Logo Passei Direto
Buscar
Material
páginas com resultados encontrados.
páginas com resultados encontrados.
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Prévia do material em texto

UNIVERSIDADE ESTADUAL PAULISTA 
UNESP - Campus de Bauru/SP 
FACULDADE DE ENGENHARIA 
Departamento de Engenharia Civil 
 
 
 
 
 
 
 
Disciplina: 2139 - CONCRETO PROTENDIDO 
 
NOTAS DE AULA 
 
 
 
 
 
 
CONCRETO PROTENDIDO 
 
 
 
 
 
 
Prof. Dr. PAULO SÉRGIO DOS SANTOS BASTOS 
(wwwp.feb.unesp.br/pbastos) 
 
 
 
 
 
 
 
 
 
 
 
 
Bauru/SP 
Mar/2018 
 
 
 
 
 
 
 
APRESENTAÇÃO 
 
 
 
 
Esta apostila tem o objetivo de servir como notas de aula na disciplina Concreto 
Protendido, do curso de Engenharia Civil da Faculdade de Engenharia, da Universidade Estadual 
Paulista – UNESP, Campus de Bauru/SP. 
O texto apresentado está de acordo com as prescrições contidas na norma NBR 
6118/2014 (“Projeto de estruturas de concreto – Procedimento”), para o projeto e 
dimensionamento de elementos em Concreto Armado e Protendido. 
A apostila apresenta o estudo inicial de temas de Concreto Protendido. A bibliografia 
indicada deve ser consultada para aprofundar o aprendizado, bem como os textos apresentados 
na página da disciplina na internet: 
http://wwwp.feb.unesp.br/pbastos/pag_protendido.htm 
 
O autor agradece a Tiago Duarte de Mattos, pela confecção dos desenhos. 
Críticas e sugestões serão bem-vindas. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SUMÁRIO 
 
 
 
 
1. PROTENSÃO NAS ESTRUTURAS DE CONCRETO .................................................... 1 
2. EXEMPLOS DE ESTRUTURAS PROTENDIDAS .......................................................... 2 
3. CONCRETO PROTENDIDO x CONCRETO ARMADO ............................................... 3 
3.1 EXEMPLO ......................................................................................................................... 4 
4. BREVE HISTÓRICO DO CONCRETO PROTENDIDO ................................................ 9 
5. FABRICAÇÃO DE PEÇAS PROTENDIDAS ................................................................... 9 
5.1 ARMADURA DE PROTENSÃO PRÉ-TRACIONADA .................................................. 9 
5.2 ARMADURA DE PROTENSÃO PÓS-TRACIONADA ................................................ 13 
6. MATERIAIS ........................................................................................................................ 18 
6.1 CONCRETO ..................................................................................................................... 18 
6.2 AÇO DE ARMADURA ATIVA ...................................................................................... 18 
6.2.1 Apresentação .............................................................................................................. 18 
6.2.2 Quanto ao Tratamento ................................................................................................ 19 
6.2.3 Normas Brasileiras ..................................................................................................... 19 
6.2.4 Exemplos de Designação ........................................................................................... 19 
6.2.5 Massa Específica, Coeficiente de Dilatação Térmica e Módulo de Elasticidade ...... 21 
6.2.6 Acondicionamento ..................................................................................................... 21 
6.2.7 Diagrama tensão-deformação ..................................................................................... 22 
6.3 BAINHAS ........................................................................................................................ 23 
6.4 CALDA DE CIMENTO ................................................................................................... 24 
6.5 ANCORAGENS ............................................................................................................... 25 
7. VALORES-LIMITES DE TENSÃO POR OCASIÃO DA OPERAÇÃO DE 
PROTENSÃO NA ARMADURA .............................................................................................. 30 
8. VALORES REPRESENTATIVOS DA FORÇA DE PROTENSÃO ............................. 31 
8.1 FORÇA DE PROTENSÃO Pi NA ARMADURA ........................................................... 33 
8.2 FORÇA DE PROTENSÃO Pa .......................................................................................... 33 
8.3 FORÇA DE PROTENSÃO Po NA ARMADURA/CONCRETO .................................... 33 
8.4 FORÇA DE PROTENSÃO Pt NA ARMADURA/CONCRETO .................................... 33 
9. PERDAS DE PROTENSÃO .............................................................................................. 34 
9.1 ESCORREGAMENTO DOS FIOS NA ANCORAGEM ................................................ 34 
9.2 RELAXAÇÃO DA ARMADURA .................................................................................. 34 
9.3 RETRAÇÃO INICIAL DO CONCRETO EM PISTA DE PROTENSÃO...................... 35 
9.4 VARIAÇÃO DA FORÇA DE PROTENSÃO DE Pi A Pa NA PRÉ-TRAÇÃO .............. 35 
9.5 DETERMINAÇÃO DA FORÇA Po NA PRÉ-TRAÇÃO ................................................ 36 
9.6 DETERMINAÇÃO DE Po NA PÓS-TRAÇÃO............................................................... 39 
9.7 PERDA POR ATRITO NA PÓS-TRAÇÃO .................................................................... 40 
9.8 PERDA NA ANCORAGEM NA PÓS-TRAÇÃO ........................................................... 43 
9.9 PERDA DE PROTENSÃO NA PÓS-TRAÇÃO POR DEFORMAÇÃO IMEDIATA DO 
CONCRETO PELO ESTIRAMENTO DOS CABOS RESTANTES ...................................... 46 
9.10 RETRAÇÃO E FLUÊNCIA INICIAL DO CONCRETO NA PÓS-TRAÇÃO .............. 47 
9.11 DETERMINAÇÃO DA FORÇA DE PROTENSÃO FINAL.......................................... 47 
9.12 PERDA DE PROTENSÃO POR RETRAÇÃO DO CONCRETO .................................. 47 
9.13 VALOR DA RETRAÇÃO ............................................................................................... 47 
9.14 PERDA DE PROTENSÃO POR FLUÊNCIA DO CONCRETO ................................... 48 
9.14.1 Anexo A – Fluência do Concreto (A.2.2) .................................................................. 48 
9.15 PERDAS PROGRESSIVAS ............................................................................................ 50 
9.15.1 Processo Simplificado para o Caso de Fases Únicas de Operação (Item 9.6.3.4.2) .. 51 
9.15.2 Processo Aproximado do Item 9.6.3.4.3 .................................................................... 52 
9.15.3 Método Geral de Cálculo ........................................................................................... 52 
10. CRITÉRIOS DE PROJETO .............................................................................................. 52 
10.1 Estado-Limite Último (ELU) ............................................................................................ 52 
10.2 Estado-Limite de Serviço (ELS) ....................................................................................... 53 
11. AÇÕES A CONSIDERAR NOS ESTADOS-LIMITES DE SERVIÇO ........................ 54 
11.1 COMBINAÇÕES DE SERVIÇO ..................................................................................... 54 
11.2 NÍVEIS DE PROTENSÃO .............................................................................................. 55 
12. ESTIMATIVA DA FORÇA DE PROTENSÃO FINAL P ............................................ 55 
12.1 Protensão Completa .......................................................................................................... 56 
12.2 Protensão Limitada ........................................................................................................... 57 
12.3 Protensão Parcial .............................................................................................................. 58 
13. DETERMINAÇÃO DA FORÇA Pi ................................................................................... 58 
14. VERIFICAÇÃO DE TENSÕES NORMAIS NA SEÇÃO DE CONCRETO MAIS 
SOLICITADA PELO CARREGAMENTO EXTERNO.........................................................final (t∞), podendo ser utilizada onde não for necessária grande precisão. 
 Quando maior precisão for exigida pode-se aplicar a formulação contida no Anexo A da 
NBR 6118. O Anexo A da norma trata do “Efeito do tempo no concreto estrutural”, e informa que 
as prescrições “têm caráter informativo que podem, na falta de dados melhores, ser usadas no 
projeto de estruturas com concretos do grupo I da ABNT NBR 8953 cobertos por esta Norma. 
Outros valores podem ser usados, desde que comprovados experimentalmente, por meio de 
ensaios realizados de acordo com Normas Brasileiras específicas, levando em conta variações 
nas características e propriedades dos componentes do concreto, ou ainda desde que respaldados 
por Normas Internacionais ou literatura técnica.” 
 
9.13 VALOR DA RETRAÇÃO 
(Anexo A, NBR 6118, item A.2.3) 
 
Entre os instantes to e t a retração é dada por: 
 
cs (t ; to) = cs∞ [s (t) – s (to)] 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
48 
onde: 
cs∞ = 1s . 2s 
 
cs∞ = valor final da retração; 
1s = coeficiente dependente da umidade relativa do ambiente e da consistência do 
concreto (ver Tabela A.1 da NBR 6118); 
2s = coeficiente dependente da espessura fictícia da peça. 
 
fic
fic
s2
h38,20
h233


 
 
onde: hfic = espessura fictícia, em cm; 
 
 
ar
c
fic
A2
h

 
 
 = coeficiente dependente da umidade relativa do ambiente (U - %) – Tabela A.1. 
 
 U1,08,7exp1  
 
Ac = área da seção transversal da peça; 
ar = parte do perímetro externo da seção transversal da peça em contato com o ar; 
 
s (t) ou s (to) = coeficientes relativos à retração, nos instantes t ou to , dados na Figura 
A.3 da NBR 6118; 
t = idade fictícia do concreto no instante considerado, em dias (ver item A.2.4.1 da NBR 
6118); 
to = idade fictícia do concreto no instante em que o efeito da retração na peça começa a ser 
considerado, em dias. 
 
 
9.14 PERDA DE PROTENSÃO POR FLUÊNCIA DO CONCRETO 
 
A fluência no concreto ao nível da armadura depende da tensão no concreto naquele nível. 
Semelhantemente à perda por retração, a perda de tensão por fluência do concreto é: 
Pcc = cc . Ep 
 
Onde não for necessária grande precisão, o coeficiente de fluência  (t∞ ; to), entre o tempo 
to e o tempo final (t∞), pode ser determinado na Tabela 8.2 da NBR 6118 (item 8.2.11), e: 
 
)t;t(
E
)t(
)t;t( o
28,ci
oc
occ  

 
 
Quando for necessária maior precisão deve-se recorrer ao cálculo conforme descrito no 
Anexo A da NBR 6118, como apresentado a seguir. 
 
9.14.1 Anexo A – Fluência do Concreto (A.2.2) 
 
“A deformação por fluência do concreto (εcc) é composta de duas partes, uma rápida e 
outra lenta. A deformação rápida (εcca) é irreversível e ocorre durante as primeiras 24 h após a 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
49 
aplicação da carga que a originou. A deformação lenta é, por sua vez, composta por duas outras 
parcelas: a deformação lenta irreversível (εccf ) e a deformação lenta reversível (εccd).” 
 
cc = cca + ccf + ccd 
 
cca = deformação rápida irreversível, primeiras 24 horas; 
ccf = deformação lenta irreversível (umidade, consistência, espessura, idade); 
cca = deformação lenta reversível, depende apenas da duração do carregamento. 
 
c,tot = c + cc = c (1 + ) 
 
 = a + f + d 
 
c,tot = deformação total do concreto; 
 = coeficiente de fluência; 
a = coeficiente de deformação rápida; 
f = coeficiente de deformação lenta irreversível; 
d = coeficiente de deformação lenta reversível. 
 
Valor da Fluência (A.2.2.3) 
 
No instante t a deformação devida à fluência é dada por: 
 
cc (t ; to) = cca + ccf + ccd = )t;t(
E
o
28,c
c 

 
 
com o módulo de elasticidade tangente inicial para j = 28 dias (Ec,28), obtido em ensaio segundo a 
NBR 8522 ou calculado pela expressão Ec,28 = Eci,28 = E ckf5600 . 
 
O coeficiente de fluência  (t ; to) é dado por: 
 
 (t ; to) = a + f∞ [f (t) – f (to)] + d∞ d 
 
t = idade fictícia do concreto no instante considerado, em dias; 
to = idade fictícia do concreto ao ser feito o carregamento único, em dias; 
a = coeficiente de fluência rápida: 
 







 )t(f
)t(f
18,0
c
oc
a , para concretos de classes C20 a C45; 
 







)t(f
)t(f
14,1
c
oc
a , para concretos de classes C50 a C90. 
 
onde: 
)t(f
)t(f
c
oc

= função do crescimento da resistência do concreto com a idade, definida no item 
12.3 da NBR 6118; 
 
1  relação entre fckj/fck (NBR 6118, item 12.3.3.b): 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
50 



























2
1
1
t
28
1sexp 
 
com: s = 0,38 para concreto com cimento CP III e IV; 
 s = 0,25 para concreto com cimento CP I e II; 
 s = 0,20 para concreto com cimento CP V ARI; 
t = idade fictícia do concreto, em dias. 
 
Faz-se: 
 
)t(
)tt(
)t(f
)t(f
1
o1
c
oc
 

 
 
t∞ = tempo da vida útil; 
 
f∞ = 1c . 2c = valor final do coeficiente de fluência irreversível para concretos de classes 
C20 a C45; 
 
f∞ = 0,45 1c . 2c = valor final do coeficiente de fluência irreversível para concretos de 
classes C50 a C90; 
 
1c = coeficiente dependente da umidade relativa do ambiente U (%), e da consistência do 
concreto (Tabela A.1 da norma); 
 
2c = coeficiente dependente da espessura fictícia (hfic) da peça: 
 
fic
fic
c2
h20
h42


 
 
hfic em cm; 
 
f (t) ou f (to) = coeficiente relativo à fluência irreversível, função da idade do concreto 
(ver Figura A.2 da norma); 
 
d∞ = 0,4 = valor final do coeficiente de fluência reversível (A.2.2.3 da NBR 6118); 
 
d (t) = coeficiente relativo à fluência reversível, função do tempo (t – to), decorrido após o 
carregamento: 
 
70tt
20tt
)t(
o
o
d


 
 
9.15 PERDAS PROGRESSIVAS 
(NBR 6118, item 9.6.3.4) 
 
“Os valores parciais e totais das perdas progressivas de protensão, decorrentes da 
retração e da fluência do concreto e da relaxação do aço de protensão, devem ser determinados 
considerando-se a interação dessas causas, podendo ser utilizados os processos indicados em 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
51 
9.6.3.4.2 a 9.6.3.4.5. Nesses processos admite-se que exista aderência entre a armadura e o 
concreto e que o elemento estrutural permaneça no estádio I.” 
 
9.15.1 Processo Simplificado para o Caso de Fases Únicas de Operação (Item 9.6.3.4.2) 
 
De acordo com o item 9.6.3.4.2 da NBR 6118, esse caso é aplicável quando são satisfeitas 
as seguintes condições: 
a) “a concretagem do elemento estrutural, bem como a protensão, são executadas, cada uma 
delas, em fases suficientemente próximas para que se desprezem os efeitos recíprocos de uma fase 
sobre a outra; 
 
b) os cabos possuem entre si afastamentos suficientemente pequenos em relação à altura da seção 
do elemento estrutural, de modo que seus efeitos possam ser supostos equivalentes ao de um 
único cabo, com seção transversal de área igual à soma das áreas das seções dos cabos 
componentes, situado na posição da resultante dos esforços neles atuantes (cabo resultante). 
 
Nesse caso, admite-se que no tempo t as perdas e deformações progressivas do concreto e 
do aço de protensão, na posição do cabo resultante, com as tensões no concreto c,pog positivas 
para compressão e as tensões no aço po positivas para tração, sejam dadas por:” 
 
ppcp
opoopog,cppocs
op
)t;t()t;t(E)t;t(
)t;t(


 
 
p
p
op
o
p
po
pt
E
)t;t(
)t;t(
E




 
 
)t;t(
E
)t;t(
)t;t(
E
ocs
28,ci
oc
co
28,ci
pog,c
ct 



 
 
onde: 
 )t;t(1ln)t;t( oo  
)t;t(5,01 oc  
 
)t;t(1 op  
 
cc2
p
I
A
e1 ; 
c
p
p
A
A
 ; 
28,ci
p
p
E
E
 
onde: 
c,pog = tensão no concreto adjacente ao cabo resultante, provocada pela protensão e pela 
carga permanente mobilizada no instante to , sendo positiva se for de compressão; 
 (t ; to) = coeficiente de fluência do concreto no instante t para protensão e carga 
permanente, aplicadas no instante to ; 
∆σpo = tensão na armadura ativa devida à protensão e à carga permanente mobilizada no 
instante to , positiva se for de tração; 
χ (t ; to) = coeficiente de fluência do aço; 
εcs (t ; to) = retração no instante t, descontada a retração ocorrida até o instante to ; 
ψ (t ; to) = coeficiente de relaxação do aço no instante t para protensão e carga permanente 
mobilizada no instante to ; 
∆σc (t ; to) = variação da tensão do concreto adjacente ao cabo resultante entre to e t; 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
52 
∆σp (t ; to) = variação da tensão no aço de protensão entre to e t; 
ρp = taxa geométrica da armadura de protensão; 
ep = excentricidade do cabo resultante em relação ao baricentro da seção do concreto; 
Ap = área da seção transversal do cabo resultante; 
Ac = área da seção transversal do concreto; 
Ic = momento central de inércia na seção do concreto. 
 
9.15.2 Processo Aproximado do Item 9.6.3.4.3 
 
“Esse processo pode substituir o estabelecido em 9.6.3.4.2, desde que satisfeitas as 
mesmas condições de aplicação e que a retração não difira em mais de 25 % do valor: 
 
[– 8 . 10-5  (t∞ ; to)] 
 
O valor absoluto da perda de tensão devida a fluência, retração e relaxação, com σc,pog 
em megapascal e considerado positivo se for de compressão, é dado por: 
 
a) para aços de relaxação normal (RN) (valor em porcentagem): 
 
   
pog,c
57,1
o
p
po
op
3)t;t(
47
1,18
)t;t(







 
 
b) para aços de relaxação baixa (RB) (valor em porcentagem): 
 
   
pog,c
07,1
o
p
po
op
3)t;t(
7,18
4,7
)t;t(







 
onde: 
σpo = tensão na armadura de protensão devida exclusivamente à força de protensão, no 
instante to .” 
 
9.15.3 Método Geral de Cálculo 
(item 9.6.3.4.4) 
 
“Quando as ações permanentes (carga permanente ou protensão) são aplicadas 
parceladamente em idades diferentes (portanto não são satisfeitas as condições estabelecidas em 
9.6.3.4.2), deve ser considerada a fluência de cada uma das camadas de concreto e a relaxação 
de cada cabo, separadamente. 
Pode ser considerada a relaxação isolada de cada cabo, independentemente da aplicação 
posterior de outros esforços permanentes.” 
 
10. CRITÉRIOS DE PROJETO 
 
Os Estados-Limites devem ser considerados na verificação da segurança das estruturas em 
Concreto Protendido. 
Apresentam-se a seguir as definições dos Estados-Limites conforme descritos no item 3.2 a 
NBR 6118. 
 
