Logo Passei Direto
Buscar
Material
páginas com resultados encontrados.
páginas com resultados encontrados.

Prévia do material em texto

https://doi.org/10.1177/0020764020978434
International Journal of 
Social Psychiatry
 1 –22
© The Author(s) 2020
Article reuse guidelines: 
sagepub.com/journals-permissions
DOI: 10.1177/0020764020978434
journals.sagepub.com/home/isp
E CAMDEN SCHIZOPH
Social media (SM) is defined as ‘Internet-based channels 
that allow users to opportunistically interact and selec-
tively self-present, either in real-time or asynchronously, 
with both broad and narrow audiences who derive value 
from user-generated content and the perception of inter-
action with others’ (Carr & Hayes, 2015, p. 50). Popular 
SM platforms are such as WhatsApp and social network-
ing sites (SNSs; e.g. Facebook). Widespread use of SM 
means that problematic SM use has become a serious 
problem. For example, the Bergen Facebook Addiction 
Scale (Andreassen et al., 2012) conservatively estimated 
that 3.3% of Italian users were addicted to Facebook 
(Biolcati et al., 2018). Vangeel et al. (2016) found that 
7.1% of secondary school students in Belgium were 
addicted to Facebook, with compulsive users spending 
2 hours 38 minutes on a school day and 4 hours and 
35 minutes on a holiday. A French study found a 10% rate 
of Facebook addiction (Chabrol et al., 2017). A study 
found that 18% of Turkish college students were classi-
fied as disordered SM users (Kircaburun, Demetrovics, 
& Tosuntaş, et al., 2019). A rate of 26.2% was found in 
college students in US, 29.4% in Singapore, and 44.5% 
in China (Tang et al., 2017).
Empirical evidence revealed that compulsive social 
networking site (SNS) use was related to physical (Moqbel 
& Kock, 2018) and mental health (Frost & Rickwood, 
2017; Pontes, 2017; Ryan et al., 2014). Researchers have 
paid increasing attention to excessive SM use, and have 
performed meta-analyses (Marino et al., 2018a, 2018b) 
about the relationships of compulsive SM use with mental 
health, psychological distress and well-being. While these 
meta-analyses have improved the understanding of the 
relation between SM addiction and mental health, they do 
not address some salient issues. For example, these meta-
analyses focused narrowly on Facebook addiction. The 
present meta-analysis extends the concern to problematic 
use of all SM platforms.
Problematic SM use
Several terms are used to describe problematic SM use. 
Addiction (Ryan et al., 2014) is one common term. 
Chamberlain et al. (2016) defined the core factors of 
A meta-analysis of the problematic 
social media use and mental health
Chiungjung Huang 
Abstract
Background: Although previous meta-analyses were conducted to quantitatively synthesize the relation between 
problematic social media (SM) use and mental health, they focused on Facebook addiction.
Aims: The purpose of this meta-analysis is to examine this relation by extending the research scope via the inclusion of 
studies examining problematic use of all platforms.
Method: One hundred and thirty-three independent samples (N =244,676) were identified.
Results: As expected, the mean correlations between problematic SM use and well-being are negative, while those 
between problematic SM use and distress are positive. Life satisfaction and self-esteem are commonly used to represent 
well-being, while depression and loneliness are usually used to indicate distress. The mean correlations of problematic 
SM use with life satisfaction and self-esteem are small, whereas those of problematic SM use with depression and 
loneliness are moderate. The moderating effects of publication status, instruments, platforms and mean age are not 
significant.
Conclusions: The magnitude of the correlations between problematic SM use and mental health indicators can 
generalize across most moderator conditions.
Keywords
Mental health, well-being, distress, meta-analysis, problematic social media use
Graduate Institute of Education, National Changhua University of 
Education, Changhua
Corresponding author:
Chiungjung Huang, Graduate Institute of Education, National Changhua 
University of Education, Changhua, 1 Jinde Road, Changhua 50058. 
Email: chiung@cc.ncue.edu.tw
978434 ISP0010.1177/0020764020978434International Journal of Social PsychiatryHuang
research-article2020
Original Article
https://uk.sagepub.com/en-gb/journals-permissions
https://journals.sagepub.com/home/isp
mailto:chiung@cc.ncue.edu.tw
http://crossmark.crossref.org/dialog/?doi=10.1177%2F0020764020978434&domain=pdf&date_stamp=2020-12-09
2 International Journal of Social Psychiatry 00(0)
behavioral addiction as inability to control of use, functional 
impairment and continuing involvement in the behavior 
regardless of its negative impacts. Some researchers 
(Caldiroli et al., 2018; Miele et al., 1990) used the term 
‘dependency’ to describe problematic SM use. Dependence 
was defined as an indispensable behavior to achieve goals, 
while addiction refers to failure to control leading to impair-
ment of personal or work lives (Ferris & Hollenbaugh, 
2018). Hence, addiction has an absolutely negative effect, 
while dependence does not necessarily. Other terms, such as 
compulsive use (Aladwani & Almarzouq, 2016; De Cock 
et al., 2014), excessive use (Wang et al., 2016), and disor-
dered use (van den Eijnden et al., 2018), were also used. 
Problematic use was chosen in this study because it is broad 
enough to incorporate different levels of excessive use (Lee 
et al., 2017).
Empirical studies
Previous empirical studies were conducted in various 
research contexts, and have different findings about the 
strength of the relation between problematic SM use and 
mental health. For example, Kircaburun (2016) sampled 
1,130 Turkish secondary school students and found that 
the relation between problematic SNS use and self-esteem 
was r = −.09. Turel and Qahri-Saremi (2016) also found a 
small relation between problematic Facebook use and self-
esteem at r = .01 for a pilot sample of 60 undergraduate 
students, and r = −.05 for 341 Facebook users from a large 
university in North America. A moderate correlation (r = 
−.24) was found in Aladwani and Almarzouq (2016) who 
used a sample of 407 undergraduate students in Kuwait. 
Biolcati et al. (2018) also found support for a moderate 
effect. On the other hand, a large correlation between prob-
lematic Facebook use (r = −.43) and self-esteem was 
found in Baturay and Toker (2017) who sampled 120 col-
lege students in Turkey.
Findings about other mental health indicators were also 
inconsistent. For example, the relation between problem-
atic SM use and depression was from small (r = .13; 
Kircaburun, 2016) to large (r = .45; Błachnio et al., 2015). 
As both empirical studies varied in research situations, and 
research findings were not consistent, moderator effects 
are worth investigating.
Publication status
Publication bias refers to the unrepresentativeness of 
included studies that can be caused by availability and 
accessibility (McShane et al., 2016). For example, confer-
ence papers have more limited availability than journal 
papers. The inaccessibility of relevant studies (e.g. unpub-
lished manuscripts) can lead to unrepresentative data in a 
meta-analysis. To explore this possibility, the mean correla-
tions among publication outlets were examined.
Study country
Caldiroli et al. (2018) suggested that the problem of tech-
nology addiction was especially serious in China, South 
Korea and Taiwan. As the prevalence of technology 
addiction varies with country, the relation between prob-
lematic SM use and mental health may vary with country 
or culture. To examine the possible country effect, Marino 
et al. (2018a) examined the country effect on the relation 
between problematic Facebook use and psychological 
distress, and found that the correlation was likely to be 
higher in studies from Western countries compared to 
that from Asian countries. As Marino et al. (2018a) had a 
small number of effect sizes, and thus low generalizabil-
ity of findings, the country effect is worth 
re-investigation.Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 
155–159. https://doi.org/10.1037/0033-2909.112.1.155
https://orcid.org/0000-0001-9687-8608
https://doi.org/10.1016/j.chb.2016.02.098
https://doi.org/10.1016/j.chb.2016.02.098
https://doi.org/10.1007/s40429-015-0056-9
https://doi.org/10.1037/adb0000160
https://doi.org/10.1016/j.addbeh.2016.03.006
https://doi.org/10.1016/j.addbeh.2016.03.006
https://doi.org/10.2466/02.09.18.PR0.110.2.501-517
https://doi.org/10.2466/02.09.18.PR0.110.2.501-517
https://doi.org/10.1176/appi.ajp.161.12.2163
https://doi.org/10.1177/08944393166566
https://doi.org/10.3390/jcm7060118
https://doi.org/10.1016/j.eurpsy.2015.04.00
https://doi.org/10.1016/j.eurpsy.2015.04.00
https://doi.org/10.1016/j.chb.2018.04.045
https://doi.org/10.1016/j.chb.2018.04.045
https://doi.org/10.1016/j.jclinepi.2005.11.010
https://doi.org/10.1016/j.jclinepi.2005.11.010
https://doi.org/10.1097/NMD.0000000000000861
https://doi.org/10.1097/NMD.0000000000000861
https://doi.org/10.1016/j.chb.2010.03.012
https://doi.org/10.1016/j.chb.2010.03.012
https://doi.org/10.1080/15456870.2015.972282
https://doi.org/10.5812/ijhrba.32773
https://doi.org/10.1016/j.euroneuro.2015.08.013
https://doi.org/10.1016/j.euroneuro.2015.08.013
https://doi.org/10.1016/j.chb.2016.03.032
https://doi.org/10.1037/0033-2909.112.1.155
Huang 15
De Cock, R., Vangeel, J., Klein, A., Minotte, P., Rosas, O., & 
Meerkerk, G. (2014). Compulsive use of social networking 
sites in Belgium: Prevalence, profile, and the role of attitude 
toward work and school. Cyberpsychology, Behavior, and 
Social Networking, 17, 166–171. https://doi.org/10.1089/
cyber.2013.0029
Diener, E. D., Emmons, R. A., Larsen, R. J., & Griffin, S. 
(1985). The Satisfaction With Life Scale. Journal of 
Personality Assessment, 49, 71–75. https://doi.org/10.1207/
s15327752jpa4901_13
Durak, H. Y. (2018). Modeling of variables related to problem-
atic internet usage and problematic social media usage in 
adolescents. Current Psychology, 39(4), 1375–1387. https://
doi.org/10.1007/s12144-018-9840-8
Dussault, M., Fernet, C., Austin, S., & Leroux, M. (2009). 
Revisiting the factorial validity of the Revised UCLA 
Loneliness Scale: A test of cCompeting models in a sample 
of teachers. Psychological Reports, 105, 849–856. https://
doi.org/10.2466/PR0.105.3.849-856
Elphinston, R. A., & Noller, P. (2011). Time to face it! Facebook 
intrusion and the implications for romantic jealousy and 
relationship satisfaction. Cyberpsychology, Behavior, and 
Social Networking, 14, 631–635. https://doi.org/10.1089/
cyber.2010.0318.
Faber, R. J., & O’Guinn, T. C. (1992). A clinical screener for 
compulsive buying. Journal of Consumer Research 1992, 
19(3), 459–469. https://doi.org/10.1086/209315
Ferris, A., & E. Hollenbaugh, E. (2018). A Uses and Gratifications 
Approach to Exploring Antecedents to Facebook Dependency. 
Journal of Broadcasting & Electronic Media, 62, 51–70. 
https://doi.org/10.1080/08838151.2017.1375501.
Frost, R. L., & Rickwood, D. J. (2017). A systematic review of 
the mental health outcomes associated with Facebook use. 
Computers in Human Behavior, 76, 576–600. https://doi.
org/10.1016/j.chb.2017.08.001
Giota, K. G., & Kleftaras, G. (2013). The role of personality and 
depression in problematic use of social networking sites in 
Greece. Cyberpsychology: Journal of Psychosocial Research 
on Cyberspace, 7(3), article 1. https://doi.org/10.5817/
CP201336
Griffiths, M. (2000). Does Internet and computer "addiction" exist? 
Some case study evidence. CyberPsychology & Behavior, 
3, 211–218. https://doi.org/10.1089/109493100316067.
Hamilton, M. (1960). A rating scale for depression. Journal 
of Neurology, Neurosurgery, and Psychiatry, 23, 56–62. 
https://doi.org/10.1136/jnnp.23.1.56
Hamilton, M. (1967). Development of a rating scale for primary 
depressive illness. British Journal of Social and Clinical 
Psychology, 6, 278–296. https://doi.org/10.1136/jnnp.23.1.56
Hartshore, T. S. (1993). Psychometric properties and confirma-
tory analysis of the UCLA Loneliness Scale. Journal 
of Personality Assessment, 61, 182–195. https://doi.
org/10.1207/s15327752jpa6101_14
Hawi, N. S., & Samaha, M. (2018): Identifying commonalities 
and differences in personality characteristics of Internet 
and social media addiction profiles: traits, self-esteem, and 
self-construal. Behaviour & Information Technology, 38(2), 
110–119. https://doi.org/10.1080/0144929X.2018.1515984
Heo, M., Murphy, C. F., & Meyers, B. S. (2007). Relationship 
between the Hamilton Depression Rating Scale and the 
Montgomery- Åsberg Depression Rating Scale in depressed 
elderly: A m-analysis. American Journal of Geriatric 
Psychiatry, 15, 899–905.
Hong, F., Huang, D., Lin, H., & Chiu, S. (2014). Analysis of the 
psychological traits, Facebook usage, and Facebook addic-
tion model of Taiwanese university students. Telematics 
and Informatics, 31, 597–606. https://doi.org/10.1016/j.
tele.2014.01.001
Jasso-Medrano, J., & López-Rosales, F. (2018). Measuring the 
relationship between social media use and addictive behav-
ior and depression and suicide ideation among university 
students. Computers in Human Behavior, 87, 183–191. 
https://doi.org/10.1016/j.chb.2018.05.003
Joseph, S., Linley, P. A., Harwood, J., Lewis, C. A., & 
McCollam, P. (2004). Rapid assessment of well-being: The 
Short Depression-Happiness Scale (SDHS). Psychology 
and Psychotherapy: Theory, Research and Practice, 77, 
463–478. https://doi.org/10.1348/1476083042555406.
Kanat-Maymon, Y., Almog, L., Cohen, R., & Amichai-
Hamburger, Y. (2018). Contingent self-worth and Facebook 
addiction. Computers in Human Behavior, 88, 227–235. 
https://doi.org/10.1016/j.chb.2018.07.011
Kang, Y. S. (2007). Effect of the body satisfaction and self respect 
for the job selection of the university students. Gyeongbuk, 
Korea: Graduate School of Daegu Haanny University.
Keles, B., McCrae, N., & Grealish, A. (2019). A systematic 
review: The influence of social media on depression, anxi-
ety and psychological distress in adolescents. International 
Journal of Adolescence and Youth, 25(1), 79–93. https://doi.
org/10.1080/02673843.2019.15908
Ketharanathan, T., Hanwella, R., Weerasundera, R., & de 
Silva, V. A. (2016). Diagnostic validity and factor analy-
sis of Montgomery-Asberg Depression Rating Scale 
in Parkinson disease population. Journal of Geriatric 
Psychiatry and Neurology, 29, 115–119. https://doi.
org/10.1177/0891988715606232
Kircaburun, K. (2016). Self-esteem, daily Internet use and social 
media addiction as predictors of depression among Turkish 
adolescents. Journal of Education and Practice, 7, 64–72.
Kircaburun, K., Demetrovics, Z., & Tosuntaş, Ş. B. (2019). 
Analyzing the links between problematic social media use, 
dark triad traits, and self-esteem. International Journal of 
Mental Health and Addiction, 17, 1496–1507. https://doi.
org/10.1007/s11469-018-9900-1
Kim, H., & Park, D. (2015). Factors affecting Internet gaming 
addiction: SNS addiction tendencies, self-esteem, and inter-
personal relationships among male middle school students. 
Indian Journal of Science and Technology, 8(S8), 212–218. 
https://doi.org/10.17485/ijst/2015/v8iS8/70509
Koc, M., & Gulyagci, S. (2013). Facebook addiction among 
Turkish college students: The role of psychological health, 
demographic, and usage characteristics. CyberPsychology, 
Behavior, and Social Networking, 16, 279–284. https://doi.
org/10.1089/cyber.2012.0249
Kroenke, K., Spitzer, R. L., & Williams, J. B. (2001). The PHQ-
9: validity of a brief depression severity measure. Journal 
of General Internal Medicine, 16, 606–613. https://doi.
org/10.1046/j.1525-1497.2001.016009606.x
Laconi, S., Verseillié, E., & Chabrol, H. (2018). Exploration 
of the problematic Twitter and Facebook uses and their 
relationships with psychopathological symptoms among 
Facebook users. International Journal of High Risk 
https://doi.org/10.1089/cyber.2013.0029
https://doi.org/10.1089/cyber.2013.0029https://doi.org/10.1207/s15327752jpa4901_13
https://doi.org/10.1207/s15327752jpa4901_13
https://doi.org/10.1007/s12144-018-9840-8
https://doi.org/10.1007/s12144-018-9840-8
https://doi.org/10.2466/PR0.105.3.849-856
https://doi.org/10.2466/PR0.105.3.849-856
https://doi.org/10.1089/cyber.2010.0318
https://doi.org/10.1089/cyber.2010.0318
https://doi.org/10.1086/209315
https://doi.org/10.1080/08838151.2017.1375501
https://doi.org/10.1016/j.chb.2017.08.001
https://doi.org/10.1016/j.chb.2017.08.001
https://doi.org/10.5817/CP201336
https://doi.org/10.5817/CP201336
https://doi.org/10.1089/109493100316067
https://doi.org/10.1136/jnnp.23.1.56
https://doi.org/10.1136/jnnp.23.1.56
https://doi.org/10.1207/s15327752jpa6101_14
https://doi.org/10.1207/s15327752jpa6101_14
https://doi.org/10.1080/0144929X.2018.1515984
https://doi.org/10.1016/j.tele.2014.01.001
https://doi.org/10.1016/j.tele.2014.01.001
https://doi.org/10.1016/j.chb.2018.05.003
https://doi.org/10.1348/1476083042555406
https://doi.org/10.1016/j.chb.2018.07.011
https://doi.org/10.1080/02673843.2019.15908
https://doi.org/10.1080/02673843.2019.15908
https://doi.org/10.1177/0891988715606232
https://doi.org/10.1177/0891988715606232
https://doi.org/10.1007/s11469-018-9900-1
https://doi.org/10.1007/s11469-018-9900-1
https://doi.org/10.17485/ijst/2015/v8iS8/70509
https://doi.org/10.1089/cyber.2012.0249
https://doi.org/10.1089/cyber.2012.0249
https://doi.org/10.1046/j.1525-1497.2001.016009606.x
https://doi.org/10.1046/j.1525-1497.2001.016009606.x
16 International Journal of Social Psychiatry 00(0)
Behaviors & Addiction, 7, e61775. https://doi.org/10.5812/
ijhrba.61775.
LaRose, R., Mastro, D., & Eastin, M. S. (2001). Understanding 
Internet usage: A social-cognitive approach to uses and 
gratifications. Social Science Computer Review, 19, 395–
413. https://doi.org/10.1177/089443930101900401
Lipsey, M. W., & Wilson, D. B. (2001). Practical meta-analysis. 
Sage.
Lovibond, S. H., & Lovibond, P. F. (1995). Manual for the 
depression anxiety stress scales (2nd. Ed.). Psychology 
Foundation.
Lukat, J., Margraf, J., Lutz, R., van der Veld, W. M., & Becker, 
E. S. (2016). Psychometric properties of the Positive Mental 
Health Scale (PMH-scale). BMC Psychology, 4(1), 8. 
https://doi.org/10.1186/s40359-016-0111-x
Marino, C., Gini, G., Vieno, A., & Spada, M. M. (2018a). The 
associations between problematic Facebook use, psycho-
logical distress and well-being among adolescents and 
young adults: A systematic review and meta-analysis. 
Journal of Affective Disorders, 226, 274–281. https://doi.
org/10.1016/j.jad.2017.10.007
Marino, C., Gini, G., Vieno, A., & Spada, M. M. (2018b). A 
comprehensive meta-analysis on problematic Facebook 
use. Computers in Human Behavior, 83, 262–277. https://
doi.org/10.1016/j.chb.2018.02.009
McShane, B. B., Böckenholt, U., & Hansen, K. T. (2016). 
Adjusting for publication bias in meta-analysis: an evalu-
ation of selection methods and some cautionary notes. 
Perspectives on Psychological Science, 11, 730–749. 
https://doi.org/10.1177/1745691616662243
Meerkerk, G. (2007). Pwned by the Internet. Explorative 
research into the causes and consequences of compulsive 
internet use. Rotterdam, Netherland: Erasmus Universiteit 
Rotterdam.
Miele, G. M., Tilly, S. M., First, M., & Frances, A. (1990). 
The definition of dependence and behavioural addictions. 
British Journal of Addiction, 85(11), 1421–1423. https://
doi.org/10.1111/j.1360-0443.1990.tb01623.x
Montgomery, S. A., & Åsberg, M. (1979). A new depression 
scale designed to be sensitive to change. British Journal 
of Psychiatry, 134, 382–389. https://doi.org/10.1192/
bjp.134.4.382
Moqbel, M., & Kock, N. (2018). Unveiling the dark side of social 
networking sites: Personal and work-related consequences of 
social networking site addiction. Information & Management, 
55, 109–119. https://doi.org/10.1016/j.im.2017.05.001
Pavot, W., & Diener, E. (1993). Review of the satisfaction with 
life scale. Psychological Assessment, 5, 164–172. https://
doi.org/10.1037/1040-3590.5.2.164
Pluhar, E., Kavanaugh, J. R., Levinson, J. A., & Rich, M. 
(2019). Problematic interactive media use in teens: comor-
bidities, assessment, and treatment. Psychology Research 
and Behavior Management, 12, 447–455. https://doi.
org/10.2147/prbm.s208968
Pontes, H. M. (2017). Investigating the differential effects of 
social networking site addiction and internet gaming disorder 
on psychological health. Journal of Behavioral Addictions, 
6, 601–610. https://doi.org/10.1556/2006.6.2017.075
Radloff, L. S. (1977). The CES-D scale: A self-report depres-
sion scale for research in the general population. Applied 
Psychological Measurement, 1, 385–401. https://doi.
org/10.1177/014662167700100306
Robins, R.W., Hendin, H. M., & Trzesniewski, K. H. (2001). 
Measuring global self-esteem: construct validation of a 
single-item measure and the Rosenberg self-esteem scale. 
Personality and Social Psychology Bulletin, 27, 151–161. 
https://doi.org/10.1177/0146167201272002
Rosenberg, M. (1965). Society and the adolescent self-image. 
Princeton University Press.
Russell, D., Peplau, L. A., & Cutrona, C. E. (1980). The revised 
UCLA Loneliness Scale: Concurrent and discriminant valid-
ity evidence. Journal of Personality and Social Psychology, 
39, 472–480. https://doi.org/10.1037/0022-3514.39.3.472
Ryan, T., Chester, A., Reece, J., & Xenos, S. (2014). The uses 
and abuses of Facebook: A review of Facebook addiction. 
Journal of Behavioral Addictions, 3, 133–148. https://doi.
org/10.1556/JBA.3.2014.016
Salokangas, R. K. R., Poutanen, O., & Stengård, E. (1995). 
