Prévia do material em texto
https://doi.org/10.1177/0020764020978434 International Journal of Social Psychiatry 1 –22 © The Author(s) 2020 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/0020764020978434 journals.sagepub.com/home/isp E CAMDEN SCHIZOPH Social media (SM) is defined as ‘Internet-based channels that allow users to opportunistically interact and selec- tively self-present, either in real-time or asynchronously, with both broad and narrow audiences who derive value from user-generated content and the perception of inter- action with others’ (Carr & Hayes, 2015, p. 50). Popular SM platforms are such as WhatsApp and social network- ing sites (SNSs; e.g. Facebook). Widespread use of SM means that problematic SM use has become a serious problem. For example, the Bergen Facebook Addiction Scale (Andreassen et al., 2012) conservatively estimated that 3.3% of Italian users were addicted to Facebook (Biolcati et al., 2018). Vangeel et al. (2016) found that 7.1% of secondary school students in Belgium were addicted to Facebook, with compulsive users spending 2 hours 38 minutes on a school day and 4 hours and 35 minutes on a holiday. A French study found a 10% rate of Facebook addiction (Chabrol et al., 2017). A study found that 18% of Turkish college students were classi- fied as disordered SM users (Kircaburun, Demetrovics, & Tosuntaş, et al., 2019). A rate of 26.2% was found in college students in US, 29.4% in Singapore, and 44.5% in China (Tang et al., 2017). Empirical evidence revealed that compulsive social networking site (SNS) use was related to physical (Moqbel & Kock, 2018) and mental health (Frost & Rickwood, 2017; Pontes, 2017; Ryan et al., 2014). Researchers have paid increasing attention to excessive SM use, and have performed meta-analyses (Marino et al., 2018a, 2018b) about the relationships of compulsive SM use with mental health, psychological distress and well-being. While these meta-analyses have improved the understanding of the relation between SM addiction and mental health, they do not address some salient issues. For example, these meta- analyses focused narrowly on Facebook addiction. The present meta-analysis extends the concern to problematic use of all SM platforms. Problematic SM use Several terms are used to describe problematic SM use. Addiction (Ryan et al., 2014) is one common term. Chamberlain et al. (2016) defined the core factors of A meta-analysis of the problematic social media use and mental health Chiungjung Huang Abstract Background: Although previous meta-analyses were conducted to quantitatively synthesize the relation between problematic social media (SM) use and mental health, they focused on Facebook addiction. Aims: The purpose of this meta-analysis is to examine this relation by extending the research scope via the inclusion of studies examining problematic use of all platforms. Method: One hundred and thirty-three independent samples (N =244,676) were identified. Results: As expected, the mean correlations between problematic SM use and well-being are negative, while those between problematic SM use and distress are positive. Life satisfaction and self-esteem are commonly used to represent well-being, while depression and loneliness are usually used to indicate distress. The mean correlations of problematic SM use with life satisfaction and self-esteem are small, whereas those of problematic SM use with depression and loneliness are moderate. The moderating effects of publication status, instruments, platforms and mean age are not significant. Conclusions: The magnitude of the correlations between problematic SM use and mental health indicators can generalize across most moderator conditions. Keywords Mental health, well-being, distress, meta-analysis, problematic social media use Graduate Institute of Education, National Changhua University of Education, Changhua Corresponding author: Chiungjung Huang, Graduate Institute of Education, National Changhua University of Education, Changhua, 1 Jinde Road, Changhua 50058. Email: chiung@cc.ncue.edu.tw 978434 ISP0010.1177/0020764020978434International Journal of Social PsychiatryHuang research-article2020 Original Article https://uk.sagepub.com/en-gb/journals-permissions https://journals.sagepub.com/home/isp mailto:chiung@cc.ncue.edu.tw http://crossmark.crossref.org/dialog/?doi=10.1177%2F0020764020978434&domain=pdf&date_stamp=2020-12-09 2 International Journal of Social Psychiatry 00(0) behavioral addiction as inability to control of use, functional impairment and continuing involvement in the behavior regardless of its negative impacts. Some researchers (Caldiroli et al., 2018; Miele et al., 1990) used the term ‘dependency’ to describe problematic SM use. Dependence was defined as an indispensable behavior to achieve goals, while addiction refers to failure to control leading to impair- ment of personal or work lives (Ferris & Hollenbaugh, 