19, 23, 24 e 25
CN
AULAS
15 E 16
60 CIÊNCIAS DA NATUREZA e suas tecnologias
V
O
LU
M
E
2
Exemplos
Fórmula estrutural
Fórmula molecular
ä fórmula geral
C3H6 ä CnH2n
n = número de átomos de
carbono = 3
2n = número de átomos de
hidrogênio = 6
C4H8
n = número de átomos de
carbono = 4
2n = número de átomos de
hidrogênio = 8
2.2.1. Propriedades físicas dos alcenos
Os alcenos apresentam basicamente as mesmas proprieda-
des físicas dos alcanos: são insolúveis em água e solúveis
em solventes apolares; são menos densos do que a água,
e os pontos de ebulição aumentam segundo o número de
carbonos na cadeia.
Os alcenos são mais reativos que os alcanos por possuí-
rem uma ligação dupla, que é mais fácil de ser quebrada.
Sofrem reações de adição e também de polimerização.
2.3. Alcinos (alquinos) – fórmula geral CnH2n – 2
São hidrocarbonetos acíclicos que possuem uma única li-
gação tripla entre os carbonos em sua cadeia carbônica.
Exemplo
Fórmula estrutural
Fórmula molecular
ä fórmula geral
C5H8 ä CnH2n – 2
n = número de átomos de
carbono = 5
2n – 2 = número de átomos de
hidrogênio = 8
2.3.1. Propriedades físicas dos alcinos
Os alcinos são compostos de baixa polaridade e apresen-
tam basicamente as mesmas propriedades físicas dos al-
canos e dos alcenos: são insolúveis em água e solúveis em
solventes apolares; são menos densos do que a água e
possuem os pontos de fusão e de ebulição crescentes com
o aumento do número de carbonos na cadeia.
O acetileno (C2H2), diferentemente dos outros alcinos,
possui cheiro agradável e é parcialmente solúvel em água
(1,17 g/L a 20 °C). É a partir dele que se são obtidos ou-
tros compostos não inflamáveis (como cloreto de vinila,
precursor do polímero PVC). Uma vez que não se encon-
tram livres na natureza, devido à sua tripla ligação, que é
muito reativa, os alcinos são preparados em laboratório.
2.4. Alcadienos (dienos) –
fórmula geral CnH2n – 2
São hidrocarbonetos acíclicos contendo duas ligações
duplas entre os carbonos em sua cadeia carbônica.
Exemplo
Fórmula estrutural
Fórmula molecular
ä fórmula geral
C4H6 ä CnH2n – 2
n = número de áto-
mos de carbono = 4
2n – 2 = número de átomos
de hidrogênio = 6
2.5. Cicloalcanos, ciclanos ou
cicloparafinas – fórmula geral CnH2n
São hidrocarbonetos de cadeia fechada (cíclica) que pos-
suem apenas ligações simples.
Exemplos
Fórmula estrutural
Fórmula molecular
ä fórmula geral
C3H6 ä CnH2n
n = número de átomos de
carbono = 3
2n = número de átomos de
hidrogênio = 6
C4H8
n = número de átomos de
carbono = 4
2n = número de átomos de
hidrogênio = 8
CIÊNCIAS DA NATUREZA e suas tecnologias 61
V
O
LU
M
E
2
2.6. Cicloalcenos, cicloalquenos,
ciclenos ou ciclolefinas
São hidrocarbonetos cíclicos insaturados por uma dupla
ligação (desde que não haja ramificações).
Exemplos
Fórmula estrutural Fórmula molecular
C3H4
C4H6
2.7. Aromáticos (não há fórmula geral)
São hidrocarbonetos de cadeia fechada que apresentam
pelo menos um anel benzênico (núcleo aromático).
Exemplo
anel benzênIco
3. Nomenclatura oficial IUPAC
O nome de uma molécula orgânica é formado por três ele-
mentos fundamentais:
prefixo + infixo + sufixo
§ Prefixo: indica o número de átomos de carbono da ca-
deia principal.
1C MET 6C HEX 11C UNDEC
2C ET 7C HEPT 12C DODEC
3C PROP 8C OCT 13C TRIDEC
4C BUT 9C NON 14C TETRADEC
5C PENT 10C DEC 15C PENTADEC
§ Infixo: indica o tipo de ligação entre os átomos
de carbono.
§ Sufixo: indica a função orgânica. No caso específico
dos hidrocarbonetos, o sufixo é o. Alguns sufixos bas-
tante usuais são:
Função Grupo funcional Sufixo
Álcool -ol
Ácido carboxílico -oico
Aldeído -al
Cetona -ona
Amina -amina
3.1. Nomenclatura de cada uma
das classes dos hidrocarbonetos
3.1.1. Alcanos ou parafinas
Exemplos
H3C — CH2 — CH3
N.º de
átomos Ligação Função Nome
3 C ä prop simples ä an hidrocarboneto ä o propano
De forma inversa, é possível determinar a fórmula do com-
posto a partir de seu nome:
Exemplo
N.º de
átomos
Ligação Função Nome
pentano pent ä 5 C an ä simples o ä hidrocarboneto
H3C — CH2 — CH2 — CH2 — CH3
62 CIÊNCIAS DA NATUREZA e suas tecnologias
V
O
LU
M
E
2
3.1.2. Alcenos (alquenos)
ExemplosH2C = CH2
N.º de
átomos
Ligação Função Nome
2 C ä et dupla ä en hidrocarboneto ä o eteno
H2C = CH — CH3
N.º de
átomos
Ligação Função Nome
3 C ä prop dupla ä en hidrocarboneto ä o propeno
Quando um alceno apresenta quatro ou mais átomos de
carbono, sua ligação dupla pode ocupar diferentes posi-
ções na cadeia e dar origem a diferentes compostos. Nes-
se caso, é necessário indicar a posição da ligação dupla
com um número, que é obtido pela numeração da cadeia
a partir da extremidade mais próxima da insaturação
(ligação dupla). O número que indica a posição da ligação
dupla deve ser o menor possível.
Pela nomenclatura IUPAC, de 1993, o número que indica
a posição da ligação dupla precede o infixo (en), separa-
do por hífens.
Exemplos
H2C = CH — CH2 — CH3
1 2 3 4
N.º de
átomos
Ligação Função Nome
4 C ä prop
dupla entre os
carbonos
1 e 2 ä 1–en
hidrocarboneto
ä o
but–1–eno
3.1.3. Alcinos (alquinos)
Seguem as mesmas regras usadas para os alcenos.
Exemplo
H3C — CH2 — C ; C — CH3
5 4 3 2 1
N.º de
átomos
Ligação Função Nome
5 C ä but
tripla entre os
carbonos
2 e 3 ä 2 – in
hidrocarboneto
ä o
pent–2–ino
3.1.4. Alcadienos (dienos)
Como existem duas ligações duplas na cadeia, é necessário
indicar suas respectivas posições com números separados
por vírgula junto ao infixo dien.
Exemplos
H2C = C = CH — CH3
1 2 3 4
N.º de
átomos
Ligação Função Nome
4 C ä but
dupla entre os
carbonos 1 e 2;
dupla entre os
carbonos 2 e 3
ä 1,2–dien
hidrocarboneto ä o but–1,2–dieno
1 2 3 4
H2C = CH — CH = CH2
N.º de
átomos
Ligação Função Nome
4 C ä but
dupla entre os
carbonos 1 e 2;
dupla entre os
carbonos 3 e 4
ä 1,3–dien
hidrocarboneto ä o but–1,3–dieno
3.1.5. Ciclanos (cicloalcanos)
Nos compostos de cadeia cíclica, utiliza-se o prenome ci-
clo seguido praticamente das mesmas regras anteriores.
Exemplos
N.º de
átomos
Ligação Função Nome
3 C em cadeia
cíclica ä
cicloprop
simples
ä an
hidrocarboneto
ä o
ciclopropano
Analogamente:
CIÊNCIAS DA NATUREZA e suas tecnologias 63
V
O
LU
M
E
2
3.1.6. Ciclenos (cicloalcenos)
Exemplo
N.º de
átomos
Ligação Função Nome
3 C em cadeia
cíclica ä
cicloprop
dupla ä en
hidrocar-
boneto ä o
ciclopropeno
3.1.7. Aromáticos
Esses compostos apresentam regras de nomenclatura dife-
rentes das regras de nomenclatura dos demais hidrocarbo-
netos. Além disso, não apresentam uma fórmula geral para
todos os aromáticos.
3.1.8. Principais hidrocarbonetos
aromáticos não ramificados
Fonte: Youtube
Utilização do Petróleo Destilação Fracionada
multimídia: vídeo
4. Grupos orgânicos ou radicais
Na maioria das vezes, as ramificações são formadas por
radicais monovalentes orgânicos derivados de hidrocar-
bonetos. Esses radicais se formam por meio de cisão ho-
molítica, que é um rompimento de uma ligação covalente
(geralmente entre um carbono e um hidrogênio), em que
cada um desses átomos fica com um dos elétrons que an-
tes estava sendo compartilhado na ligação.
CH4 → •CH3 + H•
A equação acima representa a cisão (quebra) de ligações
e a consequente formação do radical •CH3 (ou –CH3) de
nome metil.
Esses radicais livres são muito instáveis, isto é, possuem vida
curta, pois os elétrons se agrupam em pares e, visto que eles
possuem elétrons livres ou elétrons desemparelhados dos ra-
dicais, reagem ativamente com qualquer molécula próxima,
formando novos compostos. Quando dois radicais orgânicos
se ligam, forma-se uma cadeia carbônica. Se o radical se
ligar a um carbono que não seja primário, formam-se as de-
nominadas cadeias ramificadas.
