Logo Passei Direto
Buscar

Calculo I e II - 3 - FACULDADE UNICA

Ferramentas de estudo

Questões resolvidas

Dados f(x) = x2 – 2x+1 e g(x) = 2x + 1, podemos afirmar que f(g(1)) é:

X A) 3
B) 5
C) 6
D) 4
E) 7

Analise o limite abaixo. O resultado desse limite é:


6/4
0
6

009 Analise o limite abaixo.
O resultado desse limite é:
(Sugestão: fatore o numerador antes de calcular o limite)

0
2
5
1
-5

Analise o limite abaixo.

O resultado desse limite é:


0
2
X
4

Analise o limite abaixo. O resultado desse limite é:

0
7/4
X 7/3

008 Ao calcularmos a derivada da função f(x) = senx.cosx encontramos como resultado:

cos²x + sen²x

cos²x ÷ sen²x
X cos²x - sen²x

0
cos²x.sen²x

Se f(x) = senx + cosx + tgx, então f´(0) é igual a:


2
1
1/2
-1/2
-1

A função f(x) = 2x³ + 9x² - 24x + 6 é decrescente no intervalo:


-1 < x < 4
x > 0
x > 1
x < - 4
– 4 < x < 1

Observe na tabela a medida do lado (em cm) de uma região quadrada e sua área (em cm2) De acordo com a tabela, podemos afirmar que a medida do lado da região quadrada cuja área é de 144 cm2 é:


13 cm.
11 cm.
X 12 cm.
14 cm.
15 cm.

A área compreendida entre as curvas Υ= x2 e Υ= –x2 + 4x é


A) 5/3
B) 10/3
X C) 6/3
D) 7/3
E) 8/3

Ao calcularmos a derivada da função f(x) = x³ + 2x (pela definição) para x = 1, encontramos como resultado:


1
-5
0
5
-1

Material
páginas com resultados encontrados.
páginas com resultados encontrados.
left-side-bubbles-backgroundright-side-bubbles-background

Experimente o Premium!star struck emoji

Acesse conteúdos dessa e de diversas outras disciplinas.

Libere conteúdos
sem pagar

Ajude estudantes e ganhe conteúdos liberados!

left-side-bubbles-backgroundright-side-bubbles-background

Experimente o Premium!star struck emoji

Acesse conteúdos dessa e de diversas outras disciplinas.

Libere conteúdos
sem pagar

Ajude estudantes e ganhe conteúdos liberados!

left-side-bubbles-backgroundright-side-bubbles-background

Experimente o Premium!star struck emoji

Acesse conteúdos dessa e de diversas outras disciplinas.

Libere conteúdos
sem pagar

Ajude estudantes e ganhe conteúdos liberados!

left-side-bubbles-backgroundright-side-bubbles-background

Experimente o Premium!star struck emoji

Acesse conteúdos dessa e de diversas outras disciplinas.

Libere conteúdos
sem pagar

Ajude estudantes e ganhe conteúdos liberados!

left-side-bubbles-backgroundright-side-bubbles-background

Experimente o Premium!star struck emoji

Acesse conteúdos dessa e de diversas outras disciplinas.

Libere conteúdos
sem pagar

Ajude estudantes e ganhe conteúdos liberados!

left-side-bubbles-backgroundright-side-bubbles-background

Experimente o Premium!star struck emoji

Acesse conteúdos dessa e de diversas outras disciplinas.

Libere conteúdos
sem pagar

Ajude estudantes e ganhe conteúdos liberados!

left-side-bubbles-backgroundright-side-bubbles-background

Experimente o Premium!star struck emoji

Acesse conteúdos dessa e de diversas outras disciplinas.

Libere conteúdos
sem pagar

Ajude estudantes e ganhe conteúdos liberados!

left-side-bubbles-backgroundright-side-bubbles-background

Experimente o Premium!star struck emoji

Acesse conteúdos dessa e de diversas outras disciplinas.

Libere conteúdos
sem pagar

Ajude estudantes e ganhe conteúdos liberados!

left-side-bubbles-backgroundright-side-bubbles-background

Experimente o Premium!star struck emoji

Acesse conteúdos dessa e de diversas outras disciplinas.

Libere conteúdos
sem pagar

Ajude estudantes e ganhe conteúdos liberados!

left-side-bubbles-backgroundright-side-bubbles-background

Experimente o Premium!star struck emoji

Acesse conteúdos dessa e de diversas outras disciplinas.

Libere conteúdos
sem pagar

Ajude estudantes e ganhe conteúdos liberados!

Questões resolvidas

Dados f(x) = x2 – 2x+1 e g(x) = 2x + 1, podemos afirmar que f(g(1)) é:

X A) 3
B) 5
C) 6
D) 4
E) 7

Analise o limite abaixo. O resultado desse limite é:


6/4
0
6

009 Analise o limite abaixo.
O resultado desse limite é:
(Sugestão: fatore o numerador antes de calcular o limite)

0
2
5
1
-5

Analise o limite abaixo.

O resultado desse limite é:


0
2
X
4

Analise o limite abaixo. O resultado desse limite é:

0
7/4
X 7/3

008 Ao calcularmos a derivada da função f(x) = senx.cosx encontramos como resultado:

cos²x + sen²x

cos²x ÷ sen²x
X cos²x - sen²x

0
cos²x.sen²x

Se f(x) = senx + cosx + tgx, então f´(0) é igual a:


2
1
1/2
-1/2
-1

A função f(x) = 2x³ + 9x² - 24x + 6 é decrescente no intervalo:


-1 < x < 4
x > 0
x > 1
x < - 4
– 4 < x < 1

Observe na tabela a medida do lado (em cm) de uma região quadrada e sua área (em cm2) De acordo com a tabela, podemos afirmar que a medida do lado da região quadrada cuja área é de 144 cm2 é:


13 cm.
11 cm.
X 12 cm.
14 cm.
15 cm.

A área compreendida entre as curvas Υ= x2 e Υ= –x2 + 4x é


A) 5/3
B) 10/3
X C) 6/3
D) 7/3
E) 8/3

Ao calcularmos a derivada da função f(x) = x³ + 2x (pela definição) para x = 1, encontramos como resultado:


1
-5
0
5
-1

Prévia do material em texto

Impresso por Construgranito Granito, E-mail construgranitosm@gmail.com para uso pessoal e privado. Este material pode ser
protegido por direitos autorais e não pode ser reproduzido ou repassado para terceiros. 29/11/2023, 08:54:08
30/10/2022 10:16:32 1/4
REVISÃO DE SIMULADO
Nome:
MAIKO SUHR
Disciplina:
Cálculo I
Respostas corretas são marcadas em amarelo Respostas marcardas por você.X
Questão
001
Atualmente existem diversas locadoras de veículos, permitindo uma concorrência
saudável para o mercado, fazendo com que os preços se tornem acessíveis. Nas
locadoras P e Q, o valor da diária de seus carros depende da distância percorrida,
conforme o gráfico.
O valor pago na locadora Q é menor ou igual àquele pago na locadora P para distâncias,
em quilômetros, presentes em qual (is) intervalo (s)?
A) De 40 a 80 e de 130 a 160.
B) De 100 a 160.
C) De 0 a 20 e de 100 a 160.
X D) De 20 a 100.
E) De 80 a 130.
Questão
002 Dados f(x) = x – 2x+1 e g(x) = 2x + 1, podemos afirmar que f(g(1)) é:2
A) 5
X B) 6
C) 7
D) 3
E) 4
Questão
003
Analise o gráfico da função abaixo.
Assinale a alternativa correta:
A) o gráfico é crescente para 
X B) o gráfico é constante para 
C) o gráfico é decrescente para 
D)
o gráfico é decrescente para 
E)
o gráfico é crescente para 
Impresso por Construgranito Granito, E-mail construgranitosm@gmail.com para uso pessoal e privado. Este material pode ser
protegido por direitos autorais e não pode ser reproduzido ou repassado para terceiros. 29/11/2023, 08:54:08
30/10/2022 10:16:32 2/4
Questão
004
Observe a função abaixo e marque a alternativa correta:
A) o domínio de f(x) é 
X B) o domínio de f(x) é 
C) o domínio de f(x) é 
D)
o domínio de f(x) é 
E) o domínio de f(x) é 
Questão
005
Uma dose inicial de um certo antibiótico é ingerida por um paciente e, para que seja
eficaz, é necessária uma concentração mínima. Considere que a concentração do
medicamento, durante as 12 primeiras horas, medida em miligramas por litro de
sangue, seja dada pela função cujo gráfico é apresentado a seguir:
Considere as afirmativas a seguir:
I. Se a concentração mínima for de 20 mg/l, então o antibiótico deve ser ingerido
novamente após 8 horas.
II. A concentração de antibiótico no sangue cresce mais rápido do que decresce.
III. A concentração máxima de antibiótico ocorre aproximadamente 3 horas após a
ingestão.
IV. O gráfico da função, durante essas 12 horas, representa uma função bijetora.
A) Somente as afirmativas I e IV são corretas.
B) Somente as afirmativas III e IV são corretas.
X C) Somente as afirmativas I, II e IV são corretas.
D) Somente as afirmativas II e III são corretas.
E) Somente as afirmativas I, II e III são corretas.
Questão
006
A rotina diária de exercícios de um triatleta consiste em nadar, pedalar e correr, nessa
ordem. Sabe-se que ele corre mais rápido do que nada e pedala mais rápido do que
corre, e que não há intervalo de tempo para descanso entre as três atividades físicas. O
gráfico que melhor representa a distância percorrida durante o tempo da rotina diária
de exercícios desse triatleta é
X A)
Impresso por Construgranito Granito, E-mail construgranitosm@gmail.com para uso pessoal e privado. Este material pode ser
protegido por direitos autorais e não pode ser reproduzido ou repassado para terceiros. 29/11/2023, 08:54:08
30/10/2022 10:16:32 3/4
B)
C)
D)
E)
Questão
007
Um reservatório é abastecido com água por uma torneira e um ralo faz a drenagem da
água desse reservatório. Os gráficos representam as vazões Q, em litro por minuto, do
volume de água que entra no reservatório pela torneira e do volume que sai pelo ralo,
em função do tempo t, em minuto.
Em qual intervalo de tempo, em minuto, o reservatório tem uma vazão constante de
enchimento?
 
A) De 0 a 25.
X B) De 5 a 10.
C) De 0 a 10.
D) De 5 a 15.
E) De 15 a 25.
Questão
008
Analise o gráfico da função f(x) abaixo.
Podemos afirmar que:
A)
a imagem de f(x) é 
Impresso por Construgranito Granito, E-mail construgranitosm@gmail.com para uso pessoal e privado. Este material pode ser
protegido por direitos autorais e não pode ser reproduzido ou repassado para terceiros. 29/11/2023, 08:54:08
30/10/2022 10:16:32 4/4
X B)
o domínio de f(x) é 
C)
o domínio de f(x) é 
D)
o domínio de f(x) é 
E)
a imagem de f(x) é 
Pincel Atômico - 29/11/2023 16:34:59 1/3
BIANCA CAMPO
DALL'ORTO GIOBINI
Exercício Caminho do Conhecimento - Etapa 6 (19297)
Atividade finalizada em 29/11/2023 09:11:23 (1451389 / 1)
LEGENDA
Resposta correta na questão
# Resposta correta - Questão Anulada
X Resposta selecionada pelo Aluno
Disciplina:
CÁLCULO DIFERENCIAL E INTEGRAL I E II [984264] - Avaliação com 8 questões, com o peso total de 1,67 pontos [capítulos - 3]
Turma:
Segunda Graduação: Segunda Graduação 6 meses - Licenciatura em Física - Grupo: FPD-NOVEMBRO/2023 - SGegu0A231123 [107528]
Aluno(a):
91172670 - BIANCA CAMPO DALL'ORTO GIOBINI - Respondeu 6 questões corretas, obtendo um total de 1,25 pontos como nota
[353990_39748]
Questão
001
Analise o limite abaixo.
 
O resultado desse limite é:
6
6/4
X 0
[353990_39747]
Questão
002
Analise o limite abaixo.
 
O resultado desse limite é:
7/3
0
7/4
X
[353992_39758]
Questão
003
Analise o limite abaixo.
 
O resultado desse limite é:
(Sugestão: fatore o numerador antes de calcular o limite)
5
1
2
X -5
0
Pincel Atômico - 29/11/2023 16:34:59 2/3
[353990_39646]
Questão
004
Analise o limite abaixo.
 
O resultado desse limite é:
(Sugestão: fatore o numerador antes de calcular o limite)
-5
1
2
X 5
0
[353990_39749]
Questão
005
Analise o limite abaixo.
 
O resultado desse limite é:
0
X
2
4
[353990_39639]
Questão
006
Analise o limite abaixo.
 
O resultado desse limite é:
7/4
7/3
X
0
[353991_39753]
Questão
007
Analise o limite abaixo.
 
Então o resultado é:
0
X 5
3
Pincel Atômico - 29/11/2023 16:34:59 3/3
[353990_39641]
Questão
008
Analise o limite abaixo.
 