Screening for depression in primary care: Development 
and validation of the depression scale, a screening instru-
ment for depression. Acta Psychiatrica Scandinavica, 92(1), 
10–16. https://doi.org/10.1111/j.1600-0447.1995.tb09536.x
Santen, G., Gomeni, R., Danhof, M., & Pasqua, O. D. (2008). 
Sensitivity of the individual items of the Hamilton 
depression rating scale to response and its consequences 
for the assessment of efficacy. Journal of Psychiatric 
Research, 42, 1000–1009. https://doi.org/10.1016/j.jpsy-
chires.2007.11.004
Satici, S. A. (2018). Facebook addiction and subjective well-
being: A study of the mediating role of shyness and loneli-
ness. International Journal of Mental Health and Addiction, 
17(1), 41–55. https://doi.org/10.1007/s11469-017-9862-8
Satici, S. A., & Uysal, R. (2015). Well-being and problematic 
Facebook use. Computers in Human Behavior, 49, 185–
190. https://doi.org/10.1016/j.chb.2015.03.005
Schmitt David, P., & Allik, J. (2005). Simultaneous adminis-
tration of the Rosenberg self-esteem scale in 53 nations: 
Exploring the universal and culture-specific features of 
global self-esteem. Journal of Personality and Social 
Psychology, 89, 623–642. https://doi.org/10.1037/0022-
3514.89.4.623
Stevens, M. W. R., King, D. L., Dorstyn, D., & Delfabbro, P. 
H. (2019). Cognitive-behavioral therapy for internet gaming 
disorder: a systematic review and meta-analysis. Clinical 
Psychology and Psychotherapy, 26, 191–203. https://doi.
org/10.1002/cpp.2341
Szabó, B. (2010). The short version of the Depression Anxiety 
Stress Scales (DASS-21): Factor structure in a young ado-
lescent sample. Journal of Adolescence, 33, 1–8. https://doi.
org/10.1016/j.adolescence.2009.05.014
Tang, C. S., Koh, Y. W., & Gan, Y. (2017). Addiction to Internet 
use, online gaming, and online social networking among 
young adults in China, Singapore, and the United States. 
Asia-Pacific Journal of Public Health, 29, 673–682. https://
doi.org/10.1177/1010539517739558
Turel, O., & Qahri-Saremi, H. (2016) Problematic use of social 
networking sites: antecedents and consequence from a 
dual system theory perspective. Journal of Management 
Information Systems, 33, 1087–1116. https://doi.org/10.10
80/07421222.2016.1267529
https://doi.org/10.5812/ijhrba.61775
https://doi.org/10.5812/ijhrba.61775
https://doi.org/10.1177/089443930101900401
https://doi.org/10.1186/s40359-016-0111-xhttps://doi.org/10.1016/j.jad.2017.10.007
https://doi.org/10.1016/j.jad.2017.10.007
https://doi.org/10.1016/j.chb.2018.02.009
https://doi.org/10.1016/j.chb.2018.02.009
https://doi.org/10.1177/1745691616662243
https://doi.org/10.1111/j.1360-0443.1990.tb01623.x
https://doi.org/10.1111/j.1360-0443.1990.tb01623.x
https://doi.org/10.1192/bjp.134.4.382
https://doi.org/10.1192/bjp.134.4.382
https://doi.org/10.1016/j.im.2017.05.001
https://doi.org/10.1037/1040-3590.5.2.164
https://doi.org/10.1037/1040-3590.5.2.164
https://doi.org/10.2147/prbm.s208968
https://doi.org/10.2147/prbm.s208968
https://doi.org/10.1556/2006.6.2017.075
https://doi.org/10.1177/014662167700100306
https://doi.org/10.1177/014662167700100306
https://doi.org/10.1177/0146167201272002
https://doi.org/10.1037/0022-3514.39.3.472
https://doi.org/10.1556/JBA.3.2014.016
https://doi.org/10.1556/JBA.3.2014.016
https://doi.org/10.1111/j.1600-0447.1995.tb09536.x
https://doi.org/10.1016/j.jpsychires.2007.11.004
https://doi.org/10.1016/j.jpsychires.2007.11.004
https://doi.org/10.1007/s11469-017-9862-8
https://doi.org/10.1016/j.chb.2015.03.005
https://doi.org/10.1037/0022-3514.89.4.623
https://doi.org/10.1037/0022-3514.89.4.623
https://doi.org/10.1002/cpp.2341
https://doi.org/10.1002/cpp.2341
https://doi.org/10.1016/j.adolescence.2009.05.014
https://doi.org/10.1016/j.adolescence.2009.05.014
https://doi.org/10.1177/1010539517739558
https://doi.org/10.1177/1010539517739558
https://doi.org/10.1080/07421222.2016.1267529
https://doi.org/10.1080/07421222.2016.1267529
Huang 17
Uysal, R., Satici, S. A., & Akin, A. (2013). Mediating effect of 
Facebook addiction on the relationship between subjective 
vitality and subjective happiness. Psychological Reports, 113, 
948–953. https://doi.org/10.2466/02.09.18.PR0.113x32z3
van den Eijnden, R., Koning, I., Doornwaard, S., van Gurp, 
F., & Bogt, T. T. (2018). The impact of heavy and dis-
ordered use of games and social media on adoles-
cents' psychological, social, and school functioning. 
Journal of Behavioral Addiction, 7, 697–706. https://doi.
org/10.1556/2006.7.2018.65
van den Eijnden, R., Lemmens, J. S., & Valkenburg, P. M. 
(2016). The social media disorder scale. Computers in 
Human Behavior, 61, 478–487. https://doi.org/10.1016/j.
chb.2016.03.038
Vangeel, J., De Cock, R., Klein, A., Minotte, P., Rosas, O., & 
Meerkerk, G. (2016). Compulsive use of social networking 
sites among secondary school adolescents in Belgium. In M. 
Walrave, K. Ponnet, E. Vanderhoven, J. Haers, & B. Segaert 
(Eds.). Youth 2.0: Social media and adolescence (pp. 179–
191). Springer International Publishing.
Verma, J., & Kumari, A. (2016). A study on addiction to social 
networking sites and psychological well being among work-
ing adults. International Journal of Humanities and Social 
Sciences, 5, 153–161.
Wan, C. (2009). Gratifications and loneliness as predictors of 
campus-SNS websites addiction and usage pattern among 
Chinese college students. (Unpublished Master’s Thesis) 
Chinese University of Hong Kong, Hong Kong.
Winkler, A., Dorsing, B., Rief, W., Shen, Y., & Glombiewski, 
J. A. (2013). Treatment of internet addiction: a meta-anal-
ysis. Clinical Psychology Review, 33, 317–329. https://doi.
org/10.1016/j.cpr.2012.12.005
Worsley, J.D., McIntyre, J. C., Bentall, R. P., & Corcoran, 
R. (2018). Childhood maltreatment and problematic 
social media use: The role of attachment and depression. 
Psychiatry Research, 267, 88–93. https://doi.org/10.1016/j.
psychres.2018.05.023.
Young, K. (1998). Internet addiction: The emergence of a new 
clinical disorder. CyberPsychology & Behavior, 1, 237–
244. https://doi.org/10.1089/cpb.1998.1.237
Appendix
Included Studies
Abbasi, I. S., & Drouin, M. (2019). Neuroticism and Facebook 
addiction: How social media can affect mood? American 
Journal of Family Therapy, 4, 199–215. https://doi.org/10
.1080/01926187.2019.1624223
AbuDamous, H. (2020). The relationship between social media 
use, depression, and anxiety in the Xennial Generation 
(Doctoral dissertation). ProQuest Dissertations and Theses 
Global. (UMI No. 27997493)
Akin, A., & Akin, U. (2015). The mediating role of social safe-
ness on the relationship between Facebook® use and life 
satisfaction. Psychological Reports, 117, 341–353. https://
https://doi.org/.org/:10.2466/18.07.PR0.117c20z9
Al Mamun, M. A., & Griffiths, M. D. (2019). The associa-
tion between Facebook addiction and depression: A pilot 
survey study among Bangladeshi students. Psychiatry 
Research, 271, 628–633. https://doi.org/10.1016/j.psy-
chres.2018.12.039.
Aladwani, A. M., & Almarzouq, M. (2016). Understanding com-
pulsive social media use: The premise of complementing 
self-conceptions mismatch with technology. Computers in 
Human Behavior, 60, 575–581. https://doi.org/10.1016/j.
chb.2016.02.098
Andreassen, C. S., Billieux, J., Griffiths, M. D., Kuss, D. J., 
Demetrovics, Z., Mazzoni, E., & Pallesen, S. (2016). The 
relationship between addictive use of social media and video 
games and symptoms of psychiatric disorders: A large-scale 
cross-sectional study. Psychology of Addictive Behaviors, 
30, 252–262. https://doi.org/10.1037/adb0000160
Andreassen, C. S., Pallesen, S., & Griffiths, M. D. (2017). The 
relationship between addictive use of social media, narcis-
sism, and self-esteem: Findings from a large national sur-
vey. Addictive Behaviors, 64, 287–293. https://https://doi.
org/.org/:10.1016/j.addbeh.2016.03.006
Apaolaza, V., Hartmann, P., D'Souza, C., & Gilsanz, A. (2019). 
Mindfulness, compulsive mobile social media use, and 
derived stress: The mediating roles of self-esteem and 
social anxiety. Cyberpsychology, Behavior, and Social 
Networking, 22, 388–396. https://doi.org/10.1089/cyber. 
2018.0681
Atroszko, P. A., Balcerowska, J. M., Bereznowski, P., 
Biernatowska, A., Pallesen, S., & Andreassen, C. S. (2018). 
Facebook addiction among Polish undergraduate students: 
Validity of measurement and relationship with personality 
and well-being. Computers in Human Behavior, 85, 329–
338. https://doi.org/10.1016/j.chb.2018.04.001
Aydin, O., Çökmüş, F. P., Balikçi, K., Sücüllüoğlu-Dikici, D., & 
Ünal-Aydin, P. (2020). The problematic use of social net-
working sites associates with elevated symptoms in patients 
with major depressive disorder. International Journal of 
Social Psychiatry. Advanced online publication. https://doi.
org/10.1177/0020764020919791
Balcerowska, J. M., Bereznowski, P., Biernatowska, A., 
Atroszko, P. A., Pallesen, S., & Andreassen, C. S. (2020). 
Is it meaningful to distinguish between Facebook addic-
tion and social networking sites addiction? Psychometric 
analysis of Facebook addiction and social networking sites 
addiction scales. Current Psychology. Advanced online 
publication. https://doi.org/10.1007/s12144-020-00625-3
Balci, Ş., & Gölcü, A. (2013). Facebook addiction among uni-
versity students in Turkey: “Selcuk University example”. 
Journal of Studies in Turkology, 34, 255–278. http://dx.doi.
org/10.4103/2278-344x.149234
Balci, Ş., & Tiryaki, S. (2014). Facebook addiction among 
high school students in Turkey. Paper presented at 10th 
International Academic Conference. Vienna.
Baturay, M. H., & Toker, S. (2017). Self-esteem shapes the 
impact of GPA and general health on Facebook addiction: 
A mediation analysis. Social Science Computer Review, 35, 
555–575. https://doi.org/10.1177/08944393166566
Bérail, P., Guillon, M., & Bungener, C. (2019). The relations 
between YouTube addiction, social anxiety and paraso-
cial relationships with YouTubers: A moderated-media-
tion model based on a cognitive-behavioral framework. 
Computers in Human Behavior, 99, 190–204. https://doi.
org/10.1016/j.chb.2019.05.007
https://doi.org/10.2466/02.09.18.PR0.113x32z3
https://doi.org/10.1556/2006.7.2018.65
https://doi.org/10.1556/2006.7.2018.65
https://doi.org/10.1016/j.chb.2016.03.038
https://doi.org/10.1016/j.chb.2016.03.038
https://doi.org/10.1016/j.cpr.2012.12.005
https://doi.org/10.1016/j.cpr.2012.12.005
https://doi.org/10.1016/j.psychres.2018.05.023https://doi.org/10.1016/j.psychres.2018.05.023
https://doi.org/10.1089/cpb.1998.1.237
https://doi.org/10.1080/01926187.2019.1624223
https://doi.org/10.1080/01926187.2019.1624223
https://https://doi.org/.org/:10.2466/18.07.PR0.117c20z9
https://https://doi.org/.org/:10.2466/18.07.PR0.117c20z9
https://doi.org/10.1016/j.psychres.2018.12.039
https://doi.org/10.1016/j.psychres.2018.12.039
https://doi.org/10.1016/j.chb.2016.02.098
https://doi.org/10.1016/j.chb.2016.02.098
https://doi.org/10.1037/adb0000160
https://https://doi.org/.org/:10.1016/j.addbeh.2016.03.006
https://https://doi.org/.org/:10.1016/j.addbeh.2016.03.006
https://doi.org/10.1089/cyber.2018.0681
https://doi.org/10.1089/cyber.2018.0681
https://doi.org/10.1016/j.chb.2018.04.001
https://doi.org/10.1177/0020764020919791
https://doi.org/10.1177/0020764020919791
https://doi.org/10.1007/s12144-020-00625-3
http://dx.doi.org/10.4103/2278-344x.149234
http://dx.doi.org/10.4103/2278-344x.149234
https://doi.org/10.1177/08944393166566
https://doi.org/10.1016/j.chb.2019.05.007
https://doi.org/10.1016/j.chb.2019.05.007
18 International Journal of Social Psychiatry 00(0)
Biolcati, R., Mancini, G., Pupi, V., & Mugheddu, V. (2018). 
Facebook addiction: Onset predictors. Journal of Clinical 
Medicine, 7, 118. https://doi.org/10.3390/jcm7060118
Błachnio, A., & Przepiórka, A. (2018). Facebook intrusion, fear 
of missing out, narcissism, and life satisfaction: A cross-
sectional study. Psychiatry Research, 259, 514–519. https://
doi.org/10.1016/j.psychres.2017.11.012
Błachnio, A., & Przepiórka, A. (2019). Be aware! If you start 
using Facebook problematically you will feel lonely: 
Phubbing, loneliness, self-esteem, and Facebook intrusion. 
A cross-sectional study. Social Science Computer Review, 
37, 270–278. https://doi.org/10.1177/0894439318754490
Błachnio, A., Przepiorka, A., Benvenuti, M., Mazzoni, E., & 
Seidman, G. (2019). Relations between Facebook intru-
sion, Internet addiction, life satisfaction, and self-esteem: A 
study in Italy and the USA. International Journal of Mental 
Health and Addiction, 17, 793–805. https://doi.org/10.1007/
s11469-018-0038-y
Błachnio, A., Przepiórka, A., & Pantic, I. (2015). Internet use, 
Facebook intrusion, and depression: Results of a cross-sec-
tional study. European Psychiatry, 30, 681–684. https://doi.
org/10.1016/j.eurpsy.2015.04.002
Błachnio, A., Przepiorka, A., & Pantic, I. (2016). Association 
between Facebook addiction, self-esteem and life satisfac-
tion: A cross-sectional study. Computers in Human Behavior, 
55, 701–705. https://doi.org/10.1016/j.chb.2015.10.026
Boer, M., van den Eijnden, R. J. J. M., Boniel-Nissim, M., Wong, 
S.-L., Inchley, J. C., Badura, P., Craig, W. M., Gobina, I., 
Kleszczewska, D., KlanščekK, H. J., & Stevens, G. W. J. 
M. (2020). Adolescents’ intense and problematic social 
media use and their well-being in 29 countries. Journal of 
Adolescent Health, 66, S89e100. https://doi.org/10.1016/j.
jadohealth.2020.02.014
Brailovskaia, J., & Margraf, J. (2017). Facebook addiction 
disorder (FAD) among German students–A longitudi-
nal approach. PLoS ONE, 12(12), e0189719. https://doi.
org/10.1371/journal.pone.0189719
Brailovskaia, J., Rohmann, E., Bierhoff, H. W., Margraf, J., 
& Köllner, V. (2019). Relationships between addictive 
Facebook use, depressiveness, insomnia, and positive men-
tal health in an inpatient sample: A German longitudinal 
study. Journal of Behavioral Addictictions, 8, 703–713. 
https://doi.org/10.1556/2006.8.2019.63
Brailovskaia, J., Schillack, H., & Margraf, J. (2018). Facebook 
addiction disorder in Germany. Cyberpsychology, 
Behavior, and Social Networking, 21, 450–456. https://doi.
org/10.1089/cyber.2018.0140
Brailovskaia, J., Teismann, T., & Margraf, J. (2018). Physical 
activity mediates the association between daily stress 
and Facebook addiction disorder (FAD)—A longitu-
dinal approach among German students. Computers in 
Human Behavior, 86, 199–204. https://doi.org/10.1016/j.
chb.2018.04.045
Brailovskaia, J., Velten, J., & Margaf, J. (2019). Relationship 
between daily stress, depression symptoms, and Facebook 
addiction disorder in Germany and in the United States. 
Cyberpsychology, Behavior, and Social Networking, 22, 
610–614. https://doi.org/10.1089/cyber.2019.0165
Brown, L. (2016). Type of online activities and psychological 
well-being among African American, white American, and 
Latino American college students (Doctoral dissertation). 
Available from ProQuest Dissertations and Theses Global. 
(UMI No. 10003187)
Burnell, K., & Kuther, T. L. (2016). Predictors of mobile phone 
and social networking site dependency in adulthood. 
Cyberpsychology, Behavior, and Social Networking, 19, 
621–627. https://doi.org/10.1089/cyber.2016.0209
Cargill, M. (2019). The relationship between social media addic-
tion, anxiety, the fear of missing out, and interpersonal 
problems (Doctoral dissertation). Available from ProQuest 
Dissertations and Theses Global. (UMI No. 27525187)
Casale, S., & Fioravanti, G. (2015). Satisfying needs through 
social networking sites: A pathway towards problem-
atic Internet use for socially anxious people? Addictive 
Behaviors Reports 1, 34–39. http://dx.doi.org/10.1016/j.
abrep.2015.03.008
Chabrol, H., Laconi, S., Delfour, M., & Moreau, A. (2017). 
Contributions of psychopathological and interpersonal vari-
ables to problematic Facebook use in adolescents and young 
adults. International Journal of High Risk Behaviors and 
Addiction, 6, e32773. https://doi.org/10.5812/ijhrba.32773
Chae, D., Kim, H., & Kim, Y. A. (2018). Sex differences in the 
factors influencing Korean college students’ addictive ten-
dency toward social networking sites. International Journal 
of Mental Health and Addiction, 16, 339–350. https://doi.
org/10.1007/s11469-017-9778-3
Chavez, G.B., & Chavez, F. C. (2017). Relationship between 
Facebook addiction and loneliness of Filipino high school 
students. Liceo Journal of Higher Education Research, 
13(1), 50–60. http://dx.doi.org/10.7828/ljher.v13i1.1008
Chen, I.-H., Pakpour, A. H., Leung, H., Potenza, M. N., Su, 
J.-A., Lin, C.-Y., & Griffiths, M. D. (2020). Comparing 
generalized and specific problematic smartphone/Internet 
use: Longitudinal relationships between smartphone 
application-based addiction and social media addic-
tion and psychological distress. Journal of Behavioral 
Addictions. Advanced online publication. http://dx.doi.
org/10.1556/2006.2020.00023
Choi, S. B., & Lim, M. S. (2016). Effects of social and technol-
ogy overload on psychological well-being in young South 
Korean adults: The mediatory role of social network service 
addiction. Computers in Human Behavior, 61, 245–254. 
https://doi.org/10.1016/j.chb.2016.03.032
Crowell, B. R. (2015). The role of personality, self-esteem, and 
life satisfaction in regards to social networking: An exami-
nation of Facebook users (Doctoral dissertation). Available 
from ProQuest Dissertations and Theses Global. (UMI No. 
3631577)
Cudo, A., Szewczyk, M., Błachnio, A., Przepiórka, A., & 
Jarząbek-Cudo, A. (2019). The role of depression and self-
esteem in Facebook intrusion and gaming disorder among 
young adult gamers. Psychiatric Quarterly, 91, 65-76. 
https://doi.org/10.1007/s11126-019-09685-6
da Veiga, G. F., Sotero, L., Pontes, H. M., Cunha, D., Portugal, A., & 
Relvas, A. P. (2019).Emerging adults and Facebook use: The 
validation of the Bergen Facebook Addiction Scale (BFAS). 
International Journal of Mental Health and Addiction, 17, 
279–294. https://doi.org/10.1007/s11469-018-0018-2
De Cock, R., Vangeel, J., Klein, A., Minotte, P., Rosas, O., & 
Meerkerk, G. (2014). Compulsive use of social networking 
https://doi.org/10.3390/jcm7060118
https://doi.org/10.1016/j.psychres.2017.11.012
https://doi.org/10.1016/j.psychres.2017.11.012
https://doi.org/10.1177/0894439318754490
https://doi.org/10.1007/s11469-018-0038-y
https://doi.org/10.1007/s11469-018-0038-y
https://doi.org/10.1016/j.eurpsy.2015.04.002
https://doi.org/10.1016/j.eurpsy.2015.04.002https://doi.org/10.1016/j.chb.2015.10.026
https://doi.org/10.1016/j.jadohealth.2020.02.014
https://doi.org/10.1016/j.jadohealth.2020.02.014
https://doi.org/10.1371/journal.pone.0189719
https://doi.org/10.1371/journal.pone.0189719
https://doi.org/10.1556/2006.8.2019.63
https://doi.org/10.1089/cyber.2018.0140
https://doi.org/10.1089/cyber.2018.0140
https://doi.org/10.1016/j.chb.2018.04.045
https://doi.org/10.1016/j.chb.2018.04.045
https://doi.org/10.1089/cyber.2019.0165
https://doi.org/10.1089/cyber.2016.0209
http://dx.doi.org/10.1016/j.abrep.2015.03.008
http://dx.doi.org/10.1016/j.abrep.2015.03.008
https://doi.org/10.5812/ijhrba.32773
https://doi.org/10.1007/s11469-017-9778-3
https://doi.org/10.1007/s11469-017-9778-3
http://dx.doi.org/10.7828/ljher.v13i1.1008
http://dx.doi.org/10.1556/2006.2020.00023
http://dx.doi.org/10.1556/2006.2020.00023
https://doi.org/10.1016/j.chb.2016.03.032
https://doi.org/10.1007/s11126-019-09685-6
https://doi.org/10.1007/s11469-018-0018-2
Huang 19
sites in Belgium: Prevalence, profile, and the role of attitude 
toward work and school. Cyberpsychology, Behavior, and 
Social Networking, 17, 166–171. https://doi.org/10.1089/
cyber.2013.0029
Dempsey, A. E., O’Brien, K. D., Tiamiyu, M. F., & Elhai, J. D. 
(2019). Fear of missing out (FoMO) and rumination mediate 
relations between social anxiety and problematic Facebook 
use. Addictive Behaviors Reports, 9, 100150. https://doi.
org/10.1016/j.abrep.2018.100150
Dhir, A. (2018). Online social media fatigue and psychologi-
cal wellbeing—A study of compulsive use, fear of missing 
out, fatigue, anxiety and depression. International Journal 
of Information Management, 40, 141–152. https://doi.
org/10.1016/j.ijinfomgt.2018.01.012
Durak, H. Y. (2018). Modeling of variables related to problem-
atic internet usage and problematic social media usage in 
adolescents. Current Psychology, 39(4), 1375–1387. https://
doi.org/10.1007/s12144-018-9840-8
Durak, H. Y., & Seferoğlu, S. S. (2019). Modeling of variables 
related to problematic social media usage: Social desirabil-
ity tendency example. Scandinavian Journal of Psychology, 
60, 277–288. https://doi.org/10.1111/sjop.12530
Gerhart, N. (2017). Technology addiction: How social network 
sites impact our lives. Informing Science, 20, 179–194. 
https://doi.org/10.28945/3851
Giota, K. G., & Kleftaras, G. (2013). The role of personality and 
depression in problematic use of social networking sites 
in Greece. Cyberpsychology, 7(3), article 1. https://doi.
org/10.5817/CP201336
Guven, L. (2019). Relationship between social media use, 
self-esteem and satisfaction with life (Master’s Thesis). 
Available from ProQuest Dissertations and Theses Global. 
(UMI No. 13419382)
Hawi, N. S., & Samaha, M. (2017). The relations among social 
media addiction, self-esteem, and life satisfaction in univer-
sity students. Social Science Computer Review, 35, 576–
586. https://doi.org/10.1177/0894439316660340
Hawi, N. S., & Samaha, M. (2019). Identifying commonalities 
and differences in personality characteristics of Internet 
and social media addiction profiles: traits, self-esteem, and 
self-construal. Behaviour & Information Technology, 38, 
110–119. https://doi.org/10.1080/0144929X.2018.1515984
