Prévia do material em texto
Prof. Andreas K. Gombert TA918C - Microbiologia e Fermentações Aula 8 - 09/05/2024 BIOPROCESSOS CONTÍNUOS constant physico-chemical conditions. Furthermore, chemostat cultures enable studies on the growth of micro-organisms at specific growth rates below their mmax. Thus, even when microbial strains or growth conditions are compared that have or cause a different mmax, chemostat cultivation enables a comparison of their physiology at an identical specific growth rate chosen and set by the researcher. A chemostat (Fig. 2) can be defined by five key elements: (i) an ideally mixed fermentation vessel (bio-reactor), (ii) a continuous inflow of fresh growth medium, (iii) a medium composition in which a single nutrient of choice limits biomass formation and in which all other nutrients are present in excess, (iv) a continuous outflow of culture broth with an identical chemical composition and biomass concentration to that in the bio-reactor and (v) a constant ratio between effluent flow rate and culture volume in the bio-reactor. The unique option of chemostats to ‘‘dial in’’ a specific growth rate can best be understood by combining these five defining elements with a mass balance of the biomass: dðVcxÞ=dt ¼ jincx;in $ foutcx;out þ mcx;bioreactorV Figure 2 Experimental setup for chemostat cultivation. Panel A, early design by Monod (from Monod, 1950) where N indicates the medium reservoir; B the bio- reactor in which cells are grown; P the effluent reservoir; E the inoculation flask and M the stirring engine. Panel B, photograph of a current chemostat setup where 1 indicates the medium reservoir, 2 the bio-reactor, 3 the effluent reservoir, 4 the inoculation flask and 5 the stirring engine. Adapted from Monod (1950) with permission from Institut Pasteur. MICRO-ARRAY ANALYSIS IN BAKER’S YEAST 265 Author's personal copy FORMAS DE CONDUÇÃO DO PROCESSO: - BATELADA (= descontínuo) - BATELADA-ALIMENTADA (=descontínuo-alimentado) - CONTÍNUO SCRIT Processo contínuo (=continuous) X The CONTINUOUS reactor Compounds are constantly fed and being removed along the process TYPICAL AIM IS TO CALCULATE THE VOLUME. Flow/volume = residence time-1 V.C. = Volume de Controle EQUAÇÃO GERAL DO BALANÇO DE MASSA ACÚMULO = ENTRA - SAI + PRODUÇÃO Produção ≠ 0 quando o componente é consumido ou gerado numa reação Produção = 0 quando não houver reação ou quando o B.M. total Acúmulo = 0 quando a situação for de regime permanente (=estado estacionário) Acúmulo ≠ 0 quando a situação for de regime transiente Balanço de massa de células: d(X.V)/dt = FE.XE - FS.XS + μ.X.V [massa de células/tempo] Batelada: FE = FS = 0 Batelada-alimentada: FS = 0 Contínuo: normalmente, FE = FS e estado estacionário: d(XV)/dt = 0 Normalmente, XE = 0 (alimentação de meio estéril). Hipótese de mistura perfeita: XS = X 0 = -FS.X + μ.X.V = X*(μ.V - FS) • Balanços de massa em biorreatores FE XE FS X Veloc. espec. de crescimento μ = (1/X)*(dX/dt) Veloc. espec. de consumo de S μS = (1/X)*(-dS/dt) Veloc. espec. de formação de P μP = (1/X)*(dP/dt) X • Balanços de massa em biorreatores FE FS V.C. = Volume de Controle EQUAÇÃO GERAL DO BALANÇO DE MASSA ACÚMULO = ENTRA - SAI + PRODUÇÃO Balanço de massa de substrato: d(S.V)/dt = FE.SE - FS.SS - μS.X.V [massa de substrato/tempo] Batelada: FE = FS = 0 Batelada-alimentada: FS = 0 Contínuo: normalmente, FE = FS e estado estacionário: d(SV)/dt = 0 Hipótese de mistura perfeita: SS = S 0 = FE.SE - FS.S - μS.X.V Veloc. espec. de crescimento μ = (1/X)*(dX/dt) Veloc. espec. de consumo de S μS = (1/X)*(-dS/dt) Veloc. espec. de formação de P μP = (1/X)*(dP/dt) V.C. = Volume de Controle EQUAÇÃO GERAL DO BALANÇO DE MASSA ACÚMULO = ENTRA - SAI + PRODUÇÃO Balanço de massa de produto: d(P.V)/dt = FE.PE - FS.PS + μP.X.V [massa de produto/tempo] Batelada: FE = FS = 0 Batelada-alimentada: FS = 0 Contínuo: normalmente, FE = FS e estado estacionário: d(PV)/dt = 0 Normalmente, PE = 0 (alimentação de meio estéril). Hipótese de mistura perfeita: PS = P 0 = - FS.P + μP.X.V • Balanços de massa em biorreatores FE FS V.C. = Volume de Controle Veloc. espec. de crescimento μ = (1/X)*(dX/dt) Veloc. espec. de consumo de S μS = (1/X)*(-dS/dt) Veloc. espec. de formação de P μP = (1/X)*(dP/dt) Balanço de massa de células: d(X.V)/dt = FE.XE - FS.XS + μ.X.V (XE = 0, V = cte, XS = X) V.dX/dt = - FS.X + 𝜇.X.V (defino vazão específica D = F/V) dX/dt = (-D + 𝜇).X (em estado estacionário, dX/dt = 0) D = F/V = 𝜇 (desde que 𝜇 < 𝜇MAX) O QUE ISTO SIGNIFICA? Processo contínuo 9 Description of the Chemostat Author(s): Aaron Novick and Leo Szilard Source: Science, New Series, Vol. 112, No. 2920 (Dec. 15, 1950), pp. 715-716 Published by: American Association for the Advancement of Science Stable URL: http://www.jstor.org/stable/1678964 . Accessed: 10/02/2011 06:03 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at . http://www.jstor.org/action/showPublisher?publisherCode=aaas. . Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org. American Association for the Advancement of Science is collaborating with JSTOR to digitize, preserve and extend access to Science. http://www.jstor.org QUIMIOSTATO 10 Monod, J. (1950) La technique de culture continue theorie et applications. Annales de l’Institut Pasteur 79, 390–410. constant physico-chemical conditions. Furthermore, chemostat cultures enable studies on the growth of micro-organisms at specific growth rates below their mmax. Thus, even when microbial strains or growth conditions are compared that have or cause a different mmax, chemostat cultivation enables a comparison of their physiology at an identical specific growth rate chosen and set by the researcher. A chemostat (Fig. 2) can be defined by five key elements: (i) an ideally mixed fermentation vessel (bio-reactor), (ii) a continuous inflow of fresh growth medium, (iii) a medium composition in which a single nutrient of choice limits biomass formation and in which all other nutrients are present in excess, (iv) a continuous outflow of culture broth with an identical chemical composition and biomass concentration to that in the bio-reactor and (v) a constant ratio between effluent flow rate and culture volume in the bio-reactor. The unique option of chemostats to ‘‘dial in’’ a specific growth rate can best be understood by combining these five defining elements with a mass balance of the biomass: dðVcxÞ=dt ¼ jincx;in $ foutcx;out þ mcx;bioreactorV Figure 2 Experimental setup for chemostat cultivation. Panel A, early design by Monod (from Monod, 1950) where N indicates the medium reservoir; B the bio- reactor in which cells are grown; P the effluent reservoir; E the inoculation flask and M the stirring engine. Panel B, photograph of a current chemostat setup where 1 indicates the medium reservoir, 2 the bio-reactor, 3 the effluent reservoir, 4 the inoculation flask and 5 the stirring engine.Adapted from Monod (1950) with permission from Institut Pasteur. MICRO-ARRAY ANALYSIS IN BAKER’S YEAST 265 Author's personal copy QUIMIOSTATO = Cultivo contínuo em estado estacionário, com um nutriente limitante do crescimento no meio de alimentação. Criado simultaneamente por Monod ;-) Balanço de massa de células: d(X.V)/dt = FE.XE - FS.XS + μ.X.V (XE = 0, V = cte, XS = X ou mistura perfeita) V.dX/dt = - FS.X + 𝜇.X.V (defino vazão específica D = F/V) dX/dt = (-D + 𝜇).X (em estado estacionário, dX/dt = 0) D = 𝜇 O QUE ISTO SIGNIFICA? Balanço de massa de substrato: d(S.V)/dt = FE.SE - FS.SS - μS.X.V (FE = FS = F, V = cte, SS = S ou mistura perfeita) V.dS/dt = F(SE - S) - μS.X.V (em estado estacionário, dS/dt = 0) 0 = D(SE - S) - μS.X (lembrando que YX/S = 𝜇/μS) 0 = D(SE - S) - (𝜇/YX/S)*X (D = 𝜇, do B.M. de células acima) 0 = D(SE - S) - (D/YX/S)*X 0 = D(SE - S - X/YX/S) X = YX/S*(SE - S) —> X dentro do reator, no estado estacionário Quimiostato • Por que um cultivo contínuo tende ao estado estacionário? dX/dt = (-D + 𝜇).X imaginemos que por algum motivo 𝜇 > D, então X cresce X = YX/S(SE - S) se X cresce, então S tem que diminuir, pois Y e SE são ctes 𝜇 = 𝜇MAX.S/(KS + S) equação de Monod* —> 𝜇 diminui e o sistema tende a 𝜇=D (pode-se fazer o raciocínio inverso, 𝜇 < D, e chega-se à mesma conclusão) * considera apenas o fenômenos de limitação por S, ou seja, 𝜇 é somente função de uma eventual limitação por S e não também função de outros fenômenos, como por exemplo inibição por S ou inibição por P sempre se inicia como um cultivo em batelada, mas… Modelo cinético de Monod https://www.cs.montana.edu/webworks/projects/stevesbook/contents/chapters/chapter002/section002/black/page001.html SCRIT forma da equação é idêntica à de Michaelis & Menten, para cinética enzimática. Mas, enquanto a primeira é baseada num mecanismo de reação (modelo fenomenológico), a de Monod é baseada em observação experimental somente (modelo empírico)! 