O resultado desse limite é:
2
X
4
0
Pincel Atômico - 29/11/2023 16:35:14 1/2
BIANCA CAMPO
DALL'ORTO GIOBINI
Exercício Caminho do Conhecimento - Etapa 8 (19298)
Atividade finalizada em 29/11/2023 09:16:56 (1451390 / 1)
LEGENDA
Resposta correta na questão
# Resposta correta - Questão Anulada
X Resposta selecionada pelo Aluno
Disciplina:
CÁLCULO DIFERENCIAL E INTEGRAL I E II [984264] - Avaliação com 8 questões, com o peso total de 1,67 pontos [capítulos - 4]
Turma:
Segunda Graduação: Segunda Graduação 6 meses - Licenciatura em Física - Grupo: FPD-NOVEMBRO/2023 - SGegu0A231123 [107528]
Aluno(a):
91172670 - BIANCA CAMPO DALL'ORTO GIOBINI - Respondeu 8 questões corretas, obtendo um total de 1,67 pontos como nota
[353990_39672]
Questão
001 O resultado de para f(x) = 3x é:
-3
X 3
0
[353991_39772]
Questão
002 O resultado de para f(x) = 3x é:
0
-3
X 3
[353990_39674]
Questão
003 A derivada da função (pela definição) é:
X 1/x2
1/x
0
– 1/x
– 1/x2
[353990_39670]
Questão
004
Ao calcularmos a derivada da função (pela definição) para x = 1,
encontramos como resultado:
3
2
0
X 1
-1
[353990_39669]
Questão
005
Ao calcularmos a derivada da função (pela definição) para x = 1,
encontramos como resultado:
-5
-1
Pincel Atômico - 29/11/2023 16:35:14 2/2
0
X 5
1
[353990_39769]
Questão
006
Ao calcularmos a derivada da função f(x) = x².x³ (pela definição) para x = 1,
encontramos como resultado:
X 5
-5
-4
4
1
[353990_39671]
Questão
007
Ao calcularmos a derivada da função (pela definição) para x = 1,
encontramos como resultado:
X 5
4
-5
1
-4
[353992_39779]
Questão
008
A derivada da função (pela definição) é:
x-1
X 2
x/3
0
x2
Pincel Atômico - 29/11/2023 16:35:29 1/2
BIANCA CAMPO
DALL'ORTO GIOBINI
Exercício Caminho do Conhecimento - Etapa 10 (19299)
Atividade finalizada em 29/11/2023 09:27:54 (1451391 / 1)
LEGENDA
Resposta correta na questão
# Resposta correta - Questão Anulada
X Resposta selecionada pelo Aluno
Disciplina:
CÁLCULO DIFERENCIAL E INTEGRAL I E II [984264] - Avaliação com 8 questões,com o peso total de 1,67 pontos [capítulos - 5]
Turma:
Segunda Graduação: Segunda Graduação 6 meses - Licenciatura em Física - Grupo: FPD-NOVEMBRO/2023 - SGegu0A231123 [107528]
Aluno(a):
91172670 - BIANCA CAMPO DALL'ORTO GIOBINI - Respondeu 7 questões corretas, obtendo um total de 1,46 pontos como nota
[353990_39787]
Questão
001 Ao calcularmos a derivada da função encontramos como resultado:
2xtg(x²)
2xcotg(x²)
X 2xcos(x²)
2xsec(x²)
2xsen(x²)
[353992_39805]
Questão
002 Ao calcularmos a derivada da função encontramos como resultado:
X
[353990_39801]
Questão
003
Ao calcularmos a derivada da função f(x) = sec(x²) encontramos como resultado:
X sec(x²).tg(x²).2x
sec(x).tg(x).2x
sec(x²).tg(x²)
sec(x²).tg(x²).x
sec(x²).tg(x²).2
[353990_39690]
Questão
004
Ao calcularmos a derivada da função encontramos
como resultado:
X Cosx
1
Senx
0
2
[353990_39680]
Questão
005 Ao calcularmos a derivada da função encontramos como resultado:
X
Pincel Atômico - 29/11/2023 16:35:29 2/2
[353990_39692]
Questão
006 Ao calcularmos a derivada da função encontramos como resultado:
X
[353990_39689]
Questão
007
Ao calcularmos a derivada da função encontramos como
resultado:
X
0
[353991_39802]
Questão
008
Ao calcularmos a derivada da função f(x) = senx.cosx encontramos como resultado:
cos²x ÷ sen²x
X cos²x - sen²x
0
cos²x + sen²x
cos²x.sen²x
Pincel Atômico - 29/11/2023 16:35:52 1/2
BIANCA CAMPO
DALL'ORTO GIOBINI
Exercício Caminho do Conhecimento - Etapa 12 (19300)
Atividade finalizada em 29/11/2023 09:36:58 (1451392 / 2)
LEGENDA
Resposta correta na questão
# Resposta correta - Questão Anulada
X Resposta selecionada pelo Aluno
Disciplina:
CÁLCULO DIFERENCIAL E INTEGRAL I E II [984264] - Avaliação com 8 questões, com o peso total de 1,67 pontos [capítulos - 6]
Turma:
Segunda Graduação: Segunda Graduação 6 meses - Licenciatura em Física - Grupo: FPD-NOVEMBRO/2023 - SGegu0A231123 [107528]
Aluno(a):
91172670 - BIANCA CAMPO DALL'ORTO GIOBINI - Respondeu 7 questões corretas, obtendo um total de 1,46 pontos como nota
[353992_39812]
Questão
001
Um corpo se movimenta, obedecendo à função horária
Então podemos afirmar que:
A velocidade é definida por v(t) = 5 + 2t3
A velocidade é definida por v(t) = – 2t3
A velocidade é definida por v(t) = + 2t3
X A velocidade é definida por v(t) = 5 – 2t3
A velocidade é definida por v(t) = 5 – 0,5t3
[353991_39810]
Questão
002
Seja a função f(x) = x³ - 9x² + 24x + 5 O intervalo em que f´(x) 1
X – 4 0
[353990_39696]
Questão
007 Na função o ponto (1,-1/3) é:
Ponto de reflexão.
Ponto de máximo.
X Ponto de mínimo.
Não é ponto crítico.
Ponto de inflexão.
[353991_39811]
Questão
008
Entre todos os retângulos de área igual a 36 m2, o lado daquele que tem o menor
perímetro é
o quadrado de lado 7 cm.
o quadrado de lado 8 cm.
o quadrado de lado 5 cm.
X o quadrado de lado 6 cm.
o quadrado de lado 4 cm.
Pincel Atômico - 29/11/2023 16:36:10 1/4
BIANCA CAMPO
DALL'ORTO GIOBINI
Exercício Caminho do Conhecimento - Etapa 14 (17295)
Atividade finalizada em 29/11/2023 09:49:21 (1451393 / 1)
LEGENDA
Resposta correta na questão
# Resposta correta - Questão Anulada
X Resposta selecionada pelo Aluno
Disciplina:
CÁLCULO DIFERENCIAL E INTEGRAL I E II [984264] - Avaliação com 8 questões, com o peso total de 1,67 pontos [capítulos - 1]
Turma:
Segunda Graduação: Segunda Graduação 6 meses - Licenciatura em Física - Grupo: FPD-NOVEMBRO/2023 - SGegu0A231123 [107528]
Aluno(a):
91172670 - BIANCA CAMPO DALL'ORTO GIOBINI - Respondeu 7 questões corretas, obtendo um total de 1,46 pontos como nota
[356432_70919]
Questão
001
Utilizando a forma da definição para calcular a integral encontramos
como resultado :
39
41
X 42
40
43
[356432_70052]
Questão
002
Lendo os valores do gráfico dado da função f(x), utilize o extremo esquerdo de
quatro retângulos para encontrar as estimativas para a área sob o gráfico dado da
função de x = 0 até x = 4.
 
Fazendo o que se pede, podemos afirmar que a área aproximada é
 
11.
15.
12.
X 13.
14.
Pincel Atômico - 29/11/2023 16:36:10 2/4
[356432_70904]
Questão
003
Lendo os valores do gráfico dado da função ƒ(x), utilize o extremo direito de quatro
retângulos para encontrar as estimativas para a área sob o gráfico dado da função
de x = 0 até x = 8.
Fazendo o que se pede, podemos afirmar
que a área encontrada será
X 41
38
42
40
39
[356432_70912]
Questão
004
A velocidade de um corredor aumenta regularmente durante os três primeiros
segundos de uma corrida. Sua velocidade em intervalos de meio segundo é dada em
uma tabela:
 
Utilizando os extremos direitos de cada intervalo podemos dizer que a distância
percorrida pelo atleta é
11,65
12,65
14,65
X 13,65
10,65
Pincel Atômico - 29/11/2023 16:36:10 3/4
[356432_70053]
Questão
005
Lendo os valores do gráfico dado da função f(x), utilize o extremo direito de quatro
retângulos para encontrar as estimativas para a área sob o gráfico dado da função
de x = 0 até x = 4.
Fazendo o que se pede, podemos afirmar que a área encontrada será
 