Holmgren, H. G., & Coyne, S. M. (2017). Can’t stop scrolling! 
Pathological use of social networking sites in emerging 
adulthood. Addiction Research and Theory, 25, 375–382. 
http://dx.doi.org/10.1080/16066359.2017.1294164
Hong, F. Y., Huang, D. H., Lin, H. Y., & Chiu, S. L. (2014). 
Analysis of the psychological traits, Facebook usage, and 
Facebook addiction model of Taiwanese university stu-
dents. Telematics and Informatics, 31, 597–606. https://doi.
org/10.1016/j.tele.2014.01.001
Hou, J., Ndasauka, Y., Pan, X., Chen, S., Xu, F., & Zhang, X. 
(2018). Weibo or WeChat? Assessing preference for social 
networking sites and role of personality traits and psycho-
logical factors. Frontiers in Psychology, 9, 545. https://doi.
org/10.3389/fpsyg.2018.00545
Hussain, Z., & Griffiths, M. D. (2019). The Associations 
between problematic social networking site use and sleep 
quality, attention-deficit hyperactivity disorder, depres-
sion, anxiety and stress. International Journal of Mental 
Health Addiction, Advanced online publication. https://doi.
org/10.1007/s11469-019-00175-1
Hussain, Z., Simonovic, B., Stupple, E. J. N., & Austin, M. 
(2019). Using eye tracking to explore Facebook use and 
associations with Facebook addiction, mental well-being, 
and personality. Behavioral Sciences, 9(2), 19.
Jasso-Medrano, J., & López-Rosales, F. (2018). Measuring the 
relationship between social media use and addictive behav-
ior and depression and suicide ideation among university 
students. Computers in Human Behavior, 87, 183–191. 
https://doi.org/10.1016/j.chb.2018.05.003
Jeri-Yabar, A., Sanchez-Carbonel, A., Tito, K., Ramirez-
delCastillo, J., Torres-Alcantara, A., Denegri, D., & 
Carreazo, Y. (2019). Association between social media 
use (Twitter, Instagram, Facebook) and depressive symp-
toms: Are Twitter users at higher risk? International 
Journal of Social Psychiatry, 65, 14–19. https://doi.
org/10.1177/0020764018814270
Kanat-Maymon, Y., Almog, L., Cohen, R., & Amichai-
Hamburger, Y. (2018). Contingent self-worth and Facebook 
addiction. Computers in Human Behavior, 88, 227–235. 
https://doi.org/10.1016/j.chb.2018.07.011
Karakose, T., Yirci, R., Uygun, H., & Ozdemir, T. Y. (2016). 
Relationship between high school students’ Facebook addic-
tion and loneliness status. Eurasia Journal of Mathematics, 
Science & Technology Education, 12, 2419–2429. https://
doi.org/10.12973/eurasia.2016.1557a
Khattak, A. F., Ahmad, S., & Mohammad, H. (2017). Facebook 
addiction and depression: A comparative study of gender 
differences. Humanities and Social Sciences, 25, 55–62.
Kim, H., & Park, D. (2015). Factors affecting Internet gaming 
addiction: SNS addiction tendencies, self-esteem, and inter-
personal relationships among male middle school students. 
Indian Journal of Science and Technology, 8(S8), 212–218. 
https://doi.org/10.17485/ijst/2015/v8iS8/70509
Kircaburun, K. (2016). Self-esteem, daily Internet use and social 
media addiction as predictors of depression among Turkish 
adolescents. Journal of Education and Practice, 7, 64–72.
Kircaburun, K., Demetrovics, Z., Király, O., & Griffiths, M. D. 
(2020). Childhood emotional trauma and cyberbullying 
perpetration among emerging adults: A multiple mediation 
model of the role of problematic social media use and psy-
chopathology. International Journal of Mental Health and 
Addiction, 18, 548–566. https://doi.org/10.1007/s11469-
018-9941-5
Kircaburun, K., Demetrovics, Z., & Tosuntaş, Ş. B. (2019). 
Analyzing the links between problematic social media use, 
dark triad traits, and self-esteem. International Journal of 
Mental Health and Addiction, 17, 496–1507. https://doi.
org/10.1007/s11469-018-9900-1
Kircaburun, K., Griffiths, M. D., & Billieux, J. (2019). Trait emo-
tional intelligence and problematic online behaviors among 
adolescents: The mediating role of mindfulness, rumination, 
and depression. Personality and Individual Differences, 
139, 208–213. https://doi.org/10.1016/j.paid.2018.11.024
Kircaburun, K., Griffiths, M. D., Şahin, F., Bahtiyar, M., Atmaca, 
T., & Tosuntaş, Ş. B. (2020). The mediating role of self/eve-
ryday creativity and depression on the relationship between 
creative personality traits and problematic social media use 
among emerging adults. International Journal of Mental 
https://doi.org/10.1089/cyber.2013.0029
https://doi.org/10.1089/cyber.2013.0029
https://doi.org/10.1016/j.abrep.2018.100150
https://doi.org/10.1016/j.abrep.2018.100150
https://doi.org/10.1016/j.ijinfomgt.2018.01.012
https://doi.org/10.1016/j.ijinfomgt.2018.01.012
https://doi.org/10.1007/s12144-018-9840-8
https://doi.org/10.1007/s12144-018-9840-8
https://doi.org/10.1111/sjop.12530
https://doi.org/10.28945/3851
https://doi.org/10.5817/CP201336
https://doi.org/10.5817/CP201336https://doi.org/10.1177/0894439316660340
https://doi.org/10.1080/0144929X.2018.1515984
http://dx.doi.org/10.1080/16066359.2017.1294164
https://doi.org/10.1016/j.tele.2014.01.001
https://doi.org/10.1016/j.tele.2014.01.001
https://doi.org/10.3389/fpsyg.2018.00545
https://doi.org/10.3389/fpsyg.2018.00545
https://doi.org/10.1007/s11469-019-00175-1
https://doi.org/10.1007/s11469-019-00175-1
https://doi.org/10.1016/j.chb.2018.05.003
https://doi.org/10.1177/0020764018814270
https://doi.org/10.1177/0020764018814270
https://doi.org/10.1016/j.chb.2018.07.011
https://doi.org/10.12973/eurasia
https://doi.org/10.12973/eurasia
https://doi.org/10.17485/ijst/2015/v8iS8/70509
https://doi.org/10.1007/s11469-018-9941-5
https://doi.org/10.1007/s11469-018-9941-5
https://doi.org/10.1007/s11469-018-9900-1
https://doi.org/10.1007/s11469-018-9900-1
https://doi.org/10.1016/j.paid.2018.11.024
20 International Journal of Social Psychiatry 00(0)
Health and Addiction, 18, 77–88. https://doi.org/10.1007/
s11469-018-9938-0
Kırcaburun, K., Kokkinos, C. M., Demetrovics, Z., Király, 
O., Griffiths, M. D., & Çolak, T. S. (2018). Problematic 
online behaviors among adolescents and emerging adults: 
Associations between cyberbullying perpetration, prob-
lematic social media use, and psychosocial factors. 
International Journal of Mental Health and Addiction, 17, 
891–908. https://doi.org/10.1007/s11469-018-9894-8
Koc, M., & Gulyagci, S. (2013). Facebook addiction among 
Turkish college students: The role of psychological health, 
demographic, and usage characteristics. CyberPsychology, 
Behavior, and Social Networking, 16, 279–284. https://doi.
org/10.1089/cyber.2012.0249
Laconi, S., Verseillié, E., & Chabrol, H. (2018). Exploration of the 
problematic Twitter and Facebook uses and their relation-
ships with psychopathological symptoms among Facebook 
users. International Journal of High Risk Behaviors & 
Addiction, 7, e61775. https://doi.org/10.5812/ijhrba.61775
LaRose, R., Wohn, D. Y., Ellison, N., & Steinfield, C. (2011). 
Facebook fiends: Compulsive social networking and 
adjustment to college. In Proceedings of the International 
Association for the Development of the Information 
Society. ICT 2011.
Lee-Won, R., Herzog, L., & Park, S. G. (2015). Hooked on 
Facebook: The role of social anxiety and need for social 
assurance in problematic use of Facebook. Cyberpsychology, 
Behavior, and Social Networking, 18, 567–574. https://doi.
org/10.1089/cyber.2015.0002
Li, B., Wu, Y., Jiang, S., & Zhai, H. (2018). WeChat addiction 
suppresses the impact of stressful life events on life satisfac-
tion. Cyberpsychology, Behavior, & Social Networking, 21, 
194–198. https://doi.org/10.1089/cyber.2017.0544
Lim, M. S. M., Cheung, F. Y. L., Kho, J. M., & Tang, C. S. 
(2019). Childhood adversity and behavioural addictions: 
The mediating role of emotion dysregulation and depres-
sion in an adult community sample. Addiction Research & 
Theory, 28, 116–123. https://doi.org/10.1080/16066359.20
19.1594203
Lin, C.-Y., Broström, A., Nilsen, P., Griffiths, M. D., & Pakpour, 
A. H. (2017). Psychometric validation of the Persian Bergen 
social media addiction scale using classic test theory and 
Rasch models. Journal of Behavioral Addictions, 6, 620–
629. https://doi.org/10.1556/2006.6.2017.071
Lin, C.-Y., Imani, V., Griffiths, M. D., Broström, A., Nygårdh, 
A., Demetrovics, Z., & Pakpour, A. H. (2020). Temporal 
associations between morningness/eveningness, problem-
atic social media use, psychological distress and daytime 
sleepiness: Mediated roles of sleep quality and insomnia 
among young adults. Journal of Sleep Research, e13076. 
https://doi.org/10.1111/jsr.13076
Liu, C., & Ma, J. (2018). Development and validation of 
the Chinese social media addiction scale. Personality 
and Individual Differences, 134, 55–59. https://doi.
org/10.1016/j.paid.2018.05.046
Majid, A., Yasir, M., Javed, A., & Ali, P. (2019). From envy 
to social anxiety and rumination: How social networking 
sites addiction is triggering task distraction among nurses? 
Journal of Nursing Management. Advanced online publica-
tion. https://doi.org/10.1111/jonm.12948
Malik, S., & Khan, M. (2015). Impact of Facebook addiction 
on narcissistic behavior and self-esteem among students. 
Journal of the Pakistan Medical Association, 65, 260–263.
Martinez-Pecino, R., & Garcia-Gavilán, M. (2019). Likes and 
problematic Instagram use: the moderating role of self-
esteem. Cyberpsychology, Behavior, and Social Networking, 
22, 412–416. https://doi.org/10.1089/cyber.2018.0701
Mennig, M., Tennie, S., & Barke, A. (2020). A psychometric 
approach to assessments of problematic use of online por-
nography and social networking sites based on the concep-
tualizations of internet gaming disorder. BMC Psychiatry, 
20, 318. https://doi.org/10.1186/s12888-020-02702-0
Milošević-Đorđević, J. S., & Žeželj, I. L. (2014). Psychological 
predictors of addictive social networking sites use: The case 
of Serbia. Computers in Human Behavior, 32, 229–234. 
https://doi.org/10.1016/j.chb.2013.12.018
Mitra, R., & Rangaswamy, M. (2019). Excessive social media 
use and its association with depression and rumination 
in an Indian young adult population: A mediation model. 
Journal of Psychosocial Research, 14, 223–231. https://doi.
org/10.32381/JPR.2019.14.01.24
Ndasauka, Y., Hou, J., Wang, Y., Yang, L., Yang, Z., Ye, Z., 
Hao, Y., Fallgatter, A. J., Kong, Y., & Zhang, X. (2016). 
Excessive use of Twitter among college students in the UK: 
validation of the microblog excessive use scale and rela-
tionship to social interaction and loneliness. Computers in 
Human Behavior, 55, 963–971. http://dx.doi.org/10.1016/j.
chb.2015.10.020
Omar, B., & Subramanian, K. (2013). Addicted to Facebook: 
Examining the roles of personality characteristics, gratifica-
tions sought and Facebook exposure among youths. GSTF 
International Journal on Media & Communications, 1, 54–
65. http://dx.doi.org/10.5176/2335-6618_1.1.6
Ponnusamy, S., Iranmanesh, M., Foroughi, B., & Hyun, S. S. (2020). 
Drivers and outcomes of Instagram addiction: Psychological 
well-being as moderator. Computers in Human Behavior, 107, 
106294. https://doi.org/10.1016/j.chb.2020.106294
Pontes, H. M. (2017). Investigating the differential effects of 
social networking site addiction and internet gaming disorder 
on psychological health. Journal of Behavioral Addictions, 
6, 601–610. https://doi.org/10.1556/2006.6.2017.075
Pontes, H. M., Taylor, M., & Stavropoulos, V. (2018). Beyond 
‘Facebook addiction’: The role of cognitive-related fac-
tors and psychiatric distress in social networking addiction. 
CyberPsychology, Behavior and Social Networking, 21, 
240–247. https://doi.org/10.1089/cyber.2017.0609
Przepiórka, A., & Błachnio, A. (2020). The role of Facebook 
intrusion, depression, and future time perspective in sleep 
problems among adolescents. Research on Adolescence, 30, 
559–569. https://doi.org/10.1111/jora.12543
Rajesh, T., & Rangaiah, B. (2020). Facebook addiction and per-
sonality. Heliyon, 6(1), e03184. https://doi.org/10.1016/j.
heliyon.2020.e03184
Raudsepp, L. (2015). Brief report: Problematic social media 
use and sleep disturbances are longitudinally associ-
ated with depressive symptoms in adolescents. Journal of 
Adolescence, 76, 197–201. https://doi.org/10.1016/j.adoles-
cence.2019.09.005
Robinson, A., Bonnette, A., Howard, K., Ceballos, N., Dailey, 
S., Lu, Y., & Grimes, T. (2019). Social comparisons, 
https://doi.org/10.1007/s11469-018-9938-0
https://doi.org/10.1007/s11469-018-9938-0
https://doi.org/10.1007/s11469-018-9894-8
https://doi.org/10.1089/cyber.2012.0249
https://doi.org/10.1089/cyber.2012.0249
https://doi.org/10.5812/ijhrba.61775
https://doi.org/10.1089/cyber.2015.0002
https://doi.org/10.1089/cyber.2015.0002
https://doi.org/10.1089/cyber.2017.0544
https://doi.org/10.1080/16066359.2019.1594203
https://doi.org/10.1080/16066359.2019.1594203
https://doi.org/10.1556/2006.6.2017.071
https://doi.org/10.1111/jsr.13076
https://doi.org/10.1016/j.paid.2018.05.046https://doi.org/10.1016/j.paid.2018.05.046
https://doi.org/10.1111/jonm.12948
https://doi.org/10.1089/cyber.2018.0701
https://doi.org/10.1186/s12888-020-02702-0
https://doi.org/10.1016/j.chb.2013.12.018
https://doi.org/10.32381/JPR.2019.14.01.24
https://doi.org/10.32381/JPR.2019.14.01.24
http://dx.doi.org/10.1016/j.chb.2015.10.020
http://dx.doi.org/10.1016/j.chb.2015.10.020
http://dx.doi.org/10.5176/2335-6618_1.1.6
https://doi.org/10.1016/j.chb.2020.106294
https://doi.org/10.1556/2006.6.2017.075
https://doi.org/10.1089/cyber.2017.0609
https://doi.org/10.1111/jora.12543
https://doi.org/10.1016/j.heliyon.2020.e03184
https://doi.org/10.1016/j.heliyon.2020.e03184
https://doi.org/10.1016/j.adolescence.2019.09.005
https://doi.org/10.1016/j.adolescence.2019.09.005
Huang 21
social media addiction, and social interaction: An exami-
nation of specific social media behaviors related to major 
depressive disorder in a millennial population. Journal of 
Applied Biobehavioral Research, 24, e12158. https://doi.
org/10.1111/jabr.12158
Şahin, C. (2017). The predictive level of social media addiction for 
life satisfaction: A study on university students. The Turkish 
Online Journal of Educational Technology, 16(4), 120–125.
Saleem, M., Irshad, R., Zafar, M., & Tahir, M. A. (2016). 
Facebook addiction causing loneliness among higher learn-
ing students of Pakistan: A linear relationship. Journal of 
Applied and Emerging Sciences, 5, 26–31.
Satici, S. A. (2019). Facebook addiction and subjective well-
being: A study of the mediating role of shyness and loneli-
ness. International Journal of Mental Health and Addiction, 
17, 41–55. https://doi.org/10.1007/s11469-017-9862-8
Satici, S. A., & Uysal, R. (2015). Well-being and problematic 
Facebook use. Computers in Human Behavior, 49, 185–
190. https://doi.org/10.1016/j.chb.2015.03.005
Savci, M., Ercengiz, M., & Aysan, F. (2018). Turkish adap-
tation of the social media disorder scale. Archives of 
Neuropsychiatry, 55, 248–255. https://doi.org/10.29399/
npa.19285.
Sheldon, P., Antony, M. G., & Sykes, B. (2020). Predictors of 
problematic social media use: Personality and life-position 
indicators. Psychological Reports. Advance online publica-
tion. https://doi.org/10.1177/0033294120934706
Shettar, M., Karkal, R., Kakunje, A., Mendonsa, R. D., & 
Chandran, V. V. M. (2017). Facebook addiction and loneli-
ness in the post-graduate students of a university in southern 
India. International Journal of Social Psychiatry, 63, 325–
329. https://doi.org/10.1177/0020764017705895
Soraci, P., Ferrari, A., Barberis, N., Luvarà, G., Urso, A., 
Del Fante, E., & Griffiths, M. D. (2020). Psychometric 
analysis and validation of the Italian Bergen Facebook 
Addiction Scale. International Journal of Mental Health 
and Addiction. Advanced online publication. https://doi.
org/10.1007/s11469-020-00346-5
Spraggins, A. (2009). Problematic use of online social network-
ing sites for college students: Prevalence, predictors, and 
association with well-being addiction (Doctoral disserta-
tion). Available from ProQuest Dissertations and Theses 
Global. (UMI No. 3425498)
Steggink, B. W. (2015). Facebook addiction: Where does it come 
from? A study based on the Bergen Facebook addiction 
scale (Unpublished Master thesis). University of Twente, 
Netherlands.
Stockdale, L. A., & Coyne, S. M. (2020). Bored and online: 
Reasons for using social media, problematic social net-
working site use, and behavioral outcomes across the tran-
sition from adolescence to emerging adulthood. Journal of 
Adolescence, 79, 173–183. https://doi.org/10.1016/j.adoles-
cence.2020.01.010.
Tesi, A. (2018). Social network sites addiction, internet addiction 
and individual differences: The role of big-five personality 
traits, behavioral inhibition/activation systems and loneli-
ness. Applied Psychology Bulletin, 282(66), 32-44.
Turel, O., Poppa, N. T., & Gil-Or, O. (2018). Neuroticism 
magnifies the detrimental association between social 
media addiction symptoms and wellbeing in women, but 
not in men: A three-way moderation model. Psychiatric 
Quarterly, 89, 605–619. https://doi.org/10.1007/s11126-
018-9563-x.
Turel, O., & Qahri-Saremi, H. (2016). Problematic use of social 
networking sites: antecedents and consequence from a 
dual system theory perspective. Journal of Management 
Information Systems, 33, 1087–1116. https://doi.org/10.10
80/07421222.2016.1267529
Uysal, R., Satici, S. A., & Akin, A. (2013). Mediating effect 
of Facebook® addiction on the relationship between sub-
jective vitality and subjective happiness. Psychological 
Reports, 113, 948–953. https://doi.org/10.2466/02.09.18.
PR0.113x32z
van den Eijnden, R., Lemmens, J. S., & Valkenburg, P. M. 
(2016). The social media disorder scale. Computers in 
Human Behavior, 61, 478–487. https://doi.org/10.1016/j.
chb.2016.03.038
van den Eijnden, R., Koning, I., Doornwaard, S., van Gurp, 
F., & Bogt, T. T. (2018). The impact of heavy and dis-
ordered use of games and social media on adolescents’ 
psychological, social, and school functioning. Journal of 
Behavioral Addictions, 7, 697–706. https://doi.org/10.1556/ 
2006.7.2018.65
van Rooij, A. J., Ferguson, C. J., van, d. M., & Schoenmakers, T. M. 
(2017). Time to abandon internet addiction? Predicting prob-
lematic internet, game, and social media use from psychoso-
cial well-being and application use. Clinical Neuropsychiatry: 
Journal of Treatment Evaluation, 14, 113–121.
Vangeel, J., De Cock, R., Klein, A., Minotte, P., Rosas, O., & 
Meerkerk, G. (2016). Compulsive use of social networking 
sites among secondary school adolescents in Belgium. In M. 
Walrave, K. Ponnet, E. Vanderhoven, J. Haers, & B. Segaert 
(Eds.). Youth 2.0: Social media and adolescence (pp. 179–
191). Springer International Publishing.
Vernon, L., Modecki, K. L., & Barber, B. L. (2017). Tracking 
effects of problematic social networking on adolescent 
psychopathology: The mediating role of sleep disruptions. 
Journal of Clinical Child & Adolescent Psychology, 46, 
269–283. https://doi.org/10.1080/15374416.2016.1188702
Walburg, V., Mialhes, A., & Moncla, D. (2016). Does school-
related burnout influence problematic Facebook use? 
Children and Youth Services Review, 61, 327–331. https://
doi.org/10.1016/j.childyouth.2016.01.0
Wan, C. (2009). Gratifications and loneliness as predictors of 
campus-SNS websites addiction and usage pattern among 
Chinese college students. (Unpublished Master’s Thesis). 
Chinese University of Hong Kong, Hong Kong.
Wang, J.-L., Gaskin, J., Wang, H.-Z., & Liu, D. (2016). Life sat-
isfaction moderates the associations between motives and 
excessive social networking site usage. Addiction Research 
& Theory, 24, 450–457. https://doi.org/10.3109/16066359.
2016.1160283
Wang, P., Wang, X., Wu, Y., Xie, X., Wang, X., Zhao, F., 
Quyang, M., & Lei, L. (2018). Social networking sites 
addiction and adolescent depression: A moderated media-
tion model of rumination and self-esteem. Personality 
and Individual Differences, 127, 162–167. https://doi.
org/10.1016/j.paid.2018.02.008
Wegmann, E., Stodt, B., & Brand, M. (2015). Addictive use of 
social networking sites can be explained by the interaction 
https://doi.org/10.1111/jabr.12158
https://doi.org/10.1111/jabr.12158
https://doi.org/10.1007/s11469-017-9862-8
https://doi.org/10.1016/j.chb.2015.03.005
https://doi.org/10.29399/npa.19285
https://doi.org/10.29399/npa.19285
https://doi.org/10.1177/0033294120934706
https://doi.org/10.1177/0020764017705895
https://doi.org/10.1007/s11469-020-00346-5
https://doi.org/10.1007/s11469-020-00346-5
https://doi.org/10.1016/j.adolescence.2020.01.010
https://doi.org/10.1016/j.adolescence.2020.01.010
https://doi.org/10.1007/s11126-018-9563-x
https://doi.org/10.1007/s11126-018-9563-x
https://doi.org/10.1080/07421222.2016.1267529
https://doi.org/10.1080/07421222.2016.1267529
https://doi.org/10.2466/02.09.18.PR0.113x32z
https://doi.org/10.2466/02.09.18.PR0.113x32z
https://doi.org/10.1016/j.chb.2016.03.038
https://doi.org/10.1016/j.chb.2016.03.038https://doi.org/10.1556/2006.7.2018.65
https://doi.org/10.1556/2006.7.2018.65
https://doi.org/10.1080/15374416.2016.1188702
https://doi.org/10.1016/j.childyouth.2016.01.0
https://doi.org/10.1016/j.childyouth.2016.01.0
https://doi.org/10.3109/16066359.2016.1160283
https://doi.org/10.3109/16066359.2016.1160283
https://doi.org/10.1016/j.paid.2018.02.008
https://doi.org/10.1016/j.paid.2018.02.008
22 International Journal of Social Psychiatry 00(0)
of internet use expectancies, internet literacy, and psycho-
pathological symptoms. Journal of Behavioral Addictions, 
4, 155–162. https://doi.org/10.1556/2006.4.2015.021
Wong, H. Y., Mo, H. Y., Potenza, M. N., Chan, M. N. M., Lau, 
W. M., Chui, T. K., Pakpour, A. H., & Lin, C.-Y. (2020). 
Relationships between severity of Internet gaming disor-
der, severity of problematic social media use, sleep qual-
ity and psychological distress. International Journal of 