14 GROWTH OF BACTERIAL CULTURES 383 situation is very improbable and, in general, the maximum growth rate should be expected to be controlled by a large number of different rate-determining steps. This makes it clear why ex- ponential growth rate measurements constitute a general and sensitive physiologic test which can be used for the study of a wide variety of effects, while, on the other hand, quantitative inter- pretations are subject to severe limitations. Even where the condi- tion or agent studied may reasonably be assumed to act primarily on a single rate determining step, the over-all effect (i.e., the growth rate) will generally remain an unknown function of the primary effect. Although very improbable, it is of course not impossible that the exponential growth rate could in certain specific cases actually ~1o5 3: ~1.0 Fx6. 4.~Growth rate of E. col¢ in synthetic medium as a function of glucose concentration. Solid line is drawn to equation (2) with RK = 1.35 divisions per hour, and Ct =0.22 M X10-4 (11). Temperature ° C. be determined by a single master reaction. But such a situation could hardly be assumed to prevail, in any one case, without direct experimental evidence. Some recent attempts at making use of the master reaction concept in the interpretation of bacterial growth rates are quite unconvincing in that respect (19). Rate-concentration relations.--Notwithstanding these difficul- ties, relatively simple empirical laws are found to express conven- iently the relation between exponential growth rate and concentra- tion of an essential nutrient. Examples are provided in Figs. 4 and 5. Several mathematically different formulations could be made to fit the data. But it is both convenient and logical to adopt a hyperbolic equation: CR = RK ........................ [21Ct+C www.annualreviews.org/aronline Annual Reviews A nn u. R ev . M ic ro bi ol . 1 94 9. 3: 37 1- 39 4. D ow nl oa de d fr om a rjo ur na ls .a nn ua lre vi ew s.o rg by C al ifo rn ia In st itu te o f T ec hn ol og y on 0 9/ 17 /0 7. F or p er so na l u se o nl y. um pouco mais sobre o modelo de Monod… 15 384 MONOD similar to an adsorption isotherm or to the Michaelis equation. In the above equation C stands for the concentration of the nutrient. RK is the rate limit for increasing concentrations of. C. Cz is the concentration of nutrient at which the rate is half the max~mumo The constant RK is useful in comparing efficiency in a series of related compounds as the source of an essential nutrient. So far extensive data are available only with respect to the organic source (11). The value of R~ may vary widely when different 0.035 ~o.o~o ~0.o2 s -~ 0.o~o o.o|o ! t I O.1 O~. O.~ GLUCOSE (Mx) FI~. 5.~C-rowth rate of M. tuberculosis in Dubos’ medium, as a function of glucose concentration. So|id llne drawn to eqt~ation (2) wil~ RK=0.037 and ~--~/~5 (20~. organic sources are compared under otherwise identical conditions. There is no doubt that it is related to the activity of the specific enzyme systems involved in the breakdown of the different com- pounds, and it can be used with advantage for the detection of specific changes (e.g., hereditary variation) affecting one or an- other of these systems (30). The value of C~ should similarly be expected to bear some more or less distant relation to the apparent dissociation constant of the enzyme involved in the first step of the breakdown of a given compound. Furthermore, since a change of conditions affect- ing primarily the velocity of only one rate-determlning step will, in general (but not necessarily), be only partially reflected in the www.annualreviews.org/aronline Annual Reviews A nn u. R ev . M ic ro bi ol . 