A nomenclatura de um radical é caracterizada pelos sufixos
-il ou -ila precedidos do prefixo que indica a quantidade
de carbonos.
4.1. Principais grupos ou radicais
Radical Nome
metil
etil
propil ou n-propil
isopropil
butil ou n-butil
sec-butil ou s-butil
isobutil
64 CIÊNCIAS DA NATUREZA e suas tecnologias
V
O
LU
M
E
2
Radical Nome
terc-butil ou t-butil
vinil ou etenil
benzil
fenil
Observações
1. O prefixo iso- é empregado para identificar radicais
que apresentam a seguinte estrutura geral:
Da qual n = 0, 1, 2, 3, ...
2. Os prefixos sec- ou s- são empregados para indicar que
a valência livre está situada em carbono secundário.
3. Os prefixos terc- ou t- são empregados para indicar
que a valência livre está localizada em carbono terciário.
5. Nomenclatura de
hidrocarbonetos ramificados
A nomenclatura dos alcanos com cadeias ramificadas se-
gue as seguintes regras da IUPAC:
1. Localizar a cadeia de átomos de carbono mais
comprida (cadeia principal), pois essa cadeia determina
o nome principal para o alcano. Nem sempre a cadeia princi-
pal será a que está representada em linha reta.
2. A numeração da cadeia principal começa onde o
substituinte estiver mais próximo, isto é, deve-se nu-
merar a cadeia principal de modo a serem obtidos os me-
nores números possíveis para os substituintes. Em seguida,
deve-se identificar os substituintes.
§ Quando dois ou mais substituintes, iguais ou diferentes,
estiverem presentes, deve-se atribuir a cada substituin-
te um número que corresponda à sua localização na
cadeia principal.
§ Quando dois substituintes estiverem presentes no mes-
mo átomo carbono, deve-se usar aquele número duas
vezes.
§ Se houver dois ou mais substituintes idênticos, devem ser
usados os prefixos di-, tri-, tetra-, e assim por diante.
Cada substituinte deve possuir um número.
3. Para montar o nome do composto, deve-se colocar em
primeiro lugar o grupo substituinte, precedido pelo número
que designa a sua localização na cadeia (quando necessário);
o nome da cadeia principal é colocado em último lugar.
§ Os grupos devem ser escritos em ordem alfabética
(os prefixos di-, tri-, tetra-, etc. não são considerados
para o efeito da ordem alfabética).
§ Os números são separados das palavras por um hífen.
§ Para separar os números entre si, usam-se vírgulas.
§ O nome do composto deve ser escrito com uma úni-
ca palavra (antigamente, separavam-se os radicais da
cadeia principal por hífen, modelo ainda usado por
alguns autores e vestibulares).
Exemplo
Pelo passo 1, o composto acima é designado como sendo
um hexano, pois a cadeia mais comprida e contínua con-
tém seis átomos de carbono.
Pelo passo 2, deve-se numerar o alcano anterior, uma vez
que ele possui ramificação:
Note que, caso a numeração começasse da esquerda, a ra-
mificação ficaria com número 5. Entre 2 e 5, deve-se esco-
lher a menor numeração. Assim, nesse caso, a numeração
deve começar pela direita, pegando o número 2.
O radical em questão é metil, a posição dele na cadeia é 2 e
a cadeia principal é hexano. Portanto, a nomenclatura oficial
do composto, de acordo com o passo 3, é:
Observe que, em primeiro lugar, vem o número que indica a
posição do radical, seguido pelo nome do mesmo. Por fim,
vem o nome da cadeia principal.
Exemplo
Nesse caso, observe que a cadeia contínua não é a mais
comprida. Pelo passo 1, o alcano acima é designado como
heptano, pois a cadeia mais comprida contém sete átomos
de carbono.
CIÊNCIAS DA NATUREZA e suas tecnologias 65
V
O
LU
M
E
2
Pelo passo 2, deve-se numerar o alcano anterior, uma vez
que o alcano em questão possui ramificação:
Observe que, se a numeração começasse da esquerda, a
ramificação ficaria com número 5. Entre 3 e 5, deve-se
escolher a menor numeração. Assim, nesse caso, a nume-
ração deve começar por baixo, pegando o número 3.
O radical em questão é metil (cuidado, não é etil!); a po-
sição dele na cadeia é 3 e a cadeia principal é heptano.
Portanto, a nomenclatura oficial do composto, de acordo
com o passo 3, é:
Na maior parte dos casos, é possível nomear os compos-
tos seguindo os passos 1, 2 e 3. Em alguns casos mais
complexos, há a necessidade de seguir mais alguns pas-
sos antes de escolher a cadeia principal e/ou enumerar
as ramificações.
4. Quando duas ou mais cadeias de comprimento igual
competem pela seleçãocomo a cadeia principal, deve-se
escolher a que possui o maior número de substituintes.
Exemplo
No composto acima, há três formas possíveis de isolar a
cadeia principal:
Observe que, na possibilidade (I), há 4 ramificações; na (II),
há 2; e na (III), há 3. Seguindo o passo 4, deve-se optar
pela possibilidade (I), pois é a que possui o maior número
de substituintes. Para a nomenclatura, devem ser seguidos
os passos 1, 2 e 3 normalmente.
5. Quando a ramificação ocorrer numa distância igual em
qualquer dos lados da cadeia principal, deve-se escolher
o nome em que a soma das posições das ramifica-
ções dá o menor número.
Exemplo
No composto acima, há duas formas de numerar a cadeia
principal (hexano):
Na possibilidade (I), a soma dos números das posições das
ramificações é 11 (2, 4 e 5).
Na possibilidade (II), a soma dos números das posições das
ramificações é 10 (2, 3 e 5).
Pelo passo 5, deve-se pegar a numeração em que a soma
das posições dê o menor número; assim, deve-se pegar a
possibilidade (II). Para a nomenclatura, devem ser seguidos
os passos 1, 2 e 3 normalmente.
66 CIÊNCIAS DA NATUREZA e suas tecnologias
V
O
LU
M
E
2
6. Nomenclatura de
hidrocarbonetos insaturados
(alcenos, alcinos e
dienos) ramificados
A nomenclatura de alcenos e alcinos ramificados segue
a mesma regra dos alcanos ramificados, com algumas
diferenças:
1. A cadeia principal é a cadeia mais longa que deve con-
ter a dupla ou a tripla ligação, modificando o final do
nome da cadeia principal para –eno (para dupla ligação)
ou –ino (para tripla ligação).
2. A numeração da cadeia é sempre realizada a partir da
extremidade mais próxima da ligação dupla ou tri-
pla, independentemente das ramificações presentes na ca-
deia (isto é, a dupla ou tripla ligação tem preferência frente
às ramificações).
3. É necessário indicar a localização da ligação dupla ou tri-
pla usando o menor número do átomo da ligação du-
pla ou tripla. Na nomenclatura, o número da localização
deve aparecer antes da palavra –eno (para dupla ligação)
ou –ino (para tripla ligação), indicando a posição da dupla
ou tripla ligação na cadeia principal, quando necessário.
4. Para dienos, as regras de nomenclatura dos alcanos e
acenos são válidas, sendo diferente somente na hora de
selecionar a cadeia principal, que deve conter as duas
duplas. A nomenclatura segue a mesma regra, modifican-
do, porém, o final do nome da cadeia principal para –dieno.
Exemplos
Fonte: Youtube
O que é o Petróleo? - Petrobras
multimídia: vídeo
6.1. Cadeias cíclicas ramificadas
1. Cicloalcanos (ciclanos) – a nomenclatura de cicloalca-
nos ramificados segue as mesmas regras que a dos alcanos
ramificados, acrescentando o prefixo – ciclo na cadeia
principal, seguindo os seguintes passos para a numeração
das ramificações:
§ Quando apenas um substituinte está presente, não é
necessário atribuir sua posição.
§ Quando dois ou mais substituintes estão presentes, de-
ve-se numerar o anel começando pelo substituinte, pri-
meiro em ordem alfabética, e o número na direção que
dá aos substituintes o menor número possível.
Exemplos
2. Cicloalcenos – a nomenclatura de cicloalcenos ra-
mificados segue as mesmas regras que a dos alcenos
ramificados (dupla leva a preferência, ficando nas posi-
ções 1 e 2), acrescentando-se o prefixo –ciclo na cadeia
principal e seguindo os mesmos passos dos cicloalcanos
para a numeração das ramificações. Não será necessá-
rio identificar a posição da dupla, pois sempre começará
com C1 e C2.
CIÊNCIAS DA NATUREZA e suas tecnologias 67
V
O
LU
M
E
2
Exemplos
6.2. Aromáticos ramificados
Se a cadeia principal apresentar apenas um anel benzê-
nico, ela é chamada simplesmente de benzeno e pode
apresentar um ou mais grupos (ramificações). Se houver
um único radical, seu nome deve preceder a palavra ben-
zeno sem numeração.
Caso haja duas ramificações, são bastante empregados os
prefixos orto- (o), meta- (m) e para- (p), a fim de indicar
as posições 1,2 (ou 1,6); 1,3 (ou 1,5) e 1,4, respectivamente.
Exemplos
Para o naftaleno, a nomenclatura IUPAC observa esta nu-
meração:
Exemplos:
http://redeglobo.globo.com/globociencia/noticia/2012/05/
formacao-do-petroleo-requer-condicoes-espe-
ciais-de-temperatura.html
multimídia: site
VIVENCIANDO
De modo geral, hidrocarbonetos são extraídos do petróleo diretamente do solo e em condições específicas.