Environmental Research and Public Health, 17, 1879. 
https://doi.org/10.3390/ijerph17061879
Wood, M., Center, H., & Parenteau, S. C. (2016). Social media addic-
tion and psychological adjustment: religiosity and spirituality in 
the age of social media. Mental Health, Religion & Culture, 19, 
972–983. https://doi.org/10.1080/13674676.2017.1300791
Worsley, J,D., McIntyre, J. C., Bentall, R. P., & Corcoran, R. 
(2018). Childhood maltreatment and problematic social 
media use: The role of attachment and depression. Psychiatry 
Research, 267, 88–93. https://doi.org/10.1016/j.psychres. 
2018.05.023.
Yam, C., Pakpour, A. H., Griffiths, M. D., Yau, W., Lo, C. M., Ng, 
J. M. T., Lin, C., & Leung, H. (2019). Psychometric testing 
of three Chinese online-related addictive behavior instruments 
among Hong Kong university students. Psychiatric Quarterly, 
90, 117–128. https://doi.org/10.1007/s11126-018-9610-7
Young, L., Kolubinski, D. C., & Frings, D. (2020). Attachment 
style moderates the relationship between social media use 
and user mental health and wellbeing. Heliyon, 6, e04056. 
https://doi.org/10.1016/j.heliyon.2020.e04056
Yu, S., Wu, A. M. S., & Pesigan, I. J. A. (2016). Cognitive 
and psychosocial health risk factors of social networking 
addiction. International Journal of Mental Health and 
Addiction, 14, 550–564. https://doi.org/10.1007/s11469-
015-9612-8
Yurdagül, C., Kircaburun, K., Emirtekin, E., Wang, P., & 
Griffiths, M. D. (2019). Psychopathological consequences 
related to problematic Instagram use among adolescents: 
The mediating role of body image dissatisfaction and mod-
erating role of gender. International Journal of Mental 
Health and Addiction. Advanced online publication. https://
doi.org/10.1007/s11469-019-00071-8
Zaffar, M., Mahmood, S., Saleem, M., & Zakaria, E. (2015). 
Facebook addiction: Relation with depression, anxiety, 
loneliness and academic performance of Pakistani students. 
Science International, 27, 2469–2475.
https://doi.org/10.1556/2006.4.2015.021
https://doi.org/10.3390/ijerph17061879
https://doi.org/10.1080/13674676.2017.1300791
https://doi.org/10.1016/j.psychres.2018.05.023
https://doi.org/10.1016/j.psychres.2018.05.023
https://doi.org/10.1007/s11126-018-9610-7
https://doi.org/10.1016/j.heliyon.2020.e04056
https://doi.org/10.1007/s11469-015-9612-8
https://doi.org/10.1007/s11469-015-9612-8
https://doi.org/10.1007/s11469-019-00071-8
https://doi.org/10.1007/s11469-019-00071-8Measures of problematic SM use
Researchers have used several instruments to measure 
problematic SM use. The most popular measure is the 
Bergen Facebook Addiction Scale (Andreassen et al., 
2012), which assesses six key components, namely sali-
ence, mood modification, tolerance, withdrawal, conflict 
and relapse. Each component is initially assessed by three 
items. After the deletion of items with relatively low item-
total correlations, one item for each component is retained. 
The one-factor solution is supported by the confirmatory 
factor analysis. The Bergen Social Media Addiction Scale 
(Andreassen et al., 2017) is a modified version to measure 
problematic SM use in general by replacing ‘Facebook’ 
with ‘social media’ in each item.
The Facebook Intrusion Questionnaire (Elphinston & 
Noller, 2011) is composed of eight items measuring cog-
nitive salience, behavioral salience, interpersonal con-
flict, conflict with other activities, euphoria, loss of 
control, withdrawal and relapse. Each item is assessed on 
a seven-point Likert scale. A unidimensional model was 
supported by exploratory factor analysis (Elphinston & 
Noller, 2011).
The Social Media Disorder Scale (SMDS; van den 
Eijnden et al., 2016) was developed in the Netherlands, 
and is based on the DSM-5 criteria, namely preoccupation, 
tolerance, withdrawal, persistence, displacement, prob-
lem, deception, escape, and conflict. Initially, three items 
are developed for each of the nine components, and the 
item with the highest factor loading within each of the nine 
criteria is selected.
Other researchers (Baturay & Toker, 2017; Hong et al., 
2014) adapted the Internet Addiction Test (IAT, Young, 
1998) to measure problematic Facebook use or general 
problematic SM use. As these problematic SM use meas-
ures assess different components, the relation between 
problematic SM use and mental health may vary as a func-
tion of measures of problematic SM use.
Huang 3
Measures of mental health
Empirical studies have examined several positive indi-
cators of mental health, such as self-esteem (e.g. Choi & 
Lim, 2016), life satisfaction (e.g. Hawi & Samaha, 
2018), well-being (e.g. Verma & Kumari, 2016), happi-
ness (e.g. Satici & Uysal, 2015), and positive affect (e.g. 
Satici, 2018). Self-esteem is the most common indicator 
of well-being. The most popular instrument to measure 
global self-esteem is the Rosenberg Self-Esteem Scale 
(Rosenberg, 1965) which consists of 5 positively-worded 
and 5 negatively-worded items. Due to brevity and easy 
administration, this scale has been adapted into more 
than 50 different languages (Schmitt et al., 2005). A 
shorter instrument to measure global self-worth is the 
Single Item Self-Esteem Scale (SISES; Robins et al., 
2001) comprised of the item, ‘I have high self-esteem’, 
on a 7-point Likert scale.
Life satisfaction is another common indicator of well-
being, and the most popular measure is the Satisfaction 
with Life Scale (Diener et al., 1985), which consists of 5 
items with 7 response categories ranging from 1 to 7. Thus, 
the total score ranges from 5 to 35. Total scores of 5 to 9 
are viewed as ‘extremely dissatisfied’, 15 to 19 as ‘slightly 
dissatisfied’, 21 to 25 ‘slightly satisfied’, and 26 to 30 ‘sat-
isfied’ (Pavot & Diener, 1993).
Negative indicators of mental health can be represented 
by anxiety (e.g. Durak, 2018), depression (e.g. Worsley et al., 
2018), loneliness (e.g. Yu et al., 2016), suicidal ideation (e.g. 
Jasso-Medrano & López-Rosales, 2018), distress (e.g. 
Laconi et al., 2018) and negative affect (e.g. Satici, 2018). 
Depression is the most examined indicator, with common 
measures such as the Patient Health Questionnaire-9 (PHQ-
9; Kroenke et al., 2001), the Center for Epidemiologic 
Studies Depression Scale (CES-D; Radloff, 1977), the 
depression subscale of the Depression Anxiety Stress 
Scales-21 (DASS-21; Lovibond & Lovibond, 1995), the 
depression subscale of Short Depression-Happiness Scale 
(SDHS; Joseph et al., 2004), Hamilton Depression Rating 
Scale (HAM-D; Hamilton, 1960, 1967), Montgomery–
Åsberg Depression Rating Scale (MADRS; Montgomery & 
Åsberg, 1979), and Beck Depression Inventory (BDI; Beck, 
& Steer, 1987). The PHQ-9 assesses 9 depressive symptoms 
in primary care settings over the last two weeks with 4 
response categories, 0 for ‘not at all’, 1 for ‘several days’, 2 
for ‘more than half the days’, and 3 ‘Nearly every day’. Thus, 
the total score of the PHQ-9 ranges from 0 to 27. The cutoff 
scores for mild, moderate, moderately severe and severe 
depression are 5, 10, 15, and 20, respectively (Kroenke et al., 
2001). On the other hand, the CES-D assessing depressive 
symptom for general population over the past week consists 
of 20 items on a 4-response scale, ranging from 0 to 3. The 
total score is from 0 to 60. An arbitrary cutoff score of 16 or 
higher is considered to indicate possible depression requiring 
clinical assessment (Radloff, 1977).
The depression subscale of DASS-21 measures depres-
sive emotional state over the past week, and consists of 7 
items, each on a 4-point scale, ranging from 0 to 3 (Szabó, 
2010) Scores of 10, 14, 21, and 28 indicate mild, moderate, 
severe and extremely severe depression (Lovibond & 
Lovibond, 1995). The depression subscale of the SDHS 
consists of 3 items with 4 response categories. The items 
are, ‘I felt dissatisfied with my life’, ‘I felt cheerless’, and 
‘I felt that life was meaningless’. Cutoff scores for the 
depression subscale are not provided in Joseph et al. (2004).
The HAM-D has 6-, 17-, 21-, and 24-item versions, and 
is often used to measure treatment effect instead of state of 
depression (Santen et al., 2008). The most popular version, 
consisting of 17 items, is on a 3- or 5-point scale. The mul-
tidimensional factor is supported, but the number of factors 
varies across studies (Bagby et al., 2004). Another popular 
measure for assessing change of depressive symptoms in 
clinical trial research is the MADRS, which comprises 10 
items chosen by reliability and validity from an original set 
of 17 items from the Comprehensive Psychopathological 
Rating Scale (Montgomery & Åsberg, 1979). The factor 
structure of the MADRS varied across patient groups 
(Ketharanathan et al., 2016). As both HAM-D and MADRS 
were usually used in clinical research, their scores are 
strongly correlated (Heo et al., 2007).
The BDI consisting of 21 items on a 4-point scale is a 
self-reporting measure to assess depression for adolescents 
and adults (Beck & Steer, 1987). The latest version of the 
BDI, the Beck Depression Inventory–II (BDI–II), is 
derived from DSM-IV (American Psychiatric Association, 
1994), with the items of Body Image Change, Work 
Difficulty, Weight Loss and Somatic Preoccupation in the 
BDI replaced with Agitation, Worthlessness, Loss of 
Energy, and Concentration Difficulty in the BDI–II. The 
items of Changes in Sleeping Pattern and Changes in 
Appetite have seven response categories, and the remain-
ing 19 items have four (Beck et al., 1996).
The most prevalent measure to assess loneliness is the 
UCLA Loneliness Scale (Russell et al., 1980), consisting 
of 10 positive-worded and 10 negative-worded items, each 
item on a 4-point Likert scale. The UCLA Loneliness 
Scale has sound psychometric properties (Hartshore, 
1993), and the 3-factor (isolation, relational connected-
ness, and collective connectedness) structure was sup-
ported (Dussault et al., 2009).
Platform
Some researchers focused on problematic use of SM in 
general. For example, Worsley et al. (2018) examined the 
relation between problematic use in general and depres-
sion for 1029 university students in UK, and found that the 
relation was r = .27. Some researchers focused specifi-
cally on problematic Facebook use. Steggink (2015) used 
a sample of 315 users recruited online with mean age of 
4 International Journal of Social Psychiatry 00(0)
28.74 years, and found that the correlation betweenprob-
lematic Facebook use and depression was r = .10. Whether 
the magnitude of correlation varied with platform was 
unknown, and this meta-analysis addressed this 
possibility.
Participant age
Few longitudinal and cross-sectional studies have been 
conducted to examine the age effect on the relation 
between problematic SM use and mental health. van den 
Eijnden et al. (2018) adopted a three-wave design with a 
one-year interval between adjacent assessments for a 
sample of 543 teenagers with mean 12.9 years at study 
inception. The correlations of problematic use of SNSs 
assessed at time 1 with life satisfaction assessed at times 
2 and 3 for boys were r = −.21 and r = −.11, respec-
tively. The corresponding correlations of time 2 problem-
atic use of SNSs with time 2 and 3 life satisfactions for 
boys were r = −.33 and r = −.09, respectively. For girls, 
the correlation of time 1 problematic use of SNSs with 
time 2 and 3 life satisfaction were r = −.43 and r = −.33, 
respectively and those of time 2 problematic use of SNSs 
with time 2 and 3 life satisfaction were r = −.48 and r = 
−.55, respectively. The age effect seemed to be supported 
in the cross-sectional study. Kanat-Maymon et al. (2018) 
found that the relation between problematic Facebook 
use and self-esteem for an online adult sample with mean 
age of 33.36 years was r = −.52. The corresponding cor-
relation for a sample of 80 undergraduate students was 
only small, at r = −.05.
The age effect on the relations of problematic Facebook 
use with psychological distress and well-being were not 
supported in Marino et al. (2018a). The number of effect 
sizes in that meta-analysis was small and non-significant 
findings can be caused by low statistical power.
Participant gender
Griffiths (2000) revealed that technology addicts are usu-
ally male. Some researchers examined the relation 
between problematic SM use and mental health espe-
cially for males. For example, Kim and Park (2015) 
found that the correlation between problematic SNS use 
and self-esteem among 213 male middle-school students 
was r = −.38. Some researchers examined the moderat-
ing effect of gender on the relation between problematic 
SNS use and mental health. For example, van den Eijnden 
et al. (2018) examined the moderating effect of gender 
for teenagers, and found that the correlation between 
problematic SNS use and life satisfaction was r = −.48 
for girls and r = −.33 for boys. Walburg et al. (2016) 
selected 115 boys and 171 girls, and found that the cor-
relations of problematic Facebook use with depression 
and suicidal ideation were r = .37 and r = .23 for boys, 
and r = .10 and r = .20 for girls.
Marino et al. (2018a) examined the gender effect repre-
sented by the proportion of female users on the relations of 
problematic Facebook use with psychological distress and 
well-being and the gender effects were not significant. 
Re-examination of the gender effect is prominent for three 
reasons. First, the small number of effect size in Marino 
et al. (2018a) could lead to a low statistical power. Second, 
empirical studies rarely address the issue of gender effect 
on the relation between SM addiction and mental health. 
Third, empirical studies mentioned above seemed to dem-
onstrate a potential gender effect.
Previous reviews and meta-analyses
Frost and Rickwood (2017) reviewed the relation between 
Facebook addiction and mental health based on 5 cross-
sectional and 1 longitudinal studies. They concluded that 
Facebook addiction was associated with poor mental 
health. Ryan et al. (2014) identified three studies (Hong 
et al., 2014; Koc & Gulyagci, 2013; Uysal et al., 2013), 
and reported that Facebook addiction was related to 
depression and anxiety. Another review by Keles et al. 
(2019) that identified three articles also supported that 
addiction to SNSs was related to depression.
Marino et al. (2018a) identified 23 samples that 
examined the relations of problematic Facebook use 
with psychological distress and well-being. The mean 
correlation between problematic Facebook use and psy-
chological distress was r = .29, and the correlation cor-
rected for attenuation was ρ = .34. The correlations for 
specific factors were r = .30 and ρ = .35 for depression; 
r = .29 and ρ = .33 for anxiety; r = −.19 and ρ = −.22 
for general well-being; r = −.16 and ρ = −.19 for life 
satisfaction. Marino et al. (2018b) meta-analyzed 8 cor-
relations between problematic Facebook use and self-
esteem, and found that the mean correlation was r = 
−.23. No moderator analyses were conducted for this 
correlation.
As two previous meta-analyses (Marino et al., 2018a, 
2018b) specifically focused on problematic Facebook use, 
their conclusions may not be valid for studies addressing 
problematic use of other SM or general problematic use of 
SM. The current meta-analysis aimed to conduct a com-
prehensive analysis of accumulating empirical evidence 
obtained by studies examining the association between 
problematic SM use and mental health.
Method
Literature search
To identify relevant studies, the ERIC, PsycINFO and 
ProQuest Dissertations and Theses Global databases were 
searched using SM terms (namely, Facebook, Twitter, 
Instagram, MySpace, ‘social media’, ‘online social net-
work*’, and ‘social network* site*’) and problematic use 
Huang 5
terms (addict*, abuse, misuse, overuse, intrusion, ‘prob-
lematic use’, ‘excessive use’, ‘compulsive use’, ‘patho-
logical use’, ‘disordered use’) through July 19, 2020. The 
ERIC, PsycINFO and ProQuest databases yielded 157, 
1,553 and 287 articles, respectively. The reference lists 
for eligible articles and previous meta-analysis (Marino 
et al., 2018a, 2018b) were then examined. The author 
screened each article by reviewing the title and abstract. 
The full texts of studies passing the initial screening were 
then identified to determine eligibility based on three 
inclusion criteria. First, studies should provide sufficient 
statistics to compute the correlation between problematic 
SM use and mental health. Second, studies should report 
the sample size. Lastly, the study should be published in 
English. Four unpublished datasets in Marino et al. 
(2018a) were not available because they did not report 
titles, sources or manuscripts.
Analysis
The Pearson Product-Moment correlation between prob-
lematic SM use and mental health was coded. The distri-
bution of r depends on the population correlation, ρ, and 
sample size. Unless the sample size is sufficiently large, 
the distribution of sample correlation is skewed (Card, 
2012). To normalize the sample correlation, the correla-
tion r was converted to Zr using the Fisher’s transforma-
tion equation. The inverse variance (N-3) was used as a 
weight to compute the mean correlation. Random-effects 
were used.
Results
This study included 123 articles presented in the Appendix. 
Andreassen et al. (2016) and Andreassen et al. (2017) ana-
lyzed the same data, yielding 122 studies. Of these 122 
studies, 111 were published in journals, 5 in doctoral dis-
sertations, 3 in Master theses, 2 in conferences, and 1 in a 
book chapter. Eleven studies each consisted of 2 samples, 
and thus 133 independent samples involving 244,676 par-
ticipants were analyzed in the subsequent analyses. Table 
1 presents the descriptive statistics of the 133 samples. 
When multiple indicators of mental health, multiple 
platforms, or multiple measures of problematic use SM 
were assessed, all relevant effect sizes were coded. The 
summary of all effect sizes were presented in Table 2.
Mean correlation between problematic SM use 
and mental health
The same sample analyzed in Andreassen et al. (2016) and 
Andreassen et al. (2017) had over 23,000 participants, and 
that in Boer et al. (2020) had 154,981 participants. As the 
inverse variance (N-3) was used as a weight to compute 
the mean correlation, these two studies would receive 
extremely large weights. However, the common winsori-zation method, which recodes the sample size at two or 
three standard deviations above the mean (Lipsey & 
Wilson, 2001) was not appropriate, as the standard devia-
tion shown in Table 1 was also extremely large (13,536.57). 
The sample sizes of these two samples were set at 3 times 
the mean (5,519).
Table 3 lists the weighted mean correlations between 
problematic SM use and mental health indicators. Eighty-
five effect sizes were related to well-being. Of these, 4 
were for happiness, 30 for life satisfaction, 3 for positive 
affect, 2 for mental health, 42 for self-esteem, 3 for over-
all well-being and 1 for psychiatric well-being. As 
expected, the correlations between problematic SM use 
and well-being indicators were negative, ranging from 
−.11 to −.30. The mean correlations of problematic SM 
use with happiness, life satisfaction, positive affect and 
self-esteem were significantly different from 0. The 
homogeneity test for the correlation between problematic 
SM use and self-esteem was significant, indicating sig-
nificant between-study variation.
Many studies examined the correlations between 
problematic SM use and distress indicators, and all mean 
correlations were positive. The relation between prob-
lematic SM use and depression attracted most research 
attention. The mean correlation was moderate at r = 
.31, indicating possible moderate detrimental impact of 
problematic SM use. Except for the correlations of prob-
lematic SM use with negative affect and social loneli-
ness, other mean correlations were significantly different 
from 0.
Moderator analyses of the relation between 
problematic SM use and self-esteem
Due to insufficient numbers of effect sizes, moderator 
analyses were conducted for correlations of problematic 
SM use with self-esteem (k = 42), life satisfaction (k = 
30), depression (k = 59), and loneliness (k = 29). The 
mean correlations were computed for categories of mod-
erators with at least 4 effect sizes. Table 4 lists the categor-
ical moderator effects on the relation between problematic 
Table 1. Descriptive statistics of the 132 independent 
samples included in the meta-analysis.
variable k Min Max Mean SD
N 133 55 154981 1839.67 13536.57
age 125 13.02 50.13 21.89 6.22
female 129 0 1 0.59 0.17
ES 133 –0.57 0.59 0.10 0.27
age = mean age of the sample; female = proportion of females in the 
sample.
6 International Journal of Social Psychiatry 00(0)
T
ab
le
 2
. 
Su
m
m
ar
y 
of
 s
am
pl
es
 e
xa
m
in
in
g 
th
e 
pr
ob
le
m
at
ic
 s
oc
ia
l m
ed
ia
 u
se
 a
nd
 m
en
ta
l h
ea
lth
.
St
ud
y
C
ou
nt
ry
N
A
ge
FM
M
H
M
H
M
ea
s.
SM
SM
M
ea
s.
ES
A
bb
as
i a
nd
 D
ro
ui
n 
(2
01
9)
m
is
ce
lla
ne
ou
s
74
2
27
.4
4
0.
64
ne
ga
tiv
e 
af
fe
ct
PA
N
A
S
Fa
ce
bo
ok
FI
Q
0.
13
A
bu
D
am
ou
s 
(2
02
0)
U
S
26
4
36
.8
5
0.
54
se
lf-
es
te
em
SI
SE
S
SM
Be
rg
en
−
0.
05
A
ki
n 
an
d 
A
ki
n 
(2
01
5)
T
ur
ke
y
37
0
20
.2
0
0.
53
lif
e 
sa
tis
fa
ct
io
n
SW
LS
Fa
ce
bo
ok
Be
rg
en
−
0.
39
A
l M
am
un
 a
nd
 G
ri
ffi
th
s 
(2
01
9)
Ba
ng
la
de
sh
30
0
19
.5
0
0.
39
de
pr
es
si
on
PH
Q
-9
Fa
ce
bo
ok
Be
rg
en
0.
26
A
la
dw
an
i a
nd
 A
lm
ar
zo
uq
 (
20
16
)
K
uw
ai
t
40
7
20
.0
4
0.
54
se
lf-
es
te
em
R
os
en
be
rg
SM
M
ee
rk
er
k 
(2
00
7)
 
