Prévia do material em texto
2. (Insper 2012) De cada vértice de um prisma hexagonal regular foi retirado um tetraedro, como exemplificado para um dos vértices do prisma desenhado a seguir. O plano que definiu cada corte feito para retirar os tetraedros passa pelos pontos médios das três arestas que concorrem num mesmo vértice do prisma. O número de faces do poliedro obtido depois de terem sido retirados todos os tetraedros é a) 24. b) 20. c) 18. d) 16. e) 12. RAZÕES E PROPORÇÕES 1. (Uerj 2014) Observe no gráfico o número de médicos ativos registrados no Conselho Federal de Medicina (CFM) e o número de médicos atuantes no Sistema Único de Saúde (SUS), para cada mil habitantes, nas cinco regiões do Brasil. O SUS oferece 1,0 médico para cada grupo de x habitantes. Na região Norte, o valor de x é aproximadamente igual a: a) 660 b) 1000 c) 1334 d) 1515 2. (G1 - epcar (Cpcar) 2013) Uma mãe dividiu a quantia de R$ 2100,00 entre seus três filhos de 3, 5 e 6 anos. A divisão foi feita em partes inversamente proporcionais às idades de cada um. Dessa forma, é verdade que a) o filho mais novo recebeu 100 reais a mais que a soma dos valores recebidos pelos outros dois filhos. b) o filho mais velho recebeu 20% a menos que o filho do meio. c) a quantia que o filho do meio recebeu é 40% do que recebeu o mais novo. d) se a divisão fosse feita em partes iguais, o filho mais velho teria sua parte acrescida de 40% em relação ao que realmente recebeu. PROBABILIDADES 1. (Ufpr 2012) André, Beatriz e João resolveram usar duas moedas comuns, não viciadas, para decidir quem irá lavar a louça do jantar, lançando as duas moedas simultaneamente, uma única vez. Se aparecerem duas coroas, André lavará a louça; se aparecerem duas caras, Beatriz lavará a louça; e se aparecerem uma cara e uma coroa, João lavará a louça. A probabilidade de que João venha a ser sorteado para lavar a louça é de: a) 25%. b) 27,5%. c) 30%. d) 33,3%. e) 50%. 2. (Enem 2010) A figura I abaixo mostra um esquema das principais vias que interligam a cidade A com a cidade B. Cada número indicado na figura II representa a probabilidade de pegar um engarrafamento quando se passa na via indicada, Assim, há uma probabilidade de 30% de se pegar engarrafamento no deslocamento do ponto C ao o ponto B, passando pela estrada E4, e de 50%, quando se passa por E3. Essas probabilidades são independentes umas das outras. Paula deseja se deslocar da cidade A para a cidade B usando exatamente duas das vias indicadas, percorrendo um trajeto com a menor probabilidade de engarrafamento possível. O melhor trajeto para Paula é a) E1E3. b) E1E4. c) E2E4. d) E2E5. e) E2E6. PROGRESSÃO ARITMÉTICA 1. (Uftm 2012) Os valores das prestações mensais de certo financiamento constituem uma P.A. crescente de 12 termos. Sabendo que o valor da 1ª prestação é R$ 500,00 e o da 12ª é R$ 2.150,00, pode-se concluir que o valor da 10ª prestação será igual a a) R$ 1.750,00. b) R$ 1.800,00. c) R$ 1.850,00. d) R$ 1.900,00. e) R$ 1.950,00. 