Toda vez que uma empresa exploradora de petróleo deseja investir na extração de uma determinada região, significa
que essa região foi estudada por geógrafos, geólogos e geofísicos a fim de descobrir se realmente aquela área tem
potencial petrolífero. Portanto, conhecimentos sobre o solo e sua formação são indispensáveis.
Uma das técnicas utilizadas para a detecção de petróleo no solo é a de sonar, mesma técnica utilizada em navios
para identificar obstáculos e/ou outros navios em seu percurso. Essa técnica consiste no envio de um pulso sonoro
que se choca contra a mistura profundamente situada no solo e, com esse impacto, um retorno é recebido; esse sinal
de retorno é analisado e estatísticas são elaboradas sobre a disposição de petróleo na região.
68 CIÊNCIAS DA NATUREZA e suas tecnologias
V
O
LU
M
E
2
CONEXÃO ENTRE DISCIPLINAS
Atualmente, são muitas as aplicações para os hidrocarbonetos. Trata-se da fonte de combustíveis fósseis mais
utilizada e, por esse motivo, é altamente rentável; entretanto, seu poder destrutivo ao ambiente é proporcio-
nalmente grave.
Os hidrocarbonetos utilizados no dia a dia são muitos:
Nome do hidrocarboneto Aplicabilidade
Metano Principal componente do gás natural, serve de combustível.
Propano Gás de cozinha.
Butano Gás de cozinha.
Eteno Precursor de diversos tipos de materiais poliméricos.
Octano Chamado também de gasolina, combustível de automóveis leves.
Benzeno É usado como solvente e também na produção de adesivos e tintas.
Naftaleno Utilizado para produzir natfalina e inseticida.
Óleo diesel Combustível para automóveis pesados.
Parafina Fabricação de velas e pranchas de surf.
Querosene Combustível de aviões.
CIÊNCIAS DA NATUREZA e suas tecnologias 69
V
O
LU
M
E
2
ÁREAS DE CONHECIMENTO DO ENEM
HABILIDADE 24
Utilizar códigos e nomenclatura da química para caracterizar materiais, substâncias ou transformações químicas.
A química é uma área científica em que há um enorme desenvolvimento. Desde a Antiguidade, os povos antigos
utilizavam a química sem possuir o conhecimento formal dela. Para se ter uma ideia, em 1880, eram conhecidos
cerca de 12.000 compostos; em 1910, esse número era de 150.000; em 1940, o número de compostos conhe-
cidos aumentou para cerca de 500.000; atualmente, estima-se um número acima de 16.000.000.
Por esse motivo, normas e padronização dos compostos foram elaboradas pela International Union of Pure and
Applied Chemistry (IUPAC), que até hoje normaliza e atualiza as regras de nomenclatura.
MODELO 1
(Enem) O biodiesel não é classificado como uma substância pura, mas como uma mistura de ésteres derivados
dos ácidos graxos presentes em sua matéria-prima. As propriedades do biodiesel variam com a composição do
óleo vegetal ou gordura animal que lhe deu origem, por exemplo, o teor de ésteres saturados é responsável
pela maior estabilidade do biodiesel frente à oxidação, o que resulta em aumento da vida útil do biocombustí-
vel. O quadro ilustra o teor médio de ácidos graxos de algumas fontes oleaginosas.
Fonte
Oleaginosa
Teor médio do ácido graxo (% em massa)
Mirístico
(C14:0)
Palmítico
(C16:0)
Esteárico
(C18:0)
Oleico
(C18:1)
Linoleico
(C18:2)
Linolênico
(C18:3)
Milho < 0,1 11,7 1,9 25,2 60,6 0,5
Palma 1,0 42,8 4,5 40,5 10,1 0,2
Canola < 0,2 3,5 0,9 64,4 22,3 8,2
Algodão 0,7 20,1 2,6 19,2 55,2 0,6
Amendoim < 0,6 11,4 2,4 48,3 32,0 0,9
ma, F.; Hanna, m. a. “bIodIesel productIon: a revIeW”. bIoresource tecHnologY, londres, v. 70, n. 1 jan. 1999 (adaptado).
Qual das fontes oleaginosas apresentadas produziriaum biodiesel de maior resistência à oxidação?
a) Milho. b) Palma. c) Canola. d) Algodão. e) Amendoim.
ANÁLISE EXPOSITIVA
Um dos recursos mais utilizados pelo Enem em sua prova é o uso de situações-problema. O objetivo é
imergir o candidato numa aplicação prática do que foi visto em sala de aula. Nessa questão, faz-se o uso
das características dos hidrocarbonetos.
Quanto menor a presença de insaturações (ligações duplas), maior a resistência à oxidação, isto é, quanto mais
saturado for o composto, mais ele resiste à oxidação.
Analisando a tabela:
Mirístico
(C14:0)
0 insaturação
Palmítico
(C16:0)
0 insaturação
Esteárico
(C18:0)
0 insaturação
Oleico
(C18:1)
1 insaturação
Linoleico
(C18:2)
2 insaturações
Linolênico
(C18:3)
3 insaturações
70 CIÊNCIAS DA NATUREZA e suas tecnologias
V
O
LU
M
E
2
DIAGRAMA DE IDEIAS
SUBSTÂNCIA
ORGÂNICA
PODE SER
POR EXEMPLO
INCLUEM
INORGÂNICA
HIDROCARBONETOS
PODEM SER
OBTIDOS DO
PETRÓLEO
DENOMINADOS
SEGUNDO REGRAS DA
IUPAC
FORMADOS POR
CARBONO E
HIDROGÊNIO
ALCANO
CADEIA ABERTA
E SATURADA
ALCENO
CADEIA ABERTA
E 1 DUPLA
ALCINO CADEIA ABERTA
E 1 TRIPLA
DIENO
CADEIA ABERTA
E 2 DUPLAS
CICLANO
CADEIA FECHADA
E SATURADA
CICLENO CADEIA FECHADA
E 1 DUPLA
AROMÁTICO CADEIA
AROMÁTICA
A partir dos ácidos graxos mirístico, palmítico e esteárico, vem:
Mirístico (C14:0)) Palmítico (C16:0)) Esteárico (C18:0) Total
Milho 0,1 11,7 1,9 13,7 %
Palma 1,0 42,8 4,5 48,3 %
Canola 0,2 3,5 0,9 4,6 %
Algodão 0,7 20,1 2,6 23,4 %
Amendoim 0,6 11,4 2,4 14,4 %
Palma 48,3% (composto mais saturado)
RESPOSTA Alternativa B
LIVRO
TEÓRICO
2 GASES
QUÍMICA
72 CIÊNCIAS DA NATUREZA e suas tecnologias
V
O
LU
M
E
2
Em Química 3, os cálculos com gases
podem aparecer tanto de forma interdisci-
plinar com Física quanto podem ser abor-
dados junto a uma questão com cálculo
estequiométrico.
Em Química 3, os assuntos principais são
os cálculos e o comportamento dos gases.
Mesmo com baixa incidência na FUVEST,
é importante que sejam estudados, pois
podem surgir questões interdisciplinares
com Física.
As questões da UNICAMP envolvendo
gases são de nível médio e fácil e podem
facilmente ser relacionadas com assuntos
de Física.
Os assuntos relacionados aos cálculos com
gases são muito interdisciplinares com
a Fisica. É importante entender o com-
portamento dos gases, assim como suas
propriedades.
Os assuntos principais deste volume são os
cálculos envolvendo gases. É importante
uma boa fixação da matéria, uma vez que
questões interdisciplinares com Física po-
dem aparecer com facilidade.
Os cálculos envolvendo gases, mesmo com
baixa incidência, são importantes, uma vez
que podem ser facilmente contextualizados
com Física. É importante que suas proprie-
dades e fenômenos estejam bem fixados.
Os cálculos envolvendo gases, mesmo com
baixa incidência, são importantes, uma vez
que podem ser facilmente contextualizados
com Física. É importante que suas proprie-
dades e fenômenos estejam bem fixados.
Os assuntos principais deste volume são os
cálculos envolvendo gases. É importante
uma boa fixação da matéria, uma vez que
questões interdisciplinares com Física po-
dem aparecer com facilidade.
Os assuntos principais deste volume são os
cálculos envolvendo gases. É importante
uma boa fixação da matéria, uma vez que
questões interdisciplinares com Física po-
dem aparecer com facilidade.
Os assuntos principais deste volume são os
cálculos envolvendo gases. É importante
uma boa fixação da matéria, uma vez que
questões interdisciplinares com Física po-
dem aparecer com facilidade.
O assunto principal deste volume são os
cálculos envolvendo gases. É importante
entender seu comportamento e suas pro-
priedades.
Os assuntos principais deste volume são os
cálculos envolvendo gases. É importante
uma boa fixação da matéria, uma vez que
questões interdisciplinares com Física po-
dem aparecer com facilidade.
Os assuntos principais deste volume são os
cálculos envolvendo gases. É importante
uma boa fixação da matéria, uma vez que
questões interdisciplinares com Física po-
dem aparecer com facilidade.
Os cálculos envolvendo gases, mesmo com
baixa incidência, são importantes, uma vez
que podem ser facilmente contextualizados
com Física. É importante que suas proprie-
dades e fenômenos estejam bem fixados.
Os cálculos envolvendo gases, mesmo com
baixa incidência, são importantes, uma vez
que podem ser facilmente contextualizados
com Física. É importante que suas proprie-
dades e fenômenos estejam bem fixados.