−
0.
24
A
nd
re
as
se
n 
et
 a
l. 
(2
01
6)
N
or
w
ay
23
53
3
35
.8
0
0.
65
an
xi
et
y,
 d
ep
re
ss
io
n
H
A
D
S
SM
Be
rg
en
0.
34
, 0
.1
9
A
nd
re
as
se
n 
et
 a
l. 
(2
01
7)
N
or
w
ay
23
53
2
35
.8
0
0.
65
se
lf-
es
te
em
R
os
en
be
rg
SM
Be
rg
en
−
0.
25
A
pa
ol
az
a 
et
 a
l. 
(2
01
9)
Sp
ai
n
34
6
18
.7
3
0.
52
se
lf-
es
te
em
, s
oc
ia
l a
nx
ie
ty
R
os
en
be
rg
, S
oc
ia
l A
nx
io
us
ne
ss
 S
ca
le
W
ha
ts
A
pp
Fa
be
r 
an
d 
O
'G
ui
nn
 (
19
92
) 
−
0.
42
 0
.4
4
A
tr
os
zk
o 
et
 a
l. 
(2
01
8)
Po
la
nd
11
57
20
.3
3
.5
2
se
lf-
es
te
em
, l
on
el
in
es
s,
 s
oc
ia
l 
an
xi
et
y
A
tr
os
zk
o 
et
 a
l. 
(2
01
8)
, S
ho
rt
 L
on
el
in
es
s 
Sc
al
e,
 