10.1 Estado-Limite Último (ELU) 
 
O Estado-Limite Último é o “estado-limite relacionado ao colapso, ou a qualquer outra 
forma de ruína estrutural, que determine a paralisação do uso da estrutura”. 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
53 
10.2 Estado-Limite de Serviço (ELS) 
 
Os Estados-Limites de Serviço são definidos pela norma como “aqueles relacionados ao 
conforto do usuário e à durabilidade, aparência e boa utilização das estruturas, seja em relação 
aos usuários, seja em relação às máquinas e aos equipamentos suportados pelas estruturas.” 
Quando uma estrutura alcança um Estado-Limite de Serviço, o seu uso pode ficar 
impossibilitado, mesmo que ela ainda não tenha esgotada toda a sua capacidade resistente, ou 
seja, a estrutura pode não mais oferecer condições de conforto e durabilidade, embora não tenha 
alcançado a ruína. 
Os Estados-Limites de Serviço definidos pela NBR 6118 (item 3.2) são: 
 
a) Estado-Limite de formação de fissuras (ELS-F): Estado em que inicia a formação de 
fissuras. Admite-se que este Estado-Limite é atingido quando a tensão de tração máxima na seção 
transversal for igual a resistência do concreto à tração na flexão (fct,f – resistência do concreto à 
tração na flexão); 
Nota: recordar “momento fletor de fissuração na apostila de “Lajes de concreto”, da disciplina 
Estruturas de Concreto I. 
 
b) Estado-Limite de abertura das fissuras (ELS-W): este Estado é alcançado quando as 
fissuras têm aberturas iguais aos valores máximos especificados pela norma no item 13.4.2. No 
caso das estruturas de Concreto Protendido com protensão parcial, a abertura de fissura 
característica está limitada a 0,2 mm, a fim de não prejudicar a estética e a durabilidade; 
 
c) Estado-Limite de compressão excessiva (ELS-CE): Estado em que as tensões de compressão 
atingem o limite convencional estabelecido. É usual no caso de Concreto Protendido na ocasião 
da aplicação da protensão. 
 
Sob tensão de compressão superior a 50 % da resistência à compressão, acentua-se a 
microfissuração interna do concreto. Acima de 70 % a microfissuração fica instável. Por isso é 
recomendada a tensão de serviço de apenas 60 % da resistência do concreto. 
Para verificação simplificada no Estado-Limite Último no ato da protensão a NBR 6118 
fixa o limite de 0,7fckj (item 17.2.4.3.2). 
d) Estado-Limite de deformações excessivas (ELS-DEF): este Estado é alcançado quando as 
deformações (flechas) atingem os valores limites estabelecidos para a utilização normal, dados em 
13.3 da norma. Os elementos fletidos como as vigas e as lajes apresentam flechas em serviço. O 
cuidado que o projetista estrutural deve ter é de limitar as flechas a valores aceitáveis, que não 
prejudiquem a estética e causem insegurança aos usuários; 
 
e) Estado-Limite de vibrações excessivas (ELS-VE): este Estado é alcançado quando as 
vibrações atingem os limites estabelecidos para a utilização normal da construção. O projetista 
deverá eliminar ou limitar as vibrações de tal modo que não prejudiquem o conforto dos usuários 
na utilização das estruturas; 
 
f) Estado-Limite de descompressão (ELS-D): Estado no qual, em um ou mais pontos da seção 
transversal, a tensão normal é nula, não havendo tração no restante da seção. 
 
Situação onde a seção comprimida pela protensão vai sendo descomprimida pela ação dos 
carregamentos externos, até atingir o ELS-D. 
Esta verificação deve ser feita no estádio I (concreto não fissurado, comportamento 
elástico linear dos materiais), item 17.3.4 da NBR 6118. 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
54 
Ap
CG
e
p
P
Mext
-
+
Mext
( )
-
+
(P)
+ =
-
o
 
Figura 80 – Tensões normais devidas à força de protensão e ao momento fletor externo, 
com tensão nula num ponto (base). 
 
 
g) Estado-Limite de descompressão parcial (ELS-DP): Estado no qual garante-se a compressão 
na seção transversal, na região onde existem armaduras ativas. Esta região deve se estender até 
uma distância ap da face mais próxima da cordoalha ou da bainha de protensão. 
a
p
Região
tracionada
Região
comprimida
Bainha
 
Figura 81 – Dimensão ap no ELS-DP. 
 
 
11. AÇÕES A CONSIDERAR NOS ESTADOS-LIMITES DE SERVIÇO 
 
11.1 COMBINAÇÕES DE SERVIÇO 
(NBR 6118, item 11.8.3) 
 
a) quase permanentes 
 
 


n
1j
k,qjj2
m
1i
k,giser,d FFF 
 
b) frequentes 
 
 


n
2j
k,qjj2k,1q1
m
1i
k,giser,d FFFF 
 
c) raras 
 
 


n
2j
k,qjj1k,1q
m
1i
k,giser,d FFFF 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
55 
11.2 NÍVEIS DE PROTENSÃO 
(NBR 6118, item 13.4.2, Tabela 13.4) 
 
a) protensão completa (nível 3) 
 
- para elementos de Concreto Protendido pré-tracionados, em classes de agressividade ambiental 
III e IV; 
 
- exigências a serem atendidas: 
 - Estado-limite de descompressão (ELS-D) com combinação frequente de ações (ELS-D 
pode ser substituído porELS-DP com ap = 50 mm); 
 - Estado-limite de formação de fissuras (ELS-F) com combinação rara de ações. 
 
b) protensão limitada (nível 2) 
 
- para elementos de Concreto Protendido pré-tracionados em classe de agressividade ambiental II 
ou pós-tracionados em ambientes III e IV; 
 
- exigências a serem atendidas: 
 - Estado-limite de descompressão (ELS-D - ou ELS-DP com ap = 50 mm), com 
combinação quase permanente de ações; 
 - Estado-limite de formação de fissuras (ELS-F) com combinação frequente de ações. 
 
c) protensão parcial (nível 1) 
 
- para elementos de Concreto Protendido pré-tracionados em classe de agressividade ambiental I 
ou pós-tracionados em ambientes I e II; 
 
- exigência a ser atendida: 
 - Estado-limite de abertura de fissuras (ELS-W), com wk  0,2 mm, para combinação 
frequente de ações. 
 
Observações: 
 
a) na protensão completa não se admitem tensões normais de tração, a não ser em 
combinações raras (ocorrência de apenas algumas horas na vida útil), até o ELS-F (início 
de formação de fissuras); 
b) na protensão limitada admitem-se tensões normais de tração, sem ultrapassar o ELS-F 
(início de formação de fissuras). Podem surgir fissuras somente para a combinação rara, 
que seriam fechadas após cessada essa combinação; 
c) na protensão parcial admitem-se tensões normais de tração e fissuras com aberturas de até 
0,2 mm. 
 
12. ESTIMATIVA DA FORÇA DE PROTENSÃO FINAL P 
 
O processo parte dos estados-limites de serviço. Com a estimativa de P determina-se a 
armadura de protensão (Ap). 
Devem ser conhecidos: ações atuantes, materiais, geometria, seção transversal, esforços 
solicitantes, nível de protensão. Considere-se: 
 
b = tensão normal na base; 
t = tensão normal no topo; 
g1 = peso próprio do elemento estrutural; 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
56 
g2 = carga permanente adicional; 
q1 = carga variável principal; 
q2 = carga variável secundária; 
P,est = força de protensão final estimada. 
 
 Admitindo que os carregamentos externos causem tração na borda inferior da peça, devem 
ser consideradas as seguintes situações. 
 
12.1 Protensão Completa 
 
a) combinação frequente de ações 
 
 Para respeitar o estado-limite de descompressão na borda inferior: 
 
 bg1 + bg2 + 1 bq1 + 2 bq2 + bP = 0 
 
de onde resulta bP . 
 
 P (valor A) sai de: 
 
 
b
pest,
c
est,
bP
W
eP
A
P 
  
 
 Considerando q2 como zero, os diagramas de tensão ficam: 
 
fck
tg1
Ap
CG
e
p
-
+
+ =
y
t
y
b
bg1
tg2
-
+
bg2
+
-
+
+
bs
ts = 0,7 
-
tq11 .
bq11 .
-
+
tp
8
bp
8 = 0
 
Figura 82 – Tensões na protensão completa, para a combinação frequente de ações. 
 
 
 ts  0,7 fck (deve-se sempre verificar). 
 
 
b) combinação rara de ações 
 
 Para respeitar o estado-limite de formação de fissuras na borda inferior: 
 
 bg1 + bg2 + bq1 + 1 bq2 + bP = 






I)ou T seção (para f2,1
)retangular seção (para f5,1
ctk
ctk
 
 
de onde resulta bP . 
 
Considerando q2 como zero, os diagramas de tensão ficam: 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
57 
ts = 0,7 fck
tp
8
bp
8
tg1
Ap
CG
e
p
-
+
+ =
y
t
y
b
bg1
tg2
-
+
bg2
+
-
+
+
bs
-
-
+
+
tq1
bq1
 
Figura 83 – Tensões na protensão completa, para a combinação rara de ações. 
 
 
ts  0,7 fck (deve-se sempre verificar). 
 
 bs =






I)ou T seção (para f2,1
)retangular seção (para f5,1
ctk
ctk
 
 
 P (valor B) fica definido por: 
 
 
b
pest,
c
est,
bP
W
eP
A
P 
  
 Dentre os valores A e B de P escolhe-se o de maior valor absoluto. 
 
12.2 Protensão Limitada 
 
a) combinação quase-permanente de ações 
 
 Para respeitar o estado-limite de descompressão na borda inferior: 
 
 bg1 + bg2 + 2 bq1 + 2 bq2 + bP = 0 
 
e P (valor A): 
 
b
pest,
c
est,
bP
W
eP
A
P 
  
 
b) combinação frequente de ações 
 
 Para respeitar o estado-limite de formação de fissuras na borda inferior: 
 
 bg1 + bg2 + 1 bq1 + 2 bq2 + bP = 






I)ou T seção (para f2,1
)retangular seção (para f5,1
ctk
ctk
 
e P (valor B): 
 
 
b
pest,
c
est,
bP
W
eP
A
P 
  
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
58 
 Dentre os valores A e B de P escolhe-se o de maior valor absoluto. 
12.3 Protensão Parcial 
 
a) combinação quase permanente de ações 
 
 A NBR 6118 não estabelece esta limitação, mas pode ser adotada na estimativa de P . 
Para respeitar o estado-limite de descompressão na borda inferior: 
 
 bg1 + bg2 + 2 bq1 + 2 bq2 + bP = 0 
 
e o valor adotado para P resulta de: 
 
b
pest,
c
est,
bP
W
eP
A
P 
  
 
 
13. DETERMINAÇÃO DA FORÇA Pi 
 
São feitos os seguintes passos: 
 
a) a perda de protensão total deve ser arbitrada. Excluída a perda por atrito dos cabos, a perda total 
varia entre 20 e 30 %; 
b) determina-se a força no “macaco”: 
 
 arb
est,
est,i
P1
P
P



 
 
c) considerando os limites de tensão na armadura de protensão nas operações de estiramento, 
determina-se a área de armadura de protensão: 
 
 
lim,Pi
est,i
est,p
P
A

 
 
d) com tabelas de aços determinam-se número de fios, cordoalhas ou cabos e a área efetiva, Ap,ef ; 
e) aproveitando o máximo da capacidade resistente do aço empregado, determina-se Pi,ef : 
 
 Pi,ef = Pi = Ap,ef . Pi,lim 
 
 
14. VERIFICAÇÃO DE TENSÕES NORMAIS NA SEÇÃO DE CONCRETO MAIS 
SOLICITADA PELO CARREGAMENTO EXTERNO 
 
Após serem determinadas as forças de protensão (Pi , Pa , Po e P) deve-se verificar as 
tensões normais no concreto (seção), referentes às diferentes etapas da peça (produção, transporte, 
montagem, etc.). 
Tomando os esforços na seção mais solicitada pelos carregamentos externos, as tensões 
normais devem ser verificadas considerando todas as combinações possíveis de ações, como nas 
etapas: 
 
- de transferência da força de protensão à seção (quando geralmente atua o peso próprio e a 
protensão); 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
59 
- de transporte da peça pré-moldada internamente ou no canteiro (peso próprio, protensão, efeitos 
dinâmicos no transporte); 
- de estocagem (no caso de peças pré-moldadas); 
- de transporte externo à fabrica; 
- de montagem das peças; 
- do “estado em vazio” (protensão e peso próprio); 
- do “estado em serviço” (protensão, peso próprio, demais ações permanentes e demais ações 
permanentes e frações das ações variáveis). 
 
 Para cada combinação deve-se verificar os estados-limites de descompressão, de formação 
de fissuras, etc., conforme o nível de protensão, além do de compressão excessiva. 
 
 
15. VERIFICAÇÃO DE TENSÕES NORMAIS AO LONGO DO VÃO 
 
Esta verificação deve ser feita porque podem ocorrer tensões elevadas em regiões com 
baixas solicitações do carregamento externo. São utilizados dois processos: das “curvas limites” e 
do “fuso limite”. 
O processo das curvas limites é adequado onde existe variação significativa da força de 
protensão ao longo do vão (por eliminação) da aderência em determinados trechos ou pelo 
encurvamento e ancoragem de alguns cabos antes dos apoios. 
O processo do fuso limite é adequado onde a força de protensão se mantém 
aproximadamente constante ao longo do vão (cabos retos ou com curvatura suave, forças de atrito 
pequenas), com todos os cabos ancorados juntos aos apoios. 
 
15.1 PROCESSO DAS CURVAS LIMITES 
 
Neste processo pode-se estabelecer limites às tensões provocadas pela protensão, ao longo 
do vão da peça. 
Considerando todas as combinações de ações, verificadas na seção mais solicitada pelo 
carregamento externo, deve-se escolher as mais desfavoráveis, como: 
 
a)estado em vazio: g1 + Po 
 
 Atuam somente o peso próprio e a protensão antes das perdas progressivas (“pouca carga e 
muita protensão”). 
 
b) estado em serviço: g + q + P 
 
 Atuam todas as cargas permanentes, a protensão depois das perdas progressivas, e todas as 
cargas variáveis, corrigidas pelos fatores  (“muita carga e pouca protensão”). 
 Para esses dois estados são impostos limites às tensões normais causadas pela protensão, 
visando respeitar os estados-limites de serviço (descompressão, formação de fissuras, fissuração 
inaceitável e compressão excessiva). 
 
15.1.1 Limitações de Tensões para o Estado em Vazio 
 
Numa seção qualquer da peça, onde bv,lim e tv,lim são limites das tensões normais no 
concreto (correspondentes a um determinado estado-limite estabelecido para o estado em vazio), 
tem-se: 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
60 
Ap
CG
P0
-
+-
+
+ =
-
bpo
tpo tg1
bg1
tv
bv
tv,lim
bv,lim
P0
( ) g1
( ) + g1
( )v = P0
 
Figura 84 – Tensões no estado em vazio. 
 
 
Na borda inferior (b = base): 
 
 bPo + bg1 = bv  bv,lim (considerando os sinais) 
 
 bPo  bv,lim - bg1 (I) 
 
 Na borda superior (t = topo): 
 
 tPo + tg1 = tv  tv,lim 
 
 tPo  tv,lim - tg1 (II) 
 
 As duas equações aplicam limites para as tensões causadas pela protensão. 
 
 
15.1.2 Limitações de Tensões para o Estado em Serviço 
 
De modo semelhante, na borda inferior: 
 
 bP + bg + bq = bs  bs,lim 
 
 bP  bs,lim - bg - bq (III) 
 
 Na borda superior: 
 
 tP + tg + tq = ts  ts,lim 
 
 tP  ts,lim - tg - tq (IV) 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
61 
Ap
CG
P
-
+-
+
+ =
bp
tp tq
bq
P( ) q( ) s = ( + g + q )P
8
8 tg
-
+
bg
g( )
8
ts
+
-
bs
ts,lim
bs,lim
8 8
+
 
Figura 85 – Tensões no estado em serviço. 
 
 
15.1.3 Curvas Limites para as Tensões Devidas à Protensão 
 
As equações I a IV definem curvas limites para as tensões devidas à protensão. 
Dividindo os membros pela tensão devida à protensão no meio do vão (bPo,m , tPo,m , 
bP,m , ou tP,m), fica: 
 
m,bPo
1bglim,bv
m,bPo
bPo





  Cbv (Ia) 
 
(curva limite para a borda inferior, em vazio) 
 
m,tPo
1tglim,tv
m,tPo
tPo





  Ctv (IIa) 
 
(curva limite para a borda superior, em vazio) 
 
m,bP
bqbglim,bs
m,bP
bP







  Cbs (IIIa) 
 
(curva limite para a borda inferior, em serviço) 
 
m,tP
tqtglim,ts
m,tP
tP







  Cts (IVa) 
 
(curva limite para a borda superior, em serviço) 
 
15.1.4 Exemplo de Curvas Limites 
 
Considere uma viga simplesmente apoiada, protendida em pista de protensão com 
armadura composta por seis cordoalhas retas. Um esquema gráfico da viga deve ser feito, como 
mostrado na Figura 86. 
Abaixo da viga são desenhadas as curvas limites. No meio do vão, a ordenada máxima das 
tensões relativas (p/p,m) causadas pela protensão é igual a 1, ou seja, no meio do vão as 6 
cordoalhas produzem efeitos totais (100 %). A ordenada 1 é dividida em partes iguais ao número 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
62 
de cordoalhas (6), e cada 1/6 representa a contribuição de uma cordoalha nas tensões causadas 
pela força de protensão total. 
0 1 2 3 4 5
Ap = 6 cordoalhas
Compressão (to
po)
IV
a
IIIa
Tra
çã
o 
(b
as
e)
Cts
Cbs
Compressão (base) Ia
Cbv
Tração 
 (topo)
IIa
Ctv
p
p,m
1
1
6
1
6
1
6
 
Figura 86 – Exemplo de curvas limites em viga com seis cordoalhas. 
 
 
A metade do vão da viga pode ser dividida em cinco partes iguais, e para cada uma das 
seções definidas devem ser calculados os valores das ordenadas das curvas limites. 
As tensões relativas devidas à protensão não podem ser mantidas constantes e iguais a 1 
entre a seção do meio do vão e o apoio, porque interceptariam as curvas limites Cbv e Ctv , o que 
significa que as tensões limites no estado em vazio estariam sendo alcançadas. Para evitar isso, 
pode-se interromper o efeito de alguma cordoalha, em posições adequadas, variando-se assim a 
intensidade da força de protensão, mantendo-se constante a excentricidade. 
Em pistas de protensão o efeito da protensão de uma cordoalha (ou fio) pode ser 
desativado eliminando-se a aderência entre a cordoalha e o concreto, a partir de uma determinada 
seção, o que pode ser feito revestindo-se a cordoalha com betume, papel kraft, revestimento com 
mangueiras de plástico flexível (espaguetes). 
Cada interrupção de uma cordoalha resulta na perda de contribuição dessa cordoalha, 
representada pelos degraus no diagrama das tensões relativas, isto é, cada degrau significa a 
desativação de uma cordoalha. 
No exemplo em questão, quatro das seis cordoalhas chegariam até o apoio. 
Outras combinações de ações importantes também podem ser analisadas, ou seja, outras 
curvas limites podem ser geradas, embora seja mais prático trabalhar com apenas as duas mais 
desfavoráveis. 
O processo das curvas limites pode também ser empregado no caso de cabos de protensão 
curvos, interrompidos, comuns na pós-tração. 
 
15.2 PROCESSO DO FUSO LIMITE 
 
Este processo é particularmente importante no caso onde não ocorre grande variação da 
intensidade da força de protensão, isto é, não há interrupção de cabos no vão, sendo todos 
ancorados nas extremidades da peça. 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
63 
No processo das curvas limites são estabelecidos limites para as tensões devidas à 
protensão, mas no processo do fuso limite são estabelecidos limites para a excentricidade da força 
de protensão. 
O fuso limite é uma faixa dentro da altura da peça onde os cabos de protensão devem se 
situar, de modo que assim os limites das tensões normais são atendidos. 
Recordando: 
 
P
M
em  
 
 
W
ee
P
A
P mp
c

 
Ap
CG
e
p
P
M
=
P
ep
em
- em
Centro de 
pressão
-
 
Figura 87 – Seção submetida à força de protensão e ao momento fletor externo 
e excentricidades da força P. 
 