1 94 9. 3: 37 1- 39 4. D ow nl oa de d fr om a rjo ur na ls .a nn ua lre vi ew s.o rg by C al ifo rn ia In st itu te o f T ec hn ol og y on 0 9/ 17 /0 7. F or p er so na l u se o nl y. 7 Equação de Monod p/ diferentes Ks aumentando KS 8 Ks corresponde à S na qual µ=µmax/2 O modelo de Monod explica todas as situações? • Somente leva em conta o fenômeno de limitação por substrato! • Não descreve p.ex. a fase lag. Por que? 𝝁 = 𝝁MAX*S/(KS + S) Descreve bem as fase log, desaceleração e estacionária (desde que o único fenômeno relevante seja limitação por S) • Se houver outros fenômenos importantes na situação de interesse, p. ex. inibição por substrato ou inibição pelo produto, preciso usar outros modelos! Diferentes Modelos de Crescimentos Linearização p/ obtenção dos parâmetros KS e 𝜇MAX Coef. linear Coef. angular (Equação de Lineweaver-Burk) S k S s max + = µµ Monod Linearização Diferença entre SE e S 33 Continuous culture remembered that nongrowth related secondary metabolites are produced only under certain physiological conditions—primarily under limitation of a particular substrate so that the biomass must be in the correct “physiological state” before production can be achieved. The elucidation of the environmental conditions, which create the correct “physiological state” is extremely difficult in batch culture and this aspect is developed in a later section. Thus, batch fermentation may be used to produce biomass, primary metabolites, and secondary metabolites. For biomass production, cultural conditions supporting the fastest growth rate and maximum cell population would be used; for primary metabolite production conditions to extend the exponential phase accompanied by product excretion and for secondary metabolite production, conditions giving a short exponential phase and an extended productionphase, or conditions giving a decreased growth rate in the log phase resulting in earlier secondary metabolite formation. CONTINUOUS CULTURE Exponential growth in batch culture may be prolonged by the addition of fresh me- dium to the vessel. Provided that the medium has been designed such that growth is substrate limited (ie, by some component of the medium), and not toxin limited, exponential growth will proceed until the additional substrate is exhausted. This ex- ercise may be repeated until the vessel is full. However, if an overflow device was fitted to the fermenter such that the added medium displaced an equal volume of cul- ture from the vessel then continuous production of cells could be achieved (Fig. 2.5). If medium is fed continuously to such a culture at a suitable rate, a steady state is FIGURE 2.5 A Schematic Representation of a Continuous Culture SE S SE eu escolho! e portanto defino X! S vem p.ex. de Monod: S = 𝜇.KS/(𝜇MAX - 𝜇) depende da combinação entre microrganismo, meio de cultivo e condições ambientais! Quimiostato • Escolho 𝜇 —> 𝜇 = D = F/V (limitado a 𝜇 < 𝜇MAX) • Escolho X —> X = YX/S*(SE - S), lembrando que S << SE 37 Continuous culture increase in s and a decrease in x as D approaches Dcrit. Fig. 2.8 illustrates the effect of increasing the initial limiting substrate concentration on x and s . As SR is in- creased, so x increases, but the residual substrate concentration is unaffected. Also, Dcrit increases slightly with an increase in SR. The results of chemostat experiments may differ from those predicted by the fore- going theory. The reasons for these deviations may be anomalies associated with the equipment or the theory not predicting the behavior of the organism under certain x¯ s¯ x¯ FIGURE 2.7 The Effect of Dilution Rate on the Steady-State Biomass and Residual Substrate Concentrations in a Chemostat of a Microorganism with a High Ks Value for the Limiting Substrate, Compared with the Initial Substrate Concentration ______, Steady-state biomass concentration; — — —, Steady-state residual substrate concentration. FIGURE 2.8 The Effect of the Increased Initial Substrate Concentration on the Steady-State Biomass and Residual Substrate Concentrations in a Chemostat ______, Steady-state biomass concentration; — — —, Steady-state residual substrate