2. (Upf 2012) Num laboratório está sendo realizado um estudo sobre a evolução de uma população de vírus. A seguinte sequência de figuras representa os três primeiros minutos da reprodução do vírus (representado por um triângulo). Supondo que se mantém constante o ritmo de desenvolvimento da população de vírus, qual o número de vírus após uma hora? a) 140 b) 180 c) 178 d) 240 e) 537 PROGRESSÃO GEOMÉTRICA 1. (Espm 2014) A figura abaixo mostra a trajetória de um móvel a partir de um ponto com e assim por diante. Considerando infinita a quantidade desses segmentos, a distância horizontal alcançada por esse móvel será de: a) 65 m b) 72 m c) 80 m d) 96 m e) 100 m 2. (Udesc 2011) Em uma escola com alunos, um aluno apareceu com o vírus do sarampo. Se esse aluno permanecesse na escola, o vírus se propagaria da seguinte forma: no primeiro dia, um aluno estaria contaminado; no segundo, dois estariam contaminados; no terceiro, quatro, e assim sucessivamente. A diretora dispensou o aluno contaminado imediatamente, pois concluiu que todos os alunos teriam sarampo no: a) 9º dia. b) 10º dia. c) 8º dia. d) 5º dia. e) 6º dia. COMBINAÇÃO 1. (Enem 2013) Considere o seguinte jogo de apostas: Numa cartela com 60 números disponíveis, um apostador escolhe de 6 a 10 números. Dentre os números disponíveis, serão sorteados apenas 6. O apostador será premiado caso os 6 números sorteados estejam entre os números escolhidos por ele numa mesma cartela. O quadro apresenta o preço de cada cartela, de acordo com a quantidade de números escolhidos. Quantidade de números escolhidos em uma cartela Preço da cartela (R$) 6 2,00 7 12,00 8 40,00 9 125,00 10 250,00 Cinco apostadores, cada um com R$500,00 para apostar, fizeram as seguintes opções: - Arthur: 250 cartelas com 6 números escolhidos; - Bruno: 41 cartelas com 7 números escolhidos e 4 cartelas com 6 números escolhidos; - Caio: 12 cartelas com 8 números escolhidos e 10 cartelas com 6 números escolhidos; - Douglas: 4 cartelas com 9 números escolhidos; - Eduardo: 2 cartelas com 10 números escolhidos. Os dois apostadores com maiores probabilidades de serem premiados são a) Caio e Eduardo. b) Arthur e Eduardo. c) Bruno e Caio. d) Arthur e Bruno. e) Douglas e Eduardo. 2. (Enem 2ª aplicação 2010) Considere que um professor de arqueologia tenha obtido recursos para visitar 5 museus, sendo 3 deles no Brasil e 2 fora do país. Ele decidiu restringir sua escolha aos museus nacionais e internacionais relacionados na tabela a seguir. Museus nacionais Museus internacionais Masp — São Paulo Louvre — Paris MAM — São Paulo Prado — Madri Ipiranga — São Paulo British Museum — Londres Imperial — Petrópolis Metropolitan — Nova York De acordo com os recursos obtidos, de quantas maneiras diferentes esse professor pode escolher os 5 museus para visitar? a) 6 b) 8 c) 20 d) 24 e) 36 COMBINAÇÃO 1. (Enem 2009) A população brasileira sabe, pelo menos intuitivamente, que a probabilidade de acertar as seis dezenas da mega sena não é zero, mas é quase. Mesmo assim, milhões de pessoas são atraídas por essa loteria, especialmente quando o prêmio se acumula em valores altos. Até junho de 2009, cada aposta de seis dezenas, pertencentes ao conjunto {01, 02, 03, ..., 59, 60}, custava R$ 1,50. Disponível em: www.caixa.gov.br. Acesso em: 7 jul. 2009. Considere que uma pessoa decida apostar exatamente R$ 126,00 e que esteja mais interessada em acertar apenas cinco das seis dezenas da mega sena, justamente pela dificuldade A, BC CD, DE EF, FG GH, HI IJ AP 512 512 desta última. Nesse caso, é melhor que essa pessoa faça 84 apostas de seis dezenas diferentes, que não tenham cinco números em comum, do que uma única aposta com nove dezenas, porque a probabilidade de acertar a quina no segundo caso em relação ao primeiro é, aproximadamente, a) 1 1 2 vez menor. b) 1 2 2 vezes menor. c) 4 vezes menor. d) 9 vezes menor. e) 14 vezes menor. 