 
15.2.1 Estado em Vazio 
 
Considerando no estado em vazio a situação mais desfavorável definida com a atuação do 
peso próprio da peça e da protensão antes das perdas, e sendo Mg1 o momento fletor devido ao 
carregamento permanente g1 , tem-se o centro de pressão indicado na Figura 88. 
CG
e
p
P0
Mg1
=
P0
ep
emg1
- emg1
Centro de 
pressão
tv
tv,lim
bv,lim
bv
+
-
 
Figura 88 – Tensões no estado em vazio, com o momento fletor externo 
devido ao carregamento permanente g1 . 
 
 
a) considerando a borda inferior como crítica 
 
o
1g
1mg
P
M
e  ; 
 
b
1mgpoo
bv
W
eeP
A
P 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
64 
Chamando abv o valor limite de (ep – emg1), isto é, a excentricidade limite do centro de 
pressão, que ocorre quando bv = bv,lim : 
 
lim,bv
b
bvoo
W
aP
A
P
  lim,bvbv
b
oo a
W
A
A
P
A
P








 
 
Sendo ekb a excentricidade limite do núcleo central de inércia da seção, com a qual uma 
força normal aplicada produz tensão nula na borda inferior, tem-se: 
 











cgo
lim,bv
kbbv 1ea 
 
onde todos os valores devem ter os sinais considerados. 
Portanto, para que a tensão limite na borda inferior não seja ultrapassada, o centro de 
pressão não poderá estar a uma distância do centro de gravidade da seção transversal maior que 
abv : 
ep – emg1  abv  ep  abv + emg1 
 
emg1= Mg1 / P0
+ emg1
( )abv
abv
CG da seção
O CG da armadura 
deverá estar acima
desta linha
Ap
 
Figura 89 – Limite para o fuso no estado em vazio considerandoa borda inferior como crítica. 
 
 
b) considerando a borda superior como crítica 
 
 
t
1mgpoo
tv
W
eeP
A
P 
 
 
Quando tv = tv,lim , então (ep – emg1) = atv , e : 
 











cgo
lim,tv
kttv 1ea 
 
Entre abv e atv deve-se tomar o valor mais desfavorável para determinar o limite para a 
armadura de protensão. 
 
15.2.2 Estado em Serviço 
 
Considerando neste estado a situação mais desfavorável definida com a atuação da 
protensão após as perdas, a carga permanente total e a sobrecarga variável, tem-se: 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
65 
CG
e
p
P
Mg+q
=
ep
ep
- emgq
+
-
ts,lim
ts
bs
bs,lim
8
Ap
P8
 
Figura 90 – Tensões no estado em serviço, com o momento fletor externo devido à 
carga permanente total e à carga variável. 
 
 
a) Considerando a borda inferior como crítica 
 
 
b
mgqp
bs
W
eeP
A
P 

 
Quando bs = bs,lim , então (ep – emgq) = abs : 
 











cg
lim,bs
kbbs 1ea 
 
b) Considerando a borda superior como crítica 
 
 
t
mgqp
ts
W
eeP
A
P 

 
 
Quando ts = ts,lim , então (ep – emgq) = ats , e : 
 











cg
lim,ts
ktts 1ea 
 
Toma-se o valor mais desfavorável entre abs e ats , e: 
 
ep – emgq  ais (i = b, t)  ep  ais + emgq 
 
 
15.2.3 Traçado do Fuso Limite 
 
Com os esforços em diversas seções transversais e dos resultados calculados conforme 
exposto, desenha-se o diagrama correspondente ao fuso limite, como mostrado na Figura 91. 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
66 
emg1
emgq
abs ou ats
abv ou atv
Região onde deve estar
localizada a armadura
de protensão
CG
 
Figura 91 – Região do fuso limite. 
 
 
Nota-se que a armadura de protensão não poderia ser mantida com excentricidade 
constante até o apoio. Seria necessário variar a excentricidade. 
O processo do fuso limite é indicado quando toda a armadura de protensão é ancorada nos 
topos da peça, e pode-se considerar a força de protensão aproximadamente constante ao longo do 
vão, que acontece quando a inclinação do cabo resultante é relativamente pequena, e quando as 
perdas de protensão, principalmente por atrito, não inviabilizam a consideração de um único valor 
ao longo do vão. 
 
fuso
limite
 
a) cabos curvos pós-tracionados; 
 
 
b) cabos poligonais pré-tracionados. 
 
Figura 92 – Exemplos de aplicação do fuso limite. 
 
 
 
 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
67 
16. ANÁLISE DA RESISTÊNCIA ÚLTIMA À FLEXÃO (ELU) 
 
O objetivo mais importante no projeto de uma estrutura ou elemento estrutural é simples: 
fornecer à estrutura a resistência necessária. 
A satisfação das tensões limites no concreto e no aço no estado-limite de serviço não 
garante a resistência necessária e não possibilita determinar a resistência real ou o fator de 
segurança do elemento estrutural. É com a determinação da capacidade última do elemento, 
geralmente feita com o cálculo do momento fletor máximo ou último, que se pode garantir a 
margem de segurança entre o carregamento de serviço e o carregamento último. 
O comportamento de uma viga protendida simplesmente apoiada, subarmada, com 
armadura aderente e submetida a um carregamento crescente, pode ser descrito pelo diagrama 
carga x flecha mostrado na Figura 93. 
 
1
2
3
4
5
6
7
8
9
V
ar
ia
çã
o 
da
 c
ar
ga
 d
e 
se
rv
iç
o
N
ão
 fi
ss
ur
ad
a
E
lá
st
ic
a
F
is
su
ra
da
E
lá
st
ic
a
F
is
su
ra
da
P
lá
st
ic
a
MÁXIMO OU
ÚLTIMO
ESCOAMENTO
DO AÇO
LIMITE 
ELÁSTICO
(concreto ou 
aço)
FISSURAÇÃO
P
S
DESCOMPRESSÃO
BALANCEADO
PESO PRÓPRIO
ag1
ape
api
fr
CARGA
FLECHAu1ª fiss
 
Figura 93 – Diagrama carga x flecha de viga protendida subarmada. 
 
api = contraflecha da viga devida à protensão inicial; 
ape = contraflecha da viga devida à protensão efetiva; 
ag1 = flecha devida ao peso próprio. 
 
Os pontos 1 e 2 correspondem à contraflecha na viga, assumida sem o peso próprio. No 
entanto, quando a protensão é aplicada, o peso próprio age automaticamente. O ponto 3 representa 
a contraflecha devida aos efeitos combinados do peso próprio e da força de protensão efetiva (Pe). 
O ponto 4 representa a flecha zero e corresponde ao estado uniforme de tensão na seção. O 
ponto 5 representa a descompressão ou tensão zero na fibra da base da viga; o ponto 6 representa 
a flecha correspondente à primeira fissura. Além do ponto 6 a viga protendida comporta-se de 
modo similar a uma viga fissurada de Concreto Armado. Se a carga é aumentada, no ponto 7 o 
concreto ou o aço alcançam o seu regime plástico. No ponto 8 o aço escoa e, finalmente, a 
capacidade máxima (carga ou momento fletor último) da viga é obtida (ponto 9). 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
68 
16.1 TIPOS DE RUPTURA POR FLEXÃO 
 
Os seguintes tipos de ruptura podem ocorrer, dependendo da quantidade de armadura de 
protensão: 
1. ruptura da armadura imediatamente após o início da fissuração (ruptura brusca); 
2. esmagamento do concreto comprimido, após o escoamento e extensão plástica da 
armadura; 
3. esmagamento do concreto comprimido antes do escoamento da armadura. 
 
O diagrama carga x flecha da Figura 94 mostra o comportamento de uma viga com 
armadura de protensão crescente, onde: 
p = tensão na armadura de protensão; 
py = tensão de início de escoamento da armadura de protensão; 
pu = tensão máxima (última) da armadura de protensão. 
 
CARGA
FLECHA
3
6
8
9
FISSURAÇÃO
RUPTURA NA FISSURAÇÃO ( = )
(ARMADURA MENOR QUE A MÍNIMA)
9
4
RUPTURA - SUBARMADA
 >
 ( )
RUPTURA - SUPERARMADA
(  )
8
ESCOAMENTO
DO AÇO
BALANCEADO
a1ª fiss
p
p pu
py
p pu
p py
 
Figura 94 – Viga com armadura de protensão crescente. 
 
 
16.2 PRÉ-ALONGAMENTO 
 
Define-se como pré-alongamento a deformação na armadura de protensão quando a tensão 
no concreto ao nível de Ap é zero. Na pré-tração o pré-alongamento é devido à força Pa . 
No cálculo do momento fletor último, os procedimentos são os mesmos aos das seções em 
Concreto Armado, devendo-se levar em conta que a armadura de protensão possui um 
alongamento prévio, existente antes de se considerar as ações externas. 
À força de protensão de cálculo atuando na peça (Pd) é necessário acrescentar uma parcela 
de força, equivalente àquela que originou o encurtamento por deformação imediata do concreto, 
tal que: 
cpdppdnd APP  
 
com cpd = tensão de cálculo no concreto ao nível da armadura de protensão. 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
69 
 A deformação de pré-alongamento na armadura de protensão, quando nela atua a força Pnd, 
conforme a Lei de Hooke, é: 
 =  E  
EA
P
E


 
 
pp
nd
pnd
EA
P
 
 
O valor de cálculo da força de protensão (Pd) no Estado-Limite Último (ELU), após a 
ocorrência de todas as perdas progressivas, é: 
 
Pd = p . P 
 
com: p = 0,9 (efeito favorável); 
p = 1,2 (efeito desfavorável). 
 
e tomando o efeito favorável: 
 
 








 
c
2
p
c
cpd
I
e
A
1
P9,0 
 
Para melhor entendimento considere uma seção transversal sujeita a momentos fletores 
positivos progressivamente aumentados até se atingir a ruptura nos domínios 3 ou 4 (Figura 95): 
 
LJAC
D
M
F
B
G IN
H
E
Borda Superior
CG de
CG de
Borda Inferior
na ruptura
estado de neutralização
com =0
x
LN
Ec Ap
Pd
Ep
cp
cpd
Ac
Ap
= 3,5 ‰cd
p1d
pd
pnd
def. de pré-alongamento
 
Figura 95 – Deformações numa seção sob momentos fletores positivos crescentes. 
 
 
a) deformações devidas unicamente à protensão 
 
- borda superiorcom deformação de alongamento AC; borda inferior com encurtamento 
BH; 
- deformação ao nível do CG: Pd / (A . Ec) = segmento DE; 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
70 
- deformação do concreto ao nível do CG da armadura de protensão: cpd / Ec = segmento 
FG; 
- deformação da armadura de protensão: 
Pd / (Ap . Ep) = segmento GI. 
 
b) deformações devidas às solicitações externas, até que se anule a deformação na fibra 
correspondente ao CG da armadura de protensão (ponto F) 
 
- o acréscimo dos momentos fletores externos provoca encurtamentos na borda superior 
(de C a J) e alongamentos na borda inferior (de G a F), que se superpõem aos já existentes 
devidos à protensão; 
- no final desta fase, o alongamento da armadura de protensão é FI: 
c
cpd
pp
d
EEA
P 
 , que é o pré-alongamento da armadura de protensão (pnd); 
 
- pré-alongamento é a deformação de Ap quando a tensão no concreto no CG de Ap é zero 
(ponto F). 
 
c) deformações devidas às solicitações externas, até que se atinja o encurtamento de ruptura 
do concreto 
- continuando a aumentar o carregamento externo (momentos fletores), o concreto sofre 
fissuração na região inferior tracionada e, por consequência, a LN eleva-se; 
- quando a deformação do concreto na borda superior atinge o valor último de 3,5 ‰, 
ocorre a ruptura típica dos domínios 3 ou 4; 
- a deformação na armadura de protensão é p1d (FN), que se soma ao pré-alongamento, 
resultando a deformação total de cálculo pd (IN). 
 
O alongamento plástico excessivo da armadura tracionada (ELU) é atingido quando o 
valor 10 ‰ é alcançado, a partir do “estado convencional de neutralização”. 
 
16.3 DETERMINAÇÃO DO MOMENTO FLETOR ÚLTIMO 
 
Para o cálculo do momento fletor último devem ser consideradas as hipóteses básicas 
admitidas para o Concreto Armado, como os domínios de cálculo, equações de equilíbrio de 
forças e de momentos fletores e compatibilidade de deformações. 
 
Nota: estudar “Domínios de Deformação” e exercícios de verificação em apostila da 
disciplina Estruturas de Concreto I. 
 
O cálculo do momento fletor último serve também para mostrar se há a necessidade de 
acrescentar armadura passiva, a fim de aumentar a segurança no ELU. 
O cálculo de Mu é geralmente feito por tentativas, arbitrando-se a tensão na armadura de 
protensão (pd,arb) ou a posição x da linha neutra. A solução é encontrada quando há equilíbrio 
entre as forças de compressão e de tração. 
Na sequência são apresentadas as formulações para o cálculo de momento fletor último de 
seções retangulares e T, para os concretos do Grupo I de resistência (do C20 ao C50). Para 
concretos do Grupo II de resistência (C55 ao C90), conforme a NBR 6118, são necessárias 
modificações em alguns parâmetros, não apresentados neste texto. 
 
 
 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
71 
16.3.1 Seção Retangular 
 
Considere a seção transversal retangular mostrada na Figura 96. 
 
h
0
,8
x
0,85
As
bw
d
'
d
p
Ap
d
s
LN
x
A's
A'c
 3,5‰
fcd
Rsc
Rcc
 10‰ Rpt
Rst
cd
sd'
p1d
sd
pd
pnd
 
 
Figura 96 – Tensões e deformações na seção retangular no ELU para 
concretos do Grupo I de resistência (fck ≤ 50 MPa). 
 
Equilíbrio de forças: 
 
Rcc + Rsc = Rpt + Rst 
 
ccdcc 'AR  = 0,85fcd 0,8x bw 
 
Rsc = ’sd A’s 
 
Rpt = pd Ap 
 
Rst = sd As 
 
com pd = tensão de cálculo na armadura de protensão. 
 
 Supondo que As e A’s escoaram: sd = 
s
yk
yd
f
f

 e ’sd = 
s
yk
yd
'f
'f

 
Rsc = f’yd A’s 
 
Rst = fyd As 
 
0,85fcd 0,8x bw + f’yd A’s = pd Ap + fyd As 
 
wcd
sydsydppd
b8,0f85,0
'A'fAfA
x

 
 
Compatibilidade de deformações: 
 
xd
x
pd1p
cd




 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
72 
xd
x
ssd
cd




 
 
'dx
x
'sd
cd




 
 
Equilíbrio de momentos fletores: fazendo somatória de momentos sobre a resultante Rcc 
tem-se: 
 
Mud = pd Ap (dp – 0,4x) + fyd As (ds – 0,4x) + f’yd A’s (0,4x – d’) 
 
A condição de segurança estará satisfeita se Mud  MSd . 
 
 
16.3.2 SEÇÃO T 
 
Inicialmente supõe-se a seção T como uma seção retangular de largura bf . Se 0,8x  hf , 
então a suposição inicial é verdadeira e o cálculo de Mud é imediato, com as fórmulas 
desenvolvidas para a seção retangular. Se 0,8x > hf , a linha neutra corta a nervura e um novo 
equacionamento é necessário, como descrito a seguir (ver Figura 97). 
h
0
,8
x
As
bw
Ap
h
f
 3,5 ‰
bw
d
s d
p
I
2
III
bf bw-
2
bf bw-
bf
LN
x
II
II + III
bf bw-
Rcc,m
Rpt
Rst
d
s
d
p
-
d
p
0
,5
h
f
-
0
,5
h
f
I
Rcc,n
bw
cd
p1d
sd
 10 ‰pnd
pd
 
 
Figura 97 – Tensões e deformações na seção T no ELU. 
 
 
Equilíbrio de forças: 
 
Rcc,m = resultante das tensões de compressão na mesa (regiões II e III); 
 
Rcc,n = resultante das tensões de compressão na nervura (região I). 
 
Rcc,m + Rcc,n = Rpt + Rst 
 
Rcc,m = 0,85fcd (bf – bw) hf 
 
Rcc,n = 0,85fcd 0,8x fcd 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
73 
Rpt = pd Ap 
 
Rst = sd As 
 
Supondo que a armadura passiva tracionada As escou: 
 
0,85fcd (bf – bw) hf + 0,85fcd 0,8x bw = pd Ap + fyd As 
 
 
wcd
fwfcdsydppd
b8,0f85,0
hbbf85,0AfA
x

 
 
Equilíbrio de momentos fletores: fazendo somatória de momentos sobre a resultante Rcc,n 
tem-se: 
 
Mud = 0,85fcd (bf – bw) hf (0,4x – 0,5hf) + pd Ap (dp – 0,4x) + fyd As (ds – 0,4x) 
 
A condição de segurança estará satisfeita se Mud  MSd 
 
 
16.3.3 ROTEIRO PARA CÁLCULO DE Mud 
 
a) cálculo do pré-alongamento (pnd); 
b) determinação da tensão na armadura (pd), supondo inicialmente que a ruptura ocorre nos 
domínios 3 ou 4: 
 
cd = 0,85fcd ; cd = 3,5 ‰ 
 
c) por tentativa: 
 
c1) pd
(1) = fpyd = fpyk/1,15 
 
c2) equações de equilíbrio resulta x; 
 
c3) equação de compatibilidade de deformações resulta p1d ; 
 
c4) se p1d 10 ‰ : domínio 2; 
 
- determina-se a tensão pd na armadura com pd = p1d + pnd 
 
- 
xd
x
pd1p
cd




 com p1d = 10 ‰ e cd ≤ 3,5 ‰ 
 
se cd ≤ 3,5 ‰ a hipótese de domínio 2 está correta. 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
74 
16.4 EXEMPLOS DE CÁLCULO DE Mud 
 
1) Determine o momento fletor último de uma viga retangular em Concreto Protendido 
com aderência entre armadura de protensão e o concreto, sendo conhecidos: 
 
C40 (Ecs = 30.105 MPa) 
c = 1,3 (elemento pré-fabricado) 
armadura ativa: Ap = 9,87 cm2 
(10 cordoalhas CP190 RB  12,7 mm; 
fptk = 1.900 MPa , fpyk = 1.710 MPa) 
Ep = 196.000 MPa 
armaduras passivas: As = 25,20 cm2 
A’s = 10,00 cm2 
(CA-50 – fyk = 500 MPa , fyd = 434,8 MPa, 
yd = 2,07 ‰ , s = 1,15) 
p∞ =  1.220 MPa 
Erro máximo no cálculo de Mud = 1 %. 
As
e
p
- 
d
s
8
0
 c
m
Ap
=
 7
3
40 cm
4
7
=
 3
3
d
p
Ap
A's
 
Figura 98 – Seção transversal da viga 
(medidas em cm). 
 
Resolução 
 
Área da seção transversal de concreto: 
 
Ac = 40 . 80 = 3.200 cm2 
 
Momento de inércia da seção: 
 
667.706.1
12
8040
12
hb
I
33
w
c 

 cm4 
 
Força de protensão final: 
 
P∞ = Ap . p = 9,87 ( 122,0) =  1.204,1 kN 
 
Razão modular: 
 
51,6
30105
196000
E
E
cs
p
p  
 
Tensão no concreto ao nível da armadura de protensão: 
 
 
145,1
1706667
331,1204
3200
1,1204
I
eP
A
P 2
c
2
p
c
cp 




 kN/cm2 
 
Força de protensãopara cálculo da deformação de pré-alongamento: 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
75 
cpppn APP   
Pn =  1204,1 + 6,51 . 9,87 . ( 1,145) =  1.277,7 kN 
 
Para o valor de cálculo de Pn deve-se considerar p = 0,9 (“efeito favorável”), porque 
quanto maior a força de protensão, maior o momento fletor último. Existirá uma margem de 
segurança com a consideração de um momento fletor último (teórico) menor que aquele real 
apresentado pela viga, lembrando que a verificação para a segurança é: Mud ≥ MSd . 
 