concentration. SR1, SR2, and SR3 represent increasing concentrations of the limiting substrate in the feed medium. lavagem = “wash-out” quando D > 𝝁MAX Produtividade no quimiostato 45 Continuous culture in Fig. 2.11. Thus, maximum productivity of biomass may be achieved by the use of the dilution rate giving the highest value of Dx . The output of a batch fermentation described by Eq. (2.27) is an average over the period of the fermentation and, because the rate of biomass production is dependent on initial biomass (dx/dt = µx), the vast proportion of the biomass is produced toward the end of the fermentation. Thus, productivity in batch culture is at its maximum only toward the end of the process. For a continuous culture operating at the optimum dilution rate, under steady-state conditions, the productivity will be constant and al- ways maximum. Thus, the productivity of the continuous system must be greater than the batch. A continuous system may be operated for a very long time period (several weeks or months) so that the negative contribution of the unproductive time, tiii, to productivity would be minimal. However, a batch culture may be operated for only a limited time period so that the negative contribution of the time, tii, would be very significant, especially when it is remembered that the batch culture would have to be reestablished many times during the time-course of a continuous run. Thus, the superior productivity of biomass by a continuous culture, compared with a batch culture, is due to the maintenance of maximum output conditions throughout the fermentation and the insignificance of the nonproductive period associated with a long-running continuous process. The steady state achievable in a continuous process also adds to the advantage of improved biomass productivity. Cell concentration, substrate concentration, product concentration, and toxin concentration should remain constant throughout the fer- mentation. Thus, once the culture is established the demands of the fermentation, in terms of process control, should be constant. In a batch fermentation, the demands of the culture vary during the fermentation—at the beginning, the oxygen demand is low but toward the end the demand is high, due to the high biomass and the increased viscosity of the broth. Also, the amount of cooling required will increase during the process, as will the degree of pH control. In a continuous process oxygen demand, Dx¯ FIGURE 2.11 The Effect of Dilution Rate on Biomass Productivity in Steady-State Continuous Culture Produtividade = D.X [g/(L.h)] opera-se normalmente em 0,85*DCRIT, para evitar risco de lavagem! P Processo descontínuo (batelada): Vantagens ▪ Maior segurança (contaminação - assepsia) ▪ Sistema Fechado – Batelada – Industria de Alimentos ▪ Flexibilidade (produtos) ▪ Fases sucessivas (mesmo recipiente) ▪ Controle da estabilidade genética do Micro-organismo ▪ Identificação de todos materiais do mesmo lote DESVANTAGENS ▪ Menores rendimentos/produtividades (Tempo “morto”) ▪ Maior necessidade de mão-de-obra humana ▪ (↓) Tempos Mortos: (↑) Produtividade ▪ Obtenção de Caldo Fermentado Uniforme (Bom p/ etapa de Downstream) ▪ Manutenção das células em mesmo estado fisiológico ▪ Associação de outras Operações contínuas ▪ Facilidade de Controles Avançados ▪ (↓) Mão de Obra Processo Contínuo: VANTAGENS ▪ (↑) Investimento ▪ Mutações espontâneas (longos períodos) ▪ (↑) Contaminação – sistema aberto DESVANTAGENS Como "projetar" meu processo? • Preciso partir de uma meta de produção! Pode ser p.ex. determinada por uma demanda de mercado. • Exemplo: 10 ton de massa seca de levedura por mês. • Supondo que Pr = 2,5 g X/(L.h), 10*106/30/24/2,5 = 5555 L é o volume de reator necessário! • Pr = D.X —> Uso D = 0,85*DCRIT • Se DCRIT = 0,4 1/h —> D = 0,34 1/h —> F = D*V = 1888 L/h • X = Pr/D = 2,5/0,34 = 7,35 g/L • SE = S + X/YX/S = 0 + 7,35 g/L / 0,5 g/g = 14,7 g/L P Contínuo múltiplos estágios Contínuo Batelada Alimentada Batelada Simples não abordamos neste curso, mas é muito utilizado na indústria de bioprocessos! (útil por exemplo para manter a concentração de nutrientes baixa no biorreator ou para controlar 𝝁)