LS
A
S
Fa
ce
bo
ok
Be
rg
en
−
0.
10
, 0
.1
3,
 
0.
19
A
yd
in
 e
t 
al
. (
20
20
)
T
ur
ke
y
11
1
30
.1
4
0.
55
de
pr
es
si
on
M
on
tg
om
er
y-
A
sb
er
g 
D
ep
re
ss
io
n 
R
at
in
g 
Sc
al
e
SM
Be
rg
en
0.
20
Ba
lc
er
ow
sk
a 
et
 a
l. 
(2
02
0)
Po
la
nd
10
99
21
.4
4
0.
72
w
el
l-b
ei
ng
U
ltr
a-
Sh
or
t 
Pr
ot
oc
ol
 fo
r 
M
ea
su
ri
ng
 S
ub
je
ct
iv
e 
W
el
l-b
ei
ng
SN
Ss
, F
ac
eb
oo
k
Be
rg
en
−
0.
15
 −
.1
3
Ba
lc
i a
nd
 G
öl
cü
 (
20
13
)
T
ur
ke
y
89
2
21
.1
0
0.
59
lo
ne
lin
es
s
N
A
Fa
ce
bo
ok
Ba
lc
i a
nd
 G
öl
cü
 (
20
13
)
0.
35
Ba
lc
i a
nd
 T
ir
ya
ki
 (
20
14
)
T
ur
ke
y
48
6
17
.6
0
0.
51
lo
ne
lin
es
s
N
A
Fa
ce
bo
ok
Be
rg
en
0.
04
Ba
tu
ra
y 
an
d 
T
ok
er
 (
20
17
)
T
ur
ke
y
12
0
21
.4
6
0.
53
se
lf-
es
te
em
, p
sy
ch
ia
tr
ic
 w
el
l-
be
in
g
R
os
en
be
rg
, G
H
Q
-1
2
Fa
ce
bo
ok
IA
T
−
0.
43
, 
−
0.
29
Bé
ra
il 
et
 a
l. 
(2
01
9)
m
is
ce
lla
ne
ou
s
93
2
21
.2
5
0.
73
so
ci
al
 a
nx
ie
ty
, l
on
el
in
es
s
LS
A
S,
 U
C
LA
Y
ou
tu
be
IA
T
0.
32
, 0
.2
8
Bi
ol
ca
ti 
et
 a
l. 
(2
01
8)
It
al
y
75
5
25
.1
7
0.
80
so
ci
al
 lo
ne
lin
es
s,
 li
fe
 
sa
tis
fa
ct
io
n
SE
LS
A
-S
, S
W
LS
Fa
ce
bo
ok
Be
rg
en
0.
27
, −
0.
24
Bł
ac
hn
io
 a
nd
 P
rz
ep
ió
rk
a 
(2
01
8)
Po
la
nd
36
0
22
.2
2
.6
4
lif
e 
sa
tis
fa
ct
io
n
SW
LS
Fa
ce
bo
ok
FI
Q
0.
01
Bł
ac
hn
io
 a
nd
 P
rz
ep
ió
rk
a 
(2
01
9)
Po
la
nd
59
7
21
.2
2
0.
68
lo
ne
lin
es
s,
 s
el
f-
es
te
em
, l
ife
 
sa
tis
fa
ct
io
n
D
e 
Jo
ng
 G
ie
rv
el
d 
Lo
ne
lin
es
s 
Sc
al
e,
 R
os
en
be
rg
, 
SW
LS
Fa
ce
bo
ok
FI
Q
0.
15
, −
0.
12
, 
−
0.
02
Bł
ac
hn
io
 e
t 
al
. (
20
19
), 
#
1
It
al
y
31
7
24
.6
6
0.
67
se
lf-
es
te
em
, l
ife
 s
at
is
fa
ct
io
n
R
os
en
be
rg
, S
W
LS
Fa
ce
bo
ok
FI
Q
−
0.
24
, 
−
0.
01
Bł
ac
hn
io
 e
t 
al
. (
20
19
), 
#
2
U
S
23
8
N
A
0.
73
se
lf-
es
te
em
, l
ife
 s
at
is
fa
ct
io
n
R
os
en
be
rg
, S
W
LS
Fa
ce
bo
ok
FI
Q
−
0.
23
, 
−
0.
17
Bł
ac
hn
io
 e
t 
al
. (
20
15
)
Po
la
nd
67
2
27
.5
3
.6
5
de
pr
es
si
on
C
ES
-D
Fa
ce
bo
ok
FI
Q
0.
45
Bł
ac
hn
io
 e
t 
al
. (
20
16
)
Po
la
nd
38
1
20
.7
3
0.
63
se
lf-
es
te
em
, l
ife
 s
at
is
fa
ct
io
n
R
os
en
be
rg
, S
W
LS
Fa
ce
bo
ok
Be
rg
en
−
0.
16
, 0
.0
3
Bo
er
 e
t 
al
. (
20
20
)
m
is
ce
lla
ne
ou
s
15
49
81
13
.5
4
.5
1
lif
e 
sa
tis
fa
ct
io
n
C
an
tr
il 
La
dd
er
SM
SM
D
S
−
0.
20
Br
ai
lo
vs
ka
ia
 a
nd
 M
ar
gr
af
 (
20
17
)
G
er
m
an
y
17
9
22
.5
2
0.
77
de
pr
es
si
on
, a
nx
ie
ty
D
A
SS
-2
1
Fa
ce
bo
ok
Be
rg
en
0.
22
, 0
.3
2
Br
ai
lo
vs
ka
ia
, R
oh
m
an
n,
 B
ie
rh
of
f, 
M
ar
gr
af
, a
nd
 K
öl
ln
er
, e
t 
al
. (
20
19
)
G
er
m
an
y
34
9
50
.1
3
0.
70
de
pr
es
si
on
, m
en
ta
l h
ea
lth
BD
I-I
I, 
Lu
ka
t 
et
 a
l. 
(2
01
6)
 
Fa
ce
bo
ok
Be
rg
en
0.
23
, −
0.
30
Br
ai
lo
vs
ka
ia
, S
ch
ill
ac
k,
 M
ar
gr
af
, 
et
 a
l. 
(2
01
8)
G
er
m
an
y
52
0
22
.4
2
0.
75
de
pr
es
si
on
, a
nx
ie
ty
, h
ap
pi
ne
ss
D
A
SS
-2
1,
 S
H
S
Fa
ce
bo
ok
Be
rg
en
0.
40
a , 
0.
42
a , 
−
0.
25
a
Br
ai
lo
vs
ka
ia
 e
t 
al
. (
20
18
)
G
er
m
an
y
12
2
22
.7
0
.8
3
m
en
ta
l h
ea
lth
Lu
ka
t 
et
 a
l. 
(2
01
6)
Fa
ce
bo
ok
Be
rg
en
−
0.
27
Br
ai
lo
vs
ka
ia
, V
el
te
n,
 M
ar
ga
f, 
et
 a
l. 
(2
01
9)
, #
1
G
er
m
an
y
53
1
21
.6
3
.7
5
de
pr
es
si
on
D
A
SS
-2
1
Fa
ce
bo
ok
Be
rg
en
0.
43
Br
ai
lo
vs
ka
ia
, V
el
te
n,
 M
ar
ga
f, 
et
 a
l. 
(2
01
9)
, #
2
U
S
90
9
37
.2
4
0.
48
de
pr
es
si
on
D
A
SS
-21
Fa
ce
bo
ok
Be
rg
en
0.
55
Br
ow
n 
(2
01
5)
U
S
55
19
.5
0
0.
82
se
lf-
es
te
em
R
os
en
be
rg
Fa
ce
bo
ok
Fa
ce
bo
ok
 C
om
pu
ls
io
n 
In
ve
nt
or
y
−
0.
17
(C
on
tin
ue
d)
Huang 7
St
ud
y
C
ou
nt
ry
N
A
ge
FM
M
H
M
H
M
ea
s.
SM
SM
M
ea
s.
ES
Bu
rn
el
l a
nd
 K
ut
he
r 
(2
01
6)
U
S
25
6
25
.4
1
0.
62
se
lf-
es
te
em
R
os
en
be
rg
SM
A
l-M
en
ay
es
 (
20
15
)
−
0.
26
C
ar
gi
ll 
(2
01
9)
U
S
22
4
33
.0
1
0.
82
an
xi
et
y
ST
A
I
SM
IA
T
0.
29
C
as
al
e 
an
d 
Fi
or
av
an
ti 
(2
01
5)
, #
1
It
al
y
19
3
22
.4
5
0
so
ci
al
 a
nx
ie
ty
SI
A
S
SN
Ss
G
PI
U
S2
0.
44
C
as
al
e 
an
d 
Fi
or
av
an
ti 
(2
01
5)
, #
2
It
al
y
20
7
22
.4
5
1
so
ci
al
 a
nx
ie
ty
SI
A
S
SN
Ss
G
PI
U
S2
0.
22
C
ha
br
ol
 e
t 
al
. (
20
17
)
Fr
an
ce
45
6
20
.5
0
0.
76
de
pr
es
si
on
, s
oc
ia
l a
nx
ie
ty
C
ES
-D
, S
A
SA
Fa
ce
bo
ok
IA
T
0.
31
, 0
.3
0
C
ha
e 
et
 a
l. 
(2
01
8)
So
ut
h 
K
or
ea
25
3
21
.5
0
0.
64
de
pr
es
si
on
C
ES
-D
SN
Ss
SN
S 
A
dd
ic
tio
n 
Pr
on
en
es
s 
Sc
al
e 
fo
r 
C
ol
le
ge
 S
tu
de
nt
s
0.
42
C
ha
ve
z 
an
d 
C
ha
ve
z 
(2
01
7)
Ph
ili
pp
in
es
11
9
15
.0
0
N
A
lo
ne
lin
es
s
U
C
LA
Fa
ce
bo
ok
Ba
lc
i a
nd
 G
öl
cü
 (
20
13
)
0.
21
C
he
n 
et
 a
l. 
(2
02
0)
H
on
g 
K
on
g
30
8
23
.7
5
0.
68
an
xi
et
y 
&
 d
ep
re
ss
io
n
H
A
D
S
SM
Be
rg
en
0.
21
C
ho
i a
nd
 L
im
 (
20
16
)
So
ut
h 
K
or
ea
41
9
25
.9
8
0.
49
se
lf-
es
te
em
R
os
en
be
rg
Fa
ce
bo
ok
K
oc
 a
nd
 G
ul
ya
gc
i (
20
13
)
−
0.
22
C
ro
w
el
l (
20
14
)
U
S
38
0/
38
1
33
.5
6
0.
80
se
lf-
es
te
em
, l
ife
 s
at
is
fa
ct
io
n
R
os
en
be
rg
, Q
ua
lit
y 
of
 L
ife
 E
nj
oy
m
en
t 
an
d 
Sa
tis
fa
ct
io
n 
Q
ue
st
io
nn
ai
re
 S
ho
rt
 F
or
m
Fa
ce
bo
ok
Be
rg
en
0.
24
, −
0.
20
C
ud
o 
et
 a
l. 
(2
02
0)
Po
la
nd
23
5
21
.7
9
.6
3
se
lf-
es
te
em
, d
ep
re
ss
io
n
R
os
en
be
rg
, P
H
Q
-9
Fa
ce
bo
ok
FI
Q
−
0.
05
, 0
.2
7
da
 V
ei
ga
 e
t 
al
. (
20
19
)
Po
rt
ug
al
40
4
21
.6
5
0.
73
de
pr
es
si
on
, a
nx
ie
ty
BS
I
Fa
ce
bo
ok
Be
rg
en
0.
29
, 0
.2
3
D
e 
C
oc
k 
et
 a
l. 
(2
01
4)
Be
lg
iu
m
10
00
43
.0
0
N
A
se
lf-
es
te
em
, l
on
el
in
es
s,
 
de
pr
es
si
on
R
os
en
be
rg
, R
as
ch
-T
yp
e 
Lo
ne
lin
es
s 
Sc
al
e,
 D
M
L
SN
Ss
Be
rg
en
−
0.
29
, 0
.2
2,
 
0.
38
D
em
ps
ey
 e
t 
al
. (
20
19
)
U
S
29
1
20
.0
3
0.
58
lif
e 
sa
tis
fa
ct
io
n,
 d
ep
re
ss
io
n,
 
so
ci
al
 a
nx
ie
ty
SW
LS
, P
H
Q
-9
, S
IA
S
Fa
ce
bo
ok
Be
rg
en
−
0.
07
, 0
.2
0,
 
0.
30
D
hi
r 
et
 a
l. 
(2
01
8)
, #
1
In
di
a
15
54
14
.6
3
0.
46
de
pr
es
si
on
, s
oc
ia
l a
nx
ie
ty
Sa
lo
ka
ng
as
 e
t 
al
. (
19
95
), 
SA
SA
 
Fa
ce
bo
ok
Be
rg
en
0.
38
, 0
.3
3
D
hi
r 
et
 a
l. 
(2
01
8)
, #
2
In
di
a
11
44
14
.8
8
0.
44
de
pr
es
si
on
, s
oc
ia
l a
nx
ie
ty
Sa
lo
ka
ng
as
 e
t 
al
. (
19
95
), 
SA
SA
Fa
ce
bo
ok
Be
rg
en
0.
31
, 0
.2
2
D
ur
ak
 (
20
18
)
T
ur
ke
y
45
1
15
.0
0
0.
48
so
ci
al
 a
nx
ie
ty
SA
SA
SM
SM
D
S
0.
58
D
ur
ak
 a
nd
 S
ef
er
oğ
lu
 (
20
19
)
T
ur
ke
y
58
0
22
.9
0
0.
60
so
ci
al
 a
nx
ie
ty
, l
on
el
in
es
s
LS
A
S,
 U
C
LA
SM
SM
D
S
0.
37
, 0
.3
1
G
er
ha
rt
 (
20
17
)
U
S
41
3
19
.5
0
0.
48
lif
e 
sa
tis
fa
ct
io
n
SW
LS
SN
Ss
G
er
ha
rt
 (
20
17
)
0.
11
G
io
ta
 a
nd
 K
le
ft
ar
as
 (
20
13
)
G
re
ec
e
14
3
23
.8
0
0.
58
de
pr
es
si
on
Q
ue
st
io
nn
ai
re
 o
f S
el
f E
va
lu
at
ed
 D
ep
re
ss
iv
e 
Sy
m
po
m
at
ol
og
y
SN
Ss
G
PI
U
S
0.
26
G
uv
en
 (
20
19
)
U
S
18
8
N
A
0.
78
se
lf-
es
te
em
, l
ife
 s
at
is
fa
ct
io
n,
 
po
si
tiv
e 
af
fe
ct
, n
eg
at
iv
e 
af
fe
ct
R
os
en
be
rg
, U
C
LA
, P
A
N
A
S
SM
FI
Q
0.
23
, −
0.
08
, 
−
0.
16
, 
−
0.
33
H
aw
i a
nd
 S
am
ah
a 
(2
01
7)
Le
ba
no
n
36
4
21
.1
0
0.
48
se
lf-
es
te
em
, l
ife
 s
at
is
fa
ct
io
n
R
os
en
be
rg
, S
W
LS
SM
FI
Q
−
0.
23
, 
−
0.
03
H
aw
i a
nd
 S
am
ah
a 
(2
01
9)
Le
ba
no
n
51
2
21
.2
3
0.
44
se
lf-
es
te
em
, l
ife
 s
at
is
fa
ct
io
n
R
os
en
be
rg
, S
W
LS
SM
FI
Q
−
0.
20
, 
−
0.
04
H
ol
m
gr
en
 a
nd
 C
oy
ne
 (
20
17
)
U
S
44
2
18
.8
6
0.
52
de
pr
es
si
on
C
ES
-D
C
SM
PU
M
P
0.
29
H
on
g 
et
 a
l. 
(2
01
4)
T
ai
w
an
24
1
20
.0
0
0.
41
se
lf-
es
te
em
R
os
en
be
rg
Fa
ce
bo
ok
IA
T
−
0.
12
(C
on
tin
ue
d)
T
ab
le
 2
. (
C
on
tin
ue
d)
8 International Journal of Social Psychiatry 00(0)
St
ud
y
C
ou
nt
ry
N
A
ge
FM
M
H
M
H
M
ea
s.
SM
SM
M
ea
s.
ES
H
ou
 e
t 
al
. (
20
18
)
C
hi
na
71
4
19
.8
0
0.
62
lo
ne
lin
es
s
U
C
LA
W
ei
bo
,W
ec
ha
t
M
ic
ro
bl
og
 E
xc
es
si
ve
 U
se
 
Sc
al
e,
W
eC
ha
t 
Ex
ce
ss
iv
e 
U
se
 
Sc
al
e
0.
14
, 0
.0
3
H
us
sa
in
 a
nd
 G
ri
ffi
th
s 
(2
01
9)
m
is
ce
lla
ne
ou
s
63
8
32
.0
3
0.
47
de
pr
es
si
on
, a
nx
ie
ty
D
A
SS
-2
1
SM
Be
rg
en
0.
32
, 0
.3
8
H
us
sa
in
 e
t 
al
. (
20
19
)
U
K
69
23
.0
9
.6
8
se
lf-
es
te
em
, d
ep
re
ss
io
n,
 
an
xi
et
y
R
os
en
be
rg
, D
A
SS
-2
1
Fa
ce
bo
ok
Be
rg
en
−
0.
12
, 0
.2
4,
 
0.
16
Ja
ss
o-
M
ed
ra
no
 a
nd
 L
óp
ez
-R
os
al
es
 
(2
01
8)
M
ex
ic
o
37
4
20
.0
1
0.
59
de
pr
es
si
on
, s
ui
ci
da
l i
de
at
io
n
C
ES
-D
, P
os
iti
ve
 a
nd
 N
eg
at
iv
e 
Su
ic
id
al
 Id
ea
tio
n 
In
ve
nt
or
y
SM
So
ci
al
 N
et
w
or
k 
A
dd
ic
tio
n 
Q
ue
st
io
nn
ai
re
0.
25
, 0
.1
6
Je
ri
-Y
ab
ar
 e
t 
al
. (
20
19
)
Pe
ru
21
2
20
0.
45
de
pr
es
si
on
BD
I
SN
Ss
N
A
0.
46
K
an
at
-M
ay
m
on
 e
t 
al
. (
20
18
), 
#
1
Is
ra
el
33
7
33
.3
6
0.
55
se
lf-
es
te
em
R
os
en
be
rg
Fa
ce
bo
ok
Be
rg
en
−
0.
52
K
an
at
-M
ay
m
on
 e
t 
al
. (
20
18
), 
#
2
Is
ra
el
80
22
.9
1
0.
91
se
lf-
es
te
em
SI
SE
S
Fa
ce
bo
ok
Be
rg
en
−
0.
05
K
ar
ak
os
e 
et
 a
l. 
(2
01
6)
T
ur
ke
y
71
2
16
.0
0
0.
58
lo
ne
lin
es
s
U
C
LA
Fa
ce
bo
ok
Be
rg
en
0.
13
K
ha
tt
ak
 e
t 
al
. (
20
17
)
Pa
ki
st
an
20
0
N
A
0.
50
de
pr
es
si
on
BD
I-I
I
Fa
ce
bo
ok
Be
rg
en
0.
24
K
im
 a
nd
 P
ar
k 
(2
01
5)
So
ut
h 
K
or
ea
21
3
14
.0
0
0
se
lf-
es
te
em
K
an
g 
(2
00
7)
 