Pnd = p . Pn = 0,9 ( 1277,7) =  1.150,0 kN 
 
Deformação de pré-alongamento: 
 
00594,0
1960087,9
0,1150
EA
P
pp
nd
pnd 


  5,94 ‰ 
 
Cálculo por tentativas adotando a tensão na armadura de protensão. 
 
a) primeira tentativa: pd
(1) = fpyd = 0,487.1
15,1
1710f
s
pyk


 MPa 
 
Cálculo da posição da linha neutra considerando a seção retangular, e com a hipótese de 
que as armaduras passivas escoaram: 
 
wcd
sydsydppd
b8,0f85,0
'A'fAfA
x

 = 43,25
408,0
3,1
0,4
85,0
00,1048,4320,2548,4387,97,148



 cm 
 
Deformação na armadura de protensão, supondo domínio 3 ou 4: 
 
xd
x
pd1p
cd




  
43,2573
43,255,3
d1p 


 
 
p1d = 6,54 ‰ pyd = 7,59 ‰ , a armadura de protensão está escoando, o que 
significa que o domínio é o 3. Caso resultasse pd 1 %  portanto, fazer nova tentativa para diminuir o erro. 
 
b) segunda tentativa: pd
(2) = 1.516,5 MPa = 151,65 kN/cm2 (a tensão resultante da primeira 
tentativa) 
Posição da linha neutra: 
 
wcd
sydsydppd
b8,0f85,0
'A'fAfA
x

 = 78,25
408,0
3,1
0,4
85,0
00,1048,4320,2548,4387,965,151



cm 
 
Deformação na armadura de protensão, supondo domínio 3 ou 4: 
 
xd
x
pd1p
cd




  
78,2573
78,255,3
d1p 


 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
77 
p1d = 6,41 ‰ yd = 2,07 ‰ 
 
portanto, a armadura passiva tracionada As está escoando e a tensão é fyd = 43,48 kN/cm2, 
conforme se verifica no diagrama σ x ε do aço CA-50, mostrado na Figura 101. 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
78 
'dx
x
'sd
cd




  
478,25
78,25
'
5,3
sd 


 
 
’sd = 2,96 ‰ > yd = 2,07 ‰ 
 
portanto, a armadura passiva comprimida A’s está escoando e a tensão é f’yd = 43,48 kN/cm2, 
conforme se verifica no diagrama σ x ε do aço CA-50, mostrado na Figura 101. 
 
434,8
(MPa)
2,07
0 10 (‰)
fyd
sd
pd
yd
CA-50
 
Figura 101 – Diagrama σ x ε do aço CA-50. 
 
O momento fletor último é: 
 
Mud = pd Ap (dp – 0,4x) + fyd As (ds – 0,4x) + f’yd A’s (0,4x – d’) 
 
Mud = 151,57 . 9,87 (73 – 0,4 . 25,78) + 43,48 . 25,20 (73 – 0,4 . 25,78) + 43,48 . 10,00 
(0,4 . 25,78 – 4) 
 
Mud = 165.212 kN.cm  deve-se ter Mud ≥ MSd 
 
 
2) Determine o momento fletor último de uma viga retangular pré-tensionada em 
Concreto Protendido com aderência entre a armadura de protensão e o concreto, sendo 
conhecidos: 
 
C35 (Ecs = 28.161 MPa) ; c = 1,4 
armadura ativa: Ap = 5,92 cm2 
(6 cordoalhas CP190 RB  12,7 mm ; 
fptk = 1.900 MPa , fpyk = 1.710 MPa) 
Ep = 196.000 MPa 
armadura passiva: As = 7,60 cm2 
(CA-50 ; fyk = 500 MPa , fyd = 434,8 MPa, 
yd = 2,07 ‰ , s = 1,15) 
p∞ =  1.024 MPa 
Erro máximo no cálculo de Mud = 1 %. 
CG
Ap
2
2
30 cm
=
 5
2
d
s
6
0
 c
m
As
e
p
d
p
=
 5
6
 
Figura 102 – Seção transversal da viga. 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
79 
Resolução 
 
Área da seção transversal de concreto: 
 
Ac = 30 . 60 = 1.800 cm2 
 
Momento de inércia da seção: 
 
000.540
12
6030
12
hb
I
33
w
c 

 cm4 
 
Força de protensão final: 
 
P∞ = 5,92 ( 102,4) =  606,2 kN 
 
Razão modular: 
 
96,6
28161
196000
E
E
cs
p
p  
 
Tensão no concreto ao nível da armadura de protensão: 
 
 
880,0
540000
222,606
1800
2,606
I
eP
A
P 2
c
2
p
c
cp 




 kN/cm2 
 
Força de protensão para cálculo da deformação de pré-alongamento: 
 
cpppn APP   
 
Pn =  606,2 + 6,96 . 5,92 ( 0,880) =  642,5 kN 
 
Pnd = p . Pn = 0,9 ( 642,5) =  578,2 kN (ver Exemplo 1 quanto ao valor de p) 
 
Deformação de pré-alongamento: 
 
00498,0
1960092,5
2,578
EA
P
pp
nd
pnd 


  4,98 ‰ 
 
Cálculo por tentativa adotando a tensão na armadura de protensão. 
 
a) primeira tentativa: pd
(1) = fpyd = 0,487.1
15,1
1710f
s
pyk


 MPa 
 
Cálculo da posição da linha neutra considerando a seção retangular, supondo que a 
armadura passiva tracionada tenha escoado (sd = fyd): 
 
wcd
sydsydppd
b8,0f85,0
'A'fAfA
x

 = 74,23
308,0
4,1
5,3
85,0
60,748,4392,57,148



 cm 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
80 
Deformação na armadura de protensão, supondo domínio 3 ou 4: 
 
xd
x
pd1p
cd




  
74,2352
74,235,3
d1p 


 
 
p1d = 4,17 ‰ pyd = 7,59 ‰ , a armadura de protensão está escoando, o que 
significa que o domínio é o 3. Caso resultasse pdpd = 1.496,4 MPa, sendo o erro de: 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
81 
6,01001
0,1487
4,1496






 % yd = 2,07 ‰  portanto, a armadura passiva tracionada As está 
escoando e a tensão é fyd = 43,48 kN/cm2, 
conforme se verifica no diagrama σ x ε do aço 
CA-50, mostrado na Figura 101. 
 
O momento fletor último é: 
 
Mud = pd Ap (dp – 0,4x) + fyd As (ds – 0,4x) + f’yd A’s (0,4x – d’) 
 
Mud = 149,64 . 5,92 (52 – 0,4 . 23,74) + 43,48 . 7,60 (56 – 0,4 . 23,74) 
 
Mud = 53.020 kN.cm 
 
MSd  Mud  MSd  53.020 kN.cm 
 
3) Calcular o momento fletor último da viga I pré-tensionada (Figura 104), com aderência 
entre a armadura de protensão e o concreto. Dados: 
 
C30 (Ecs = 26.072 MPa) 
c = 1,3 (peça pré-moldada) 
armadura ativa: Ap = 6,91 cm2 
(7 cordoalhas CP190 RB  12,7 mm ; 
fptk = 1.900 MPa , fpyk = 1.710 MPa) 
Ep = 196.000 MPa 
Ac = 1.136 cm2 
Ic = 499.440 cm4 
P∞ =  718 kN 
Erro máximo no cálculo de Mud = 2 %. 
1
0
,2
5
,1
1
5
,2
1
5
,2
5
,1
1
0
,2
4
3
,7
1
2
,7
1
7
,8
1
7
,8
1
2
,7
1
3
,2
30,5
6
1
,0
10,2
e
p
CG
 
Figura 104 – Seção transversal da viga 
(medidas em cm). 
 
Resolução 
 
Razão modular: 
 
52,7
26072
196000
E
E
cs
p
p  
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
82 
Tensão no concreto ao nível da armadura de protensão: 
 
 
883,0
499440
2,13718
1136
718
I
eP
A
P 2
c
2
p
c
cp 




 kN/cm2 
 
Força de protensão para cálculo da deformação de pré-alongamento: 
 
cpppn APP   
 
Pn =  718 + 7,52 . 6,91 . ( 0,883) =  763,9 kN 
 
Pnd = p . Pn = 0,9 ( 763,9) =  687,5 kN (ver Exemplo 1 quanto ao valor de p) 
 
Deformação de pré-alongamento: 
 
00508,0
1960091,6
5,687
EA
P
pp
nd
pnd 


  5,08 ‰ 
 
Cálculo por tentativa adotando a tensão na armadura de protensão. 
 
a) primeira tentativa: pd
(1) = fpyd = 0,487.1
15,1
1710f
s
pyk


 MPa 
 
Cálculo da posição da linha neutra supondo que a seção T poderá ser calculada como 
seção retangular com largura bw = bf = 30,5 cm: 
 
wcd
sydsydppd
b8,0f85,0
'A'fAfA
x

 = 47,21
5,308,0
3,1
0,3
85,0
91,67,148



 cm 
 
0,8 x = 17,17 cm > hf = 12,7 cm, portanto, a seção deve ser calculada como T, e não como 
retangular com bw = bf . 
 
Recálculo de x para a seção T: 
 
 
wcd
fwfcdsydppd
b8,0f85,0
hbbf85,0AfA
x

 
 
 
60,32
2,10.8,0
3,1
0,3
85,0
7,122,105,30
3,1
0,3
85,091,6.7,148
x 

 cm 
 
0,8 x = 26,08 cm > hf = 12,7 cm  confirma a seção T. 
 
Deformação na armadura de protensão, supondo que a viga está no domínio 3 ou 4: 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
83 
xd
x
pd1p
cd




  
6,327,43
6,325,3
d1p 


 
 
p1d = 1,19 ‰ hf = 12,7 cm  confirma a seção T. 
 
Deformação na armadura de protensão, supondo domínio 3 ou 4: 
 
xd
x
pd1p
cd




  
04,277,43
04,275,3
d1p 


 
 
p1d = 2,16 ‰ 2 % → não ok! 
 
c) terceira tentativa: pd
(3) = 6,388.1
2
1,13580,1419


 MPa 
 
Da seção T: 
 
 
wcd
fwfcdsydppd
b8,0f85,0
hbbf85,0AfA
x

 
 
 
35,28
01,16
16,454
2,10.8,0
3,1
0,3
85,0
7,122,105,30
3,1
0,3
85,091,6.86,138
x 

 cm 
 
0,8 x = 22,68 cm > hf = 12,7 cm  confirma a seção T. 
 
Deformação na armadura de protensão, supondo domínio 3 ou 4: 
 
xd
x
pd1p
cd




  
35,287,43
35,285,3
d1p 


 
 
p1d = 1,89 ‰ 10 ‰  não é domínio 3 ou 4, e sim o domínio 2. 
 
Cálculoconsiderando o domínio 2, fazendo p1d = 10 ‰ (valor máximo): 
 
pd = pnd + p1d = 4,92 + 10,0 = 14,92 ‰ 
 
Deformação de início de escoamento da armadura de protensão: 
 
 =  . E  00744,0
200000
1487
E
f
p
pyd
pyd  = 7,44 ‰ 
1487
(MPa)
1652
7,440 14,92 35
27,56
7,48
1531,8
pd
pd
1
6
5
(‰)
ud
y
fptd
fpyd
yd
 
 
Figura 106 – Diagrama tensão x deformação do aço da armadura de protensão. 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
87 
56,27
165
48,7
y
  y = 44,78 MPa 
 
Para pd = 14,92 ‰ resulta a tensão: pd = 1487,0 + 44,78 = 1.531,8 MPa. 
 
Equação de equilíbrio para seção T calculada como retangular com bw = bf = 30 cm: 
 
wcd
sydsydppd
b8,0f85,0
'A'fAfA
x

 = 69,12
308,0.125,2
50,2.48,4320,3.48,4395,318,153



 cm 
 
0,8x = 0,8 . 12,69 = 10,15 cm 2,07 ‰  sd = fyd 
 
→ ok, conforme se verifica no diagrama σ x ε do aço CA-50, mostrado na Figura 101. 
 
Verificação da tensão na armadura passiva comprimida: 
 
'dx
x
'sd
cd




  
469,12
69,1223,3
sd 


 
 
’sd = 2,21 ‰ > 2,07 ‰  ’sd = f’yd 
 
→ ok, conforme se verifica no diagrama σ x ε do aço CA-50, mostrado na Figura 101. 
 
 Todas as verificações efetuadas confirmaram que o domínio é realmente o 2. Desse modo, 
a tensão na armadura de protensão é o valor de 1.531,8 MPa. O momento fletor último resulta: 
 
Mud = pd Ap (dp – 0,4x) + fyd As (ds – 0,4x) + f’yd A’s (0,4x – d’) 
 
Mud = 153,18 . 3,95 (52 – 0,4 . 12,69) + 43,48 . 3,20 (56 – 0,4 . 12,69) + 43,48 . 2,50 (0,4 . 
12,69  4) 
 
Mud = 36.150 kN.cm 
 
 
 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
88 
5) Para uma viga protendida, qual a quantidade de armadura passiva necessária para a 
viga resistir ao momento fletor solicitante. Dados: 
 
C25 (Ecs = 23.800 MPa) 
c = 1,4 
armadura ativa: Ap = 9,87 cm2 
(10 cordoalhas CP190 RB  12,7 mm ; 
fptk = 1.900 MPa , fpyk = 1.710 MPa) 
Ep = 195.000 MPa 
armadura passiva tracionada As = ? 
(CA-50 – fyk = 500 MPa, fyd = 434,8 MPa, 
yd = 2,07 ‰ , s = 1,15) 
P∞ =  1.100 kN 
MSd = 203.200 kN.cm 
Erro máximo no cálculo de Mud = 1 %. 
1
2
0
Ap
40
=
 1
1
5
=
 1
1
0
d
sd
p
As
 
Figura 107 – Seção transversal da viga 
(medidas em cm). 
Resolução 
 
Área da seção transversal de concreto: 
 
Ac = 40 . 120 = 4.800 cm2 
 
Momento de inércia da seção: 
000.760.5
12
12040
12
hb
I
33
w
c 

 cm4 
 
Cálculo da posição da linha neutra tendo As como incógnita: 
 
wcd
sydsydppd
b8,0f85,0
'A'fAfA
x

 = 
408,0
4,1
5,2
85,0
A48,4387,97,148 s


 
x = 30,22 + 0,8956 As 
 
Substituindo x na equação do momento fletor e fazendo Mud = MSd = 203.200 kN.cm, 
determina-se a armadura As : 
 
Mud = pd Ap (dp – 0,4x) + fyd As (ds – 0,4x) + f’yd A’s (0,4x – d’) 
 
203200 = 148,7 . 9,87 [110  0,4 (30,22 + 0,8956As)] + 43,48As [115  0,4 (30,22 + 
0,8956As)] 
 
203200 = 161443,6  17741,2  525,8As + 5002,5As  525,8As  15,58As
2 
 
As
2  253,6As + 3818,8 = 0 
 
As = 16,08 cm2  x = 30,22 + 0,8956 . 16,08 = 44,62 
 
Deformação na armadura de protensão, supondo domínio 3 ou 4.: 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
89 
xd
x
pd1p
cd




  
62,44110
62,445,3
d1p 


 
 
p1d = 5,13 ‰ pyd = 7,59 ‰ , a armadura de protensão está escoando, o que 
significa que o domínio é o 3. 
Considerando o diagrama  x  adotado pela NBR 6118 para os aços de protensão, a 
tensão na armadura pode ser calculada. 
 
com: 652.1
15,1
1900f
f
s
ptk
ptd 

 MPa 
 
371,27
165
91,2
y
  y = 17,5 MPa 
 
Para pd = 10,54 ‰ resulta a tensão: pd = 1487,0 + 17,5 = 1.504,5 MPa. 
Erro: 
 
2,1100
0,1487
5,1504
1 





 % yd = 2,07 ‰ 
 
portanto, a tensão na armadura passiva tracionada As é fyd = 43,48 kN/cm2. 
 
 
17. ANÁLISE DO ESTADO-LIMITE ÚLTIMO RELATIVO À FORÇA CORTANTE 
 
 
17.1 EFEITOS DA FORÇA CORTANTE 
 
A força de protensão longitudinal introduz nas peças de concreto tensões de compressão 
que reduzem as tensões principais de tração, e as fissuras de “cisalhamento” apresentam-se com 
menor inclinação que nas vigas de Concreto Armado. 
As bielas comprimidas apresentam-se com ângulos  de inclinação entre 15 e 35, 
menores que o ângulo da “Treliça Clássica” (45). 
Quanto maior o grau de protensão, menores são os esforços de tração na alma, sendo 
menor a quantidade de armadura transversal necessária. 
No caso de vigas protendidas isostáticas, o encurvamento dos cabos nas proximidades dos 
apoios produz uma componente de força contrária à força cortante solicitante. 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
91 
 
VSd = Vd  Pd sen  
 
Vd

Pd
cos 
Pd
Pd
sen 
 
 
Figura 109 – Componente de força devido à curvatura do 
cabo. 
 
 
17.2 EFEITO DA COMPONENTE TANGENCIAL DA FORÇA DE PROTENSÃO 
(NBR 6118, item 17.4.1.2.2) 
 
“No valor de VSd , deve ser considerado o efeito da projeção da força de protensão na sua 
direção, com o valor de cálculo correspondente ao tempo t considerado. Entretanto, quando esse 
efeito for favorável, a armadura longitudinal de tração junto à face tracionada por flexão deve 
satisfazer à condição: 
 
Ap fpyd + As fyd  VSd 
 
Essa condição visa fornecer uma melhor contribuição do concreto na zona (banzo) 
comprimida pela flexão, garantindo a rigidez do banzo tracionado. 
 
Rcc
As
Ap
Banzo de concreto
comprimido
 
 
Figura 110 – Banzo de concreto comprimido próximo ao apoio. 
 
 
17.3 VERIFICAÇÃO DO ESTADO-LIMITE ÚLTIMO (ELU) 
(NBR 6118, item 17.4.2) 
 
Deve-se ter: 
 
2RdSd VV  
 
swcSd VVV  
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
92 
onde: VSd = força cortante solicitante de cálculo na seção; 
VRd2 = força cortante resistente de cálculo, relativa à ruína das diagonais comprimidas de 
concreto; 
VRd3 = Vc + Vsw = força cortante resistente de cálculo, relativa à ruína por tração diagonal; 
Vsw = parcela absorvida pela armadura transversal. 
 
17.3.1 Modelo de Cálculo I 
 
Treliça Clássica   = 45 
 
dbf27,0V wcd2v2Rd  
 
com 
250
f
1 ck
2v  (fck em MPa). 
 