INCIDÊNCIA DO TEMA NAS PRINCIPAIS PROVAS
CIÊNCIAS DA NATUREZA e suas tecnologias 73
V
O
LU
M
E
2
1. Hipótese de Avogadro
Considere três recipientes com volume de um litro cada
um. No primeiro, será adicionado gás carbônico (CO2); no
segundo, oxigênio (O2); e no terceiro, metano (CH4). Os três
gases com pressão e temperatura iguais.
O fundamento dessa hipótese é a ideia de que o número de
moléculas é igual nos três recipientes. Essa tese foi aceita
depois de observações experimentais e da elaboração de
um modelo da matéria que foi chamado de princípio de
Avogadro, e não de lei. Assim, pode-se dizer que:
Volumes iguais de quaisquer gases à mesma pressão e
temperatura contêm o mesmo número de moléculas.
nco2
= no2
= nCH4
Como moléculas com diferentes tamanhos podem ocupar
o mesmo volume?
No estado gasoso, a distância entre as moléculas é tão
grande que a diferença entre o tamanho delas é irrelevante.
2. Volume molar
O volume ocupado por um mol de qualquer substância é
denominado volume molar.
O volume molar de qualquer gás possui sempre o mesmo
valor se as condições de pressão e temperatura forem as
mesmas, ou seja, o volume molar independe da natureza
da substância gasosa. O número de partículas (moléculas
ou átomos) presente em um mol de substância é sempre o
mesmo; dessa forma, números iguais de partículas gasosas
ocupam o mesmo volume (hipótese de Avogadro).
Um conjunto de valores de pressão e temperatura pa-
dronizados no estudo dos gases é: 1 atm e 0 ºC. Essas
condições experimentais são denominadas condições nor-
mais de temperatura e pressão (CNTP ou TPN). Reduzir às
condições normais significa efetuar uma transformação
gasosa em que o estado final encontre-se nas CNTP.
Experimentalmente verifica-se que o volume molar de
qualquer gás ou vapor, caso seja medido nas condições nor-
mais de temperatura e pressão, corresponde a 22,4 litros.
Vmolar (CNTP) = 22,4 (L/mol) ou 22,4 (L · mol–1)
Fonte: Youtube
Entenda de vez como funciona o motor do carro!
multimídia: vídeo
2.1. Equação de estado de um gás
O comportamento físico dos gases independe de sua com-
posição química e pode ser descrito em três variáveis deno-
minadas variáveis de estado: volume, pressão e temperatura.
A descrição das condições de volume, pressão e tempera-
tura em que se encontra determinada massa de gás é
chamada de estado de um gás.
A partir de estudos experimentais dos gases, o cientista
francês Émile Clapeyron (1799-1864) estabeleceu uma
relação matemática entre as variáveis de estado de um
gás. Essa relação é denominada equação de estado de
um gás ideal ou equação de Clapeyron:
P · V = n · R · T
Em que:
§ P é a pressão exercida pelo gás e representada em
milímetros de mercúrio (mm de Hg) ou em atmosfera
(atm). A pressão atmosférica no nível do mar é igual a
760 mmHg ou 1 atm.
LEIS FÍSICAS
DOS GASES
COMPETÊNCIA(s)
5, 6 e 7
HABILIDADE(s)
17, 19, 21 e 24
CN
AULAS
9 E 10
74 CIÊNCIAS DA NATUREZA e suas tecnologias
V
O
LU
M
E
2
CONEXÃO ENTRE DISCIPLINAS
§ V é o volume ocupado pelo gás. Como um gás ocupa
todo o volume do recipiente, as unidades utilizadas
para expressar o volume de um gás são: mililitro (mL);
litro (L); centímetro cúbico (cm3); decímetro cúbico
(dm3); metro cúbico (m3). As relações entre as uni-
dades são: 1 mL = 1 cm3; 1 L = 1 dm3 = 1.000mL =
1.000 cm3 ; 1 m3 = 1.000 L = 1.000.000 mL ou cm3.
§ T é a temperatura absoluta do gás, a partir da qual de-
termina-se o grau de agitação das moléculas. Ela pode
ser medida mediante escalas termométricas, como as
escalas Celsius (ºC), Farenheit (ºF), Kelvin (K), etc. A es-
cala internacional adotada para a medida da tempera-
tura de um gás é a escala Kelvin, também denominada
escala absoluta. Ela tem seu início no zero absoluto,
que corresponde a –273,15 ºC. Trata-se de uma tem-
peratura teórica segundo a qual se admite que a agi-
tação das moléculas é nula, isto é, é uma temperatura
na qual moléculas e átomos estão totalmente imóveis.
A temperatura na escala Kelvin relaciona-se com a es-
cala Celsius pela expressão:
T(K) = t(ºC) + 273
Assim:
t (ºC) T (K)
–73 200
0 273
25 298
100 373
§ n é o número de moléculas, em mol, do gás presente no
recipiente, cujo valor pode ser calculado pela expressão:
n = massa __________
massa molar
ä n = m __
M
(mol)
§ R é a constante universal dos gases, uma constan-
te de proporcionalidade cujo valor depende das unida-
des de medida utilizadas. Dessa forma, se o volume for
expresso em litros (L), a quantidade de gás em mol e a
temperatura em Kelvin (K):
R = 0,082 (atm · L · mol–1 · K–1), se a pressão for expressa
em atm.
R = 62,3 (mmHg · L · mol–1 · K–1), se a pressão for expressa
em mmHg.
A Revolução Industrial foi um conjunto de mudanças estruturais no modo de produção que ocorreu na Europa a
partir do século XVIII, quando os artesãos foram substituídos pelos assalariados e pelo uso das máquinas. Até o fim
do século XVIII, a maioria da população europeia vivia no campo e produzia o que consumia. Um artesão possuía
todo o conhecimento do processo produtivo de seu produto. Com o passar do tempo, começaram a surgir grandes
oficinas, em que diversos artesãos, realizando manualmente todo o processo, fabricavam os produtos, embora fos-
sem subordinados ao proprietário da manufatura.
A Inglaterra, devido à sua localização e ao fato de possuir uma rica burguesia em expansão e de ter vivenciado um
êxodo rural, possuía as características que fizeram com que estivesse na vanguarda da Revolução Industrial.
Com o desenvolvimento tecnológico, as oficinas transformaram-se em pequenas fábricas. Nas indústrias de tecidos
de algodão surgiu o tear mecânico. Nessa época, o aprimoramento das máquinas a vapor contribuiu para a continu-
ação da Revolução, tanto para o transporte da mercadoria quanto para a produção. A Inglaterra possuía reservas de
minas de carvão mineral, mas máquinas de bombear a água eram necessárias para a exploração das minas. Com a
máquina a vapor, foi possível explorar as minas a grandes profundidades. O carvão era necessário tanto para movi-
mentar a locomotiva a vapor quanto para aquecer os fornos das indústrias ou alimentar algumas máquinas a vapor.
As fábricas do início da Revolução Industrial ofereciam condições de trabalho precárias, longas jornadas, baixo salário,
péssima iluminação e ventilação e muita sujeira, além de castigos físicos por parte dos patrões. Essas condições
forçaram revoltas e greves por parte dos trabalhadores, que passaram a se organizar por meio de sindicatos que
pediam melhores condições de trabalho e lutavam por direitos trabalhistas.
CIÊNCIAS DA NATUREZA e suas tecnologias 75
V
O
LU
M
E
2
Fonte: Youtube
The Steam Machine Changes The World...
multimídia: vídeo
Aplicação do conteúdo
1. Um balão A contém 8,8 g de CO2 e um balão B contém
N2. Sabendo que os dois balões têm igual capacidade e
apresentam a mesma pressão e temperatura, calcule a
massa de N2 no balão B.
Dados: massas atômicas: C = 12; O = 16; N = 14
Resolução:
Pela hipótese de Avogadro:
2. Na CNTP, qual é o volume ocupado por 10 gramas de
monóxido de carbono (CO)?
Resolução:
A massa molar do monóxido de carbono é de 28 g/mol, o que,
na CNTP, equivale a 28 g de CO.
1 (mol) ocupa o volume de 22,4 L.
22,4 L é o volume ocupado por 28 g de CO.
VCO é o volume ocupado por 10 g de CO.
Matematicamente:
3. Determinar a massa molar de um gás, sabendo-se
que 3 gramas do referido gás ocupam um volume de 4
litros à pressão de 0,82 atm e à temperatura de 127 ºC.
Resolução:
Utilizando a equação de estado de um gás (PV = nRT), é possível
calcular o número de mol (n) do gás. Em seguida, utilizando a ex-
pressão n = m __
M
, pode-se calcular sua massa molar.
A temperatura que está dada na escala Celsius deve ser conver-
tida para a escala absoluta:
T (K) = t (ºC) + 273 = 127 + 273 = 400 K
Como a pressão é dada em atmosferas, o valor de R a ser utiliza-
do é 0,082 atm · L · mol–1 · K–1.
Substituindo os valores numéricos na equação de Clapeyron,
tem-se:
0,82 atm · 4 L = n · 0,082 atm · L · mol–1 · K–1 · 400 K
n =
0,82 · 4
_________
0,082 · 400
ä n = 0,1 mol
Como a massa do gás é de 3 gramas, sua massa molar será:
n = m __
M
ä M = 3 ___
0,1
ä M = 30 g · mol-1
www.bbc.com/portuguese/noticias/2016/02/160228_
carros_eletricos_tg
multimídia: site
76 CIÊNCIAS DA NATUREZA e suas tecnologias
V
O
LU
M
E
2
ÁREAS DE CONHECIMENTO DO ENEM
HABILIDADE 24
Utilizar códigos e nomenclatura da química para caracterizar materiais, substâncias ou transformações
químicas.