2018). Hence, addiction has an absolutely negative effect, while dependence does not necessarily. Other terms, such as compulsive use (Aladwani & Almarzouq, 2016; De Cock et al., 2014), excessive use (Wang et al., 2016), and disor- dered use (van den Eijnden et al., 2018), were also used. Problematic use was chosen in this study because it is broad enough to incorporate different levels of excessive use (Lee et al., 2017). Empirical studies Previous empirical studies were conducted in various research contexts, and have different findings about the strength of the relation between problematic SM use and mental health. For example, Kircaburun (2016) sampled 1,130 Turkish secondary school students and found that the relation between problematic SNS use and self-esteem was r = −.09. Turel and Qahri-Saremi (2016) also found a small relation between problematic Facebook use and self- esteem at r = .01 for a pilot sample of 60 undergraduate students, and r = −.05 for 341 Facebook users from a large university in North America. A moderate correlation (r = −.24) was found in Aladwani and Almarzouq (2016) who used a sample of 407 undergraduate students in Kuwait. Biolcati et al. (2018) also found support for a moderate effect. On the other hand, a large correlation between prob- lematic Facebook use (r = −.43) and self-esteem was found in Baturay and Toker (2017) who sampled 120 col- lege students in Turkey. Findings about other mental health indicators were also inconsistent. For example, the relation between problem- atic SM use and depression was from small (r = .13; Kircaburun, 2016) to large (r = .45; Błachnio et al., 2015). As both empirical studies varied in research situations, and research findings were not consistent, moderator effects are worth investigating. Publication status Publication bias refers to the unrepresentativeness of included studies that can be caused by availability and accessibility (McShane et al., 2016). For example, confer- ence papers have more limited availability than journal papers. The inaccessibility of relevant studies (e.g. unpub- lished manuscripts) can lead to unrepresentative data in a meta-analysis. To explore this possibility, the mean correla- tions among publication outlets were examined. Study country Caldiroli et al. (2018) suggested that the problem of tech- nology addiction was especially serious in China, South Korea and Taiwan. As the prevalence of technology addiction varies with country, the relation between prob- lematic SM use and mental health may vary with country or culture. To examine the possible country effect, Marino et al. (2018a) examined the country effect on the relation between problematic Facebook use and psychological distress, and found that the correlation was likely to be higher in studies from Western countries compared to that from Asian countries. As Marino et al. (2018a) had a small number of effect sizes, and thus low generalizabil- ity of findings, the country effect is worth re-investigation.Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155–159. https://doi.org/10.1037/0033-2909.112.1.155 https://orcid.org/0000-0001-9687-8608 https://doi.org/10.1016/j.chb.2016.02.098 https://doi.org/10.1016/j.chb.2016.02.098 https://doi.org/10.1007/s40429-015-0056-9 https://doi.org/10.1037/adb0000160 https://doi.org/10.1016/j.addbeh.2016.03.006 https://doi.org/10.1016/j.addbeh.2016.03.006 https://doi.org/10.2466/02.09.18.PR0.110.2.501-517 https://doi.org/10.2466/02.09.18.PR0.110.2.501-517 https://doi.org/10.1176/appi.ajp.161.12.2163 https://doi.org/10.1177/08944393166566 https://doi.org/10.3390/jcm7060118 https://doi.org/10.1016/j.eurpsy.2015.04.00 https://doi.org/10.1016/j.eurpsy.2015.04.00 https://doi.org/10.1016/j.chb.2018.04.045 https://doi.org/10.1016/j.chb.2018.04.045 https://doi.org/10.1016/j.jclinepi.2005.11.010 https://doi.org/10.1016/j.jclinepi.2005.11.010 https://doi.org/10.1097/NMD.0000000000000861 https://doi.org/10.1097/NMD.0000000000000861 https://doi.org/10.1016/j.chb.2010.03.012 https://doi.org/10.1016/j.chb.2010.03.012 https://doi.org/10.1080/15456870.2015.972282 https://doi.org/10.5812/ijhrba.32773 https://doi.org/10.1016/j.euroneuro.2015.08.013 https://doi.org/10.1016/j.euroneuro.2015.08.013 https://doi.org/10.1016/j.chb.2016.03.032 https://doi.org/10.1037/0033-2909.112.1.155 Huang 15 De Cock, R., Vangeel, J., Klein, A., Minotte, P., Rosas, O., & Meerkerk, G. (2014). Compulsive use of social networking sites in Belgium: Prevalence, profile, and the role of attitude toward work and school. Cyberpsychology, Behavior, and Social Networking, 17, 166–171. https://doi.org/10.1089/ cyber.2013.0029 Diener, E. D., Emmons, R. A., Larsen, R. J., & Griffin, S. (1985). The Satisfaction With Life Scale. Journal of Personality Assessment, 49, 71–75. https://doi.org/10.1207/ s15327752jpa4901_13 Durak, H. Y. (2018). Modeling of variables related to problem- atic internet