Armadura transversal: 
 
)cos(senfd9,0
V
s
A
ywd
sw,sw


oo 9045  (inclinação dos estribos) 
 
Na flexo-compressão: 
 
0c
máx,Sd
0
0cc V2
M
M
1VV 








 
 
 dbf6,0V wctd0c  
 
3 2
ck
cc
ctm
c
inf,ctk
ctd f
3,0.7,0f7,0f
f





 
onde: 
bw = menor largura da seção, compreendida ao longo da altura útil d. Quando existirem 
bainhas injetadas com diâmetro  > bw/8 , a largura resitente deve ser: 
 

2
1
bw 
 
na posição da alma que essa diferença seja mais desfavorável; 
 
fywd = fyd  435 MPa; quando os estribos forem protendidos, consultar a NBR 6118; 
M0 = momento fletor que anula a tensão normal de compressão na borda da seção 
(tracionada por Md,máx), provocada pelas forças normais de diversas origens concomitantes 
com VSd, sendo essa tensão calculada com valores de f e p iguais a 0,9, respectivamente; 
M0 corresponde ao momento fletor que anula a tensão normal na borda menos 
comprimida, ou seja, corresponde ao momento de descompressão referente a uma situação 
inicial de solicitação em que atuam: 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
93 
a) a força normal e o momento fletor (Npd e Mpd) provacados pela protensão, ponderados por 
p = 0,9; 
b) as forças normais oriundos de carregamentos externos (Ngd e Nqd), afetados por f = 0,9 ou 
1,0, desconsiderando-se a existência de momentos fletores concomitantes, 
 
  pp
c
b
qgfpo eP
A
W
NPM   
 
onde Wb/Ac corresponde à distância da extremidade superior do núcleo central de inércia 
da seção ao centro de gravidade, ou seja, corresponde à excentricidade do centro de 
pressão com a qual a tensão na borda inferior se anula. 
 
MSd,max = momento fletor de cálculo, máximo no trecho em análise, que pode ser tomado 
como o de maior valor no semitramo considerado, (para esse cálculo, não se consideram os 
momentos isostáticos de protensão, apenas os hiperestáticos). 
 
No cálculo da “contribuição do concreto”, dado pela parcela Vc , a relação Mo/MSd,máx 
fornece uma indicação do estado de fissuração por flexão no trecho considerado, no ELU. 
Se a relação é próxima de zero (Mo tem valor muito pequeno), então a região estará com 
esforços de tração e possivelmente fissurada por flexão (zona b). Se a relação tem valor 1,0 (Mo 
tem valor próximo de MSd,máx), então não há fissuração (zona a). 
 
R cc
Ap
Vc
Banzo
comprimido
Vp
R
pt
zona bzona a
+
-
fctk
Tensões na
borda inferior
 
Figura 111 – Zona b com fissuração e zona a sem fissuração. 
 
 
Os ensaios demonstraram que o estado de fissuração por flexão influi significativamente 
nos estados de tração na alma. Se o banzo tracionado não está fissurado (zona a), a tensão no 
estribo é bem menor do que a tensão no estribo na zona fissurada, o que permite a redução dos 
estribos. 
 
17.3.2 Modelo de Cálculo II 
 
No Modelo de Cálculo II o ângulo de inclinação das bielas de concreto comprimido pode 
variar entre 30o e 45o. 
 
  gcotgcotsendbf54,0V 2
wcd2v2Rd 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
94 
2RdSd VV  
 
cSdsw VVV  
 
Na flexo-compressão: 
 
1c
máx,Sd
0
1cc V2
M
M
1VV 








 
com: 
 
Vc1 = Vc0  para VSd  Vc0 
e 
Vc1 = 0  para VSd = VRd2 
 
interpolando-se os valores intermediários de Vc1 de maneira inversamente proporcional ao 
acréscimo de VSd . 
 
  


sencotggcotfd9,0
V
s
A
ywd
sw,sw
 
 
 
18. QUESTIONÁRIO 
 
1) O que é protender? Definir Concreto Protendido. 
2) Como a protensão pode melhorar as condições de utilização do concreto? 
3) Definir armaduras ativa e passiva. 
4) Faça comparações entre o Concreto Armado e o Concreto Protendido. 
5) O que é Concreto Protendido com armadura ativa pré-tracionada (protensão com aderência 
inicial) e como é aplicada na fabricação das peças? 
6) O que é Concreto Protendido com armadura ativa pós-tracionada com aderência posterior, 
e como é aplicada na fabricação das peças? 
7) O que é Concreto Protendido com armadura ativa pós-tracionada sem aderência, e como é 
aplicada na fabricação das peças? 
8) Qual a resistência mínima à compressão para o concreto nas peças de Concreto 
Protendido? Relacione a resistência com a relação a/c. 
9) Por que são desejadas resistências elevadas para o concreto no Concreto Protendido? 
10) Por que pode ser interessante usar o cimento ARI? 
11) O que é cura térmica a vapor? Quando é interessante aplicá-la? 
12) Quais são os dados de interesse no projeto das estruturas de Concreto Protendido? 
13) De que forma os aços para armadura ativa são apresentados pelas fábricas no Brasil? Em 
que forma são fornecidos? 
14) O que é cordoalha engraxada? Em que tipo de estrutura vem sendo aplicada em grande 
quantidade no Brasil? 
15) O que são barras de aço-liga? 
16) O que é relaxação? O que significam as notações RN e RB? 
17) Como se prescreve um aço para armadura ativa? 
18) O que são fptk e fpyk ? 
19) Quais os valores para o módulo de elasticidade do aço de protensão? 
20) Desenhe o diagrama tensão x deformação do aço de protensão? 
21) O que é ancoragem? Por que é usada no Concreto Protendido? 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
95 
22) Para que servem a cunha e porta-cunha? 
23) O que são ancoragem ativa e passiva? 
24) Como são os dispositivos para a ancoragem da armadura de protensão na peça? 
25) O que é a bainha e para que serve? 
26) Que tipo de ancoragem é comum no uso da cordoalha engraxada? 
27) Definir as forças de protensão Pi , Pa , Po e Pt . 
28) Desenhe um diagrama força de protensão x tempo para estruturas protendidas com pré-
tração. 
29) Desenhe um diagrama força de protensão x tempo para estruturas protendidas com pós-
tração. 
30) O que são valores limites de tensão na armadura de protensão e por que existem? 
31) O que é perda de protensão? 
32) Definir perda de protensão por escorregamento dos fios na ancoragem. Quando ocorrem 
na fabricação dos elementos de Concreto Protendido com pré-tração e pós-tração? 
33) Definir perda de protensão por retração e por fluência. Em que fases ocorrem? Como são 
calculadas? 
34) O que é perda por relaxação da armadura de protensão? Quando ocorre e como é 
calculada? 
35) O que é perda por deformação imediata do concreto? Quando ocorre e como é calculada? 
36) O que é perda por atrito? Quando ocorre e como é calculada? 
37) O que são perdas de protensão iniciais e progressivas? Cite exemplos. 
38) Como é determinada a força de protensão Pa no caso de pré-tração? 
39) Como é determinada a força de protensão Po no caso de pré-tração? 
40) Como é determinada a força de protensão Po no caso de pós-tração? 
41) O que é e como é determinada a força de protensão P ? 
42) Definir os seguintes Estados Limites de Serviço: ELS-D, ELS-DP, ELS-F, ELS-W, ELS-
CE. 
43) Para verificação no ELU no ato da protensão, qual é a tensão limite especificada pela NBR 
6118 para o concreto comprimido? 
44) Definir o que são as combinações: quase-permanente, frequente e rara. Como são 
calculados os valores das ações relativas a essas combinações? 
45) Quais as características principais de cada um dos três níveis de protensão? 
46) Numa peça em ambiente CAA II e com pré-tensão, qual o nível de protensão indicado pela 
NBR 6118? 
47) Uma peça em ambiente CAA III e com pré-tensão pode ser projetada com protensão 
parcial? Explique. 
48) Uma peça em ambiente CAA II e com pré-tensão pode ser projetada com protensão 
completa? Explique. 
49) Uma peça em ambiente CAA IV e com pós-tensão pode ser projetada com protensão 
limitada? Explique. 
50) Por que devem ser verificadas as tensões na seção transversal na seção mais solicitada? 
Quais as etapas importantes nessa verificação? 
51) O que são estados em vazio e em serviço? Qual a importância de fazer verificações de 
tensões nesses58 
15. VERIFICAÇÃO DE TENSÕES NORMAIS AO LONGO DO VÃO ............................ 59 
15.1 PROCESSO DAS CURVAS LIMITES ........................................................................... 59 
15.1.1 Limitações de Tensões para o Estado em Vazio ........................................................ 59 
15.1.2 Limitações de Tensões para o Estado em Serviço ..................................................... 60 
15.1.3 Curvas Limites para as Tensões Devidas à Protensão ............................................... 61 
15.1.4 Exemplo de Curvas Limites ....................................................................................... 61 
15.2 PROCESSO DO FUSO LIMITE ..................................................................................... 62 
15.2.1 Estado em Vazio ........................................................................................................ 63 
15.2.2 Estado em Serviço ...................................................................................................... 64 
15.2.3 Traçado do Fuso Limite ............................................................................................. 65 
16. ANÁLISE DA RESISTÊNCIA ÚLTIMA À FLEXÃO (ELU) ....................................... 67 
16.1 TIPOS DE RUPTURA POR FLEXÃO ............................................................................ 68 
16.2 PRÉ-ALONGAMENTO................................................................................................... 68 
16.3 DETERMINAÇÃO DO MOMENTO FLETOR ÚLTIMO ............................................. 70 
16.3.1 Seção Retangular ........................................................................................................ 71 
16.3.2 SEÇÃO T ................................................................................................................... 72 
16.3.3 ROTEIRO PARA CÁLCULO DE Mud ..................................................................... 73 
16.4 EXEMPLOS DE CÁLCULO DE Mud ............................................................................. 74 
17. ANÁLISE DO ESTADO-LIMITE ÚLTIMO RELATIVO À FORÇA CORTANTE .. 90 
17.1 EFEITOS DA FORÇA CORTANTE ............................................................................... 90 
17.2 EFEITO DA COMPONENTE TANGENCIAL DA FORÇA DE PROTENSÃO ........... 91 
17.3 VERIFICAÇÃO DO ESTADO-LIMITE ÚLTIMO (ELU) ............................................. 91 
17.3.1 Modelo de Cálculo I ................................................................................................... 92 
17.3.2 Modelo de Cálculo II ................................................................................................. 93 
18. QUESTIONÁRIO ............................................................................................................... 94 
19. BIBLIOGRAFIA ................................................................................................................. 96 
 
 
 
 
 
 
 
 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
1 
1. PROTENSÃO NAS ESTRUTURAS DE CONCRETO 
 
O concreto é um material resistente às tensões de compressão, mas sua resistência à tração 
varia de 8 a 15 % da resistência à compressão. O Concreto Protendido surgiu como uma evolução 
do Concreto Armado, com a ideia básica de aplicar tensões prévias de compressão, na região da 
seção transversal da peça, que será tracionada posteriormente pela ação do carregamento externo 
aplicado na peça. Desse modo, as tensões de tração finais são diminuídas pelas tensões de 
compressão pré-aplicadas na peça (protensão). Assim, pretende-se diminuir os efeitos da baixa 
resistência do concreto à tração. 
Sob flexão, o concreto desenvolve fissuras, ainda em estágios iniciais de carregamento, e 
para reduzir ou impedir tais fissuras, uma força de compressão concêntrica ou excêntrica pode ser 
imposta na direção longitudinal do elemento, que age eliminando ou reduzindo as tensões de 
tração nas seções críticas do meio do vão e dos apoios, elevando a capacidade das seções à flexão, 
à força cortante e à torção. As seções podem atuar elasticamente e a capacidade “total” do 
concreto à compressão pode ser eficientemente utilizada, em toda a altura da seção, a todas as 
ações aplicadas. 
 
Estudo complementar: ler e-book de Hanai (2002), item 1.2 – A protensão aplicada ao 
concreto, p.3 a 11. 
 
Definição: uma peça é considerada de Concreto Protendido quando é submetida à ação de 
forças especiais e permanentemente aplicadas, chamadas forças de protensão, e quando a peça é 
submetida à ação simultânea dessas forças, das cargas permanentes e variáveis, o concreto não 
seja solicitado à tração ou só o seja dentro dos limites permitidos. 
Definições da NBR 6118 (itens 3.1.4 e 3.1.6): 
 
Elementos de Concreto Protendido: aqueles nos quais parte das armaduras é previamente alongada 
por equipamentos especiais de protensão, com a finalidade de, em condições de serviço, impedir ou 
limitar a fissuração e os deslocamentos da estrutura, bem como propiciar o melhor aproveitamento de 
aços de alta resistência no estado-limite último (ELU). 
Armadura ativa (de protensão): armadura constituída por barras, fios isolados ou cordoalhas, 
destinada à produção de forças de protensão, isto é, na qual se aplica um pré-alongamento inicial. 
 
Exemplo (Figura 1), onde M é o momento fletor solicitante e P a força de protensão: 
 
P PAp
Viga
t,m
+
-
c,m
c,p
+
-
t,p
+ =
-
c
M+PP M
0
 
Figura 1 – Tensões normais numa viga protendida. 
 
 Na fibra inferior de uma viga protendida, sob momento fletor positivo, pode resultar 
tensão nula, tensão de compressão ou de tração. 
 
Atividade complementar: ler e-book de Hanai (2002): “Os dez mandamentos do engenheiro 
de C.P.”, p.i, ii, e o item 1.1 – O que se entende por protensão? (p.1 a 3). 
 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
2 
2. EXEMPLOS DE ESTRUTURAS PROTENDIDAS 
 
 
Na Figura 2 até a Figura 7 são mostrados exemplos de estruturas em Concreto Protendido 
(CP). 
 
 
Figura 2 – Ponte em Concreto Protendido (CP) em Vitória/ES. 
 
 
 
 
Figura 3 – Laje alveolar pré-moldada em CP. 
 
 
 
Figura 4 – Pavimento de edifício em laje nervurada protendida. 
 
 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
3 
 
 
Figura 5 - Pavimentos de edifício em laje maciça protendida. 
 
 
 
Figura 6 – Lajes pré-moldadas protendidas. 
 
 
 
Figura 7 – Seção duplo T em Concreto Protendido pré-moldado. 
 
3. CONCRETO PROTENDIDO x CONCRETO ARMADO 
 
1. Concreto Protendido utiliza concretos e aços de alta resistência (1900 e até 2100 MPa e 
concretos de elevadas resistências, como 85 MPa); 
2. Em Concreto Protendido toda a seção transversal resiste às tensões; 
3. Devido aos itens 1 e 2, elementos de Concreto Protendido são mais leves, mais esbeltos e 
esteticamente mais bonitos; 
4. Concreto Protendido fica livre de fissuras, com todas as vantagens daí provenientes; 
5. Concreto Protendido apresenta melhor controle de flechas; 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
4 
6. Concreto Protendido tem melhor resistência às forças cortantes (devido à inclinação dos 
cabos próximos aos apoios e a pré-compressão que reduz as tensões de tração diagonais); 
7. O aço é pré-testado durante o estiramento. 
 
Estudo complementar: “Concreto Protendido”, catálogo da empresa Rudloff. 
 
3.1 EXEMPLO 
 
Laje simplesmente apoiada, h = 30,5 cm, d = ds = 25,4 cm, fck = 48 MPa (fcd = 34,5 MPa), 
fp,ef = 1.104 MPa, fyd = 435 MPa, fc,máx = 13,8 MPa (tensão máxima à compressão permitida no 
concreto), L = 9,14 m, concr = 16,76 kN/m3 (concreto leve), ação variável 5,11 kN/m2. 
 A laje será calculada tomando-se uma faixa igual à altura (b = 30,5 cm - Figuraestados? 
52) Por que se deve fazer a verificação das tensões ao longo do vão? Quais os processos 
existentes? 
53) O que representam as curvas limites e o fuso limite? 
54) O que representa o fuso limite? 
55) Quando é indicado o uso do fuso limite? 
 
 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
96 
19. BIBLIOGRAFIA 
 
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. Projeto de estruturas de concreto – 
Procedimento, NBR 6118. Rio de Janeiro, ABNT, 2014, 238p. 
 
CARVALHO, R.C. Estruturas em Concreto Protendido – Pré-tração, Pós-tensão, Cálculo e 
Detalhamento. São Paulo, Editora Pini, 2012, 431p. 
 
GILBERT, R.I. ; MICKLEBOROUGH, N.C. Design of prestressed concrete. London. Unwin 
Hyman, 1990, 504p. 
 
HANAI, J.B. Fundamentos do concreto protendido. São Carlos, Escola de Engenharia de São 
Carlos – USP, Departamento de Engenharia de Estruturas, E-Book, 2005. Disponível em: 
http://www.set.eesc.usp.br/public/mdidatico/protendido/cp_ebook_2005.pdf 
Acesso em: 22/03/11. 
 
LEONHARDT, F. Construções de Concreto-Concreto Protendido. Vol.5. Rio de Janeiro, Editora 
Interciência, 1983. 
 
LIN, T.Y. ; BURNS, N.H. Design of prestressed concrete structures. New York. John Wiley & 
Sons, Third Ed, 1981, 646p. 
 
NAAMAN, A.E. Prestressed Concrete Analysis and Design: Fundamentals. 2nd Edition, Techno 
Press 3000, Ann Arbor, Michigan, ISBN 0-9674939-1-9, 2004, 1072 pages. 
 
NAWY, E.G. Prestressed concrete: a fundamental approach. Pearson/Prentice Hall, 2006, 945p. 
 
PFEIL, W. Concreto Protendido. Vol. 1,2,3. Rio de Janeiro, Livros Técnicos e Científicos, 1984. 
 
PRESTRESSED CONCRETE INSTITUTE. PCI design handbook: precast and pres-
tressed concrete. 7th Edition, 2010. 
 
VERÍSSIMO, G.S. ; CÉSAR JR., K.M.L. Concreto Protendido-Fundamentos Básicos. 
Universidade Federal de Viçosa, Departamento de Engenharia Civil, Viçosa/MG, 1998.8), ao 
invés de um metro, de modo que as quantidades de armadura que serão calculadas são relativas à 
largura b da laje. 
3
0
,5
30,5cm
=
 2
5
,4
d
s
 
Figura 8 – Dimensões (cm) da seção transversal da laje. 
 
Carga permanente e momento fletor (Mg) na faixa b = 30,5 cm: 
 
 gpp = 16,76 . 0,305 . 0,305 = 1,56 kN/m 
 
 28,16
8
14,9.56,1
M
2
g  kN.m = 1.628 kN.cm 
 
 Tensões normais no topo e na base da seção (não fissurada): 
 
345,0
5,30.5,30
1628.6
bh
M6
22
g
 kN/cm2 =  3,45 MPa 
 
Carga variável e momento fletor (Mq) na faixa b = 30,5 cm: 
 
q = 5,11 . 0,305 = 1,56 kN/m 
 
 gq MM 1.628 kN.cm e σg = σq = σ = ± 3,45 MPa 
 
São apresentados a seguir diversos casos possíveis para o dimensionamento da laje. 
 
1) Laje não-armada 
 
A tensão final máxima de 6,9 MPa, de compressão na borda superior e de tração na borda 
inferior, é menor que a tensão máxima de compressão permitida (fc,máx = 13,8 MPa), porém, é 
maior que a resistência à tração na flexão máxima do concreto (módulo de ruptura), o que faz a 
laje fissurar e romper. 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
5 
+
-

+

+
-

=

+
-


g q
 
Figura 9 – Tensões normais (MPa) nas bordas da laje sem armaduras, 
devidas aos carregamentos permanente e variável. 
 
2) Laje em Concreto Armado (ELU) 
0
,8
x
0,85 fcd
Rcc
Rst
cd
sd
d
 -
 0
,4
xLN
x

Figura 10 – Laje em Concreto Armado no Estado Limite Último (ELU). 
 