A expansão e a combustão são algumas das aplicações mais comuns dos gases. Em geral, os gases estão
presentes no cotidiano, o que os torna uma das matérias mais abordadas no vestibular.
Como situação-problema, é comum observar situações em que há a combustão de gases poluentes, mas prin-
cipalmente de gases como o GLP e o GNV. Assim, é importante conhecer sua composição, seus produtos da
combustão e os processos de mudança segundo a lei geral dos gases.
MODELO 1
(Enem) As mobilizações para promover um planeta melhor para as futuras gerações são cada vez mais frequen-
tes. A maior parte dos meios de transporte de massa é atualmente movida pela queima de um combustível
fóssil. A título de exemplificação do ônus causado por essa prática, basta saber que um carro produz, em média,
cerca de 200 g de dióxido de carbono por km percorrido.
revIsta aquecImento global. ano 2, nº 8. publIcação do InstItuto brasIleIro de cultura ltda.
Um dos principais constituintes da gasolina é o octano (C8H18). Por meio da combustão do octano é possível a
liberação de energia, permitindo que o carro entre em movimento. A equação que representa a reação química
desse processo demonstra que
a) no processo há liberação de oxigênio, sob a forma de O2;
b) o coeficiente estequiométrico para a água é de 8 para 1 do octano;
c) no processo há consumo de água, para que haja liberação de energia;
d) o coeficiente estequiométrico para o oxigênio é de 12,5 para 1 do octano;
e) o coeficiente estequiométrico para o gás carbônico é de 9 para 1 do octano.
ANÁLISE EXPOSITIVA
Nessa habilidade, é de extrema importância o domínio dos conteúdos anteriores, dessa forma será pos-
sível ter uma visão mais clara das reações químicas presentes no cotidiano e das proporções fixas e
definidas das reações químicas.
Combustão completa de 1 mol octano (C8H18):
1 C8H18 + 12,5 O2 → 8 CO2 + 9 H2O
RESPOSTA Alternativa D
CIÊNCIAS DA NATUREZA e suas tecnologias 77
V
O
LU
M
E
2
DIAGRAMA DE IDEIAS
GÁS IDEAL
CONSTANTE
UNIVERSAL DOS
GASES PERFEITOS (R)
CONTÉM
PERMITE
VOLUME
MOLAR
(L · mol-1)
CALCULAR O
VOLUME MOLAR
DO GÁS
VARIÁVEIS DE
ESTADO
• VOLUME
• TEMPERATURA
• PRESSÃO
78 CIÊNCIAS DA NATUREZA e suas tecnologias
V
O
LU
M
E
2
1. Introdução
As substâncias em estado gasoso apresentam determina-
das propriedades:
1. Os gases não possuem forma definida, ou seja, adqui-
rem a forma do recipiente que os contém.
2. Não apresentam volume próprio, ou seja, ocupam todo
o volume do recipiente que os contém. Possuem grande
expansibilidade.
3. Se as condições de pressão e temperatura a que estão
submetidos são alteradas, os gases sofrem grandes va-
riações de volume.São altamente compressíveis e de
alta dilatabilidade.
4. Apresentam baixa densidade. Se comparado o volume
ocupado pela mesma massa de uma substância nos
três estados físicos, verifica-se que o volume ocupado
pelo gás é muito maior do que o ocupado pelo líquido
ou pelo sólido.
5. Exercem pressão. Quanto maior a quantidade de gás
em um recipiente, maior a pressão por ele exercida. Al-
terações efetuadas na temperatura de um gás, sem al-
terar seu volume constante, causam grandes variações
na pressão por ele exercida.
2. Teoria cinética dos gases
Para explicar as propriedades dos gases, os cientistas ela-
boraram um modelo denominado teoria cinética dos gases.
Os postulados dessa teoria são os seguintes:
I. As partículas de um gás estão em movimento constan-
te e desordenado.
II. Quanto maior a temperatura, maior é a velocidade das
partículas de um gás.
III. A força de atração entre as partículas gasosas é pratica-
mente nula, uma vez que são independentes umas das
outras.
IV. Moléculas de gases apresentam a mesma energia cinéti-
ca média quando submetidas à mesma temperatura.
V. As partículas de um gás se movem em linha reta. A dire-
ção e o sentido do movimento se modificam apenas se
as partículas colidirem umas com as outras ou contra as
paredes do recipiente que as contém. Não há perda de
energia cinética total nas colisões, embora possa haver
troca de energia entre as partículas que colidem.
VI. A distância entre as partículas gasosas é muito maior do
que o tamanho das partículas.
A partir desses postulados, é possível explicar as proprie-
dades dos gases.
§ Graças ao movimento contínuo e desordenado de suas
partículas, um gás tanto pode ocupar todo o volume de
um recipiente quanto pode escapar dele.
§ Os gases são altamente compressíveis. A distância en-
tre suas partículas é grande. Contudo, sob qualquer
aumento de pressão, elas se aproximam, reduzindo o
volume ocupado.
§ A pressão exercida pelos gases é determinada pelo
número de colisões, por unidade de tempo, entre as
partículas e as paredes do recipiente. Assim, depende
da quantidade de gás presente no recipiente, uma vez
que, quanto maior a quantidade de gás, maior será o
número de partículas. Em consequência, maior tam-
bém será o número de colisões e a pressão. A pressão
exercida por um gás confinado num recipiente au-
menta com o aumento da temperatura. As partículas
gasosas aquecidas passam a se movimentar com mais
velocidade, provocando mais colisões, por unidade de
tempo, contra as paredes do recipiente.
Do ponto de vista microscópico, o estado de um gás é ca-
racterizado por três variáveis: volume, temperatura e pres-
são, denominadas variáveis de estado.
§ Volume – espaço ocupado por uma substância. No
caso dos gases, o volume de uma dada amostra é igual
ao volume do recipiente que a contém.
As unidades usuais de volume são litro (L), mililitro (mL),
metro cúbico (m3), decímetro cúbico (dm3) e centímetro
cúbico (cm3).
1 m3 = 1000 dm3; 1 dm3 = 1 L; 1 dm3 = 1000 cm3;
1 cm3 = 1 mL
§ Temperatura – é a medida do grau de agitação das
partículas que formam uma substância. No estudo dos
TRANSFORMAÇÕES
GASOSAS
COMPETÊNCIA(s)
3, 5 e 7
HABILIDADE(s)
8, 10, 12, 18, 24 e 25
CN
AULAS
11 E 12
CIÊNCIAS DA NATUREZA e suas tecnologias 79
V
O
LU
M
E
2
VIVENCIANDO
gases, é utilizada a escala absoluta ou Kelvin (K). No
Brasil, a escala mais comum é a Celsius ou centígrada
(°C). Observe a transformação de graus Celsius (ºC) em
Kelvin:
T (K) = T (ºC) + 273
§ Pressão – definida como força por unidade de área.
No estado gasoso, a pressão é o resultado do choque
de moléculas contra as paredes do recipiente que as
contém.
A medida de pressão de um gás é obtida por meio de
um aparelho denominado manômetro.
As unidades de pressão usuais são: atmosfera (atm),
centímetros de mercúrio (cmHg), milímetros de mercú-
rio (mmHg), Torricelli (torr) e Pascal (Pa).
1 atm = 760 mmHg;
1 mmHg = 1 torr; 1 atm = 1,01 · 105 Pa
3. Leis físicas dos gases
Uma dada massa de gás sofrerá uma transformação caso
ocorram alterações nas suas variáveis de estado. A princí-
pio, modificam-se apenas duas das grandezas e a outra se
mantém constante.
3.1. Lei de Boyle-Mariotte
“À temperatura constante, uma determinada massa de gás
ocupa um volume inversamente proporcional à pressão
exercida sobre ele.”
Essa transformação gasosa, cuja temperatura é mantida
constante, é denominada transformação isotérmica.
3.1.1. Experiência de Boyle-Mariotte
A lei de Boyle-Mariotte pode ser representada por um grá-
fico pressão-volume. Nele, as abscissas representam
a pressão de um gás, e as ordenadas, o volume ocupado
pelo gás.
A curva obtida é uma hipérbole, cuja equação representa-
tiva é PV = constante.
P1 · V1 = P2 · V2
Se o volume diminuir, aumenta o número de moléculas
por área. Assim, aumenta também o número de colisões
e a pressão.
O uso do gelo seco, muito comum em festas de aniversário e bailes noturnos, é um bom exemplo de transformações
físico-químicas.
O gelo seco não é feito de água, como o nome sugere, mas de gás carbônico (CO2), que é resfriado e comprimido
até sair do estado gasoso e ir para o estado sólido; então ele é realocado em um recipiente onde há uma pressão
constante. Quando ele é usado, devido à mudança brusca nas condições de temperatura e pressão exercidas sobre
o CO2, inicia-se um processo de sublimação.
80 CIÊNCIAS DA NATUREZA e suas tecnologias
V
O
LU
M
E
2
3.2. Lei de Charles/Gay-Lussac
“À pressão constante, o volume ocupado por uma massa
fixa de gás é diretamente proporcional à temperatura ab-
soluta.”
Essa transformação gasosa, cuja pressão é mantida
constante, é denominada transformação isobárica.