X 13.
16.
17.
14.
15.
[356432_70911]
Questão
006
A velocidade de um corredor aumenta regularmente durante os três primeiros
segundos de uma corrida. Sua velocidade em intervalos de meio segundo é dada em
uma tabela:
Utilizando os extremos esquerdos de cada intervalo podemos dizer que a distância
percorrida pelo atleta é
11,55
13,55
X 10,55
14,55
12,55
[356432_70920]
Questão
007
Utilizando a forma da definição para calcular a integral encontramos
como resultado : 
X 2/3
1
4/3
1/3
5/3
Pincel Atômico - 29/11/2023 16:36:10 4/4
[356432_70926]
Questão
008 Calculando a integral em termos de áreas obtemos como resultado :
2/3
2/5
X 3/2
1
5/2
Pincel Atômico - 29/11/2023 16:34:18 1/3
BIANCA CAMPO
DALL'ORTO GIOBINI
Exercício Caminho do Conhecimento - Etapa 2 (19295)
Atividade finalizada em 29/11/2023 08:53:43 (1451387 / 1)
LEGENDA
Resposta correta na questão
# Resposta correta - Questão Anulada
X Resposta selecionada pelo Aluno
Disciplina:
CÁLCULO DIFERENCIAL E INTEGRAL I E II [984264] - Avaliação com 8 questões, com o peso total de 1,67 pontos [capítulos - 1]
Turma:
Segunda Graduação: Segunda Graduação 6 meses - Licenciatura em Física - Grupo: FPD-NOVEMBRO/2023 - SGegu0A231123 [107528]
Aluno(a):
91172670 - BIANCA CAMPO DALL'ORTO GIOBINI - Respondeu 8 questões corretas, obtendo um total de 1,67 pontos como nota
[353990_39708]
Questão
001
Uma dose inicial de um certo antibiótico é ingerida por um paciente e, para que seja
eficaz, é necessária uma concentração mínima. Considere que a concentração do
medicamento, durante as 12 primeiras horas, medida em miligramas por litro de
sangue, seja dada pela função cujo gráfico é apresentado a seguir:
Considere as afirmativas a seguir:
I. Se a concentração mínima for de 20 mg/l, então o antibiótico deve ser ingerido
novamente após 8 horas.
II. A concentração de antibiótico no sangue cresce mais rápido do que decresce.
III. A concentração máxima de antibiótico ocorre aproximadamente 3 horas após a
ingestão.
IV. O gráfico da função, durante essas 12 horas, representa uma função bijetora.
Somente as afirmativas I e IV são corretas.
Somente as afirmativas I, II e IV são corretas.
X Somente as afirmativas II e III são corretas.
Somenteas afirmativas I, II e III são corretas.
Somente as afirmativas III e IV são corretas.
[353990_39627]
Questão
002
Analise o gráfico da função abaixo.
Assinale a alternativa correta:
o gráfico é decrescente para 
X o gráfico é crescente para 
o gráfico é decrescente para 
o gráfico é crescente para 
Pincel Atômico - 29/11/2023 16:34:18 2/3
o gráfico é constante para 
[353992_39713]
Questão
003
Para animar uma festa, o conjunto A cobra uma taxa fixa de R$500,00 mais R$40,00
por hora. O conjunto B, pelo mesmo serviço, cobra uma taxa fixa de R$400,00 mais
R$60,00 por hora. O tempo máximo de duração de uma festa, para que a
contratação do segundo conjunto não fique mais cara que a do primeiro, em horas é:
4
3
X 5
7
6
[353991_39711]
Questão
004
A rotina diária de exercícios de um triatleta consiste em nadar, pedalar e correr,
nessa ordem. Sabe-se que ele corre mais rápido do que nada e pedala mais rápido
do que corre, e que não há intervalo de tempo para descanso entre as três
atividades físicas. O gráfico que melhor representa a distância percorrida durante o
tempo da rotina diária de exercícios desse triatleta é
X
Pincel Atômico - 29/11/2023 16:34:18 3/3
[353992_39712]
Questão
005
Pedro foi a uma empresa concessionária de telefonia móvel na qual são oferecidas
duas opções de contratos:
I. R$ 90,00 de assinatura mensal e mais R$0,40 por minuto de conversação;
II. R$ 77,20 de assinatura mensal e mais R$0,80 por minuto de conversação.
Nessas condições, se a fração de minuto for considerada como minuto inteiro, a
partir de quantos minutos mensais de conversação seria mais vantajoso para Pedro
optar pelo contrato I?
X 33
29
37
25
41
[353990_39630]
Questão
006 A função inversa de é dada por:
X
[353990_39624]
Questão
007
Considere a função dada pela relação representada pela imagem abaixo.
Podemos afirmar que:
X A imagem de f(x) é {1,3,7}.
O contradomínio e a imagem de f/9x/0 são iguais.
O Domínio de f(x) é {1,3,5,7}.
A Imagem de f(x) é {1,3,5,7}.
O domínio e a imagem de f(x) são iguais.
[353990_39623]
Questão
008
Observe na tabela a medida do lado (em cm) de uma região quadrada e sua área
(em cm2)
De acordo com a tabela, podemos afirmar que a medida do lado da região quadrada
cuja área é de 144 cm2 é:
13 cm.
15 cm.
14 cm.
11 cm.
X 12 cm.
Pincel Atômico - 29/11/2023 16:36:26 1/3
BIANCA CAMPO
DALL'ORTO GIOBINI
Exercício Caminho do Conhecimento - Etapa 16 (17296)
Atividade finalizada em 29/11/2023 09:56:50 (1451394 / 1)
LEGENDA
Resposta correta na questão
# Resposta correta - Questão Anulada
X Resposta selecionada pelo Aluno
Disciplina:
CÁLCULO DIFERENCIAL E INTEGRAL I E II [984264] - Avaliação com 8 questões, com o peso total de 1,67 pontos [capítulos - 2]
Turma:
Segunda Graduação: Segunda Graduação 6 meses - Licenciatura em Física - Grupo: FPD-NOVEMBRO/2023 - SGegu0A231123 [107528]
Aluno(a):
91172670 - BIANCA CAMPO DALL'ORTO GIOBINI - Respondeu 8 questões corretas, obtendo um total de 1,67 pontos como nota
[356432_70108]
Questão
001
Por meio o Teorema Fundamental do Cálculo (parte 2) pode-se calcular o valor de