usage and problematic social media usage in adolescents. Current Psychology, 39(4), 1375–1387. https:// doi.org/10.1007/s12144-018-9840-8 Dussault, M., Fernet, C., Austin, S., & Leroux, M. (2009). Revisiting the factorial validity of the Revised UCLA Loneliness Scale: A test of cCompeting models in a sample of teachers. Psychological Reports, 105, 849–856. https:// doi.org/10.2466/PR0.105.3.849-856 Elphinston, R. A., & Noller, P. (2011). Time to face it! Facebook intrusion and the implications for romantic jealousy and relationship satisfaction. Cyberpsychology, Behavior, and Social Networking, 14, 631–635. https://doi.org/10.1089/ cyber.2010.0318. Faber, R. J., & O’Guinn, T. C. (1992). A clinical screener for compulsive buying. Journal of Consumer Research 1992, 19(3), 459–469. https://doi.org/10.1086/209315 Ferris, A., & E. Hollenbaugh, E. (2018). A Uses and Gratifications Approach to Exploring Antecedents to Facebook Dependency. Journal of Broadcasting & Electronic Media, 62, 51–70. https://doi.org/10.1080/08838151.2017.1375501. Frost, R. L., & Rickwood, D. J. (2017). A systematic review of the mental health outcomes associated with Facebook use. Computers in Human Behavior, 76, 576–600. https://doi. org/10.1016/j.chb.2017.08.001 Giota, K. G., & Kleftaras, G. (2013). The role of personality and depression in problematic use of social networking sites in Greece. Cyberpsychology: Journal of Psychosocial Research on Cyberspace, 7(3), article 1. https://doi.org/10.5817/ CP201336 Griffiths, M. (2000). Does Internet and computer "addiction" exist? Some case study evidence. CyberPsychology & Behavior, 3, 211–218. https://doi.org/10.1089/109493100316067. Hamilton, M. (1960). A rating scale for depression. Journal of Neurology, Neurosurgery, and Psychiatry, 23, 56–62. https://doi.org/10.1136/jnnp.23.1.56 Hamilton, M. (1967). Development of a rating scale for primary depressive illness. British Journal of Social and Clinical Psychology, 6, 278–296. https://doi.org/10.1136/jnnp.23.1.56 Hartshore, T. S. (1993). Psychometric properties and confirma- tory analysis of the UCLA Loneliness Scale. Journal of Personality Assessment, 61, 182–195. https://doi. org/10.1207/s15327752jpa6101_14 Hawi, N. S., & Samaha, M. (2018): Identifying commonalities and differences in personality characteristics of Internet and social media addiction profiles: traits, self-esteem, and self-construal. Behaviour & Information Technology, 38(2), 110–119. https://doi.org/10.1080/0144929X.2018.1515984 Heo, M., Murphy, C. F., & Meyers, B. S. (2007). Relationship between the Hamilton Depression Rating Scale and the Montgomery- Åsberg Depression Rating Scale in depressed elderly: A m-analysis. American Journal of Geriatric Psychiatry, 15, 899–905. Hong, F., Huang, D., Lin, H., & Chiu, S. (2014). Analysis of the psychological traits, Facebook usage, and Facebook addic- tion model of Taiwanese university students. Telematics and Informatics, 31, 597–606. https://doi.org/10.1016/j. tele.2014.01.001 Jasso-Medrano, J., & López-Rosales, F. (2018). Measuring the relationship between social media use and addictive behav- ior and depression and suicide ideation among university students. Computers in Human Behavior, 87, 183–191. https://doi.org/10.1016/j.chb.2018.05.003 Joseph, S., Linley, P. A., Harwood, J., Lewis, C. A., & McCollam, P. (2004). Rapid assessment of well-being: The Short Depression-Happiness Scale (SDHS). Psychology and Psychotherapy: Theory, Research and Practice, 77, 463–478. https://doi.org/10.1348/1476083042555406. Kanat-Maymon, Y., Almog, L., Cohen, R., & Amichai- Hamburger, Y. (2018). Contingent self-worth and Facebook addiction. Computers in Human Behavior, 88, 227–235. https://doi.org/10.1016/j.chb.2018.07.011 Kang, Y. S. (2007). Effect of the body satisfaction and self respect for the job selection of the university students. Gyeongbuk, Korea: Graduate School of Daegu Haanny University. Keles, B., McCrae, N., & Grealish, A. (2019). A systematic review: The influence of social media on depression, anxi- ety and psychological distress in adolescents. International Journal of Adolescence and Youth, 25(1), 79–93. https://doi. org/10.1080/02673843.2019.15908 Ketharanathan, T., Hanwella, R., Weerasundera, R., & de Silva, V. A. (2016). Diagnostic validity and factor analy- sis of Montgomery-Asberg Depression Rating Scale in Parkinson disease population. Journal of Geriatric Psychiatry and Neurology, 29, 115–119. https://doi. org/10.1177/0891988715606232 Kircaburun, K. (2016). Self-esteem, daily Internet use and social media addiction as predictors of depression among Turkish adolescents. Journal of Education and Practice, 7, 64–72. Kircaburun, K., Demetrovics, Z., & Tosuntaş, Ş. B. (2019). Analyzing the links between problematic social media use, dark triad traits, and self-esteem. International Journal of Mental Health and Addiction, 17, 1496–1507. https://doi. org/10.1007/s11469-018-9900-1 