As relações entre volume e temperatura estão representa-
das no esquema a seguir:
Graficamente:
A reta obtida é representada pela equação:
V = (constante) · T ou V __
T
= cte
Se a temperatura aumentar, aumenta a energia cinética
das moléculas. Dessa forma, ocorre um aumento do volu-
me para manter a pressão constante.
Assim:
V1 __
T1
=
V2 __
T2
3.3. Lei de Gay-Lussac
“A um volume constante, a pressão exercida por uma de-
terminada massa fixa de gás é diretamente proporcional à
temperatura absoluta.”
Essa transformação gasosa, cujo volume é mantido
constante, é denominada transformação isocórica,
isométrica ou isovolumétrica.
Observe a seguir a representação das relações entre pres-
são e temperatura:
Graficamente:
Se a temperatura aumentar, aumenta a energia cinética
das moléculas. Com isso, aumenta também o número de
colisões e a força aplicada em uma determinada área,
isto é, a pressão.
A reta obtida é representada pela equação:
P = (constante) · T ou P __
T
= (cte)
Assim:
P1 __
T1
=
P2 __
T2
Fonte: Youtube
Transformação Isotérmica
multimídia: vídeo
CIÊNCIAS DA NATUREZA e suas tecnologias 81
V
O
LU
M
E
2
Observe no quadro a seguir um resumo das transformações e das leis que foram estudadas:
Transformação Volume Pressão Temperatura Lei Fórmula
Isotérmica Varia Varia Constante Boyle-Mariotte P`V = constante
Isobárica Varia Constante Varia Charles/Gay-Lussac V __
T
= constante
Isocórica Constante Varia Varia Gay-Lussac. P __
T
= constante
Observação: Os físicos experimentalistas franceses Jacques Charles (1746-1823) e Joseph Gay-Lussac (1778-1850) estu-
daram, de modo independente, as transformações isobáricas e isocóricas. A teoria elaborada para a transformação isocórica
é comumente chamada de lei de Gay-Lussac (ou lei de Charles/Gay-Lussac), e a teoria elaborada para a transformação
isobárica é chamada de lei de Charles. Devido a esse fato histórico, os nomes das leis para as transformações isobárica e
isocórica podem vir trocados em alguns livros. Para o vestibular, não é recomendável o uso do nome da lei; nesse caso, o
importante é se lembrar do tipo de transformação.
3.3.1. Gás ideal × Gás real
Um gás ideal é aquelecujo comportamento experimental
obedece às equações matemáticas vistas até aqui. Para que
isso ocorra, não devem existir interações entre as partículas
gasosas. Na prática, o comportamento dos gases afasta-se
do comportamento ideal. Verifica-se experimentalmente
que o comportamento de um gás aproxima-se do com-
portamento ideal à medida que sua pressão diminui e a
temperatura a que está submetido aumenta. Pressão baixa
significa pouca quantidade de gás, e alta temperatura signi-
fica que as partículas gasosas estão em grande velocidade.
Nessas condições, praticamente inexistem interações entre
as partículas. Quanto maior a pressão e menor a tempera-
tura de um gás, mais ele se afasta do comportamento ideal.
Com efeito, na compressão dos gases é muito comum
acontecer o seguinte (observe as setas no gráfico):
Se a pressão sobre o gás aumenta, seu volume diminui gra-
dativamente até o ponto A, e o gás se liquefaz.
De A (gás) para B (líquido), seu volume reduz-se brusca-
mente.
Em seguida, o gás praticamente não varia mais (B = C),
uma vez que os líquidos são pouco compressíveis.
Naturalmente, a partir de A, a lei de Boyle-Mariotte deixa
de ser válida.
Nos isqueiros a volume de corpo transparente é possível
observar esse fenômeno do gás liquefeito.
3.3.2. Equação geral dos gases
A equação geral dos gases é aplicada quando ocorre uma
transformação gasosa que altera simultaneamente as três
variáveis de estado (P, V e T). Ela é obtida pela relação ma-
temática entre as transformações gasosas estudadas an-
teriormente.
A equação é expressa por:
P · V ____
T
= cte ä (para determinada massa fixa de gás).
ou
P1V1 ____
T1
=
P2V2 ____
T2
A equação geral dos gases permite conhecer o volume de um
gás em determinadas condições de temperatura e pressão e
determinar seu novo volume em outras condições de tem-
peratura e pressão. Ela também é utilizada para determinar
temperaturas e pressões diferentes a partir de valores iniciais.
Aplicação do conteúdo
1. Uma bolha de ar se forma no fundo de um lago, em
que a pressão é de 2,2 atm. A essa pressão, a bolha tem
volume de 3,6 cm3.
Que volume terá essa bolha quando subir à superfície,
na qual a pressão atmosférica é de 684 mmHg, admitin-
do-se que a massa de gás contida no interior da bolha e
a temperatura permanecem constantes?
Resolução:
82 CIÊNCIAS DA NATUREZA e suas tecnologias
V
O
LU
M
E
2
CONEXÃO ENTRE DISCIPLINAS
2. Um balão selado, quando cheio de ar, tem volume de
50,0 m3 a 22 °C e a uma dada pressão. O balão é aqueci-
do. Assumindo-se que a pressão é constante, a que tem-
peratura estará o balão quando seu volume for 60,0 m3?
Resolução:
·
3. Certo gás ocupa um volume de 100 litros a dada
pressão e temperatura. Qual o volume ocupado pela
mesma massa gasosa quando a pressão do gás se redu-
zir a 3/4 da inicial e a temperatura absoluta se reduzir em
2/5 da inicial?
Resolução:
noticias.uol.com.br/ciencia/ult imas-noticias/
redacao/2013/05/28/clique-ciencia-por-que-o-vidro-e-
o-espelho-embacam.htm
phet.colorado.edu/sims/html/states-of-matter/latest/
states-of-matter_pt_BR.html
multimídia: site
Massa de ar é um aglomerado de ar em determinadas condições de temperatura, umidade e pressão. As massas
de ar podem ser quentes ou frias. Em geral, as quentes se deslocam de regiões tropicais, e as frias se originam nas
regiões polares.
As massas de ar podem ficar estacionadas por dias e até semanas. No entanto, ao se moverem provocam alteração
no clima, gerando choques entre massas de ar quente e frio: enquanto uma avança, a outra recua.
O encontro entre duas massas de ar de temperaturas diferentes dá origem a uma frente, isto é, a uma área de tran-
sição entre duas massas de ar. A frente pode ser fria ou quente. Uma frente fria ocorre quando uma massa de ar frio
encontra e empurra uma massa de ar quente, ocasionando nevoeiro, chuva e queda de temperatura.
CIÊNCIAS DA NATUREZA e suas tecnologias 83
V
O
LU
M
E
2
DIAGRAMA DE IDEIAS
LEI DE BOYLE LEI DE GAY-LUSSAC LEI DE CHARLES
GÁS IDEAL
TRANSFORMAÇÃO
ISOTÉRMICA
TRANSFORMAÇÃO
ISOCÓRICA
TRANSFORMAÇÃO
ISOBÁRICA
UMA AMOSTRA
PODE SOFRER
EM QUE SE APLICA EM QUE SE APLICA EM QUE SE APLICA
84 CIÊNCIAS DA NATUREZA e suas tecnologias
V
O
LU
M
E
2
1. Equação geral dos
gases numa mistura
A mistura entre dois ou mais gases sempre constitui um
sistema homogêneo.
Inicialmente, considere dois recipientes: o primeiro deles
contendo gás A, e o segundo, gás B. Em seguida, os dois
gases são misturados em um terceiro recipiente, como
mostra o esquema:
É possível estabelecer as seguintes relações para a mis-
tura gasosa:
Na mistura representada temos:
nA =
mA ___
MA
e nB =
mB ___
MB
1.1. Equação geral
Partindo de:
A soma da quantidade em mol resulta:
PA · VA _____
R · TA
+
PB · VB _____
R · TB
= P · V ____
R · T
Equação geral para a mistura gasosa:
PA · VA _____
TA
+
PB · VB _____
TB
= P · V ____
T
Para uma mistura qualquer, contendo dois ou mais
gases, a equação deve ser assim representada:
Sn = (n1 + n2 + n3 + ... + nn)
P1 · V1 _____
T1
+
P2 · V2 _____
T2
+
P3 · V3 _____
T3
+ ... +
Pn · Vn _____
Tn
= P · V ____
T
Em que P1, V1, T1, P2, V2, T2, ... representam a situação inicial
de cada gás.
Exemplo
1. Um recipiente com N2 puro e outro com O2 puro, cujos vo-
lumes e pressões iniciais estão representadas neste esquema:
Aberta a torneira que separa os gases e mantida a tempe-
ratura, a pressão interna se estabiliza no valor de:
PN2 · VN2 + Po2 · Vo2 = (P · V) mistura
T = constante é 1 · 3 + 5 · 2 = P · (3 + 2) ä P = 13 ___
5
ä P = 2,6 atm
MISTURAS
GASOSAS
COMPETÊNCIA(s)
3, 6 e 7
HABILIDADE(s)
8, 12, 18, 25 e 26
CN
AULAS
13 E 14
CIÊNCIAS DA NATUREZA e suas tecnologias 85
V
O
LU
M
E
2
VIVENCIANDO
2. Pressão parcial
Numa mistura gasosa, a pressão parcial de um gás cor-
responde à pressão que esse gás exerceria caso estivesse
sozinho ocupando o mesmo volume e à mesma tempera-
tura da mistura.