2. (Enem 2007) Estima-se que haja, no Acre, 209 espécies de mamíferos, distribuídas conforme a tabela a seguir. grupos taxonômicos número de espécies Artiodáctilos 4 Carnívoros 18 Cetáceos 2 Quirópteros 103 Lagomorfos 1 Marsupiais 16 Perissodáctilos 1 Primatas 20 Roedores 33 Sirênios 1 Edentados 10 Total 209 T & C Amazônia, ano 1, n.º 3, dez./2003. Deseja-se realizar um estudo comparativo entre três dessas espécies de mamíferos - uma do grupo Cetáceos, outra do grupo Primatas e a terceira do grupo Roedores. O número de conjuntos distintos que podem ser formados com essas espécies para esse estudo é igual a a) 1.320. b) 2.090.c) 5.845. d) 6.600. e) 7.245. QUÍMICA: PARTE B PROPRIEDADES COLIGATIVAS 1. (Enem 2010) Sob pressão normal (ao nível do mar), a água entra em ebulição à temperatura de 100 °C. Tendo por base essa informação, um garoto residente em uma cidade litorânea fez a seguinte experiência: • Colocou uma caneca metálica contendo água no fogareiro do fogão de sua casa. • Quando a água começou a ferver, encostou cuidadosamente a extremidade mais estreita de uma seringa de injeção, desprovida de agulha, na superfície do líquido e, erguendo o êmbolo da seringa, aspirou certa quantidade de água para seu interior, tapando-a em seguida. • Verificando após alguns instantes que a água da seringa havia parado de ferver, ele ergueu o êmbolo da seringa, constatando, intrigado, que a água voltou a ferver após um pequeno deslocamento do êmbolo. Considerando o procedimento anterior, a água volta a ferver porque esse deslocamento a) permite a entrada de calor do ambiente externo para o interior da seringa. b) provoca, por atrito, um aquecimento da água contida na seringa. c) produz um aumento de volume que aumenta o ponto de ebulição da água. d) proporciona uma queda de pressão no interior da seringa que diminui o ponto de ebulição da água. e) possibilita uma diminuição da densidade da água que facilita sua ebulição. 2. (Ufpr 2013) Em festas e churrascos em família, é costume usar geleiras de isopor para resfriar bebidas enlatadas ou engarrafadas. Para gelar eficientemente, muitas pessoas costumam adicionar sal e/ou álcool à mistura gelo/água. A melhor eficiência mencionada se deve ao fato de que a presença de sal ou álcool: a) aumenta a taxa de transferência de calor. b) abaixa a temperatura do gelo. c) aumenta a temperatura de ebulição. d) abaixa a temperatura de fusão. e) abaixa a dissipação de calor para o exterior. LEI DE RAOULT: 1º) Numa solução muito diluída de um soluto, não volátil e não iônico, o abaixamento relativo da pressão máxima de vapor é diretamente proporcional à molalidade da solução. 2º) Numa solução líquida, que possua um soluto não volátil e não iônico, a elevação da temperatura de ebulição é diretamente proporcional à molalidade da solução. 3º) Numa solução líquida, que possua um soluto não volátil e não iônico, o abaixamento da temperatura de congelamento é diretamente proporcional à molalidade da solução. PROPRIEDADES COLIGATIVAS 1. (Ufrgs 2010) Assinale a alternativa que completa corretamente as lacunas no texto a seguir, na ordem em que aparecem. Dois copos contendo igual volume de líquido são colocados sob uma campânula impermeável, como na figura que segue. O copo 1 contém água do mar e o copo 2 água pura. Com o tempo, o líquido do copo 1 apresentará um volume............... líquido do copo 2. Esse fato se explica pelo efeito............... . a) maior que o - tonoscópico b) menor que o - tonoscópico c) igual ao - osmótico d) maior que o - osmótico e) menor que o - osmótico