Kim, H., & Park, D. (2015). Factors affecting Internet gaming addiction: SNS addiction tendencies, self-esteem, and inter- personal relationships among male middle school students. Indian Journal of Science and Technology, 8(S8), 212–218. https://doi.org/10.17485/ijst/2015/v8iS8/70509 Koc, M., & Gulyagci, S. (2013). Facebook addiction among Turkish college students: The role of psychological health, demographic, and usage characteristics. CyberPsychology, Behavior, and Social Networking, 16, 279–284. https://doi. org/10.1089/cyber.2012.0249 Kroenke, K., Spitzer, R. L., & Williams, J. B. (2001). The PHQ- 9: validity of a brief depression severity measure. Journal of General Internal Medicine, 16, 606–613. https://doi. org/10.1046/j.1525-1497.2001.016009606.x Laconi, S., Verseillié, E., & Chabrol, H. (2018). Exploration of the problematic Twitter and Facebook uses and their relationships with psychopathological symptoms among Facebook users. International Journal of High Risk https://doi.org/10.1089/cyber.2013.0029 https://doi.org/10.1089/cyber.2013.0029https://doi.org/10.1207/s15327752jpa4901_13 https://doi.org/10.1207/s15327752jpa4901_13 https://doi.org/10.1007/s12144-018-9840-8 https://doi.org/10.1007/s12144-018-9840-8 https://doi.org/10.2466/PR0.105.3.849-856 https://doi.org/10.2466/PR0.105.3.849-856 https://doi.org/10.1089/cyber.2010.0318 https://doi.org/10.1089/cyber.2010.0318 https://doi.org/10.1086/209315 https://doi.org/10.1080/08838151.2017.1375501 https://doi.org/10.1016/j.chb.2017.08.001 https://doi.org/10.1016/j.chb.2017.08.001 https://doi.org/10.5817/CP201336 https://doi.org/10.5817/CP201336 https://doi.org/10.1089/109493100316067 https://doi.org/10.1136/jnnp.23.1.56 https://doi.org/10.1136/jnnp.23.1.56 https://doi.org/10.1207/s15327752jpa6101_14 https://doi.org/10.1207/s15327752jpa6101_14 https://doi.org/10.1080/0144929X.2018.1515984 https://doi.org/10.1016/j.tele.2014.01.001 https://doi.org/10.1016/j.tele.2014.01.001 https://doi.org/10.1016/j.chb.2018.05.003 https://doi.org/10.1348/1476083042555406 https://doi.org/10.1016/j.chb.2018.07.011 https://doi.org/10.1080/02673843.2019.15908 https://doi.org/10.1080/02673843.2019.15908 https://doi.org/10.1177/0891988715606232 https://doi.org/10.1177/0891988715606232 https://doi.org/10.1007/s11469-018-9900-1 https://doi.org/10.1007/s11469-018-9900-1 https://doi.org/10.17485/ijst/2015/v8iS8/70509 https://doi.org/10.1089/cyber.2012.0249 https://doi.org/10.1089/cyber.2012.0249 https://doi.org/10.1046/j.1525-1497.2001.016009606.x https://doi.org/10.1046/j.1525-1497.2001.016009606.x 16 International Journal of Social Psychiatry 00(0) Behaviors & Addiction, 7, e61775. https://doi.org/10.5812/ ijhrba.61775. LaRose, R., Mastro, D., & Eastin, M. S. (2001). Understanding Internet usage: A social-cognitive approach to uses and gratifications. Social Science Computer Review, 19, 395– 413. https://doi.org/10.1177/089443930101900401 Lipsey, M. W., & Wilson, D. B. (2001). Practical meta-analysis. Sage. Lovibond, S. H., & Lovibond, P. F. (1995). Manual for the depression anxiety stress scales (2nd. Ed.). Psychology Foundation. Lukat, J., Margraf, J., Lutz, R., van der Veld, W. M., & Becker, E. S. (2016). Psychometric properties of the Positive Mental Health Scale (PMH-scale). BMC Psychology, 4(1), 8. https://doi.org/10.1186/s40359-016-0111-x Marino, C., Gini, G., Vieno, A., & Spada, M. M. (2018a). The associations between problematic Facebook use, psycho- logical distress and well-being among adolescents and young adults: A systematic review and meta-analysis. Journal of Affective Disorders, 226, 274–281. https://doi. org/10.1016/j.jad.2017.10.007 Marino, C., Gini, G., Vieno, A., & Spada, M. M. (2018b). A comprehensive meta-analysis on problematic Facebook use. Computers in Human Behavior, 83, 262–277. https:// doi.org/10.1016/j.chb.2018.02.009 McShane, B. B., Böckenholt, U., & Hansen, K. T. (2016). Adjusting for publication bias in meta-analysis: an evalu- ation of selection methods and some cautionary notes. Perspectives on Psychological Science, 11, 730–749. https://doi.org/10.1177/1745691616662243 Meerkerk, G. (2007). Pwned by the Internet. Explorative research into the causes and consequences of compulsive internet use. Rotterdam, Netherland: Erasmus Universiteit Rotterdam. Miele, G. M., Tilly, S. M., First, M., & Frances, A. (1990). The definition of dependence and behavioural addictions. British Journal of Addiction, 85(11), 1421–1423. https:// doi.org/10.1111/j.1360-0443.1990.tb01623.x Montgomery, S. A., & Åsberg, M. (1979). A new depression scale designed to be sensitive to change. British Journal of Psychiatry, 134, 382–389. https://doi.org/10.1192/ bjp.134.4.382 Moqbel, M., & Kock, N. (2018). Unveiling the dark side of social networking sites: Personal and work-related consequences of social networking site addiction. Information & Management, 55, 