SN
Ss
C
ho
 a
nd
 S
uh
 (
20
13
)
−
0.
38
K
ir
ca
bu
ru
n 
(2
01
6)
T
ur
ke
y
11
30
14
.6
7
0.
59
de
pr
es
si
on
, s
el
f-
es
te
em
C
D
I, 
R
os
en
be
rg
SM
A
rs
la
n 
an
d 
K
ir
ik
 (
20
13
)
0.
13
, −
0.
09
K
ir
ca
bu
ru
n,
 D
em
et
ro
vi
cs
 e
t 
al
., 
(2
02
0)
T
ur
ke
y
34
4
20
.7
6
0.
82
de
pr
es
si
on
, s
el
f-
es
te
em
SD
H
S,
 S
IS
ES
SN
Ss
X
an
id
is
 a
nd
 B
ri
gn
el
l (
20
16
)
0.
22
, −
0.
21
K
ir
ca
bu
ru
n 
et
 a
l. 
(2
01
9)
T
ur
ke
y
82
7
20
.3
6
0.
60
se
lf-
es
te
em
SI
SE
S
SM
SM
D
S
−
0.
06
K
ir
ca
bu
ru
n,
 G
ri
ffi
th
s,
 B
ill
ie
ux
 e
t 
al
. 
(2
01
9)
T
ur
ke
y
47
0
16
.2
9
0.
60
de
pr
es
si
on
SD
H
S
SM
Be
rg
en
0.
32
K
ir
ca
bu
ru
n 
et
 a
l. 
(2
02
0)
T
ur
ke
y
46
0
19
.7
4
0.
61
de
pr
es
si
on
, l
on
el
in
es
s
SD
H
S,
 U
C
LA
SN
Ss
X
an
id
is
 a
nd
 B
ri
gn
el
l (
20
16
)
0.
34
, 0
.2
6
K
ır
ca
bu
ru
n 
et
 a
l. 
(2
01
8)
, #
1
T
ur
ke
y
80
4
16
.2
0
0.
48
de
pr
es
si
on
, s
el
f-
es
te
em
SD
H
S,
 S
IS
ES
SN
Ss
X
an
id
is
 a
nd
 B
ri
gn
el
l (
20
16
)
0.
37
, −
0.
15
K
ır
ca
bu
ru
n 
et
 a
l. 
(2
01
8)
, #
2
T
ur
ke
y
76
0
21
.4
8
0.
60
de
pr
es
si
on
, s
el
f-
es
te
em
SD
H
S,
 S
IS
ES
SN
Ss
X
an
id
is
 a
nd
 B
ri
gn
el
l (
20
16
)
0.
22
, −
0.
11
K
oc
 a
nd
 G
ulya
gc
i (
20
13
)
T
ur
ke
y
44
7
21
.6
4
0.
22
de
pr
es
si
on
G
H
Q
-2
8
Fa
ce
bo
ok
K
oc
 a
nd
 G
ul
ya
gc
i (
20
13
)
0.
28
La
co
ni
 e
t 
al
. (
20
18
)
Fr
an
ce
82
2
21
.6
0
0.
55
di
st
re
ss
BS
I
Fa
ce
bo
ok
, 
T
w
itt
er
Be
rg
en
0.
33
, 0
.2
2
La
R
os
e 
et
 a
l. 
(2
01
1)
U
S
36
4
17
.7
6
0.
70
se
lf-
es
te
em
, l
on
el
in
es
s
SI
SE
S,
 U
C
LA
SN
Ss
C
ap
la
n 
(2
01
0)
 a
nd
 
M
ee
rk
er
k 
et
 a
l. 
(2
00
9)
−
0.
23
, 0
.0
6
Le
e-
W
on
 e
t 
al
. (
20
15
)
U
S
24
3
19
.5
0
0.
72
so
ci
al
 a
nx
ie
ty
Fe
ni
gs
te
in
 e
t 
al
. (
19
75
)
Fa
ce
bo
ok
K
oc
 a
nd
 G
ul
ya
gc
i (
20
13
)
0.
18
Li
 e
t 
al
. (
20
18
)
C
hi
na
46
3
19
.1
2
0.
53
lif
e 
sa
tis
fa
ct
io
n
SW
LS
W
ec
ha
t
W
eC
ha
t 
A
dd
ic
tio
n 
Sc
al
e
0.
10
Li
m
 e
t 
al
. (
20
20
)
U
S
12
31
37
.2
8
0.
54
de
pr
es
si
on
PH
Q
-9
SM
SM
D
S
0.
30
Li
n 
et
 a
l. 
(2
01
7)
Ir
an
26
76
15
.5
4
0.
44
de
pr
es
si
on
, a
nx
ie
ty
D
A
SS
-2
1
SM
Be
rg
en
0.
21
, 0
.1
7
Li
n 
et
 a
l. 
(2
02
0)
Ir
an
17
91
27
.2
0
0.
70
an
xi
et
y,
 d
ep
re
ss
io
n
H
A
D
S
SM
Be
rg
en
0.
31
, 0
.2
3
Li
u 
an
d 
M
a 
(2
01
8)
C
hi
na
30
1
26
.9
2
0.
27
se
lf-
es
te
em
R
os
en
be
rg
SM
N
A
−
0.
16
M
aj
id
 e
t 
al
. (
20
19
)
Pa
ki
st
an
37
8
N
A
0.
70
so
ci
al
 a
nx
ie
ty
SI
A
S
SN
Ss
M
oq
be
l a
nd
 K
oc
k 
(2
01
8)
0.
30
M
al
ik
 a
nd
 K
ha
n 
(2
01
5)
Pa
ki
st
an
20
0
N
A
0.
50
se
lf-
es
te
em
R
os
en
be
rg
Fa
ce
bo
ok
Be
rg
en
−
0.
18
M
ar
tin
ez
-P
ec
in
o 
an
d 
G
ar
ci
a-
G
av
ilá
n 
(2
01
9)
Sp
ai
n
23
3
15
.1
2
0.
47
se
lf-
es
te
em
R
os
en
be
rg
In
st
ag
ra
m
M
ar
in
o 
et
 a
l. 
(2
01
7)
−
0.
14
a
(C
on
tin
ue
d)
T
ab
le
 2
. (
C
on
tin
ue
d)
Huang 9
St
ud
y
C
ou
nt
ry
N
A
ge
FM
M
H
M
H
M
ea
s.
SM
SM
M
ea
s.
ES
M
en
ni
ng
 e
t 
al
. (
20
20
)
G
er
m
an
y
70
0
25
.6
0
0.
76
di
st
re
ss
BS
I
SN
Ss
SN
SD
Q
0.
06
M
ilo
še
vi
ć-
Đ
or
đe
vi
ć 
an
d 
Ž
ež
el
j 
(2
01
4)
Se
rb
ia
20
14
N
A
0.
52
se
lf-
es
te
em
R
os
en
be
rg
SN
Ss
M
ilo
še
vi
ć-
Đ
or
đe
vi
ć 
an
d 
Ž
ež
el
j (
20
14
)
−
0.
35
M
itr
a 
an
d 
R
an
ga
sw
am
y 
(2
01
9)
In
di
a
26
4
21
.5
6
0.
62
de
pr
es
si
on
C
lin
ic
al
ly
 U
se
fu
l D
ep
re
ss
io
n 
O
ut
co
m
e 
Sc
al
e
SM
SM
D
S
0.
40
N
da
sa
uk
a 
et
 a
l. 
(2
01
6)
U
K
25
6
21
.4
0
0.
53
lo
ne
lin
es
s
U
C
LA
T
w
itt
er
M
ic
ro
bl
og
 E
xc
es
si
ve
 U
se
 
Sc
al
e
0.
22
O
m
ar
 a
nd
 S
ub
ra
m
an
ia
n 
(2
01
3)
M
al
ay
si
a
40
0
19
.5
0
N
A
lo
ne
lin
es
s
U
C
LA
Fa
ce
bo
ok
K
im
 a
nd
 K
ar
id
ak
is
 (
20
09
)
0.
25
Po
nn
us
am
y 
et
 a
l. 
(2
02
0)
M
al
ay
si
a
36
4
22
.5
0
0.
51
lif
e 
sa
tis
fa
ct
io
n,
 lo
ne
lin
es
s
SW
LS
, U
C
LA
In
st
ag
ra
m
Be
rg
en
0.
59
, 0
.1
9
Po
nt
es
 (
20
17
)
Po
rt
ug
al
49
5
13
.0
2
0.
47
de
pr
es
si
on
, a
nx
ie
ty
D
A
SS
-2
1
Fa
ce
bo
ok
Be
rg
en
0.
33
, 0
.3
1
Po
nt
es
 e
t 
al
. (
20
18
)
U
K
51
1
27
.5
0
0.
65
di
st
re
ss
Sy
m
pt
om
 C
he
ck
lis
t-
6
SM
Be
rg
en
0.
44
Pr
ze
pi
ór
ka
 a
nd
 B
ła
ch
ni
o 
(2
02
0)
Po
la
nd
42
6
14
.6
7
0.
49
de
pr
es
si
on
C
ES
-D
Fa
ce
bo
ok
FI
Q
0.
35
R
aj
es
h 
an
d 
R
an
ga
ia
h 
(2
02
0)
In
di
a
11
4
24
.0
0
0.
32
lo
ne
lin
es
s
U
C
LA
Fa
ce
bo
ok
Be
rg
en
0.
38
R
au
ds
ep
p 
(2
01
9)
Es
to
ni
a
24
9
15
.3
0
0.
53
de
pr
es
si
on
C
ES
-D
SM
Be
rg
en
0.
34
R
ob
in
so
n 
(2
01
9)
U
S
50
4
20
.4
0
0.
82
de
pr
es
si
on
PH
Q
-9
SM
Be
rg
en
0.
20
Şa
hi
n 
(2
01
7)
T
ur
ke
y
61
2
20
.3
4
0.
62
lif
e 
sa
tis
fa
ct
io
n
SW
LS
SM
Şa
hi
n 
an
d 
Y
ağ
cı
 (
20
17
)
−
0.
31
Sa
le
em
 e
t 
al
. (
20
14
)
Pa
ki
st
an
60
0
19
.5
0
0.
50
lo
ne
lin
es
s
U
C
LA
Fa
ce
bo
ok
IA
T
0.
23
Sa
tic
i (
20
19
)
T
ur
ke
y
28
0
21
.0
4
0.
58
po
si
tiv
e 
af
fe
ct
, n
eg
at
iv
e 
af
fe
ct
, 
lif
e 
sa
tis
fa
ct
io
n,
 lo
ne
lin
es
s
PA
N
A
S,
 S
W
LS
, U
C
LA
Fa
ce
bo
ok
Be
rg
en
−
0.
16
, 0
.1
6,
 
−
0.
19
 0
.1
5
Sa
tic
i a
nd
 U
ys
al
 (
20
15
)
T
ur
ke
y
31
1
20
.8
6
0.
58
lif
e 
sa
tis
fa
ct
io
n,
 h
ap
pi
ne
ss
SW
LS
, S
H
S
Fa
ce
bo
ok
Be
rg
en
−
0.
32
, 
−
0.
32
Sa
vc
i e
t 
al
. (
20
18
)
T
ur
ke
y
18
7
N
A
0.
47
po
si
tiv
e 
af
fe
ct
, n
eg
at
iv
e 
af
fe
ct
PA
N
A
S
SM
SM
D
S
−
0.
23
, 0
.3
6
Sh
el
do
n 
et
 a
l. 
(2
02
0)
U
S
33
7
23
.3
5
.5
8
lif
e 
sa
tis
fa
ct
io
n
Li
fe
 P
os
iti
on
 S
ca
le
Fa
ce
bo
ok
, 
In
st
ag
ra
m
,S
na
pc
ha
t
Be
rg
en
−
0.
13
, 
−
0.
15
, 
−
0.
04
Sh
et
ta
r 
et
 a
l. 
(2
01
7)
In
di
a
10
0
27
.5
5
0.
46
lo
ne
lin
es
s
U
C
LA
Fa
ce
bo
ok
Be
rg
en
0.
24
So
ra
ci
 e
t 
al
. (
20
20
)
It
al
y
21
7
32
.1
4
0.
64
an
xi
et
y,
 d
ep
re
ss
io
n,
 s
el
f-
es
te
em
A
du
lt 
PR
O
M
IS
 E
m
ot
io
an
l D
is
tr
es
s/
A
nx
ie
ty
-
Sh
or
t 
Fo
rm
, A
du
lt 
PR
O
M
IS
 E
m
ot
io
an
l 
D
is
tr
es
s/
D
ep
re
ss
io
n-
Sh
or
t 
Fo
rm
, R
os
en
be
rg
Fa
ce
bo
ok
Be
rg
en
0.
47
, 0
.4
8,
 
0.
23
Sp
ra
gg
in
s 
(2
00
9)
U
S
35
0
20
.0
0
0.
81
so
ci
al
 a
nx
ie
ty
, l
ife
 s
at
is
fa
ct
io
n,
 
lo
ne
lin
es
s,
de
pr
es
si
on
, s
el
f-
es
te
em
, h
ap
pi
ne
ss
So
ci
al
 A
vo
id
an
ce
 a
nd
 D
is
tr
es
s 
Sc
al
e,
 
SW
LS
,U
C
LA
, C
ES
-D
, R
os
en
be
rg
, O
xf
or
d 
H
ap
pi
ne
ss
 Q
ue
st
io
nn
ai
re
SN
Ss
G
PI
U
S
0.
22
, −
0.
13
, 
0.
28
, 0
.2
8,
 
−
0.
30
, 
−
0.
28
St
eg
gi
nk
 (
20
15
)
N
et
he
rl
an
ds
31
5
28
.7
4
0.
43
So
ci
al
 lo
ne
lin
es
s,
 d
ep
re
ss
io
n,
 
so
ci
al
 a
nx
ie
ty
SE
LS
A
-S
, D
A
SS
-2
1,
Se
lf-
C
on
sc
io
us
ne
ss
 S
ca
le
; 
Sc
re
en
 fo
r 
C
hi
ld
 A
nx
ie
ty
 R
el
at
ed
 E
m
ot
io
na
l 
D
is
or
de
rs
Fa
ce
bo
ok
Be
rg
en
0.
09
, 0
.1
0,
 
0.
10
St
oc
kd
al
e 
an
d 
C
oy
ne
 (
20
20
)
U
S
38
5
20
.0
1
0.
53
lif
e 
sa
tis
fa
ct
io
n,
 a
nx
ie
ty
, 
de
pr
es
si
on
Bl
ai
s 
et
 a
l. 
(1
98
9)
 &
 S
W
LS
, S
pe
nc
e 
C
hi
ld
 
A
nx
ie
ty
 In
ve
nt
or
y,
C
ES
-D
C
SN
Ss
M
er
lo
 e
t 
al
. (
20
13
)
0.
11
, 0
.2
4,
 
0.
28
T
es
i (
20
18
)
It
al
y
58
0
32
.0
0
0.
62
lo
ne
lin
es
s
U
C
LA
SM
Be
rg
en
0.
19
T
ab
le
 2
. (
C
on
tin
ue
d)
(C
on
tin
ue
d)
10 International Journal of Social Psychiatry 00(0)
St
ud
y
C
ou
nt
ry
N
A
ge
FM
M
H
M
H
M
ea
s.
SM
SM
M
ea
s.
ES
T
ur
el
 e
t 
al
. (
20
18
)
Is
ra
el
21
5
26
.9
9
0.
73
w
el
l-b
ei
ng
W
H
O
-5
Fa
ce
bo
ok
Be
rg
en
−
0.
57
T
ur
el
 a
nd
 Q
ah
ri
-S
ar
em
i (
20
16
), 
#
1
U
S
34
1
23
.0
0
0.
52
se
lf-
es
te
em
R
os
en
be
rg
Fa
ce
bo
ok
T
ur
el
 a
nd
 B
ec
ha
ra
 (
20
16
)
−
0.
05
T
ur
el
 a
nd
 Q
ah
ri
-S
ar
em
i (
20
16
), 
#
2
U
S
60
19
.5
0
N
A
se
lf-
es
te
em
R
os
en
be
rg
Fa
ce
bo
ok
T
ur
el
 a
nd
 B
ec
ha
ra
 (
20
16
)
0.
01
U
ys
al
 e
t 
al
. (
20
13
)
T
ur
ke
y
29
7
20
.1
0
0.
53
ha
pp
in
es
s
SH
S
Fa
ce
bo
ok
Be
rg
en
−
0.
37
va
n 
de
n 
Ei
jn
de
n 
et
 a
l. 
(2
01
6)
, #
1
N
et
he
rl
an
ds
72
4
14
.3
6
0.
54
se
lf-
es
te
em
, d
ep
re
ss
io
n
R
os
en
be
rg
, K
ut
ch
er
 A
do
le
sc
en
t 
D
ep
re
ss
io
n 
Sc
al
e
SM
SM
D
S
−
0.
19
, 0
.3
7
va
n 
de
n 
Ei
jn
de
n 
et
 a
l. 
(2
01
6)
, #
2
N
et
he
rl
an
ds
87
3
14
.2
8
0.
48
de
pr
es
si
on
, l
on
el
in
es
s
K
ut
ch
er
 A
do
le
sc
en
t 
D
ep
re
ss
io
n 
Sc
al
e,
 U
C
LA
SM
SM
D
S
0.
29
, 0
.2
4
va
n 
de
n 
Ei
jn
de
n 
et
 a
l. 
(2
01
8)
, #
1
N
et
he
rl
an
ds
27
5
13
.9
01
lif
e 
sa
tis
fa
ct
io
n
SW
LS
SM
SM
D
S
−
0.
48
va
n 
de
n 
Ei
jn
de
n 
et
 a
l. 
(2
01
8)
, #
2
N
et
he
rl
an
ds
26
3
13
.9
0
0
lif
e 
sa
tis
fa
ct
io
n
SW
LS
SM
SM
D
S
−
0.
33
va
n 
R
oo
ij 
et
 a
l. 
(2
01
7)
N
et
he
rl
an
ds
39
45
13
.0
4
.5
0
lif
e 
sa
tis
fa
ct
io
n,
 d
ep
re
ss
io
n,
 
se
lf-
es
te
em
, l
on
el
in
es
s,
 s
oc
ia
l 
an
xi
et
y
St
ud
en
ts
' L
ife
 S
at
is
fa
ct
io
n 
Sc
al
e,
 D
M
L,
 