. Desss forma, o valor encontrado é :
7/8
X 9/8
5/8
1/8
3/8
[356432_70934]
Questão
002
Por meio o teorema Fundamental do Cálculo (parte 2) pode-se calcular o valor de
Dessa forma, o valor encontrado é :
7
9
X 8
11
10
[356432_175506]
Questão
003
Por meio o Teorema Fundamental do Cálculo (parte 2) pode-se calcular o valor de 
.
Dessa forma, o valor encontrado é
X 5/2
3/2
2
1/2
1
[356433_70110]
Questão
004
Por meio o Teorema Fundamental do Cálculo (parte 2) pode-se calcular o valor de
. Desss forma, o valor encontrado é :
4
X 2
0
1
Pincel Atômico - 29/11/2023 16:36:26 2/3
3
[356432_70109]
Questão
005
Por meio o teorema Fundamental do Cálculo (parte 2) pode-se calcular o valor de
Dessa forma, o valor encontrado é :
X 5/4
4/3
3/4
1/2
4/5
[356434_70116]
Questão
006 Calculando a antiderivada de encontraremos : 
X
[356432_175508]
Questão
007
Calculando a antiderivada de ∫ 5x dx encontraremos
X
5x2 + c
5x3 + c
[356432_70107]
Questão
008
Por meio o teorema fundamental do cálculo (parte 2) pode-se calcular o valor de
Dessa forma, o valor encontrado é :
5
- 10
Pincel Atômico - 29/11/2023 16:36:26 3/3
- 5
0
X 10
Pincel Atômico - 29/11/2023 16:36:47 1/3
BIANCA CAMPO
DALL'ORTO GIOBINI
Exercício Caminho do Conhecimento - Etapa 18 (17297)
Atividade finalizada em 29/11/2023 10:04:50 (1451395 / 1)
LEGENDA
Resposta correta na questão
# Resposta correta - Questão Anulada
X Resposta selecionada pelo Aluno
Disciplina:
CÁLCULO DIFERENCIAL E INTEGRAL I E II [984264] - Avaliação com 8 questões, com o peso total de 1,67 pontos [capítulos - 3]
Turma:
Segunda Graduação: Segunda Graduação 6 meses - Licenciatura em Física - Grupo: FPD-NOVEMBRO/2023 - SGegu0A231123 [107528]
Aluno(a):
91172670 - BIANCA CAMPO DALL'ORTO GIOBINI - Respondeu 8 questões corretas, obtendo um total de 1,67 pontos como nota
[356432_71014]
Questão
001
Ao calcular a integral ∫ sec(2t)tg(2t) dt encontraremos a primitiva
X
[356433_70214]
Questão
002 Ao calcular a integral encontremos :
0
1
X
[356433_70215]
Questão
003 Ao calcular a integral 
encontraremos : 
Pincel Atômico - 29/11/2023 16:36:47 2/3
X
[356432_70185]
Questão
004
Ao calcular a integral encontraremos a primitiva.
Dessa forma, o valor encontrado é:
X
[356432_71034]
Questão
005
A área compreendida entre as curvas Υ= x2 e Υ= –x2 + 4x é
6/3
X 8/3
5/3
10/3
7/3
[356432_70996]
Questão
006
Ao calcular a integral ∫ sen 3x dx encontraremos a primitiva
X
[356434_70216]
Questão
007 Calculando a antiderivada de em encontraremos : 
X -2
3
0
Pincel Atômico - 29/11/2023 16:36:47 3/3
1
2
[356432_71004]
Questão
008 Ao calcular a integral encontraremos a primitiva :
X
Pincel Atômico - 29/11/2023 16:37:38 1/3
BIANCA CAMPO
DALL'ORTO GIOBINI
Exercício Caminho do Conhecimento - Etapa 20 (17298)
Atividade finalizada em 29/11/2023 10:21:14 (1451396 / 2)
LEGENDA
Resposta correta na questão
# Resposta correta - Questão Anulada
X Resposta selecionada pelo Aluno
Disciplina:
CÁLCULO DIFERENCIAL E INTEGRAL I E II [984264] - Avaliação com 8 questões, com o peso total de 1,67 pontos [capítulos - 4]
Turma:
Segunda Graduação: Segunda Graduação 6 meses - Licenciatura em Física - Grupo: FPD-NOVEMBRO/2023 - SGegu0A231123 [107528]
Aluno(a):
91172670 - BIANCA CAMPO DALL'ORTO GIOBINI - Respondeu 6 questões corretas, obtendo um total de 1,25 pontos como nota
[356432_175463]
Questão
001
Calculando a integral ∫2 x e2x dx pelo método da integração por partes, teremos:
(3e4+1)
X
– (3e4+1)
[356432_70351]
Questão
002
Calculando a integral pelo método da integração por partes,
teremos :
X
[356432_70349]
Questão
003 Calculando a integral pelo método da integração por partes, teremos : 
X
Pincel Atômico - 29/11/2023 16:37:38 2/3
[356433_70353]
Questão
004
Calculando a integral pelo método da integração por partes, teremos
:
- e + 1
X e - 1
e +1
- e - 1
e
[356432_175480]
Questão
005
Calculando a integral ∫1
e x2 lnx dx pelo método da integração por partes, teremos:
X
( – 2e3 +1)
[356432_175490]
Questão
006
Calculando a integral ∫π x sen 2x dx pelo método da integração por partes, teremos:
π/3
X π/2
π/4
–π/4
–π/2
[356432_175458]
Questão
007
Calculando a integral ∫ xsen(3x) dx pelo método da integração por partes, teremos:
X
[356433_70354]
Questão
008 Calculado a integral pelo método da integração por partes, teremos :
Pincel Atômico - 29/11/2023 16:37:38 3/3
X
Pincel Atômico - 29/11/2023 16:38:16 1/3
BIANCA CAMPO
DALL'ORTO GIOBINI
Exercício Caminho do Conhecimento - Etapa 22 (17299)
Atividade finalizada em 29/11/2023 10:29:07 (1451397 / 1)
LEGENDA
Resposta correta na questão
# Resposta correta - Questão Anulada
X Resposta selecionada pelo Aluno
Disciplina:
CÁLCULO DIFERENCIAL E INTEGRAL I E II [984264] - Avaliação com 8 questões, com o peso total de 1,67 pontos [capítulos - 5]
Turma:
Segunda Graduação:Segunda Graduação 6 meses - Licenciatura em Física - Grupo: FPD-NOVEMBRO/2023 - SGegu0A231123 [107528]
Aluno(a):
91172670 - BIANCA CAMPO DALL'ORTO GIOBINI - Respondeu 5 questões corretas, obtendo um total de 1,04 pontos como nota
[356432_175503]
Questão
001
X a ln | x - b | + c
-a ln | x - b | - c
a ln | x + b | - c
a ln | x - b | - c
a ln | x + b | + c
[356432_70357]
Questão
002
Ao decompor o quociente encontraremos :
X
[356432_175497]
Questão
003
X
 