109–119. https://doi.org/10.1016/j.im.2017.05.001 Pavot, W., & Diener, E. (1993). Review of the satisfaction with life scale. Psychological Assessment, 5, 164–172. https:// doi.org/10.1037/1040-3590.5.2.164 Pluhar, E., Kavanaugh, J. R., Levinson, J. A., & Rich, M. (2019). Problematic interactive media use in teens: comor- bidities, assessment, and treatment. Psychology Research and Behavior Management, 12, 447–455. https://doi. org/10.2147/prbm.s208968 Pontes, H. M. (2017). Investigating the differential effects of social networking site addiction and internet gaming disorder on psychological health. Journal of Behavioral Addictions, 6, 601–610. https://doi.org/10.1556/2006.6.2017.075 Radloff, L. S. (1977). The CES-D scale: A self-report depres- sion scale for research in the general population. Applied Psychological Measurement, 1, 385–401. https://doi. org/10.1177/014662167700100306 Robins, R.W., Hendin, H. M., & Trzesniewski, K. H. (2001). Measuring global self-esteem: construct validation of a single-item measure and the Rosenberg self-esteem scale. Personality and Social Psychology Bulletin, 27, 151–161. https://doi.org/10.1177/0146167201272002 Rosenberg, M. (1965). Society and the adolescent self-image. Princeton University Press. Russell, D., Peplau, L. A., & Cutrona, C. E. (1980). The revised UCLA Loneliness Scale: Concurrent and discriminant valid- ity evidence. Journal of Personality and Social Psychology, 39, 472–480. https://doi.org/10.1037/0022-3514.39.3.472 Ryan, T., Chester, A., Reece, J., & Xenos, S. (2014). The uses and abuses of Facebook: A review of Facebook addiction. Journal of Behavioral Addictions, 3, 133–148. https://doi. org/10.1556/JBA.3.2014.016 Salokangas, R. K. R., Poutanen, O., & Stengård, E. (1995). Screening for depression in primary care: Development and validation of the depression scale, a screening instru- ment for depression. Acta Psychiatrica Scandinavica, 92(1), 10–16. https://doi.org/10.1111/j.1600-0447.1995.tb09536.x Santen, G., Gomeni, R., Danhof, M., & Pasqua, O. D. (2008). Sensitivity of the individual items of the Hamilton depression rating scale to response and its consequences for the assessment of efficacy. Journal of Psychiatric Research, 42, 1000–1009. https://doi.org/10.1016/j.jpsy- chires.2007.11.004 Satici, S. A. (2018). Facebook addiction and subjective well- being: A study of the mediating role of shyness and loneli- ness. International Journal of Mental Health and Addiction, 17(1), 41–55. https://doi.org/10.1007/s11469-017-9862-8 Satici, S. A., & Uysal, R. (2015). Well-being and problematic Facebook use. Computers in Human Behavior, 49, 185– 190. https://doi.org/10.1016/j.chb.2015.03.005 Schmitt David, P., & Allik, J. (2005). Simultaneous adminis- tration of the Rosenberg self-esteem scale in 53 nations: Exploring the universal and culture-specific features of global self-esteem. Journal of Personality and Social Psychology, 89, 623–642. https://doi.org/10.1037/0022- 3514.89.4.623 Stevens, M. W. R., King, D. L., Dorstyn, D., & Delfabbro, P. H. (2019). Cognitive-behavioral therapy for internet gaming disorder: a systematic review and meta-analysis. Clinical Psychology and Psychotherapy, 26, 191–203. https://doi. org/10.1002/cpp.2341 Szabó, B. (2010). The short version of the Depression Anxiety Stress Scales (DASS-21): Factor structure in a young ado- lescent sample. Journal of Adolescence, 33, 1–8. https://doi. org/10.1016/j.adolescence.2009.05.014 Tang, C. S., Koh, Y. W., & Gan, Y. (2017). Addiction to Internet use, online gaming, and online social networking among young adults in China, Singapore, and the United States. Asia-Pacific Journal of Public Health, 29, 673–682. https:// doi.org/10.1177/1010539517739558 Turel, O., & Qahri-Saremi, H. (2016) Problematic use of social networking sites: antecedents and consequence from a dual system theory perspective. Journal of Management Information Systems, 33, 1087–1116. https://doi.org/10.10 80/07421222.2016.1267529 https://doi.org/10.5812/ijhrba.61775 https://doi.org/10.5812/ijhrba.61775 https://doi.org/10.1177/089443930101900401 https://doi.org/10.1186/s40359-016-0111-xhttps://doi.org/10.1016/j.jad.2017.10.007 https://doi.org/10.1016/j.jad.2017.10.007 https://doi.org/10.1016/j.chb.2018.02.009 https://doi.org/10.1016/j.chb.2018.02.009 https://doi.org/10.1177/1745691616662243 https://doi.org/10.1111/j.1360-0443.1990.tb01623.x https://doi.org/10.1111/j.1360-0443.1990.tb01623.x https://doi.org/10.1192/bjp.134.4.382 https://doi.org/10.1192/bjp.134.4.382 https://doi.org/10.1016/j.im.2017.05.001 https://doi.org/10.1037/1040-3590.5.2.164 https://doi.org/10.1037/1040-3590.5.2.164 https://doi.org/10.2147/prbm.s208968 https://doi.org/10.2147/prbm.s208968 https://doi.org/10.1556/2006.6.2017.075 https://doi.org/10.1177/014662167700100306 https://doi.org/10.1177/014662167700100306 https://doi.org/10.1177/0146167201272002 https://doi.org/10.1037/0022-3514.39.3.472 