O cientista inglês John Dalton (1766-1844) estudou de-
tidamente o comportamento das misturas gasosas, como
nos casos de fenômenos meteorológicos e da composição
do ar atmosférico. Em 1801, Dalton propôs uma lei basea-
da em algumas conclusões referentes à pressão parcial que
cada gás exerce dentro de uma mistura.
A pressão total do sistema corresponde à soma das
pressões parciais exercidas por cada um dos gases que
compõem a mistura.
A conclusão acima é denominada Lei de Dalton. Mate-
maticamente, tem-se:
PTOTAL = P1 + P2 + P3 + ... + Pn ou PTOTAL = Sp
No estudo das misturas gasosas, o aspecto qualitativo (tipo
de gases que estão presentes) normalmente não é abor-
dado, somente o quantitativo (quanto de cada gás está
presente), pois o que importa é a quantidade de matéria
ou o número de moléculas do gás. A pressão exercida
pela mistura gasosa está diretamente relacionada
à quantidade de partículas de cada gás.
Utilizando a equação de gases ideais, considere uma mis-
tura gasosa formada pelos gases A, B e C, a certa tempera-
tura T, num recipiente de volume V. A pressão de cada um
dos gases dentro da mistura será dada por:
pA · V = nA · R · T
pB · V = nB · R · T
pC · V = nC · R · T
Somando as três equações acima, obtém-se a pressão total
do sistema:
(pA + pB + pC) · V = (nA + nB+ nC) · R · T
PTOTAL ∙ V = nTOTAL ∙ R ∙ T
Como é possível observar, a pressão total é diretamente pro-
porcional à quantidade de matéria, mostrando que quanto
mais partículas de gases houver, maior será a pressão parcial
de cada gás e, consequentemente, maior será a pressão total.
3. Volume parcial
Um conceito análogo ao da pressão parcial é o do volume par-
cial: o volume parcial de um gás numa mistura gasosa corres-
ponde ao volume que esse gás ocuparia caso estivesse sozinho
submetido à pressão P da mistura, na temperatura T da mistura.
O químicofrancês Émile Amagat (1841-1915) desenvol-
veu um estudo sobre o comportamento dos gases em uma
mistura gasosa. O estudo ressaltou o espaço (volume) que
os gases ocupavam na mistura gasosa. Para realizar esse
estudo, Amagat não alterou a temperatura nem a pressão
exercida sobre a mistura e chegou à seguinte conclusão:
O volume que um gás ocupa em uma mistura gasosa
é exatamente igual à soma dos volumes parciais de to-
dos os gases que compõem a mistura.
A conclusão acima é denominada Lei de Amagat. Ma-
tematicamente, tem-se:
VTOTAL = V1 + V2 + V3 + ... + Vn ou VTOTAL = Sv
Observe que o que está escrito para o volume parcial é
idêntico ao que se escreve para a pressão parcial. Basta
trocar as palavras “pressão” por “volume” e vice-versa.
Um aparelho de ar-condicionado funciona sob o princípio da troca de calor entre gases. Por isso, ele precisa ser
posicionado de maneira estratégica em qualquer ambiente para que o ar frio possa ter a maior circulação possível
trocando calor com o meio.
Se um ar-condicionado for colocado no chão de uma sala, ele não terá muita serventia, pois o ar frio não circulará
no ambiente e não trocará calor.
A composição dos gases também é importante quando se pensa na escolha de um gás para preencher os vazios em
uma embalagem de algum produto no supermercado. Se uma embalagem com um produto perecível for preenchida
por uma solução de ar atmosférico, provavelmente esse produto entrará em processo de decomposição. Como solu-
ção, as indústrias utilizam uma mistura de gases inertes para preencher as embalagens, evitando reações químicas
e a oxidação do alimento.
86 CIÊNCIAS DA NATUREZA e suas tecnologias
V
O
LU
M
E
2
CONEXÃO ENTRE DISCIPLINAS
4. Fração molar
Relacionando a pressão parcial de um gás A com a pres-
são total da mistura e tirando a razão entre eles, tem-se:
Para o gás A: PA · V = nA · R · T
Para a mistura: PTOTAL ∙ V = nTOTAL ∙ R ∙ T
PA ____
PTOTAL
=
nA ____ nTOTAL
Fazendo relação idêntica com o volume parcial, tem-se:
Para o gás A: P · VA = nA · R · T
Para a mistura: P ∙ VTOTAL = nTOTAL ∙ R ∙ T
VA ____
VTOTAL
=
nA ____ nTOTAL
A razão
nA ____ nTOTAL
é denominada fração molar (X), que cor-
responde a um quociente entre uma quantidade de
mol e a quantidade total de mol da mistura. A fração
molar é adimensional e é sempre um número menor que
1. A soma das frações molares de cada gás numa mistura
é sempre igual a 1:
XA + XB + XC + ... =
nA ____ nTOTAL
+
nB ____ nTOTAL
+
nC ____ nTOTAL
+ ... =
nTOTAL ____ nTOTAL
= 1
A razão
VA ____
VTOTAL
é denominada fração volumétrica, que cor-
responde a um quociente entre um volume do gás e o
volume total da mistura. Essa razão também é adimen-
sional e a soma das frações volumétricas também é igual a 1.
A fração em quantidade de matéria (ou molar) pode ser
expressa em porcentagem, ou seja, quando o valor dela é
multiplicado por 100.
Reunindo todas as relações anteriores, tem-se:
XA =
nA ____ nTOTAL
=
PA ____
PTOTAL
=
VA ____
VTOTAL
= % em volume ____
100%
Sabe-se que toda a matéria é regida por leis da natureza. Com os gases não é diferente. Misturas gasosas estão
sujeitas a diferentes comportamentos de acordo com suas características físico-químicas, como a temperatura ou
a composição.
Nesse sentido, quando se conhecem informações importantes da matéria com a qual se está lidando, é possível
planejar seu uso de forma consciente. Por exemplo, o conhecimento de que gases em altas temperaturas possuem
tendência a subir em um plano e de que gases em baixas temperaturas têm tendência a descer explica muitos fatos
da natureza.
Aplicação do conteúdo
1. 0,15 mol de CO2, 0,25 mol de CH4 e 0,4 mol de O2
são colocados em um balão de 41 litros e mantidos a
–23 ºC. Calcule:
a) as frações molares de cada gás;
b) a pressão da mistura em atm;
c) as pressões parciais de cada gás em atm.
Resolução:
nT = 0,15 + 0,25 + 0,4 = 0,8 mol
a) xco2 =
nco2 ____ nT
=
0,15
____
0,8
= 18,75%
xo2
=
no2 ____ nT
=
0,4
___
0,8
= 50,0%
xCH4
=
nCH4 ____ nT
=
0,25
____
0,8
= 31,25%
b) PV = nRT ä P · 41 = 0,8 · 0,082 · (–23 + 273)
P = 0,4 atm
c) pco2
= xco2
· P ä pco2
= 0,1875 · 0,4 = 0,075 atm
pco2
= xco2
· P ä pco2
= 0,5 · 0,4 = 0,2 atm
pCH
4
= xCH
4
· P ä pCH
4
= 0,3125 · 0,4 = 0,125 atm
CIÊNCIAS DA NATUREZA e suas tecnologias 87
V
O
LU
M
E
2
2. O ar é formado, aproximadamente, por 78% de nitro-
gênio (N2), 21% de oxigênio (O2) e 1% de argônio (Ar)
em volume. Pede-se para calcular:
a) as frações molares dos componentes do ar;
b) suas pressões parciais ao nível do mar, onde a pressão
atmosférica (pressão total) é 760 mmHg.
Resolução:
a) Cálculo das frações molares em mol
xi =
vi __
Vi
= % em volume ___________
100
xN2
= 78 ___
100
= 0,78
xo2
= 21 ___
100
= 0,21
xAr = 1 ___
100
= 0,01
b) Cálculo das pressões parciais
Lembrando que
pi __
P
=
vi __
V
= % volume ________
100
pN2 ___
760
= 78 ___
100
ä pN2
= 592,8 mmHg
po2 ___
760
= 21 ___
100
ä po2
= 159,6 mmHg
PAr ___
760
= 1 ___
100
ä pAr = 7,6 mmHg
Note que:
P = 592,8 + 159,6 + 7,6 ä P = 760 mmHg
http://www.usp.br/qambiental/tefeitoestufa.htm
multimídia: site
DIAGRAMA DE IDEIAS
MISTURA GASOSA
APRESENTA
LEI DE DALTON
PRESSÃO PARCIAL
A SOMA DE
TODAS OBEDECE À
PORCENTAGEM
EM MOL
PORCENTAGEM
EM VOLUME
LEI DE AMAGAT
VOLUME PARCIAL
A SOMA DE
TODOS OBEDECE À
FRAÇÃO EM QUAN-
TIDADE DE MATÉRIA
FRAÇÃO EM MOL
TAMBÉM CHAMADA
FO
RN
EC
E
A
88 CIÊNCIAS DA NATUREZA e suas tecnologias
V
O
LU
M
E
2
1. Densidade dos gases
A densidade é uma grandeza que relaciona a massa e o
volume ocupado por determinada amostra de matéria. É
representada matematicamente pela expressão: d = m __
V
.
É possível calcular a densidade de um gás mediante essa
expressão, mas, em razão de o volume de um gás ser facil-
mente afetado pelas condições de pressão e temperatura
nas quais se encontra, o cálculo de sua densidade deve
considerar os valores dessas grandezas.
Relacionada a expressão d = m __
V
com a equação de Cla-
peyron, obtém-se a equação:
d = P · M ____
R · T
Essa equação permite calcular a densidade de um gás em
qualquer condição de pressão e temperatura.