Pincel Atômico - 29/11/2023 16:38:16 2/3
[356432_175502]
Questão
004
– 2 ln | x + 5 | – ln | x – 2 | + c
X 2 ln | x + 5 | + ln | x – 2 | + c
2 ln | x + 5 | – ln | x – 2 | + c
– 2 ln | x + 5 | + ln | x – 2 | + c
ln | x + 5 | – ln | x - 2 | + c
[356432_175504]
Questão
005
X
[356432_175500]
Questão
006
X
[356432_175498]
Questão
007
Pincel Atômico - 29/11/2023 16:38:16 3/3
X
[356432_175501]
Questão
008
x + ln | x – 6 | + c
x – 6 ln | x – 6 | + c
x – 6 ln | x + 6 | + c
x + 6 ln | x + 6 | + c
X x + 6 ln | x – 6 | + c
Pincel Atômico - 29/11/2023 16:38:58 1/3
BIANCA CAMPO
DALL'ORTO GIOBINI
Exercício Caminho do Conhecimento - Etapa 24 (17300)
Atividade finalizada em 29/11/2023 10:38:36 (1451398 / 1)
LEGENDA
Resposta correta na questão
# Resposta correta - Questão Anulada
X Resposta selecionada pelo Aluno
Disciplina:
CÁLCULO DIFERENCIAL E INTEGRAL I E II [984264] - Avaliação com 8 questões, com o peso total de 1,67 pontos [capítulos - 6]
Turma:
Segunda Graduação: Segunda Graduação 6 meses - Licenciatura em Física - Grupo: FPD-NOVEMBRO/2023 - SGegu0A231123 [107528]
Aluno(a):
91172670 - BIANCA CAMPO DALL'ORTO GIOBINI - Respondeu 1 questões corretas, obtendo um total de 0,21 pontos como nota
[356432_175462]
Questão
001
X
[356432_175486]
Questão
002
X
[356432_175495]
Questão
003
X
Pincel Atômico - 29/11/2023 16:38:58 2/3
[356432_71040]
Questão
004 Ao calcular a integral encontramos :
X
[356432_175457]
Questão
005
X
[356432_175467]
Questão
006
X
[356432_71042]
Questão
007 Ao calcular a integral encontramos :
X
Pincel Atômico - 29/11/2023 16:38:58 3/3
[356432_175460]
Questão
008
X
Impresso por Construgranito Granito, E-mail construgranitosm@gmail.com para uso pessoal e privado. Este material pode ser
protegido por direitos autorais e não pode ser reproduzido ou repassado para terceiros. 29/11/2023, 08:54:29
Pincel Atômico - 16/06/2023 16:50:34 1/3
CÂNDIDA RIBEIRO DA
ROSA RANGEL
Avaliação Online (Curso Online - Automático)
Atividade finalizada em 06/04/2023 13:15:50 (636571 / 1)
LEGENDA
Resposta correta na questão
# Resposta correta - Questão Anulada
X Resposta selecionada pelo Aluno
Disciplina:
TEORIA DOS NÚMEROS [785511] - Avaliação com questões, com o peso total de pontos [capítulos - Todos]10 30,00
Turma:
Segunda Graduação: - Grupo: FPD-FEV2022 - SGegu0A271222 [80645]Segunda Graduação 6 meses - Licenciatura em Matemática
Aluno(a):
91389563 - CÂNDIDA RIBEIRO DA ROSA RANGEL - Respondeu questões corretas, obtendo um total de pontos como nota9 27,00
[360338_39680]
Questão
001 Ao calcularmos a derivada da função encontramos como resultado:
X
[360338_70936]
Questão
002
Por meio o teorema fundamental do cálculo (parte2) pode-se calcular o valor de
Dessa forma, o valor encontrado é :
3
X 1
5
4
2
[360338_39748]
Questão
003
Analise o limite abaixo.
 