https://doi.org/10.1556/JBA.3.2014.016 https://doi.org/10.1556/JBA.3.2014.016 https://doi.org/10.1111/j.1600-0447.1995.tb09536.x https://doi.org/10.1016/j.jpsychires.2007.11.004 https://doi.org/10.1016/j.jpsychires.2007.11.004 https://doi.org/10.1007/s11469-017-9862-8 https://doi.org/10.1016/j.chb.2015.03.005 https://doi.org/10.1037/0022-3514.89.4.623 https://doi.org/10.1037/0022-3514.89.4.623 https://doi.org/10.1002/cpp.2341 https://doi.org/10.1002/cpp.2341 https://doi.org/10.1016/j.adolescence.2009.05.014 https://doi.org/10.1016/j.adolescence.2009.05.014 https://doi.org/10.1177/1010539517739558 https://doi.org/10.1177/1010539517739558 https://doi.org/10.1080/07421222.2016.1267529 https://doi.org/10.1080/07421222.2016.1267529 Huang 17 Uysal, R., Satici, S. A., & Akin, A. (2013). Mediating effect of Facebook addiction on the relationship between subjective vitality and subjective happiness. Psychological Reports, 113, 948–953. https://doi.org/10.2466/02.09.18.PR0.113x32z3 van den Eijnden, R., Koning, I., Doornwaard, S., van Gurp, F., & Bogt, T. T. (2018). The impact of heavy and dis- ordered use of games and social media on adoles- cents' psychological, social, and school functioning. Journal of Behavioral Addiction, 7, 697–706. https://doi. org/10.1556/2006.7.2018.65 van den Eijnden, R., Lemmens, J. S., & Valkenburg, P. M. (2016). The social media disorder scale. Computers in Human Behavior, 61, 478–487. https://doi.org/10.1016/j. chb.2016.03.038 Vangeel, J., De Cock, R., Klein, A., Minotte, P., Rosas, O., & Meerkerk, G. (2016). Compulsive use of social networking sites among secondary school adolescents in Belgium. In M. Walrave, K. Ponnet, E. Vanderhoven, J. Haers, & B. Segaert (Eds.). Youth 2.0: Social media and adolescence (pp. 179– 191). Springer International Publishing. Verma, J., & Kumari, A. (2016). A study on addiction to social networking sites and psychological well being among work- ing adults. International Journal of Humanities and Social Sciences, 5, 153–161. Wan, C. (2009). Gratifications and loneliness as predictors of campus-SNS websites addiction and usage pattern among Chinese college students. (Unpublished Master’s Thesis) Chinese University of Hong Kong, Hong Kong. Winkler, A., Dorsing, B., Rief, W., Shen, Y., & Glombiewski, J. A. (2013). Treatment of internet addiction: a meta-anal- ysis. Clinical Psychology Review, 33, 317–329. https://doi. org/10.1016/j.cpr.2012.12.005 Worsley, J.D., McIntyre, J. C., Bentall, R. P., & Corcoran, R. (2018). Childhood maltreatment and problematic social media use: The role of attachment and depression. Psychiatry Research, 267, 88–93. https://doi.org/10.1016/j. psychres.2018.05.023. Young, K. (1998). Internet addiction: The emergence of a new clinical disorder. CyberPsychology & Behavior, 1, 237– 244. https://doi.org/10.1089/cpb.1998.1.237 Appendix Included Studies Abbasi, I. S., & Drouin, M. (2019). Neuroticism and Facebook addiction: How social media can affect mood? American Journal of Family Therapy, 4, 199–215. https://doi.org/10 .1080/01926187.2019.1624223 AbuDamous, H. (2020). The relationship between social media use, depression, and anxiety in the Xennial Generation (Doctoral dissertation). ProQuest Dissertations and Theses Global. (UMI No. 27997493) Akin, A., & Akin, U. (2015). The mediating role of social safe- ness on the relationship between Facebook® use and life satisfaction. Psychological Reports, 117, 341–353. https:// https://doi.org/.org/:10.2466/18.07.PR0.117c20z9 Al Mamun, M. A., & Griffiths, M. D. (2019). The associa- tion between Facebook addiction and depression: A pilot survey study among Bangladeshi students. Psychiatry Research, 271, 628–633. https://doi.org/10.1016/j.psy- chres.2018.12.039. Aladwani, A. M., & Almarzouq, M. (2016). Understanding com- pulsive social media use: The premise of complementing self-conceptions mismatch with technology. Computers in Human Behavior, 60, 575–581. https://doi.org/10.1016/j. chb.2016.02.098 Andreassen, C. S., Billieux, J., Griffiths, M. D., Kuss, D. J., Demetrovics, Z., Mazzoni, E., & Pallesen, S. (2016). The relationship between addictive use of social media and video games and symptoms of psychiatric disorders: A large-scale cross-sectional study. Psychology of Addictive Behaviors, 30, 252–262. https://doi.org/10.1037/adb0000160 Andreassen, C. S., Pallesen, S., & Griffiths, M. D. (2017). The relationship between addictive use of social media, narcis- sism, and self-esteem: Findings from a large national sur- vey. Addictive Behaviors, 64, 287–293. https://https://doi. org/.org/:10.1016/j.addbeh.2016.03.006 Apaolaza, V., Hartmann, P., D'Souza, C., & Gilsanz, A. (2019). Mindfulness, compulsive mobile social media use, and derived stress: The mediating roles of self-esteem and social anxiety. Cyberpsychology, Behavior, and Social Networking, 22, 388–396. https://doi.org/10.1089/cyber. 