Md = f (Mg + Mq) 
 
Md = 1,4 (1628 + 1628) = 4.558 kN.cm 
 
Md = 0,68bw x fcd (d – 0,4x) 
 
4558 = 0,68 . 30,5 . x . 3,45 (25,4 – 0,4x) 
 
x2 – 63,5x + 159,25 = 0 
 
x = 2,62 cm  dom. 2 (x2lim = 0,26d = 0,26 . 25,4 = 6,6 cm) 
 
 x4,0d
M
A
sd
d
s

 = 
 
30,4
62,2.4,04,255,43
4558


cm2 
 
3) Laje em Concreto Protendido: protensão axial 
 
Assumindo que nenhuma tensão de tração é permitida. 
Para resultar tensão final nula na face inferior da laje é necessário impor uma tensão de 
compressão, proporcionada por uma força de protensão, de tal modo que: 
 
 P (base) = g (base) + q (base) = 3,45 + 3,45 = 6,9 MPa 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
6 
+
-


-
+
-
=


+


-
PP CG
(P)

g q
g( ) q( )
+ ++
 
Figura 11 – Tensões normais (MPa) na laje com protensão axial. 
 
Força de protensão: 
 
P = P . Ac = ( 0,69) 30,5 . 30,5 =  641,9 kN   64 tf 
 
Área da armadura de protensão: 
 
81,5
4,110
9,641
f
P
A
ef,p
p  cm2 
 
A força de protensão (P) aumentou a tensão de compressão na borda superior para 13,8 
MPa, igual à tensão máxima permitida (fc,máx = 13,8 MPa). Uma posição mais conveniente para a 
força de protensão pode diminuir esta tensão resultante. 
 
4) Laje em Concreto Protendido: protensão excêntrica 
 
Assumindo a força de protensão no limite do núcleo central de inércia (h/6 para seção 
retangular). 
Considerando que a tensão na face inferior da laje deve ser nula, a força de protensão 
deverá causar uma tensão de compressão de 6,9 MPa na face inferior. A força de protensão, 
portanto, deve ser: 
 
 
9,320
2
5,30.69,0
2
A
P
2
cbasep




 kN   32 tf 
 
Área da armadura de protensão: 
 
91,2
4,110
9,320
f
P
A
ef,p
p  cm2 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
7 
+
-
=




-
P
P
(P)
h
6 = 30,5
6 = 5,08 cm


-
+
g q
g q( )
 
Figura 12 – Tensões normais (MPa) na laje com protensão excêntrica, com P posicionada no limite do 
núcleo central de inércia. 
 
A armadura de protensão é metade da armadura do caso anterior. O resultado mostra a 
grande importância da posição de aplicação da força de protensão. A força de protensão 
excêntrica diminuiu a tensão final na borda superior para 6,9 MPa, menor que fc,máx . 
 
5) Laje em Concreto Protendido: máxima excentricidade da força de protensão 
 
A tensão na base devida à força de protensão excêntrica é: 
 
  













h
e6
1
A
P
6
bh
e.P
A
P
c
2
c
baseP 
=


-
PP
(P)
-
2,3

+
= 10,16 cmemáx 
5,09
+
-


+
g q
g q( )
 
Figura 13 – Tensões normais (MPa) na laje com excentricidade máxima da força de protensão. 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
8 
Assumindo e = emáx = 10,16 cm e P (base) =  6,9 MPa (para resultar tensão nula na base da 
laje), a força de protensão será: 
 







5,30
16,10.6
1
5,30
P
69,0
2
  P =  214,1 kN   21,4 tf 
 
Área da armadura de protensão: 
 
94,1
4,110
1,214
f
P
A
ef,p
p  cm2 
 
Tensão normal na borda superior devida à força de protensão: 
 
23,0
5,30
16,10.6
1
5,30
1,214
2)topo(P 







 kN/cm2 = 2,3 MPa (tensão de tração) 
 
A força de protensão com a máxima excentricidade causa tensão de tração na borda 
superior, combatida pela tensão de compressão da carga permanente. A maior excentricidade da 
força de protensão diminuiu a tensão final de compressão no topo da laje, comparando-se com os 
casos anteriores. 
 
6) Laje em Concreto Protendido: tração igual à máxima permitida 
 
Assumindo que uma tensão normal de tração de 1,46 MPa seja permitida na borda inferior 
da laje, sob a carga de serviço, a força de protensão passa a ser: 
 
  






5,30
16,10.6
1
5,30
P
146,069,0
2
  P =  168,8 kN   16,9 tf 
 
Área de armadura de protensão: 
 
53,1
4,110
8,168
f
P
A
ef,p
p  cm2 
 
A Tabela 1 apresenta um resumo dos resultados numéricos, obtidos para os casos 
analisados. 
Tabela 1 – Resumo dos resultados numéricos. 
Soluções p/ Laje 
c,máx 
(MPa) 
t,máx 
(MPa) 
P 
(kN) 
As ou Ap 
(cm2) 
Não-armada(*) 6,9 6,9 - - 
Concreto Armado - - - 4,30 
C.P. – protensão axial 13,8 0 641,9 5,81 
C.P. – P no limite do núcleo central 6,9 0 320,9 2,91 
C.P. – P c/ excentricidade máxima 4,6 0 214,1 1,94 
C.P. – tração na borda 5,1 1,46 168,8 1,53 
* a laje rompeu. 
 
Nota: ler exemplo numérico em Hanai (2002), p.11 a 17. 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
9 
4. BREVE HISTÓRICO DO CONCRETO PROTENDIDO 
 
No mundo: 
- 1866 – primeira aplicação de protensão nos Estados Unidos, por H. Jackson; 
- 1888 – patente para lajes protendidas por Doehring – Alemanha; 
- 1919 – Wettstein – Alemanha – fabricou paineis protendidos; 
- 1928 – Freyssinet – França – apresentou o primeiro trabalho consistente sobre Concreto 
Protendido. Inventou métodos construtivos, equipamentos, aços e concretos especiais; 
- 1950 – primeira conferência, na França. Walder construiu a primeira ponte em balanços 
sucessivos. 
- 1953 – norma alemã DIN 4227. 
 
 No Brasil: 
- 1948 – a primeira ponte em C.P. no Rio de Janeiro, com sistema Freyssinet; 
- 1952 – Companhia Belgo-Mineira iniciou a fabricação de aço de protensão. 
 
5. FABRICAÇÃO DE PEÇAS PROTENDIDAS 
 
São dois os processos principais aplicados na protensão de uma peça: com pré-tração e 
com pós-tração.1 
 
5.1 ARMADURA DE PROTENSÃO PRÉ-TRACIONADA 
 
No processo de pré-tensão o aço de protensão é fixado em uma das extremidades da pista 
de protensão2, e na outra extremidade3 um cilindro hidráulico estira (traciona) o aço, nele 
aplicando uma tensão de tração pouco menor que a tensão correspondente ao limite elástico.4 Em 
seguida, o concreto é lançado na fôrma, envolve e adere ao aço de protensão pré-estirado. Após o 
endurecimento e decorrido o tempo necessário para o concreto adquirir resistência, o aço de 
protensão é solto (relaxado) das ancoragens5 e, como o aço tende elasticamente a voltar à 
deformação inicial (nula), ele aplica uma força6que comprime o concreto de parte ou de toda a 
seção transversal da peça. Esse processo de aplicação da protensão é geralmente utilizado na 
produção intensiva de grandes quantidades de peças, geralmente em pistas de protensão. A cura 
úmida a vapor é comum, a fim de permitir a transferência da força de protensão em até 24 horas. 
 
cilindro hidráulico
("macaco")
armadura
de protensão
fôrma
da peça
pista de
protensão
bloco de
reação
ancoragem
passiva
 
Figura 14 – Esquema simplificado de pista de protensão, para fabricação de peças 
 protendidas com pré-tração. 
 
1 Ler item 1.2 Tipos de concreto protendido quanto à aderência e execução, do livro de CARVALHO, R.C. Estruturas em 
Concreto Protendido – Pré-tração, Pós-tensão, Cálculo e Detalhamento. São Paulo, Editora Pini, 2012, 431p. 
2 Chamada ancoragem passiva, onde os fios ou cordoalhas da armadura de protensão são fixados (presos). 
3 Chamada ancoragem ativa, onde os fios ou cordoalhas são estirados, e depois fixados nos dispositivos da ancoragem. 
4 Os valores desta tensão a ser aplicada constam da NBR 6118. 
5 O relaxamento também pode ser feito cortando os fios ou cordoalhas da armadura de protensão, individualmente. 
6 Chamada força de protensão. 
fapepe
Realce
fapepe
Realce
fapepe
Realce
fapepe
Realce
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
10 
A transferência da força de protensão da armadura para a peça ocorre devido à aderência 
entre o concreto e a armadura, sendo este processo também chamado “concreto protendido com 
aderência inicial”. 
Devido à baixa idade do concreto, encurtamentos elásticos e fluência (deformação lenta) 
tendem a atingir valores elevados, com consequente redução do alongamento da armadura de 
protensão, ou seja, ocorre uma relativamente elevada “perda de protensão”. 
Na Figura 15 até a Figura 22 são ilustradas pistas de protensão em fábricas. 
 
 
Figura 15 – Pista de protensão para fabricação de laje alveolar, mostrando na parte inferior os 
dispositivos metálicos da ancoragem passiva (Fábrica SENDI de Pré-moldados). 
 
 
 
Figura 16 – Dispositivos metálicos da ancoragem passiva, mostrando a fixação das cordoalhas por meio 
de cunhas inseridas em peças porta-cunhas (Fábrica de pré-moldados SENDI). 
 
fapepe
Realce
fapepe
Realce
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
11 
 
Figura 17 – Ancoragem ativa da pista de 
protensão, para estiramento e fixação das 
cordoalhas (Fábrica de pré-moldados SENDI). 
Figura 18 – Dispositivos metálicos da ancoragem 
ativa em pista de protensão para fabricação de 
viga protendida, mostrando a fixação das 
cordoalhas por meio de cunhas e porta-cunhas 
(Fábrica de pré-moldados MARKA). 
 
 
 
 
Figura 19 – Equipamento de moldagem de laje alveolar em pista de protensão (MARKA Pré-moldados). 
 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
12 
 
Figura 20 - Pista de protensão para fabricação de viga protendida (PREMONTT Pré-moldados). 
 
 
 
 
Figura 21 - Pista de protensão em fábrica de dormente ferroviário de concreto. 
 
 
 
 
Figura 22 - Pista de protensão em fábrica de dormente ferroviário de concreto. 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
13 
5.2 ARMADURA DE PROTENSÃO PÓS-TRACIONADA 
 
No processo de pós-tensão primeiramente é fabricada a peça de concreto, contendo dutos 
(bainhas7) ao longo do seu comprimento, como mostrado na Figura 23. Posteriormente as bainhas 
são preenchidas com o aço de protensão (geralmente cordoalhas), de uma extremidade a outra da 
peça. Quando o concreto apresenta a resistência suficiente ou necessária, a armadura de protensão, 
fixada em uma das extremidades da peça (ancoragem passiva), é estirada (tracionada) pelo 
cilindro hidráulico que está na outra extremidade (ancoragem ativa), apoiado na própria peça.8 
Terminada a operação de estiramento, a força no cilindro hidráulico é relaxada, a armadura tende 
a voltar à deformação inicial (nula), escorrega alguns poucos milímetros e desse modo fixa as 
partes da cunha de aço dentro do furo porta-cunha, existente na placa de aço de ancoragem. Desse 
modo, a armadura (fixada nas duas extremidades) aplica a chamada força de protensão, que 
comprime a peça, a partir de suas extremidades. Na sequência, geralmente a bainha é totalmente 
preenchida com uma calda (nata) de cimento, para, após o endurecimento, proporcionar aderência 
do aço de protensão com o concreto da peça. Neste caso tem-se a protensão com pós-tensão com 
aderência. Quando a bainha não é preenchida com nata de cimento, tem-se a pós-tensão sem 
aderência.9 
A Figura 24, Figura 25 e Figura 26 mostram também esquematicamente a aplicação da 
pós-tensão com aderência, onde a ancoragem passiva ocorre pelo laço das cordoalhas inseridas no 
concreto.10 A Figura 27 até a Figura 34 mostram uma viga construída segundo o processo de pós-
tensão com aderência. 
a) Peça concretada
duto
vazado
Ap
Ap
b) Estiramento da armadura de protenção
c) Armadura ancorada e dutos preenchidos 
com nata de cimento
 
Figura 23 – Esquema simplificado de fabricação de peça protendida com pós-tração. 
 
7 Bainha: é um tubo geralmente metálico e corrugado onde é inserido o aço de protensão o qual pode se movimentar durante a 
operação de protensão. Posteriormente pode ser preenchido com nata de cimento para criar aderência entre o aço e o concreto da 
peça. 
8 Muitas vezes a protensão é aplicada com o posicionamento de dois cilindros hidráulicos, um em cada extremidade da peça, que 
tracionam simultaneamente a armadura de protensão, e neste caso, as duas ancoragens são chamadas ativas. A ancoragem é 
chamada passiva quando nela não é feita a operação de estiramento. 
9 A pós-tensão com aderência proporciona peças mais seguras (o concreto da peça trabalha em conjunto com a armadura, que tem 
maior proteção em caso de incêndio, etc.) que aquelas sem aderência, além da nata de cimento proteger a armadura contra 
possíveis agentes agressivos que possam alcançar a bainha. 
10 Existem vários tipos de dispositivos de ancoragem, porém, o mais comum é aquele com placa de aço com furos cônicos e 
cunhas inseridas nesses furos. A forma de ancoragem passiva, mostrada no lado direito da peça da Figura 24, é uma opção. 
fapepe
Realce
fapepe
Realce
fapepe
Realce
fapepe
Realce
fapepe
Realce
fapepe
Realce
fapepe
Realce
fapepe
Realce
fapepe
Realce
fapepe
Realce
fapepe
Realce
fapepe
Realce
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
14 
 
Figura 24 – Moldagem da peça com bainha metálica (Catálogo Rudloff). 
 
 
 
Figura 25 – Operação de estiramento da armadura de protensão, após o concreto da peça já apresentar a 
resistência à compressão necessária (Catálogo Rudloff). 
 
 
 
Figura 26 – Preenchimento da bainha com nata de cimento para criar aderência entre a armadura e o 
concreto da peça (Catálogo Rudloff). 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
15 
 
 
Figura 27 – Viga protendida de seção I para superestrutura 
de viaduto em rodovia. 
Figura 28 – Ancoragens ativas da Rudloff 
em uma extremidade da viga. 
 
 
 
 
Figura 29 – Detalhe das cordoalhas na bainha metálica, 
junto à placa de ancoragem na extremidade da viga. 
Figura 30 – Placas de aço da ancoragem 
ativa (Rudloff), mostrando as cunhas 
tripartidas já inseridas dentro dos furos 
cônicos da placa. 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
16 
 
 
Figura 31 – Cilindro hidráulico posicionado para 
estiramento das cordoalhas. 
Figura 32 – Aplicação da protensão pelo 
conjuntocilindro e bomba hidráulica. 
 
 
 
Figura 33 – Aferição do alongamento ocorrido na 
armadura de protensão após iniciado o 
estiramento. 
Figura 34 – Equipamentos para injeção de nata de 
cimento nas bainhas. 
 
 
No caso de não ser injetada nata de cimento no interior da bainha metálica, existirá a pós-
tensão sem aderência. Neste caso, geralmente usa-se a cordoalha engraxada como armadura de 
protensão, de uso cada vez mais comum no Brasil (Figura 35). A cordoalha engraxada está 
mostrada da Figura 35 até a Figura 40. 
 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
17 
 
Figura 35 – Cordoalha de sete fios engraxada (Catálogo 
ArcelorMittal). 
Figura 36 – Cordoalha engraxada 
acoplada à placa de ancoragem 
(Cauduro, s/d). 
 
 
 
 
Figura 37 – Concretagem de uma laje de Concreto 
Protendido com cordoalha engraxada (Cauduro, s/d). 
Figura 38 – Tracionamento da cordoalha 
engraxada (Cauduro, s/d). 
 
 
Figura 39 – Laje nervurada de Concreto 
Protendido com cordoalha engraxada. 
Figura 40 – Detalhe das armaduras passiva e ativa 
em um cruzamento de nervuras da laje. 
 
Estudo complementar: 
a) Ler e-book de Hanai, p.17 a 20 e fazer o item 1.6; 
b) Ler catálogo “Concreto Protendido” da empresa Rudloff; 
c) Ler “Manual para a boa execução de estruturas protendidas usando cordoalhas de aço 
engraxadas e plastificadas”, de Eugenio Luiz Cauduro (o link consta da página da disciplina na 
internet). 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
18 
6. MATERIAIS 
 
O Concreto Protendido é composto pelos materiais concreto simples, aço de protensão 
(armadura ativa) e geralmente contém também armadura passiva (CA-25, 50 ou 60). Podem 
ocorrer também outros materiais, como dispositivos de ancoragem, bainhas metálicas, etc. 
 
6.1 CONCRETO 
 
A construção de estruturas de Concreto Protendido exige um controle de qualidade mais 
rigoroso do concreto. A resistência característica à compressão do concreto (fck) situa-se 
frequentemente na faixa entre 30 e 50 MPa, o que resulta estruturas com menor peso próprio e 
maiores vãos. No caso de peças protendidas pré-fabricadas são muitas vezes utilizados concretos 
de resistência superior a 50 MPa. 
Concretos com resistências elevadas são desejáveis porque: 
 
a) as solicitações prévias causadas pela força de protensão são muito elevadas; 
b) permitem a redução das dimensões das peças, diminuindo o peso próprio, importante nos 
grandes vãos e peças pré-moldadas; 
c) possuem maiores módulos de elasticidade (Ec), o que diminui as deformações imediatas, a 
fluência e a retração, ou seja, as flechas e as “perdas de protensão” são menores; 
d) geralmente são mais impermeáveis, o que é importante para diminuir a possibilidade de 
corrosão da armadura de protensão, que, por estar sob tensões muito elevadas, são mais 
suscetíveis à corrosão. 
 
A aplicação do cimento CP V ARI é muito comum, porque possibilita a aplicação da força 
de protensão num tempo menor. 
Especialmente nas peças de Concreto Protendido, a cura do concreto deve ser cuidadosa, a 
fim de possibilitar a sua melhor qualidade possível. A cura térmica a vapor é frequente na 
fabricação das peças pré-fabricadas, para a produção de maior quantidade de peças. Exemplo: 
com cimento ARI e cura a vapor consegue-se, em 12 h, cerca de 70 % da resistência à compressão 
aos 28 dias de cura normal. 
No projeto das estruturas de Concreto Protendido, os seguintes parâmetros são 
importantes, e devem ser especificadas pelo projetista: 
 
a) resistências características à compressão (fckj) e à tração (fctkj), na idade j da aplicação da 
protensão e na idade de 28 dias; 
b) módulo de elasticidade do concreto na idade to (Eci(to)), quando se aplica uma ação 
permanente importante, como a força de protensão, bem como também aos 28 dias de 
idade; 
c) relação a/c do concreto. 
 
6.2 AÇO DE ARMADURA ATIVA 
 
Caracterizam-se pela elevada resistência e por não possuírem patamar de escoamento. A 
elevada resistência é exigida para permitir grandes alongamentos em regime elástico e para 
compensar as perdas de protensão, que podem alcançar 415 MPa. Deve apresentar também: 
ductilidade antes da ruptura, boas propriedades de aderência, baixa relaxação e boa resistência à 
fadiga e à corrosão. 
 
6.2.1 Apresentação 
 
a) fios trefilados de aço, diâmetro de 3 a 8 mm, em rolos ou bobinas; 
b) cordoalhas (fios enrolados em hélice, com 2, 3 ou 7 fios); 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
19 
c) barras de aço-liga de alta resistência, laminadas a quente, com   12 mm, e com 
comprimento limitado. 
 