O resultado desse limite é:
6/4
X 0
6
[360338_39765]
Questão
004
Ao calcularmos a derivada da função f(x) = x³ + 2x (pela definição) para x = 1,
encontramos como resultado:
1
-5
0
X 5
-1
Impresso por Construgranito Granito, E-mail construgranitosm@gmail.com para uso pessoal e privado. Este material pode ser
protegido por direitos autorais e não pode ser reproduzido ou repassado para terceiros. 29/11/2023, 08:54:29
Pincel Atômico - 16/06/2023 16:50:34 2/3
[360338_39807]
Questão
005
Se f(x) = senx + cosx + tgx, então f´(0) é igual a:
X 2
1
1/2
– 1/2
– 1
[360339_70352]
Questão
006
Calculando a integral pelo método da integração por partes, teremos
: 
X
[360339_39722]
Questão
007
Analise as afirmativas acerca da função
I – A função é contínua para x = 2.
II – A função é descontínua para x = 5.
III – A função é descontínua para x = 2.
IV – A função é contínua para x = 5.
Assinale a alternativa correta:
Todas as afirmativas são falsas.
Somente as afirmativas II e III estão corretas.
X Somente as afirmativas III e IV estão corretas.
Somente as afirmativas I e IV estão corretas.
Somente as afirmativas I e II estão corretas.
[360339_70117]
Questão
008 Calculando a antiderivada de encontraremos
X
1
[360339_39813]
Questão
009 A função tem um ponto crítico para x igual a:
-2
-1
Impresso por Construgranito Granito, E-mail construgranitosm@gmail.com para uso pessoal e privado. Este material pode ser
protegido por direitos autorais e não pode ser reproduzido ou repassado para terceiros. 29/11/2023, 08:54:29
Pincel Atômico - 16/06/2023 16:50:34 3/3
1
X 2
0
[360340_39713]
Questão
010
Para animar uma festa, o conjunto A cobra uma taxa fixa de R$500,00 mais R$40,00
por hora. O conjunto B, pelo mesmo serviço, cobra uma taxa fixa de R$400,00 mais
R$60,00 por hora. O tempo máximo de duração de uma festa, para que a
contratação do segundo conjunto não fique mais cara que a do primeiro, em horas é:
4
3
7
6
X 5
Impresso por Construgranito Granito, E-mail construgranitosm@gmail.com para uso pessoal e privado. Este material pode ser
protegido por direitos autorais e não pode ser reproduzido ou repassado para terceiros. 29/11/2023, 08:58:45
Pincel Atômico - 11/11/2022 08:54:16 1/2
Avaliação Online (SALA EAD)
Atividade finalizada em 02/11/2022 10:51:05 (540628 / 1)
LEGENDA
Resposta correta na questão
# Resposta correta - Questão Anulada
X Resposta selecionada pelo Aluno
Disciplina:
CÁLCULO I [430932] - Avaliação com questões, com o peso total de pontos [capítulos - 1,2,3]5 15,00
Turma:
Graduação: - Grupo: FEVEREIRO/2022 - ENGAMB/FEV22 [64219]Engenharia Ambiental e Sanitária
Aluno(a):
91367243 - ARNON ALVES DE OLIVEIRA - Respondeu questões corretas, obtendo um total de pontos como nota5 15,00
[357365_83627]
Questão
001
Analise o comportamento do gráfico de uma determinada função f(x) matemática e
marque a alternativa correta.
O limite de f(x) quando x 6 é 8.→
O limite de f(x) quando x 6 é 7 e 8.→
O limite de f(x) quando x 6 é 7.→
Não existe limite de f(x) quando x 3.→
X O limite de f(x) quando x 0 é 3.→
[357365_83624]
Questão
002
Analise as afirmativas acerca da função
I – A função é contínua para x = 2.
II – A função é descontínua para x = 5.
III – A função é descontínua para x = 2.
IV – A função é contínua para x = 5.
Assinale a alternativa correta.
Todas as afirmativas são falsas.
Somente as afirmativas II e III estão corretas.
Somente as afirmativas I e IV estão corretas.
Somente as afirmativas III e IV estão corretas.
X Somente as afirmativas I e II estão corretas.
[357365_83626]
Questão
003
Dada a função o valor de k para que essa função seja
contínua em x = 1 é:
K = 5
X K = 2
Impresso por Construgranito Granito, E-mail construgranitosm@gmail.com para uso pessoal e privado. Este material pode ser
protegido por direitos autorais e não pode ser reproduzido ou repassado para terceiros. 29/11/2023, 08:58:45
Pincel Atômico - 11/11/2022 08:54:16 2/2
K = 4
K = 1
K = 3
[357365_83633]
Questão
004
Analise as afirmativas acerca da função 
I – A função é contínua para x = 0.
II – A função é contínua para x = -1.
III – A função é descontínua para x = 2.
Assinale a alternativa correta:
Todas as afirmativas estão corretas.
Nenhuma afirmativa está correta.
Somente a afirmativa II está correta.
Somente a afirmativa III está correta.
X Somente a afirmativa I está correta.
[357367_83646]
Questão
005
Para animar uma festa, o conjunto A cobra uma taxa fixa de R$500,00 mais R$40,00
por hora. O conjunto B, pelo mesmo serviço, cobra uma taxa fixa de R$400,00 mais
R$60,00 por hora. O tempo máximo de duração de uma festa, para que a
contratação do segundo conjuntonão fique mais cara que a do primeiro, em horas é:
4
X 5
6
3
7
Pincel Atômico - 29/11/2023 16:34:43 1/3
BIANCA CAMPO
DALL'ORTO GIOBINI
Exercício Caminho do Conhecimento - Etapa 4 (19296)
Atividade finalizada em 29/11/2023 09:03:33 (1451388 / 1)
LEGENDA
Resposta correta na questão
# Resposta correta - Questão Anulada
X Resposta selecionada pelo Aluno
Disciplina:
CÁLCULO DIFERENCIAL E INTEGRAL I E II [984264] - Avaliação com 8 questões, com o peso total de 1,67 pontos [capítulos - 2]
Turma:
Segunda Graduação: Segunda Graduação 6 meses - Licenciatura em Física - Grupo: FPD-NOVEMBRO/2023 - SGegu0A231123 [107528]
Aluno(a):
91172670 - BIANCA CAMPO DALL'ORTO GIOBINI - Respondeu 6 questões corretas, obtendo um total de 1,25 pontos como nota
[353991_39722]
Questão
001
Analise as afirmativas acerca da função
I – A função é contínua para x = 2.
II – A função é descontínua para x = 5.
III – A função é descontínua para x = 2.
IV – A função é contínua para x = 5.
Assinale a alternativa correta:
Somente as afirmativas II e III estão corretas.
Somente as afirmativas I e II estão corretas.
Todas as afirmativas são falsas.
Somente as afirmativas I e IV estão corretas.
X Somente as afirmativas III e IV estão corretas.
[353990_39714]
Questão
002
Analise o comportamento do gráfico de uma determinada função f(x) matemática e
marque a alternativa correta.
O limite de f(x) quando x → 6 é 8.
O limite de f(x) quando x → 6 é 7 e 8.
O limite de f(x) quando x → 6 é 7.
Não existe limite de f(x) quando x → 3.
X O limite de f(x) quando x → 0 é 3.
[353991_39721]
Questão
003
Analise as afirmativas acerca da função 
I – A função é contínua para x = 0.
II – A função é contínua para x = -1.
III – A função é descontínua para x = 2.
Assinale a alternativa correta:
X Somente a afirmativa I está correta.
Pincel Atômico - 29/11/2023 16:34:43 2/3
Todas as afirmativas estão corretas.
Somente a afirmativa III está correta.
Nenhuma afirmativa está correta.
Somente a afirmativa II está correta.
[353990_39637]
Questão
004
Analise as afirmativas acerca da função
I – A função sempre será contínua.
II – A função nunca será contínua.
III – A função é contínua para x ≠ 1.
IV – A função é descontínua para x = 1.
Assinale a alternativa correta.
X Todas as afirmativas são falsas.
Somente as afirmativas I e IV estão corretas.
Somente as afirmativas III e IV estão corretas.
Somente as afirmativas I e III estão corretas.
Somente as afirmativas I e II estão corretas.
[353990_39716]
Questão
005
Analise as afirmativas apresentadas acerca do gráfico abaixo.
I - O limite de f(x) quando x → - 2 é não existe.
II - O limite de f(x) quando x → 1 é 1.
III - O limite de f(x) quando x → 4 não existe.
IV - O limite de f(x) quando x → 6 é 0.
V - O limite de f(x) quando x → 7 é não existe.
Assinale a alternativa correta.
somente as afirmativas IV esta correta.
X todas as afirmativas estão corretas.
somente as afirmativas III e V estão corretas.
todas as afirmativas estão erradas.
somente as afirmativas II e IV estão corretas.
[353992_39732]
Questão
006
Dada a função , o valor de k para que essa função seja
contínua em x = 3 é:
K = 5
K = 4
K = 1
Pincel Atômico - 29/11/2023 16:34:43 3/3
K = 3
X K = 2
[353990_39715]
Questão
007
Analise as afirmativas apresentadas acerca do gráfico abaixo.
I - O limite de f(x) quando x → a é b.
II - O limite de f(x) quando x → a é c.
III - O limite de f(x) quando x → a é 0.
IV - O limite lateral à esquerda de f(x) quando x → a é c.
V - O limite lateral à direita de f(x) quando x → a é c.
VI – Não existe o limite de f(x) quando x → a.
As afirmativas corretas são:
II e VI.
X V e VI.
I e V.
III e V.
IV e VI.
[353990_39718]
Questão
008
Analise as afirmativas apresentadas acerca do gráfico abaixo.
I - O limite de f(x) quando x → - 2 é não existe.
II - O limite de f(x) quando x → 2 é - 2.
III - O limite de f(x) quando x → 4 é 0.
IV - O limite de f(x) quando x → 6 é não existe.
V - O limite de f(x) quando x → 7 é 3.
 