2018.0681 Atroszko, P. A., Balcerowska, J. M., Bereznowski, P., Biernatowska, A., Pallesen, S., & Andreassen, C. S. (2018). Facebook addiction among Polish undergraduate students: Validity of measurement and relationship with personality and well-being. Computers in Human Behavior, 85, 329– 338. https://doi.org/10.1016/j.chb.2018.04.001 Aydin, O., Çökmüş, F. P., Balikçi, K., Sücüllüoğlu-Dikici, D., & Ünal-Aydin, P. (2020). The problematic use of social net- working sites associates with elevated symptoms in patients with major depressive disorder. International Journal of Social Psychiatry. Advanced online publication. https://doi. org/10.1177/0020764020919791 Balcerowska, J. M., Bereznowski, P., Biernatowska, A., Atroszko, P. A., Pallesen, S., & Andreassen, C. S. (2020). Is it meaningful to distinguish between Facebook addic- tion and social networking sites addiction? Psychometric analysis of Facebook addiction and social networking sites addiction scales. Current Psychology. Advanced online publication. https://doi.org/10.1007/s12144-020-00625-3 Balci, Ş., & Gölcü, A. (2013). Facebook addiction among uni- versity students in Turkey: “Selcuk University example”. Journal of Studies in Turkology, 34, 255–278. http://dx.doi. org/10.4103/2278-344x.149234 Balci, Ş., & Tiryaki, S. (2014). Facebook addiction among high school students in Turkey. Paper presented at 10th International Academic Conference. Vienna. Baturay, M. H., & Toker, S. (2017). Self-esteem shapes the impact of GPA and general health on Facebook addiction: A mediation analysis. Social Science Computer Review, 35, 555–575. https://doi.org/10.1177/08944393166566 Bérail, P., Guillon, M., & Bungener, C. (2019). The relations between YouTube addiction, social anxiety and paraso- cial relationships with YouTubers: A moderated-media- tion model based on a cognitive-behavioral framework. Computers in Human Behavior, 99, 190–204. https://doi. org/10.1016/j.chb.2019.05.007 https://doi.org/10.2466/02.09.18.PR0.113x32z3 https://doi.org/10.1556/2006.7.2018.65 https://doi.org/10.1556/2006.7.2018.65 https://doi.org/10.1016/j.chb.2016.03.038 https://doi.org/10.1016/j.chb.2016.03.038 https://doi.org/10.1016/j.cpr.2012.12.005 https://doi.org/10.1016/j.cpr.2012.12.005 https://doi.org/10.1016/j.psychres.2018.05.023https://doi.org/10.1016/j.psychres.2018.05.023 https://doi.org/10.1089/cpb.1998.1.237 https://doi.org/10.1080/01926187.2019.1624223 https://doi.org/10.1080/01926187.2019.1624223 https://https://doi.org/.org/:10.2466/18.07.PR0.117c20z9 https://https://doi.org/.org/:10.2466/18.07.PR0.117c20z9 https://doi.org/10.1016/j.psychres.2018.12.039 https://doi.org/10.1016/j.psychres.2018.12.039 https://doi.org/10.1016/j.chb.2016.02.098 https://doi.org/10.1016/j.chb.2016.02.098 https://doi.org/10.1037/adb0000160 https://https://doi.org/.org/:10.1016/j.addbeh.2016.03.006 https://https://doi.org/.org/:10.1016/j.addbeh.2016.03.006 https://doi.org/10.1089/cyber.2018.0681 https://doi.org/10.1089/cyber.2018.0681 https://doi.org/10.1016/j.chb.2018.04.001 https://doi.org/10.1177/0020764020919791 https://doi.org/10.1177/0020764020919791 https://doi.org/10.1007/s12144-020-00625-3 http://dx.doi.org/10.4103/2278-344x.149234 http://dx.doi.org/10.4103/2278-344x.149234 https://doi.org/10.1177/08944393166566 https://doi.org/10.1016/j.chb.2019.05.007 https://doi.org/10.1016/j.chb.2019.05.007 18 International Journal of Social Psychiatry 00(0) Biolcati, R., Mancini, G., Pupi, V., & Mugheddu, V. (2018). Facebook addiction: Onset predictors. Journal of Clinical Medicine, 7, 118. https://doi.org/10.3390/jcm7060118 Błachnio, A., & Przepiórka, A. (2018). Facebook intrusion, fear of missing out, narcissism, and life satisfaction: A cross- sectional study. Psychiatry Research, 259, 514–519. https:// doi.org/10.1016/j.psychres.2017.11.012 Błachnio, A., & Przepiórka, A. (2019). Be aware! If you start using Facebook problematically you will feel lonely: Phubbing, loneliness, self-esteem, and Facebook intrusion. A cross-sectional study. Social Science Computer Review, 37, 270–278. https://doi.org/10.1177/0894439318754490 Błachnio, A., Przepiorka, A., Benvenuti, M., Mazzoni, E., & Seidman, G. (2019). Relations between Facebook intru- sion, Internet addiction, life satisfaction, and self-esteem: A study in Italy and the USA. International Journal of Mental Health and Addiction, 17, 793–805. https://doi.org/10.1007/ s11469-018-0038-y Błachnio, A., Przepiórka, A., & Pantic, I. (2015). Internet use, Facebook intrusion, and depression: Results of a cross-sec- tional study. European Psychiatry, 30, 681–684. https://doi. org/10.1016/j.eurpsy.2015.04.002 Błachnio, A., Przepiorka, A., & Pantic, I. (2016). Association between Facebook addiction, self-esteem and life satisfac- tion: A cross-sectional study. Computers in Human Behavior, 55, 701–705. https://doi.org/10.1016/j.chb.2015.10.026 Boer, M., van den Eijnden, R. J. J. M., Boniel-Nissim, M., Wong, S.