R
os
en
be
rg
, |
U
C
LA
, S
A
SA
SM
M
ee
rk
er
k 
(2
00
7)
−
0.
30
, 0
.4
5,
 
−
0.
29
, 0
.3
2,
 
0.
20
V
an
ge
el
 e
t 
al
. (
20
16
)
Be
lg
iu
m
10
02
15
.2
1
0.
51
se
lf-
es
te
em
, l
on
el
in
es
s,
 
de
pr
es
si
on
R
os
en
be
rg
, R
as
ch
-T
yp
e 
Lo
ne
lin
es
s 
Sc
al
e,
 D
M
L
SN
Ss
Be
rg
en
−
0.
23
, 0
.2
5,
 
0.
33
V
er
no
n 
et
 a
l. 
(2
01
7)
A
us
tr
al
ia
87
4
14
.4
0
0.
59
de
pr
es
si
on
M
ic
hi
ga
n 
St
ud
y 
of
 A
do
le
sc
en
t 
Li
fe
 T
ra
ns
iti
on
s
SN
Ss
IA
T
0.
31
W
al
bu
rg
 e
t 
al
. (
20
16
), 
#
1
Fr
an
ce
11
5
16
.6
1
0
de
pr
es
si
on
, s
ui
ci
da
l i
de
at
io
n
C
ES
-D
, G
ar
ri
so
n 
et
 a
l. 
(1
99
9)
Fa
ce
bo
ok
IA
T
0.
37
, 0
.2
3
W
al
bu
rg
 e
t 
al
. (
20
16
), 
#
2
Fr
an
ce
17
1
16
.4
3
1
de
pr
es
si
on
, s
ui
ci
da
l i
de
at
io
n
C
ES
-D
, G
ar
ri
so
n 
et
 a
l. 
(1
99
9)
Fa
ce
bo
ok
IA
T
0.
10
, 0
.2
0
W
an
 (
20
09
)
C
hi
na
33
5
23
.5
0
0.
56
lo
ne
lin
es
s
U
C
LA
X
ia
no
ne
i
IA
T
0.
39
W
an
g 
et
 a
l. 
(2
01
6)
, #
1
C
hi
na
38
0
19
.9
3
0.
75
lif
e 
sa
tis
fa
ct
io
n
SW
LS
W
ei
bo
Be
rg
en
−
0.
11
W
an
g 
et
 a
l. 
(2
01
6)
, #
2
C
hi
na
53
5
19
.8
3
0.
78
lif
e 
sa
tis
fa
ct
io
n
SW
LS
W
ei
bo
Be
rg
en
0.
05
W
an
g 
et
 a
l. 
(2
01
8)
C
hi
na
36
5
15
.9
6
0.
52
de
pr
es
si
on
, S
el
f-
es
te
em
C
ES
-D
, R
os
en
be
rg
SN
Ss
FI
Q
0.
18
, −
0.
07
W
eg
m
an
n 
et
 a
l. 
(2
01
5)
G
er
m
an
y
33
4
19
.2
7
0.
72
de
pr
es
si
on
BS
I
SN
Ss
IA
T
0.
48
W
on
g 
et
 a
l. 
(2
02
0)
H
on
g 
K
on
g
30
0
20
.8
9
0.
59
de
pr
es
si
on
, a
nx
ie
ty
D
A
SS
-2
1
SM
Be
rg
en
0.
34
, 0
.3
4
W
oo
d 
et
 a
l. 
(2
01
6)
U
S
20
9
20
.2
3
0.
73
de
pr
es
si
on
, a
nx
ie
ty
D
A
SS
-2
1
SM
FI
Q
0.
18
, 0
.2
1
W
or
sl
ey
 e
t 
al
. (
20
18
)
U
K
10
29
19
.8
0
0.
75
de
pr
es
si
on
PH
Q
-9
SM
Be
rg
en
0.
27
Y
am
 e
t 
al
. (
20
19
)
H
on
g 
K
on
g
30
7
21
.6
4
.6
8
an
xi
et
y,
 d
ep
re
ss
io
n
H
A
D
S
SM
Be
rg
en
0.
19
, 0
.1
8
Y
ou
ng
 e
t 
al
. (
20
20
)
U
S
12
4
30
.5
8
0.
80
de
pr
es
si
on
, l
ife
 s
at
is
fa
ct
io
n
PH
Q
-9
, S
W
LS
SM
G
PI
U
S
0.
40
, −
0.
20
Y
u 
et
 a
l. 
(2
01
6)
M
ac
ao
39
5
19
.0
5
0.
63
lo
ne
lin
es
s
U
C
LA
SN
Ss
Be
rg
en
0.
24
Y
ur
da
gü
l e
t 
al
. (
20
19
)
T
ur
ke
y
49
1
15
.9
2
0.
59
lo
ne
lin
es
s,
 d
ep
re
ss
io
n,
 a
nx
ie
ty
, 
so
ci
al
 a
nx
ie
ty
U
C
LA
, S
D
H
S,
 S
T
A
I, 
SA
SA
In
st
ag
ra
m
Be
rg
en
0.
14
, 0
.2
5,
 
0.
22
, 0
.2
8
Z
af
fa
r 
et
 a
l. 
(2
01
5)
Pa
ki
st
an
15
0
N
A
0.
50
de
pr
es
si
on
, a
nx
ie
ty
, l
on
el
in
es
s
PH
Q
-9
, S
ev
er
ity
 M
ea
su
re
 fo
r 
G
en
er
al
iz
ed
 
A
nx
ie
ty
 D
is
or
de
r,
 U
C
LA
Fa
ce
bo
ok
Be
rg
en
0.
39
, 0
.5
1,
 
0.
07
N
A
 =
 n
ot
 a
va
ila
bl
e;
 F
M
 =
 p
ro
po
rt
io
n 
of
 fe
m
al
es
 in
 t
he
 s
am
pl
e;
 M
H
 =
 m
en
ta
l h
ea
lth
 in
di
ca
to
r;
 M
H
M
ea
s 
=
 m
ea
su
re
s 
of
 m
en
ta
l h
ea
lth
; S
M
 =
 t
yp
e 
of
 s
oc
ia
l m
ed
ia
 m
ea
su
re
d;
 S
M
m
ea
s 
=
 m
ea
su
re
s 
of
 s
oc
ia
l m
ed
ia
; E
S 
=
 e
ffe
ct
 s
iz
e.
a E
ffe
ct
 s
iz
es
 w
er
e 
ob
ta
in
ed
 fr
om
 t
he
 a
ut
ho
rs
.
T
ab
le
 2
. (
C
on
tin
ue
d)
Huang 11
SM use and mental health. Regarding publication outlet, 1 
correlation between problematic SM use and self-esteem 
was reported in a book chapter, 1 in a conference, 1 in a 
Master’s thesis, 4 in Doctoral dissertations and 35 in jour-
nals. The effect of publication outlet was not significant 
with QB = 3.43, indicating the absence of a file-drawer 
problem. For the country effect, 17 countries reported the 
relation between problematic SM use and self-esteem, and 
3 of them had at least 4 effect sizes. Again, QB = 1.32 was 
not significant, indicating that the mean correlations of 
US, Poland, and Turkey were comparable.
The majority of studies used the Rosenberg Self-Esteem 
Scale (Rosenberg, 1965) to assess global self-worth, and 
the mean correlation for these studies was r = −.18. 
Seven studies used the Single Item Self-Esteem Scale 
(Robins et al., 2001) and these had a mean correlation of r 
= −.13. The correlation between problematic SM use and 
self-esteem did not vary with self-esteem measure. The 
included studies used 18 measures of problematic SM use. 
Twelve samples used the Bergen Social Media Addiction 
Scale (Andreassen et al., 2016), Bergen Facebook 
Addiction Scale (Andreassen et al., 2012) or their adapta-
tions, and 8 samples used the Facebook Intrusion 
Questionnaire (Elphinston & Noller, 2011) and its adapta-
tions. The mean correlations of these measures were quite 
comparable.
Twenty-two effect sizes were related to problematic use 
in general; 18 were for problematic Facebook use; 1 for 
problematic Twitter use, and 1 for problematic WhatsApp 
use. The platform to which users were addicted did not 
exert a significant effect on the relation between problem-
atic SM use and self-esteem.
Table 5 presents the effects of mean age and gender 
composition of the sample on the correlations between 
problematic SM use and mental health indicators. The 
mean age was reported in 38 samples, and the age effect 
was not significant. The effect of gender composition was 
significant, and the meta-regression model was r = −.38 
+ .36 × proportion of females in the sample. Thus, the 
expected correlation was r = −.38 for all-male samples, 
and r = −.02 for all-female samples.
Moderator analyses the relation between 
problematic SM use and life satisfaction
The effect of publication status was not examined, because 
journal articles were the only outlet having more than 3 
effect sizes. For the country effect, Turkey and US are the 
only two countries with more than 3 effect sizes and the 
mean correlations were moderate and small, respectively 
( r = −.31 and r = −.08, respectively). The country dif-
ference was significant with QB = 13.57. The mean cor-
relations were not compared among different life 
satisfaction measures, as the Satisfaction with Life Scale 
(Diener et al., 1985) was the only measure having more 
than 3 effect sizes. The effect of measure of problematic 
SM use was not significant, and the means for studies 
using the Bergen and FIQ were both small. Similarly, the 
effects of platform and of two continuous moderators were 
not significant.
Table 3. Summary of mean correlations between problematic social media use and mental health.
k r 95% CI Q p
 upper lower 
Well-beinga 85 −0.16 −0.20 −0.13 117.21 0.01**
 Happiness 4 −0.30 −0.38 −0.21 2.96 0.40
 Life satisfaction 30 −0.11 −0.18 −0.03 35.94 0.18
 Positive affect 3 −0.18 −0.34 −0.01 0.73 0.69
 Mental Health 2 −0.29 −0.71 0.28 0.07 0.80
 Self-esteem 42 −0.17 −0.22 −0.13 57.26 0.05*
 Overall well-being 3 −0.29 −0.65 0.17 4.54 0.10
Distress 136 0.27 0.25 0.29 150.37 0.17
 Anxiety 17 0.30 0.25 0.35 17.00 0.39
 Depression 59 0.31 0.28 0.33 46.69 0.86
 Overall distress 4 0.27 0.01 0.49 3.36 0.34
 Loneliness 29 0.21 0.17 0.25 25.34 0.61
 Negative affect 4 0.08 −0.29 0.44 4.55 0.21
 Social Anxiety 17 0.30 0.24 0.35 19.65 0.24
 Social loneliness 2 0.19 −0.76 0.88 1.00 0.32
 Suicidal ideation 3 0.18 0.02 0.34 0.53 0.77
aOne correlation between problematic use of social media andpsychiatric well-being was reported and thus mean correlation was not computed.
*ponline gaming 
addiction. These treatments can be considered and modi-
fied to treat male users at high risk of SM addiction.
The study country was related to the correlation between 
problematic SM use and life satisfaction. The correlation 
was moderate for Turkey, and small for US. Although the 
country effect on the relation between problematic 
Facebook use and psychological distress was significant, 
Marino et al. (2018a) found that Western countries had 
larger effect sizes than Asian countries. The inconsistent 
findings can be caused by the composition of both the 
Western and Asian country categories in Marino et al. 
(2018a). In Marino et al. (2018a), US only contributed one 
effect size in the Western country category, and Asian 
countries included Turkey, Taiwan and Thailand.
Implications, limitations, and future directions
This meta-analysis has important implications for practice 
and research. As the magnitudes of correlations varied by 
mental health indicator, future practitioners and research-
ers should use multiple indicators for a comprehensive 
assessment of the effect of problematic SM use on well-
being and distress. The magnitudes of these correlations 
did not vary with publication status, instruments, SM plat-
forms or mean age. The strength of correlation between 
problematic SM use and mental health was similar in 
most research conditions. Thus, the magnitude of these 
correlations can generalize across most moderator condi-
tions, supporting the stability of correlations between 
problematic SM use and mental health indicators in most 
research conditions. Moreover, the moderating effect of 
study country was investigated to examine possible cul-
tural differences. Turkish studies revealed a relatively 
strong correlation between SM use and life satisfactions. 
Since some countries had few studies, more international 
research should be conducted to examine the possible 
country effect.
This study searched articles published in English. 
Different languages or countries might have different 
14 International Journal of Social Psychiatry 00(0)
dominant SM platforms. Few included studies investi-
gated main SM platforms other than Facebook from differ-
ent countries (e.g. WeChat in China). Therefore, future 
research should examine whether the moderating effect of 
SM platform is different across cultures. As each SM plat-
form has distinctive features, the country effect may be 
confounded with platform effect.
One limitation of this study was that it treated multiple 
effect sizes from a single sample independent. For exam-
ple, correlations between multiple measures of problem-
atic SM use and multiple mental health indicators were all 
coded. Moreover, some moderator effects could not be 
examined, because those moderators did not have enough 
effect sizes to warrant stable estimates of mean correla-
tions. Lastly, systematic reviews tend to use multiple 
reviewers or readers (Buscemi et al., 2005). Only one 
reader performed data extraction and coding, possibly 
leading to errors.
Funding
The author(s) disclosed receipt of the following financial support 
for the research, authorship, and/or publication of this article: 
Funding for this study was provided by Ministry of Science and 
Technology (MOST) of the Republic of China, Taiwan Grant 
No. 108-2511-H-018-026.
ORCID iD
Chiungjung Huang https://orcid.org/0000-0001-9687-8608
References
Aladwani, A. M., & Almarzouq, M. (2016). Understanding com-
pulsive social media use: The premise of complementing 
self-conceptions mismatch with technology. Computers in 
Human Behavior, 60, 575–581. https://doi.org/10.1016/j.
chb.2016.02.098
American Psychiatric Association (1994). Diagnostic and statis-
tical manual of mental disorders, DSM-IV (4th ed.). APA.
Andreassen, C. S. (2015). Online social network site addiction: 
A comprehensive review. Current Addiction Reports, 2, 
175–184. https://doi.org/10.1007/s40429-015-0056-9
Andreassen, C. S., Billieux, J., Griffiths, M. D., Kuss, D. J., 
Demetrovics, Z., Mazzoni, E., & Pallesen, S. (2016). The 
relationship between addictive use of social media and video 
games and symptoms of psychiatric disorders: A large-scale 
cross-sectional study. Psychology of Addictive Behaviors, 
30, 252–262. https://doi.org/10.1037/adb0000160
Andreassen, C. S., Pallesen, S., & Griffiths, M. D. (2017). The 
relationship between addictive use of social media, nar-
cissism, and self-esteem: Findings from a large national 
survey. Addictive Behaviors, 64, 287–293. https://doi.
org/10.1016/j.addbeh.2016.03.006
Andreassen, C. S., Torsheim, T., Brunborg, G. S., & Pallesen, 
S. (2012). Development of a Facebook addiction scale. 
Psychological Reports, 110, 501–517. https://doi.
org/10.2466/02.09.18.PR0.110.2.501-517
Bagby, R. M., Ryder, A. G., Schuller, D.R., & Marshall, M. B. (2004). 
The Hamilton Depression Rating Scale: Has the gold standard 
become a lead weight? American Journal of Psychiatry, 161, 
2163–77. https://doi.org/10.1176/appi.ajp.161.12.2163
Baturay, M. H., & Toker, S. (2017). Self-esteem shapes the 
impact of GPA and general health on Facebook addiction: 
A mediation analysis. Social Science Computer Review, 35, 
555–575. https://doi.org/10.1177/08944393166566
Beck, A. T., Steer, R. A., & Brown, G. K. (1996). Manual for 
the Beck Depression Inventory–II. San Antonio, TX: 
Psychological Corporation.
Beck, A. T., & Steer, R. A. (1987). Beck Depression Inventory 
manual. New York: Psychological Corporation.
Biolcati, R., Mancini, G., Pupi, V., & Mugheddu, V. (2018). 
Facebook Addiction: Onset Predictors. Journal of Clinical 
Medicine, 7, 118. https://doi.org/10.3390/jcm7060118
Błachnio, A., Przepiórka, A., & Pantic, I. (2015). Internet use, 
Facebook intrusion, and depression: Results of a cross-sec-
tional study. European Psychiatry, 30, 681–684. https://doi.
org/10.1016/j.eurpsy.2015.04.00
Brailovskaia, J., Teismann, T., & Margraf, J. (2018). Physical 
activity mediates the association between daily stress 
and Facebook addiction disorder (FAD)—A longitu-
dinal approach among German students. Computers in 
Human Behavior, 86, 199–204. https://doi.org/10.1016/j.
chb.2018.04.045
Buscemi, N., Hartling, L., Vandermeer, B., Tjosvold, L., & 
Klassen, T. P. (2005). Single data extraction generated more 
errors than double data extraction in systematic reviews. 
Journal of Clinical Epidemiology, 59, 697–703. https://doi.
org/10.1016/j.jclinepi.2005.11.010
Caldiroli, A., Serati, M., & Buoli, M. (2018). Is Internet addic-
tion a clinical symptom or a psychiatric disorder? A com-
parison with bipolar disorder. The Journal of Nervous and 
Mental Disease, 206, 644–656. https://doi.org/10.1097/
NMD.0000000000000861.
Caplan, S. E. (2010). Theory and measurement of generalized 
problematic Internet use: A two-step approach. Computers in 
Human Behavior, 26, 1089–1097. https://doi.org/10.1016/j.
chb.2010.03.012
Card, N. A. (2012). Applied meta-analysis for social science 
research. New York: Guilford Press.
Carr, C. T., & Hayes, R. A. (2015). Social media: Defining, devel-
oping, and divining. Atlantic Journal of Communication, 
23, 46–65. https://doi.org/10.1080/15456870.2015.972282
Chabrol, H., Laconi, S., Delfour, M., & Moreau, A. (2017). 
Contributions of psychopathological and interpersonal vari-
ables to problematic Facebook use in adolescents and young 
adults. International Journal of High Risk Behavioral 
Addiction, 6, e32773. https://doi.org/10.5812/ijhrba.32773.
Chamberlain, S., Lochner, C., Stein, D., Goudriaan, A., Holst, 
R., Zohar, J., & Grant, J. E. (2016). Behavioural addic-
tion-a rising tide? European Neuropsychopharmacology, 
26, 841–855. https://doi.org/10.1016/j.euroneuro.2015.08 
.013
Choi, S. B., & Lim, M. S. (2016). Effects of social and technol-
ogy overload on psychological well-being in young South 
Korean adults: The mediatory role of social network service 
addiction. Computers in Human Behavior, 61, 245–254. 
https://doi.org/10.1016/j.chb.2016.03.032

Mais conteúdos dessa disciplina