Assinale a alternativa correta.
todas as afirmativas estão erradas.
todas as afirmativas estão corretas.
X somente as afirmativas II,III e V estão corretas.
somente as afirmativas IV e VI estão corretas.
somente as afirmativas II e VI estão corretas.
Impresso por Construgranito Granito, E-mail construgranitosm@gmail.com para uso pessoal e privado. Este material pode ser
protegido por direitos autorais e não pode ser reproduzido ou repassado para terceiros. 29/11/2023, 09:20:53
05/03/2022 17:26:31 1/2
REVISÃO DE SIMULADO
Nome:
JORGE LUIZ MARCONDES LEITE
Disciplina:
Respostas corretas são marcadas em amarelo Respostas marcardas por você.X
Questão
001
Ao calcularmos a derivada da função f(x) = tg(x²) encontramos como resultado:
A) xsec²(x²)
X B) 2xsec²(x²)
C) 2sec²(2x)
D) sec²(x²)
E) 2sec²(x²)
Questão
002 Ao calcularmos a derivada da função encontramos como resultado:
A) tgx
X B) cotgx
C) 0
D) cossecx
E) secx
Questão
003 Ao calcularmos a derivada da função encontramos como resultado:
A)
X B)
C)
D)
E)
Questão
004 Ao calcularmos a derivada da função encontramos como resultado:
A) 2xtg(x²)
X B) 2xsen(x²)
C) 2xcotg(x²)
D) 2xcos(x²)
E) 2xsec(x²)
Questão
005 Ao calcularmos a derivada da função encontramos como resultado:
A)
X B)
C)
D)
E) 0
Questão
006 Ao calcularmos a derivada da função encontramos como resultado:
A)
Impresso por Construgranito Granito, E-mail construgranitosm@gmail.com para uso pessoal e privado. Este material pode ser
protegido por direitos autorais e não pode ser reproduzido ou repassado para terceiros. 29/11/2023, 09:20:53
05/03/2022 17:26:31 2/2
X B)
C)
D)
E)
Questão
007
Ao calcularmos a derivada da função encontramos como resultado:
X A)
B)
C)
D)
E)
Questão
008
Ao calcularmos a derivada da função encontramos como resultado:
X A)
B)
C)
D)
E)
Impresso por Construgranito Granito, E-mail construgranitosm@gmail.com para uso pessoal e privado. Este material pode ser
protegido por direitos autorais e não pode ser reproduzido ou repassado para terceiros. 29/11/2023, 08:53:48
17/03/2022 12:34:54 1/3
REVISÃO DE SIMULADO
Nome:
FRANCISCO ALMEIDA DA SILVA
Disciplina:
Respostas corretas são marcadas em amarelo Respostas marcardas por você.X
Questão
001
A rotina diária de exercícios de um triatleta consiste em nadar, pedalar e correr, nessa
ordem. Sabe-se que ele corre mais rápido do que nada e pedala mais rápido do que
corre, e que não há intervalo de tempo para descanso entre as três atividades físicas. O
gráfico que melhor representa a distância percorrida durante o tempo da rotina diária
de exercícios desse triatleta é
A)
B)
C)
X D)
E)
Questão
002
Observe na tabela a medida do lado (em cm) de uma região quadrada e sua área (em
cm )2
De acordo com a tabela, podemos afirmar que a medida do lado da região quadrada
cuja área é de 144 cm é:2
A) 13 cm.
X B) 12 cm.
C) 11 cm.
D) 14 cm.
E) 15 cm.
Impresso por Construgranito Granito, E-mail construgranitosm@gmail.com para uso pessoal e privado. Este material pode ser
protegido por direitos autorais e não pode ser reproduzido ou repassado para terceiros. 29/11/2023, 08:53:48
17/03/2022 12:34:54 2/3
Questão
003
Para animar uma festa, o conjunto A cobra uma taxa fixa de R$500,00 mais R$40,00
por hora. O conjunto B, pelo mesmo serviço, cobra uma taxa fixa de R$400,00 mais
R$60,00 por hora. O tempo máximo de duração de uma festa, para que a contratação
do segundo conjunto não fique mais cara que a do primeiro, em horas é:
A) 7
X B) 5
C) 6
D) 3
E) 4
Questão
004 Dados f(x) = x – 2x+1 e g(x) = 2x + 1, podemos afirmar que f(g(1)) é:2
A) 6
B) 3
C) 7
D) 4
X E) 5
Questão
005
Analise o gráfico da função f(x) abaixo.
Podemos afirmar que:
A)
a imagem de f(x) é 
X B)
o domínio de f(x) é 
C)
a imagem de f(x) é 
D)
o domínio de f(x) é 
E)
o domínio de f(x) é 
Questão
006
Observe a função abaixo e marque a alternativa correta:
A) o domínio de f(x) é 
X B)
o domínio de f(x) é 
C) o domínio de f(x) é 
D) o domínio de f(x)é 
E)
o domínio de f(x) é 
Impresso por Construgranito Granito, E-mail construgranitosm@gmail.com para uso pessoal e privado. Este material pode ser
protegido por direitos autorais e não pode ser reproduzido ou repassado para terceiros. 29/11/2023, 08:53:48
17/03/2022 12:34:54 3/3
Questão
007
Analise o gráfico da função abaixo.
Assinale a alternativa correta:
A) o gráfico é decrescente para 
B)
o gráfico é decrescente para 
C) o gráfico é constante para 
D)
o gráfico é crescente para 
X E) o gráfico é crescente para 
Questão
008
Uma dose inicial de um certo antibiótico é ingerida por um paciente e, para que seja
eficaz, é necessária uma concentração mínima. Considere que a concentração do
medicamento, durante as 12 primeiras horas, medida em miligramas por litro de
sangue, seja dada pela função cujo gráfico é apresentado a seguir:
Considere as afirmativas a seguir:
I. Se a concentração mínima for de 20 mg/l, então o antibiótico deve ser ingerido
novamente após 8 horas.
II. A concentração de antibiótico no sangue cresce mais rápido do que decresce.
III. A concentração máxima de antibiótico ocorre aproximadamente 3 horas após a
ingestão.
IV. O gráfico da função, durante essas 12 horas, representa uma função bijetora.
A) Somente as afirmativas I, II e III são corretas.
X B) Somente as afirmativas I, II e IV são corretas.
C) Somente as afirmativas III e IV são corretas.
D) Somente as afirmativas II e III são corretas.
E) Somente as afirmativas I e IV são corretas.
Impresso por Construgranito Granito, E-mail construgranitosm@gmail.com para uso pessoal e privado. Este material pode ser
protegido por direitos autorais e não pode ser reproduzido ou repassado para terceiros. 29/11/2023, 08:53:13
16/05/2023 20:17:29 1/4
REVISÃO DE SIMULADO
Nome:
ROBERTO DA SILVA JUNIOR
Disciplina:
Cálculo I
Respostas corretas são marcadas em amarelo Respostas marcardas por você.X
Questão
001
Analise o gráfico da função f(x) abaixo.
Podemos afirmar que:
A)
o domínio de f(x) é 
B)
o domínio de f(x) é 
C)
a imagem de f(x) é 
D)
o domínio de f(x) é 
X E)
a imagem de f(x) é 
Questão
002
Uma empresa de locação de carros aluga um carro por R$110,00 ao dia, mais um
adicional de R$5,00 por quilômetro rodado. O esboço de gráfico que melhor representa
o gasto de uma pessoa que alugou um carro nessa empresa e o dirigiu por 420 km é:
A)
X B)
C)
D)
Impresso por Construgranito Granito, E-mail construgranitosm@gmail.com para uso pessoal e privado. Este material pode ser
protegido por direitos autorais e não pode ser reproduzido ou repassado para terceiros. 29/11/2023, 08:53:13
16/05/2023 20:17:29 2/4
E)
Questão
003
Analise o gráfico da função abaixo.
Assinale a alternativa correta:
A)
o gráfico é decrescente para 
B) o gráfico é constante para 
C) o gráfico é crescente para 
D) o gráfico é decrescente para 
X E)
o gráfico é crescente para 
Questão
004
Pedro foi a uma empresa concessionária de telefonia móvel na qual são oferecidas duas
opções de contratos:
I. R$ 90,00 de assinatura mensal e mais R$0,40 por minuto de conversação;
II. R$ 77,20 de assinatura mensal e mais R$0,80 por minuto de conversação.
Nessas condições, se a fração de minuto for considerada como minuto inteiro, a partir
de quantos minutos mensais de conversação seria mais vantajoso para Pedro optar
pelo contrato I?
A) 25
X B) 33
C) 41
D) 37
E) 29
Questão
005
Observe a função abaixo e marque a alternativa correta:
A)
o domínio de f(x) é 
B) o domínio de f(x) é 
C)
o domínio de f(x) é 
D) o domínio de f(x) é 
X E) o domínio de f(x) é 
Impresso por Construgranito Granito, E-mail construgranitosm@gmail.com para uso pessoal e privado. Este material pode ser
protegido por direitos autorais e não pode ser reproduzido ou repassado para terceiros. 29/11/2023, 08:53:13
16/05/2023 20:17:29 3/4
Questão
006
Considere a função dada pela relação representada pela imagem abaixo.
Podemos afirmar que:
A) O contradomínio e a imagem de f/9x/0 são iguais.
X B) A imagem de f(x) é {1,3,7}.
C) O domínio e a imagem de f(x) são iguais.
D) A Imagem de f(x) é {1,3,5,7}.
E) O Domínio de f(x) é {1,3,5,7}.
Questão
007
Observe a função abaixo e marque a alternativa correta:
A)
o domínio de f(x) é 
B) o domínio de f(x) é 
X C) o domínio de f(x) é 
D) o domínio de f(x) é 
E) o domínio de f(x) é 
Questão
008
Uma dose inicial de um certo antibiótico é ingerida por um paciente e, para que seja
eficaz, é necessária uma concentração mínima. Considere que a concentração do
medicamento, durante as 12 primeiras horas, medida em miligramas por litro de
sangue, seja dada pela função cujo gráfico é apresentado a seguir:
Considere as afirmativas a seguir:
I. Se a concentração mínima for de 20 mg/l, então o antibiótico deve ser ingerido
novamente após 8 horas.
II. A concentração de antibiótico no sangue cresce mais rápido do que decresce.
III. A concentração máxima de antibiótico ocorre aproximadamente 3 horas após a
ingestão.
IV. O gráfico da função, durante essas 12 horas, representa uma função bijetora.
A) Somente as afirmativas I, II e III são corretas.
B) Somente as afirmativas I, II e IV são corretas.
X C) Somente as afirmativas II e III são corretas.
D) Somente as afirmativas I e IV são corretas.
E) Somente as afirmativas III e IV são corretas.
Impresso por Construgranito Granito, E-mail construgranitosm@gmail.com para uso pessoal e privado. Este material pode ser
protegido por direitos autorais e não pode ser reproduzido ou repassado para terceiros. 29/11/2023, 08:53:13
16/05/2023 20:17:29 4/4

Mais conteúdos dessa disciplina