 
Figura 41 – Cordoalha de sete fios engraxada e não engraxada (Catálogo ArcelorMittal). 
 
 
Figura 42 – Barra de aço Dywidag, com dispositivo de fixação (Catálogo Dywidag). 
 
 
6.2.2 Quanto ao Tratamento 
 
a) aços de relaxação normal (RN); 
b) aços de relaxação baixa (RB): são aqueles que tem suas características elásticas 
melhoradas para reduzir as perdas de tensão por relaxação, que é cerca de 25 % da 
relaxação do aço RN. 
 
Relaxação: é a perda de tensão com o tempo em um aço estirado, sob comprimento e 
temperatura constantes. Quanto maior a tensão ou a temperatura, maior a 
relaxação do aço. 
 
6.2.3 Normas Brasileiras 
 
a) NBR 7482/08: “Fios de aço para Concreto Protendido - Especificação”; 
b) NBR 7483/08: “Cordoalhas de aço para Concreto Protendido - Especificação”; 
c) NBR 7484/09: “Barras, cordoalhas e fios de aço destinados a armaduras de protensão - 
Método de ensaio de relaxação isotérmica”; 
d) NBR 6349/08: “Barras, cordoalhas e fios de aço para armaduras de protensão – Ensaio 
de tração”. 
 
6.2.4 Exemplos de Designação 
 
a) CP – 175 RN: aço para Concreto Protendido, com resistência característica mínima à 
tração (fptk) de 175 kN/cm2 (1.750 MPa) e de relaxação normal; 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
20 
b) CP – 190 RB: aço para Concreto Protendido, com resistência característica mínima à 
tração (fptk) de 190 kN/cm2 (1.900 MPa) e de relaxação baixa. 
 
Tabela 2 – Especificação de fios (Catálogo ArcelorMittal). 
 
 
Tabela 3 – Especificação de cordoalhas (Catálogo ArcelorMittal). 
 
 
Tabela 4 – Especificação de barra Dywidag St 85/105 (Catálogo ArcelorMittal). 
 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
21 
6.2.5 Massa Específica, Coeficiente de Dilatação Térmica e Módulo de Elasticidade 
 
A NBR 6118 adota a massa específica de 7.850 kg/m3, e o coeficiente de dilatação térmica 
de 10-5/°C, para intervalos de temperatura entre - 20°C e 100°C. Para o módulo de elasticidade a 
norma permite adotar 200 GPa (200.000 MPa = 20.000 kN/cm2) para fios e cordoalhas, quando o 
valor não for obtido em ensaio ou não for fornecido pelo fabricante do aço. 
 No item 8.4.6 a norma apresenta características de ductilidade do aço e no 8.4.7 apresenta 
a resistência à fadiga. 
 
6.2.6 Acondicionamento 
 
Tabela 5 – Dados do acondicionamento dos fios (Catálogo ArcelorMittal). 
 
 
 
 
Figura 43 – Rolo de fio. 
 
 
Tabela 6 – Dados do acondicionamento das cordoalhas (Catálogo ArcelorMittal). 
 
 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
22 
 
Figura 44 – Rolos de cordoalhas engraxada e não engraxada (Catálogo ArcelorMittal). 
 
 
 
 
Figura 45 - Rolos de fio e cordoalha (Catálogo ArcelorMittal). 
 
 
6.2.7 Diagrama tensão-deformação 
 
A NBR 6118 (item 8.4.5) especifica que o diagrama tensão-deformação deve ser fornecido 
pelo fabricante ou obtido em ensaio realizado segundo a NBR 6349. Na falta deles a NBR 6118 
permite, nos Estados-Limite de Serviço e Último, utilizar um diagrama simplificado, para 
intervalosde temperaturas entre – 20 C e 150 C. 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
23 
fpyd
p
puk
fptk
 p
pyd
pyk
fptd
fpyk
 
Figura 46 – Diagrama tensão-deformação simplificado indicado pela NBR 6118 para aços de protensão. 
 
tg  = Ep = módulo de elasticidade = 200 GPa para fios e cordoalhas (na falta de dados do 
fabricante e de ensaio); 
fpyk = resistência característica de escoamento convencional, correspondente à deformação 
residual de 0,2 %. 
 
“Os valores característicos da resistência ao escoamento convencional fpyk , da resistência 
à tração fptk e o alongamento após ruptura εuk das cordoalhas devem satisfazer os valores 
mínimos estabelecidos na ABNT NBR 7483. Os valores de fpyk , fptk e do alongamento após 
ruptura εuk dos fios devem atender ao que é especificado na ABNT NBR 7482.” 
 
6.3 BAINHAS 
 
São tubos dentro dos quais a armadura de protensão é colocada, utilizados em protensão 
com aderência posterior ou também sem aderência. São fabricados em aço, com espessura de 0,1 
a 0,35 mm, costurados em hélice. Para criar aderência com a armadura de protensão, as bainhas 
são preenchidas com calda de cimento. 
 
 
Figura 47 – Bainha metálica. 
 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
24 
 
Figura 48 – Bainha metálica. 
 
 
6.4 CALDA DE CIMENTO 
 
A calda, ou nata de cimento injetada no interior da bainha metálica, tem como função 
proporcionar a aderência entre a armadura de protensão e o concreto da peça, na pós-tração, e 
proteger a armadura contra a corrosão. Utiliza-se cerca de 36 a 44 kg de água para cada 100 kg de 
cimento. 
A norma NBR 7681 (“Calda de cimento para injeção”) fixa as condições exigidas para as 
caldas. 
 
 
Figura 49 – Equipamentos para injeção de calda de cimento. 
 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
25 
6.5 ANCORAGENS 
 
A forma mais simples e econômica de fixação dos fios e cordoalhas é por meio de cunhas 
e porta-cunhas. As cunhas podem ser bi ou tripartidas, e ficam alojadas em cavidades de blocos ou 
placas de aço (porta-cunha). 
No caso de armaduras pós-tracionadas, existem conjuntos de elementos, que constituem os 
chamados “sistemas de protensão”, como Freyssinet, Dywidag, VSL, BBRV, Rudloff, Tensacciai, 
etc. 
Na Figura 49 até a Figura 66 ilustram-se vários tipos de dispositivos de ancoragem. 
 
 
 
Figura 50 – Cunhas embutidas em portas-cunha para fixação de fios de protensão. 
 
 
 
Figura 51 – Dispositivo de ancoragem. 
 
 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
26 
 
Figura 52 - Dispositivo de ancoragem. 
 
 
 
 
Figura 53 - Dispositivo de ancoragem para 
cordoalha engraxada. 
Figura 54 – Dispositivos para ancoragem de 
cordoalha engraxada. 
 
 
 
 
Figura 55 - Ancoragem ativa de cordoalha engraxada. 
 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
27 
 
 
Figura 56 - Ancoragem passiva de cordoalha engraxada. 
 
 
 
 
Figura 57 - Ancoragem de cordoalha engraxada. 
 
 
 
 
Figura 58 – Operação de estiramento de cordoalha engraxada. 
 
 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
28 
 
Figura 59 – Cilindros hidráulicos para estiramento de cordoalha. 
 
 
Figura 60 – Dispositivo para ancoragem ativa (Catálogo Rudloff). 
 
 
 
Figura 61 - Dispositivo para ancoragem ativa (Catálogo Rudloff). 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
29 
 
Figura 62 - Dispositivo para ancoragem passiva (Catálogo Rudloff). 
 
 
 
Figura 63 - Dispositivo para ancoragem passiva (Catálogo Rudloff). 
 
 
 
Figura 64 - Dispositivo para ancoragem passiva (Catálogo Rudloff). 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
30 
 
Figura 65 - Dispositivo para emenda de armadura (Catálogo Rudloff). 
 
 
 
Figura 66 - Dispositivo para ancoragem de barras (Catálogo Dywidag). 
 
 
7. VALORES-LIMITES DE TENSÃO POR OCASIÃO DA OPERAÇÃO DE 
PROTENSÃO NA ARMADURA 
 (NBR 6118, item 9.6.1.2.1) 
 
A tensão na armadura de protensão deve ser verificada para diversas situações em serviço, 
a fim de evitar solicitações exageradas e deformações irreversíveis. 
Durante as operações de protensão, a tensão de tração na armadura não deve superar os 
seguintes valores-limites: 
 
a) armadura pré-tracionada 
 
Por ocasião da aplicação da força de estiramento (Pi), a tensão pi na armadura de 
protensão na saída do aparelho de tração (cilindro hidráulico), deve respeitar os limites: 
 





pyk
ptk
pi
f90,0
f77,0
 - para aços RN 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
31 





pyk
ptk
pi
f85,0
f77,0
 - para aços RB 
 
b) armadura pós-tracionada 
 





pyk
ptk
pi
f87,0
f74,0
 - para aços RN 
 





pyk
ptk
pi
f82,0
f74,0
 - para aços RB 
 





pyk
ptk
pi
f88,0
f80,0
 - para cordoalhas engraxadas RB 
 
 





pyk
ptk
pi
f88,0
f72,0
 - para aços CP – 85/105 em barras 
 
Ao término da operação de protensão, a tensão po(x) da armadura pré ou pós-tracionada, 
decorrente da força Po(x), não deve superar os limites do item b. 
 
 
8. VALORES REPRESENTATIVOS DA FORÇA DE PROTENSÃO 
 
Servem de orientação na verificação de esforços solicitantes e nas fases de execução da 
protensão na obra ou na fábrica. 
A Figura 67 e a Figura 68 ilustram os valores representativos da força de protensão, em 
função do tempo, para os casos de peças protendidas pré-tracionadas e pós-tracionadas. 
Na pré-tração, se os cabos (conjunto de fios ou cordoalhas para formar uma armadura de 
protensão) não forem retos, deve-se acrescentar a perda por atrito que ocorre nos desvios, à Panc 
(perda de força de protensão na ancoragem). 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
32 
E
s
ti
ra
m
e
n
to
 d
a
 a
rm
a
d
u
ra
t - 2 t - 1 t0
in
íc
io
 d
a
 r
e
tr
a
ç
ã
o
d
o
 c
o
n
c
re
to
a
p
lic
a
ç
ã
o
 d
a
 p
ro
te
n
ç
ã
o
 
a
o
 c
o
n
c
re
to
(tempo)
P
8
P
t
Pi
Panc = perda por escorregamento dos fios e acomodação da ancoragem
Pr1 Pcs1 {
Pr1 = perda por relaxação inicial da armadura
Ppr1 = perda por retração inicial do concreto
Pe = perda por deformação inicial do concreto
Pr2 Pcs2Pcc{
Pr2 = perda por relaxação posterior da armadura
Pcs2 = perda por retração posterior do concreto
Pcc = perda por fluência posterior do concreto
t
Pré-tração
P
Pa
Po
 
Figura 67 – Diagrama força de protensão x tempo para peça protendida pré-tracionada. 
 
 
 
E
s
ti
ra
m
e
n
to
 d
o
 1
º 
c
a
b
o
t0
(tempo)
8
Pi
t
P
8

P
P0
P
t
{Pcs2 = perda por retração posterior do concreto
Pcc2 = perda por fluência posterior do concreto
Pr2
= perda por relaxação posterior da armadura
Pcs1Pcc1Pr1 {Pcs1 = perda por retração inicial do concreto
Pcc1 = perda por fluência inicial do concreto
Pr1 = perda por relaxação inicial da armadura
Pe =
Patr Panc {
Patr = perda por atrito ao longo da armadura
Panc
perda por deformação imediata do concreto
pelo estiramento dos cabos restantes
=
perda por escorregamento dos fios na
ancoragem e acomodação da ancoragem
P

P
0

P
e
estiramento
dos cabos
restantes
Pcs2Pcc2Pr2
Pós-tração
 
Figura 68 – Diagrama força de protensão x tempo para peça protendida pós-tracionada. 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
33 
8.1 FORÇA DE PROTENSÃO Pi NA ARMADURA 
 
Pi = força máxima aplicada à armadura de protensãopelo equipamento de tração. 
 
É a força de protensão aplicada pelos cilindros (“macacos”) hidráulicos na pista de 
protensão, antes de ser realizada a ancoragem dos fios na cabeceira da pista, no bloco de 
ancoragem. 
No caso de pós-tração, é a força máxima aplicada pelos macacos hidráulicos antes da 
ancoragem com as cunhas. 
 
8.2 FORÇA DE PROTENSÃO Pa 
 
Esta força de protensão é considerada apenas no caso da pré-tração. 
 
Pa = força na armadura de protensão no instante imediatamente anterior à sua liberação das 
ancoragens externas. 
 
É a força Pi (força no macaco hidráulico) subtraídas as perdas de protensão decorrentes do 
escorregamento dos fios (ou cordoalhas) e acomodação das ancoragens provisórias nos blocos de 
ancoragem, da relaxação do aço e da retração inicial do concreto. 
Também pode-se dizer que é a “força ancorada” imediatamente anterior à transferência da 
força de protensão para o concreto. 
 
8.3 FORÇA DE PROTENSÃO Po NA ARMADURA/CONCRETO 
 
Po(x) = força de protensão no tempo t = 0 na seção de abcissa x. 
 
É o valor inicial da força de protensão transferida ao concreto (t = 0). Na pré-tração é a 
força ancorada (Pa) diminuída da perda de protensão por deformação imediata, devido ao 
encurtamento elástico do concreto. 
Na pós-tração é a força no macaco (Pi) diminuída das perdas de protensão devidas ao atrito 
dos cabos nas bainhas, ao escorregamento dos fios (ou cordoalhas) na ancoragem e acomodação 
da ancoragem, da deformação imediata do concreto devida aos cabos restantes, da retração e 
fluência inicial do concreto e da relaxação inicial da armadura de protensão. 
Este valor corresponde ao valor da força de protensão antes das perdas progressivas 
(decorrentes do tempo) e acontece no instante imediatamente posterior à transferência da 
protensão ao concreto. 
 
8.4 FORÇA DE PROTENSÃO Pt NA ARMADURA/CONCRETO 
 
Pt(x) = força de protensão no tempo t na seção de abcissa x. 
 
Pt(x) = Po(x)  Pt(x) = Pi  Po(x)  Pt(x) 
 
Po(x) = força de protensão na peça antes da ocorrência das perdas progressivas; 
 
Pt(x) = perdas de protensão progressivas (retração e fluência posterior do concreto e 
relaxação posterior da armadura). Ocorrem após a aplicação de Po . 
 
Pt é variável no tempo t em função das perdas progressivas, e tendem ao valor final da 
força de protensão (P∞(x)). 
P∞ = força de protensão final após ocorridas todas as perdas. 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
34 
9. PERDAS DE PROTENSÃO 
 
São apresentadas a seguir as metodologias aplicadas no cálculo das diversas perdas de 
protensão. 
 
9.1 ESCORREGAMENTO DOS FIOS NA ANCORAGEM 
 
Ocorre devido ao escorregamento dos fios e acomodação das cunhas nos furos porta-
cunhas, da ordem de 4 a 6 mm, dependendo do tipo de armadura de protensão e da existência ou 
não de pistão de cravação de cunhas nos macacos de protensão. 
O escorregamento causa perda apenas na ancoragem ativa; na ancoragem passiva a 
acomodação/escorregamento vai sendo anulada na operação de estiramento. 
O valor da perda de protensão por escorregamento/acomodação depende em grande parte 
do comprimento da pista de protensão e do comprimento da armadura no caso de pós-tração. 
 
Exemplo: 
 
- comprimento da pista = 120 m = 120.000 mm; 
- deformação do aço = 0,7 % = 0,007; 
- alongamento do aço = 120.000 . 0,007 = 840 mm = 84 cm; 
- escorregamento/acomodação = 6 mm; 
7,0100
840
6
Panc  % 
 
que pode ser considerado desprezível, porque a pista tem grande comprimento. Para uma pista de 
25 m, a perda de protensão altera-se para 3,4 %, que já não é desprezível. 
 
9.2 RELAXAÇÃO DA ARMADURA 
 
Relaxação é a perda de tensão com o tempo em um aço estirado, sob comprimento e 
temperatura constantes. Para tensões aplicadas até 0,5fptk , a perda por relaxação é desprezível, 
mas aumenta rapidamente com maiores tensões e temperaturas. A relaxação ocorre a partir do 
instante que o aço é estirado. 
A perda de protensão por relaxação inicial da armadura é aquela que ocorre no intervalo de 
tempo entre o estiramento da armadura e a aplicação da protensão no concreto. A relaxação ocorre 
sempre, mas para cálculo de Pa considera-se apenas uma fração inicial. 
Conforme a NBR 6118 (item 9.6.3.4.5), a intensidade da relaxação do aço deve ser 
determinada pelo coeficiente  (t,to), calculado por: 
 
 
 
pi
opr
o
t;t
t;t


 
 
 opr t;t = perda de tensão por relaxação pura desde o instante to do estiramento da 
armadura até o instante t considerado; 
pi = tensão na armadura de protensão no instante de seu estiramento. 
 
As normas NBR 7482 e 7483 estabelecem valores médios para o coeficiente de relaxação 
de fios e cordoalhas, medidos após 1.000 horas à temperatura constante de 20 C (1000), para 
tensões variando de 0,5 e 0,8fptk . Para efeito de projeto, os valores de 1000 da Tabela 7 podem ser 
adotados. 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
35 
Tabela 7 - Valores de 1000 (%), (NBR 6118, item 8.4.8). 
po 
Cordoalhas Fios 
Barras 
RN RB RN RB 
0,5 fptk 0 0 0 0 0 
0,6 fptk 3,5 1,3 2,5 1,0 1,5 
0,7 fptk 7,0 2,5 5,0 2,0 4,0 
0,8 fptk 12,0 3,5 8,5 3,0 7,0 
Obs.: interpolar para valores intermediários. RN é relaxação normal e RB é relaxação baixa. 
 
Para tensões inferiores a 0,5 fptk , admite-se que não haja perda de tensão por relaxação, e 
para o tempo infinito pode-se considerar: 
 
 (t∞;to)  2,5 1000 
 
Para valores diferentes de 1.000 horas, sempre a 20 C, as expressões são: 
 
 
15,0
o
1000o
1000
tt
t;t 




 
 (t em horas) 
 
 
15,0
o
1000o
67,41
tt
t;t 




 
 (t em dias) 
 
Exemplo: 
- tempo curto: entre o estiramento e a aplicação da protensão no concreto = 25 horas; 
- fio RN e pi =  0,80 fptk 
- da Tabela 7: 1000 = 8,5 % 
 
  9,4
1000
025
5,8t;t
15,0
o 




 
 % 
 
Perda por relaxação: 
 
      ptkptkpioopr f039,0f80,0
100
9,4
t;tt;t  
 
A perda neste caso não é desprezível, e se utilizada cura a vapor, com elevação da 
temperatura na armadura de protensão, a perda é ainda maior. 
 
9.3 RETRAÇÃO INICIAL DO CONCRETO EM PISTA DE PROTENSÃO 
 
A retração inicial do concreto leva a uma perda de tensão na armadura. No ambiente de 
fábrica (ambiente úmido), com cura iniciada logo após o adensamento, pode-se desprezar o efeito 
da retração inicial do concreto, mesmo porque o intervalo de tempo entre a concretagem e a 
transferência da protensão é pequeno. 
 
9.4 VARIAÇÃO DA FORÇA DE PROTENSÃO DE Pi A Pa NA PRÉ-TRAÇÃO 
 
Considerando cabos retos, pista longa e cura acelerada, uma estimativa é: 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
36 





 
RBaço%3
RNaço%7
PPPP 1cs1rancPP ai
 
 
9.5 DETERMINAÇÃO DA FORÇA Po NA PRÉ-TRAÇÃO 
 
Po = força de protensão correspondente ao instante imediatamente posterior à transferência 
da protensão à peça. 
 