Caso um gás se encontre nas condições normais de pres-
são e temperatura, sua densidade pode ser calculada
pela expressão:
d = M ___________
22,4 L · mol–1
Chama-se densidade relativa de um gás em relação a ou-
tro a relação entre suas densidades.
dA, B =
dA __
dB
Substituídos dA e dB pela expressão d = P · M ____
R · T
, obtém-se:
dA, B =
P · MA _____
R · T
_____
P · MB _____
R · T
=
MA ___
MB
Observe que a relação entre as densidades de dois gases é
igual à relação entre suas massas molares.
O conhecimento da densidade relativa de um gás em rela-
ção ao ar atmosférico permite prever se um gás tende a ficar
na parte inferior ou superior da atmosfera. Os gases com
densidades maiores que a densidade do ar tendem a ocupar
a parte inferior da atmosfera; os que apresentam densidades
menores tendem a ocupar as camadas superiores.
Como o ar é uma mistura de gases, ele apresenta uma mas-
sa molar média cujo valor é de 28,9 g/mol. Portanto, a den-
sidade de um gás A em relação ao ar atmosférico é dada
pela expressão:
dA, Ar =
MA ___________
28,9 g · mol–1
Fonte: Youtube
MAG - 2/14 - Efeito Estufa
multimídia: vídeo
Aplicação do conteúdo
1. Nas condições normais de temperatura e pressão, a
massa de 22,4 litros do gás X2 (X = símbolo do elemento
químico) é igual a 28,0 gramas.
a) Calcular a densidade desse gás nessas condições.
b) Qual a massa atômica do elemento X?
Resolução:
a) Como o problema fornece os valores da massa e
do volume ocupado pelogás, sua densidade pode ser
calculada pela expressão d = m __
V
:
d = m __
V
=
28 g
_____
22,4 L
ä d =1,25 g ∙ L–1
b) O gás encontra-se nas CNTP e ocupa o volume
de 22,4 litros, o que mostra que a amostra gasosa é
formada por um mol de moléculas. Assim, 28 gramas
é a massa molar do gás, isto é, a massa de um mol de
moléculas X2. A massa de um mol de átomos X é 14
gramas. Como a massa molar e a massa atômica são
definidas pelo mesmo número, a massa atômica do
elemento X é 14 ou 14 u.
2. Um gás, que está inicialmente a uma pressão de 1 atm
e temperatura de 273 K, sofre uma transformação de es-
tado adquirindo uma pressão de 3 atm e temperatura
de 546 K. Com relação à densidade inicial, a densidade
final é:
DENSIDADE
DOS GASES,
EFUSÃO E
DIFUSÃO
GASOSA
COMPETÊNCIA(s)
3 e 7
HABILIDADE(s)
8, 12, 25 e 26
CN
AULAS
15 E 16
CIÊNCIAS DA NATUREZA e suas tecnologias 89
V
O
LU
M
E
2
a) 1,5 vezes maior.
b) 3 vezes maior.
c) 2 vezes maior.
d) 2,5 vezes maior.
e) 3,5 vezes maior.
Resolução:
di = P · M ____
R · T
ä di = 1 · M ______
R · 273
df = P · M ____
R · T
ä df = 3 · M ______
R · 546
df __
di
=
3 · M ______
R · 546
______
M ______
R · 273
ä df = 3 __
2
di
Alternativa A
2. Difusão e efusão
A difusão gasosa é o processo espontâneo de transporte
de massas gasosas num sistema. As moléculas se movem
espontaneamente, de maneira que o gás sempre ocupe o
maior volume possível.
Difusão de um gás no vácuo
Difusão de dois gases que formam mistura homogênea:
A efusão é o escoamento espontâneo das molé-
culas gasosas através de orifícios, como um gás que
atravessa paredes porosas ou tubos capilares na separa-
ção de misturas gasosas ou que atravessa tubos de secção
constante na passagem de um recipiente a outro.
Nas mesmas condições de temperatura e pressão, um gás
com maior densidade possui velocidade menor que a de
outro gás com menor densidade.
Comparados os dois gases A e B, em iguais condições de
temperatura e pressão, obtém-se a seguinte relação entre
suas velocidades:
VA __
VB
= dXX
dB __
dA
Da qual dB, A é a densidade relativa do gás B em relação
ao gás A.
Se dB, A =
MB ___
MA
, essa expressão pode ser escrita como:
VA __
VB
= dXXX
MB ___
MA
Lei de Graham: a velocidade de escoamento de um gás é in-
versamente proporcional à raiz quadrada de sua densidade.
Essa lei é válida tanto para difusão quanto para efusão.
Aplicação do conteúdo
1. Metano (CH4) começa a escapar por um pequeno ori-
fício com uma velocidade de 36 mL/min. Se o mesmo
recipiente, nas mesmas condições, contivesse brometo
de hidrogênio (HBr), qual seria a velocidade de escape
pelo mesmo orifício?
Resolução:
Lei de Graham:
VHBr ___
VCH4
= d
XXXX
MCH4 ____
MHBr
MCH4
= 16 g/mol
MHBr = 81 g/mol
VHBr ___
36
= √
___
16 ___
81
ä
VHBr ___
36
= 4 __
9
ä VHBr = 4 · 36 _____
9
VHBr = 16 mL/min
2. (Mackenzie) A velocidade de difusão do gás hidrogê-
nio é igual a 27 km/min, em determinadas condições de
pressão e temperatura (massas atômicas: H = 1; O = 16).
Nas mesmas condições, a velocidade de difusão do gás
oxigênio em km/h é de:
a) 4 km/h. d) 240 km/h.
b) 108 km/h. e) 960 km/h.
c) 405 km/h.
Resolução:
Usando a fórmula que relaciona a velocidade de difusão dos ga-
ses com as suas respectivas massas molares, tem-se:
VH2 ___
VO2
= √
____
MO2 ____
MH2
→ 27 ___
VO2
= √
___
32 ___
2
→ 27 ___
VO2
= √
___
16 → 27 ___
VO2
= 4
VO2= 6,75 km/min
Passando para km/h, tem-se:
VO2= 6,75 . 60 = 405 km/h
Alternativa C
90 CIÊNCIAS DA NATUREZA e suas tecnologias
V
O
LU
M
E
2
VIVENCIANDO
CONEXÃO ENTRE DISCIPLINAS
Um aroma agradável e conhecido por muita gente é o cheiro de chuva. Esse odor agradável tem uma explicação quí-
mica. Aquela fragrância estranha que aparece depois de uma chuvarada, especialmente nas áreas rurais, é causada
por uma actinobactéria. Com o impacto dos pingos d’água, as partículas que repousam na faixa externa de terra são
impulsionadas para o ar e se misturam com o vapor em suspensão, gerando uma espécie de spray úmido. Além de
gotículas de água, esse spray também contém minúsculos grãos de terra e colônias de Streptomyces, um gênero de
bactéria que cresce naturalmente no solo com umidade. Nas épocas de seca, a Streptomyces entra em uma espécie
de hibernação, que os cientistas denominam estado de latência. “Nessa fase, a bactéria continua viva, mas não se re-
produz porque não há umidade suficiente”, afirma o engenheiro agrônomo Miguel Angelo Maniero, da Universidade
Federal de São Carlos (UFSCar). Quando chega a chuva, a água ativa a capacidade reprodutiva da Streptomyces,
fazendo com que ela libere no ar milhares de células reprodutoras, chamadas de esporos. Além de gerar novos seres,
o processo de reprodução faz com que os esporos exalem o característico odor da chuva.
Um fato curioso é que esses odores penetram com muito mais facilidade quando estamos em ambientes úmidos se
comparado com os ambientes secos, por isso a umidade relativa do ar é uma das grandes responsáveis pelos odores agra-
dáveis que sentimos. Abaixo, uma imagem do composto responsável pelo cheiro, também conhecido como Geosmina.
Nesse artigo de Mundo Estranho, mostra-se como o gás do riso e sua alta capacidade de efusão no organismo rea-
gem e como a nossa biologia é afetada.
mundoestranHo.abrIl.com.br/saude/como-o-gas-do-rIso-age-no-corpo/
CIÊNCIAS DA NATUREZA e suas tecnologias 91
V
O
LU
M
E
2
DIAGRAMA DE IDEIAS
+ TEMPERATURA GASES MENOS DENSOS
GASES COM MAIOR
VELOCIDADE DE EFUSÃO
- MASSA MOLAR
GASES
CONTÊM
VELOCIDADE DE EFUSÃO
DENSIDADEMASSA MOLAR
QUE É
RELACIONADA COM A
RELACIONADA COM A
____________________________________________________________
____________________________________________________________
____________________________________________________________
____________________________________________________________
____________________________________________________________
____________________________________________________________
____________________________________________________________
____________________________________________________________
____________________________________________________________
____________________________________________________________
____________________________________________________________
____________________________________________________________
____________________________________________________________
____________________________________________________________
____________________________________________________________
____________________________________________________________
____________________________________________________________
____________________________________________________________
____________________________________________________________
____________________________________________________________
____________________________________________________________
____________________________________________________________
____________________________________________________________
____________________________________________________________
____________________________________________________________
____________________________________________________________
____________________________________________________________
____________________________________________________________
____________________________________________________________
____________________________________________________________
____________________________________________________________
____________________________________________________________
____________________________________________________________
ANOTAÇÕES
92 CIÊNCIAS DA NATUREZA e suas tecnologias
V
O
LU
M
E
2