Na pré-tração: 
 
Po = Pa – Pe 
 
Pa = força ancorada; 
Pe = perda da força de protensão devida à deformação imediata do concreto 
(encurtamento elástico). 
 
NBR 6118 (item 9.6.3.3.1): “A variação da força de protensão em elementos estruturais 
com pré-tração, por ocasião da aplicação da protensão ao concreto, e em razão do seu 
encurtamento, deve ser calculada em regime elástico, considerando-se a deformação da seção 
homogeneizada. O módulo de elasticidade do concreto a considerar é o correspondente à data de 
protensão, corrigido, se houver cura térmica.” 
Ap
Pa Pa
l
cp
 
Figura 69 – Encurtamento elástico por deformação imediata do concreto, protensão axial. 
 
cp = tensão no concreto ao nível da armadura de protensão. 
 
Imediatamente após a transferência da protensão para a peça, a mudança na deformação da 
armadura de protensão (p),causada pelo encurtamento elástico do concreto, é igual à 
deformação do concreto (cp) ao nível da armadura de protensão, sendo a equação de 
compatibilidade expressa por: 
 
p = cp 
 
e aplicando a Lei de Hooke: 
 
c
cp
p
P
EE
e



 
 
A perda de protensão é: 
 
cppcp
c
p
P
E
E
e
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
37 
 p = 
c
p
E
E
= razão modular ; 
ch
a
cp
A
P
 
 
Ach = área da seção homogeneizada: 
 
Ac = b . h 
 
Acp = p . Ap 
 
Ach = Ac + Acp  Ap = b . h + (p – 1) Ap 
b
h
Ac
Ap
 
Por simplicidade, em seções onde a quantidade de aço não é alta, faz-se Ach = Ac . 
Após o encurtamento elástico, a força de protensão na armadura será: 
 
p
e
P
A
P
e

  cppPe
 =
ch
a
p
A
P
  
ch
a
p
p
e
A
P
A
P


 
 
 p
ch
a
pe A
A
P
P  
Po = Pa  Pe = p
ch
a
pa A
A
P
P  
 
Se a protensão for excêntrica e atuar o peso próprio da peça, fica: 
 
+
- +
Pa Pa
ep
-
+
-
( )Pa
( )Pa
+
( )Mpp
Pa
Ach
Pa
Ih
.ep² Mpp
Ih
ep
CG
 
Figura 70 – Tensões normais na seção transversal, sob protensão excêntrica 
e com atuação do peso próprio. 
 
 
Ih = momento de inércia da seção homogeneizada. 
 
Tensão no concreto ao nível da armadura de protensão: 
 
h
ppp
h
2
pa
ch
a
cp
I
eM
I
eP
A
P
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
38 
A expressão de cp é válida quando se pode considerar a protensão aplicada numa única 
fibra. Quando a protensão ocorrer em fibras distintas, como no caso de cordoalhas em vários 
níveis, a influência de uma sobre a outra deve ser avaliada, conforme processo apresentado em 
Hanai (2002). 
 
Perda de protensão: 
 
cppPe
 
 
eao PPP   pPoo AP  
 
Exemplo 
 
Calcule a perda de tensão na armadura de protensão na seção 1-1, de uma viga pré-
tensionada, assumindo que, antes da transferência da protensão, a força ancorada era 
correspondente à tensão de 0,75fptk . A viga tem os seguintes dados: 
vão  = 15,2 m ; peso próprio (gpp) = 7,22 kN/m 
concreto C40 ; 
fck(i) = 30 MPa 
Eci = ckE f5600 , com E = 1,0 (brita de granito ou gnaisse) 
 
Eci = 305600.0,1 = 30.672 MPa 
 
Armadura de protensão (Ap): 10 cordoalhas CP 190 RB 12,7 ( = 12,7 mm), 
 
Ap = 10 . 0,987 = 9,87 cm2 
 
fptk = 1.900 MPa ; Ep = 196 kN/mm2 = 196.000 MPa 
 
l
2
l
2
Pa
P
a
e
p
1
1
38
7
6
 c
m
1
0
 c
m
Ap
l = 15,2 m
 
Figura 71 – Esquema da viga. 
 
Resolução 
Razão modular: 39,6
30672
196000
E
E
ci
p
p  
 
Ac = 38 . 76 = 2.888 cm2 091.390.1
12
76.38
I
3
 cm4 
 
por simplicidade: Ach = Ac e Ih = I 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
39 
Excentricidade da armadura de protensão: 
 
2810
2
76
ep  cm 
 
Força de protensão ancorada (Pa): 
 
σPa =  0,75fptk =  (0,75 . 190) =  142,5 kN/cm2 
 
Pa = σPa . Ap = ( 142,5) 9,87 =  1.406,5 kN 
 
Momento fletor devido ao peso próprio: 
 
51,208
8
2,15.22,7
M
2
pp  kN.m = 20.851 kN.cm 
 
A tensão no concreto, na fibra relativa ao CG da armadura de protensão, no instante da 
transferência da força de protensão é: 
 
h
ppp
h
2
pa
ch
a
cp
I
eM
I
eP
A
P
 = 860,0
091.390.1
28.20851
091.390.1
28.5,1406
2888
5,1406 2
 kN/cm2 
 
A perda de tensão por encurtamento elástico é: 
 
cppPe
 = 6,39 (0,860) =  5,50 kN/cm2 =  55,0 MPa 
 
Em porcentagem: 
 
9,3100
5,142
50,5
100
a
e
P
P



% 
 
Força de protensão após o encurtamento elástico (Po): 
 
eao PPP  =  142,5 – (5,50) =  137,0 kN/cm2 
 
 pPoo AP  =  137,0 . 9,87 =  1.352,2 kN (redução de 54,3 kN de Pa para Po) 
 
 
9.6 DETERMINAÇÃO DE Po NA PÓS-TRAÇÃO 
 
Parte-se de Pi (força no macaco) deduzindo-se as seguintes perdas (ver Figura 68): 
 
Patr = perda por atrito ao longo da armadura; 
Panc = perda por escorregamento/acomodação dos fios na ancoragem; 
Pe = perda por deformação imediata do concreto pelo estiramento dos cabos restantes; 
Pr1 = perda por relaxação inicial da armadura; 
Pcs1 = perda por retração inicial do concreto; 
Pcc1 = perda por fluência inicial do concreto. 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
40 
9.7 PERDA POR ATRITO NA PÓS-TRAÇÃO 
(NBR 6118, item 9.6.3.3.2.2) 
 
Considere um elemento pós-tracionado com uma armadura tensionada pelo cilindro 
hidráulico na ancoragem ativa. Uma seção desta armadura, localizada a uma distância x da 
ancoragem ativa, terá uma tensão menor, devido a perdas de tensão geradas pelo atrito entre a 
armadura e o duto (bainha), bem como entre também os próprios fios ou cordoalhas. 

Pi - 
Patr
P
i
Força de
atrito
 
Figura 72 – Perda por atrito ao longo da bainha no estiramento da armadura. 
 
Nos elementos estruturais com pós-tração, a perda por atrito pode ser determinada por: 
 
  kx
iatr e1P)x(P  
 
onde: Pi = força de protensão no cilindro (“macaco”) hidráulico; 
 x = abcissa do ponto onde se calcula Patr , medida a partir da ancoragem, em metros; 
  = soma dos ângulos de desvio entre a ancoragem e o ponto de abcissa x, em radianos; 
 = coeficiente de atrito aparente entre o cabo e a bainha. Na falta de dados experimentais, 
pode ser estimado como a seguir (1/radianos): 
 
 = 0,50 entre cabo e concreto (sem bainha); 
 = 0,30 entre barras ou fios com mossas ou saliências e bainha metálica; 
 = 0,20 entre fios lisos ou cordoalhas e bainha metálica; 
 = 0,10 entre fios lisos ou cordoalhas e bainha metálica lubrificada; 
 = 0,05 entre cordoalha e bainha de polipropileno lubrificada. 
 
k = coeficiente de ondulação = coeficiente de perda por metro provocada por curvaturas 
não intencionais do cabo e ondulações da bainha. Na falta de dados experimentais, 
pode ser adotado o valor 0,01 (1/m). 
 
 A Tabela 8 apresenta os valores propostos pelo ACI 318 para k e . 
Tabela 8 - Valores propostos pelo ACI para k e . 
Tipo de armadura k (por m)  
Armaduras em bainha flexível de 
metal: 
- fios .................................................. 
- cordoalha de 7 fios ......................... 
- barras de alta resistência ................ 
 
 
0,0033 – 0,0049 
0,0016 – 0,0066 
0,0003 – 0,0020 
 
 
0,15 – 0,25 
0,15 – 0,25 
0,08 – 0,30 
Cordoalha de 7 fios em dutos 
metálicos rígidos 
0,00066 0,15 – 0,25 
Armadura engraxada: 
- fios e cordoalhas de 7 fios ............... 
 
0,0010 – 0,0066 
 
0,05 – 0,15 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
41 
Exemplo 
 
1) Qual a perda total por atrito devido à curvatura e à oscilação da bainha metálica flexível, de 
uma viga pós-tensionada armada com cordoalhas CP 190 de 7 fios. Dados: 
 
Pi =  0,74 fptk =  0,74 . 1900 =  1406 MPa 
 = 0,20 (bainha metálica com cordoalha); 
k = 0,006/m conforme valor proposto pelo ACI (Tabela 8) 
 
P
i
l = 15,2 m
2
8
l
2
l
2
P i
- Patr
Ap= 9,87 cm²
y
x
 
Figura 73 – Esquema da viga. 
 
 
Resolução 
 
x
m2
2
x
m
2
tg 

 
 
y2m  
 
x
y4
2
tg 

 
y
x
2
x

m
arco
circular
= 8y
x




 
Figura 74 – Armadura curva. 
 
e para ângulos pequenos: 
 
x
y4
2


  
x
y8
 (rad) 
 
147,0
1520
28.8
 rad 
 
Conforme a NBR 6118: 
 
  kx
iatr e1P)x(P  
 
Força de protensão no “macaco” hidráulico: 
 
Pi = Pi . Ap =  140,6 . 9,88 =  1.387,7 kN 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
42 
     1206,02,15.006,0147,0.20,0
atr e17,1387e17,1387)2,15(P   
 
7,157)2,15(Patr  kN 
 
Perda percentual: 4,11100
7,1387
7,157
 % 
 
Portanto, na ancoragem passiva (extremidadedireita da viga) a força de protensão na 
armadura é: 
 
0,230.1)7,157(7,1387PP atri  kN 
 
 
2) Calcular as perdas por atrito num cabo de uma viga contínua pós-tensionada, nas posições B, C 
e D. Considere:  = 0,20 (bainha metálica com cordoalha); k = 0,002/m. 
 
9 m 9 7 7
(A/B)
(A/C)
A
yB = 0,47B
C
D
E(C/D) yD = 0,185ancoragem ativa
 
Figura 75 – Posicionamento da armadura de protensão na viga protendida. 
 
 
Resolução 
 
A perda de protensão por atrito pode ser expressa também como perda de tensão: 
 
 kx
Pp e)x(
i
 
 
Tensão e perda de protensão em B: 
 
104,0
2
1
18
47,0.8
2
1
x
y8
)B/A( B 











 rad 
 
 )9(p =
 9.002,0104,0.2,0
P e
i
 
 
)9(p =
iP962,0   perda de 3,8 % = (1 – 0,962) 100 
 
Tensão e perda de protensão em C: 
 
209,0
18
47,0.8
x
y8
)C/A( B  rad 
 
 )18(p =
 18.002,0209,0.2,0
P e
i
 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
43 
)18(p =
iP925,0   perda de 7,5 % 
 
Tensão e perda de protensão em D: 
 
 (A / D) =  (A / C) +  (C / D) 
 
  262,0
2
1
14
185,0.8
209,0
2
1
x
y8
C/A)D/A( D 











 rad 
 
 )25(p =  25.002,0262,0.2,0
P e
i
 
 
)25(p =
iP903,0   perda de 9,7 % 
 
 
Exercício Proposto 
 
Uma viga contínua com três vãos em a armadura em parábolas sucessivas. Assumindo  = 
0,20, k = 0,0025/m, Pi = - 1.303 MPa, fptk = 1.900 MPa, Ep = 202.000 MPa calcule a tensão na 
armadura nas seções A até F. 
 
A
B
C
45,7 cm
D
E
F
14,64 m 3,65 3,65 4,70
35,3
3
2
,3
 
Figura 76 – Esquema da viga. 
 
 
9.8 PERDA NA ANCORAGEM NA PÓS-TRAÇÃO 
 
A perda na ancoragem deve-se ao escorregamento dos fios, e depende do tipo de 
dispositivo de ancoragem. Decresce com o aumento da distância da ancoragem ativa, podendo ser 
desprezível na seção mais solicitada, sendo, entretanto, importante em peças curtas. 
Nos dispositivos com cunhas, as perdas de protensão são maiores (perda por 
encunhamento) e significativas. Segundo a NBR 6118 (9.6.3.3.2.3), essas “perdas devem ser 
determinadas experimentalmente ou adotados os valores indicados pelos fabricantes dos 
dispositivos de ancoragem.” 
Quando a armadura recua devido ao escorregamento/acomodação, surge um atrito 
contrário que faz com que a perda de tensão na armadura ocorra somente até uma distância X da 
ancoragem ativa. 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
44 
pi
x
tensão após o escorre
g. 
na ancoragem
tensão antes do 
escorregamento


p
,a
n
c
X0


p
,a
n
c
atrito
atrit
o
p

p
p,atr
 
Figura 77 – Perda de tensão por atrito e por escorregamento na ancoragem. 
 
 
A perda de tensão na posição da ancoragem é: 
 
X
E2 panc,p

 (Lei de Hooke) 
 
 = escorregamento/acomodação na ancoragem; 
com 

X
= perda de deformação média até X. 
 
Na posição X a perda de tensão é nula, e: 
 



iP
pE
X 
 
 = valor dependente da curvatura da armadura e do atrito (); 
Pi = tensão na armadura na posição da ancoragem ativa (macaco hidráulico). 
 
Exemplo 
 
Assumindo Pi = – 1.303 MPa e  = 5,1 mm = 0,0051 m, qual o valor de X e da perda de 
protensão devida ao escorregamento na ancoragem ativa? Quais os valores das tensões na 
armadura de protensão nas posições X e X/2? 
Dados:  = 0,15, k = 0,0025/m, Ep = 196.000 MPa. 
 
a 45,7 cm
7,32 m 7,32
parábola
ancoragem ativa
 
Figura 78 – Esquema da armadura na viga. 
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
45 
Tabela 9 - Valores de  e X para perfis típicos da armadura. 
Perfil 
x
kx
 X   
Linear 
 
xpi
 
k 
iP
p
k
E
X


 
Parabólico 
 
pi
b
a
 
k
b
a
2
2


 



iP
pE
X 
Circular 
 
pi
R
 
k
R


 



iP
pE
X 
Qualquer forma, ou 
combinação de formas (modelo 
aproximado) 
p (x)
x
pi
l
z
 
iP
1z








 

z
E
X
p 
 
 
Resolução 
 
00506,00025,0
32,7
457,0.15,0.2
k
b
a
2
22


 /m 
 



iP
pE
X = 31,12
00506,03,130
0051,019600



 m 
 
A perda de protensão é: 
 
X
E2 panc,p

 = 4,162
31,12
0051,0
196000.2  MPa 
 
Perda percentual: 5,12100
1303
4,162
 % 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
46 
pi
distância (x)
antes do escorreg. na 
ancoragem


p
,a
n
c

X
2
X
2
1
6
2
,4
após o escorre
gamento
X = 12,31


p
,a
n
c
posição do
"macaco"
p,anc= 0
1140,6
1303
1221,8 = 1303 - ( 162,4
2 )
P
i P i
- Patr
posição do
"macaco"
(anc. ativa)
ancoragem
passiva
escorregamento
()
atrito no escorregamento
atrito no alongamento
p
8
1
,2
1
1
8
1
.2
1
2
2
1
.8
 
Figura 79 – Perda de tensão por atrito e por escorregamento na ancoragem. 
 
 
9.9 PERDA DE PROTENSÃO NA PÓS-TRAÇÃO POR DEFORMAÇÃO IMEDIATA 
DO CONCRETO PELO ESTIRAMENTO DOS CABOS RESTANTES 
 
Na pós-tração os macacos de protensão apóiam-se na própria peça a ser protendida, o que 
impõe deformações na peça à medida que a armadura vai sendo estirada, de modo que não 
ocorrem perdas de protensão quando os cabos são estendidos todos juntos. No entanto, quando a 
protensão é aplicada cabo por cabo, a protensão num cabo provoca deformações no concreto que 
resultam em perda de protensão nos cabos já tracionados e ancorados. 
O primeiro cabo sofre perda de protensão decorrente da protensão dos n-1 cabos restantes, 
e assim sucessivamente, sendo zero a perda do último cabo estirado. 
Segundo a NBR 6118 (item 9.6.3.3.2.1), a perda média de protensão, por cabo, é: 
 
  
n2
1ncgcpp
P

 
 
com: 
cp = tensão inicial no concreto ao nível do baricentro da armadura de protensão, devido à 
protensão simultânea dos “n” cabos; 
cg = tensão no mesmo ponto, devida à carga permanente mobilizada pela protensão ou 
simultaneamente aplicada pela protensão. 
 
 
c
p
p
E
E
 
UNESP (Bauru/SP) – 2139 – Concreto Protendido 
 
Prof. Dr. Paulo Sérgio dos Santos Bastos 
 
47 
Para um número muito grande de cabos, de modo aproximado: 
 
 cgcppP
2
1
 
 
9.10 RETRAÇÃO E FLUÊNCIA INICIAL DO CONCRETO NA PÓS-TRAÇÃO 
 
A perda de protensão por retração e fluência inicial do concreto ocorre quando os cabos de 
protensão são protendidos em instantes diferentes, ou seja, o cabo protendido numa primeira etapa 
já vai sofrendo perdas de protensão até o instante de protensão de cada um dos cabos restantes. 
As perdas de protensão ocorridas entre as etapas de protensão devem ser somadas à da 
relaxação da armadura. 
Não havendo necessidade de se considerar um cálculo mais refinado, essa perdas iniciais 
podem ser estimadas, ou desprezadas quando forem pequenas. 
 
9.11 DETERMINAÇÃO DA FORÇA DE PROTENSÃO FINAL 
 
A força de protensão final (P∞) é aquela existente após ocorridas todas as perdas de 
protensão. 
Pode ser calculada subtraindo todas as perdas ocorridas após a aplicação da força Po 
(perdas progressivas posteriores: retração e fluência do concreto e relaxação da armadura). 
 
9.12 PERDA DE PROTENSÃO POR RETRAÇÃO DO CONCRETO 
 
A retração no concreto é afetada por muitos fatores: traço, tipo de agregados, tipo de 
cimento, tempo de cura, tempo de aplicação da protensão após a cura, dimensões e forma da peça, 
condições do ambiente, etc. Aproximadamente 80 % da retração ocorre no primeiro ano. 
A perda de tensão na armadura devida à retração do concreto pode ser aproximada por: 
 
pcsPcs E 
onde: 
cs = deformação específica de retração do concreto ao nível da armadura, no tempo 
considerado; 
 Ep = módulo de elasticidade da armadura de protensão. 
 
 A deformação cs é fornecida pela NBR 6118 (Tabela 8.2, item 8.2.11) do tempo to (dias) 
até o tempo

Mais conteúdos dessa disciplina