-L., Inchley, J. C., Badura, P., Craig, W. M., Gobina, I., Kleszczewska, D., KlanščekK, H. J., & Stevens, G. W. J. M. (2020). Adolescents’ intense and problematic social media use and their well-being in 29 countries. Journal of Adolescent Health, 66, S89e100. https://doi.org/10.1016/j. jadohealth.2020.02.014 Brailovskaia, J., & Margraf, J. (2017). Facebook addiction disorder (FAD) among German students–A longitudi- nal approach. PLoS ONE, 12(12), e0189719. https://doi. org/10.1371/journal.pone.0189719 Brailovskaia, J., Rohmann, E., Bierhoff, H. W., Margraf, J., & Köllner, V. (2019). Relationships between addictive Facebook use, depressiveness, insomnia, and positive men- tal health in an inpatient sample: A German longitudinal study. Journal of Behavioral Addictictions, 8, 703–713. https://doi.org/10.1556/2006.8.2019.63 Brailovskaia, J., Schillack, H., & Margraf, J. (2018). Facebook addiction disorder in Germany. Cyberpsychology, Behavior, and Social Networking, 21, 450–456. https://doi. org/10.1089/cyber.2018.0140 Brailovskaia, J., Teismann, T., & Margraf, J. (2018). Physical activity mediates the association between daily stress and Facebook addiction disorder (FAD)—A longitu- dinal approach among German students. Computers in Human Behavior, 86, 199–204. https://doi.org/10.1016/j. chb.2018.04.045 Brailovskaia, J., Velten, J., & Margaf, J. (2019). Relationship between daily stress, depression symptoms, and Facebook addiction disorder in Germany and in the United States. Cyberpsychology, Behavior, and Social Networking, 22, 610–614. https://doi.org/10.1089/cyber.2019.0165 Brown, L. (2016). Type of online activities and psychological well-being among African American, white American, and Latino American college students (Doctoral dissertation). Available from ProQuest Dissertations and Theses Global. (UMI No. 10003187) Burnell, K., & Kuther, T. L. (2016). Predictors of mobile phone and social networking site dependency in adulthood. Cyberpsychology, Behavior, and Social Networking, 19, 621–627. https://doi.org/10.1089/cyber.2016.0209 Cargill, M. (2019). The relationship between social media addic- tion, anxiety, the fear of missing out, and interpersonal problems (Doctoral dissertation). Available from ProQuest Dissertations and Theses Global. (UMI No. 27525187) Casale, S., & Fioravanti, G. (2015). Satisfying needs through social networking sites: A pathway towards problem- atic Internet use for socially anxious people? Addictive Behaviors Reports 1, 34–39. http://dx.doi.org/10.1016/j. abrep.2015.03.008 Chabrol, H., Laconi, S., Delfour, M., & Moreau, A. (2017). Contributions of psychopathological and interpersonal vari- ables to problematic Facebook use in adolescents and young adults. International Journal of High Risk Behaviors and Addiction, 6, e32773. https://doi.org/10.5812/ijhrba.32773 Chae, D., Kim, H., & Kim, Y. A. (2018). Sex differences in the factors influencing Korean college students’ addictive ten- dency toward social networking sites. International Journal of Mental Health and Addiction, 16, 339–350. https://doi. org/10.1007/s11469-017-9778-3 Chavez, G.B., & Chavez, F. C. (2017). Relationship between Facebook addiction and loneliness of Filipino high school students. Liceo Journal of Higher Education Research, 13(1), 50–60. http://dx.doi.org/10.7828/ljher.v13i1.1008 Chen, I.-H., Pakpour, A. H., Leung, H., Potenza, M. N., Su, J.-A., Lin, C.-Y., & Griffiths, M. D. (2020). Comparing generalized and specific problematic smartphone/Internet use: Longitudinal relationships between smartphone application-based addiction and social media addic- tion and psychological distress. Journal of Behavioral Addictions. Advanced online publication. http://dx.doi. org/10.1556/2006.2020.00023 Choi, S. B., & Lim, M. S. (2016). Effects of social and technol- ogy overload on psychological well-being in young South Korean adults: The mediatory role of social network service addiction. Computers in Human Behavior, 61, 245–254. https://doi.org/10.1016/j.chb.2016.03.032 Crowell, B. R. (2015). The role of personality, self-esteem, and life satisfaction in regards to social networking: An exami- nation of Facebook users (Doctoral dissertation). Available from ProQuest Dissertations and Theses Global. (UMI No. 3631577) Cudo, A., Szewczyk, M., Błachnio, A., Przepiórka, A., & Jarząbek-Cudo, A. (2019). The role of depression and self- esteem in Facebook intrusion and gaming disorder among young adult gamers. Psychiatric Quarterly, 91, 65-76. https://doi.org/10.1007/s11126-019-09685-6 da Veiga, G. F., Sotero, L., Pontes, H. M., Cunha, D., Portugal, A., & Relvas, A. P. (2019).Emerging adults and Facebook use: The validation of the Bergen Facebook Addiction Scale (BFAS). International Journal of Mental Health and Addiction, 17, 279–294. https://doi.org/10.1007/s11469-018-0018-2 De Cock, R., Vangeel, J., Klein, A., Minotte, P., Rosas, O., & Meerkerk, G. (2014). Compulsive use of social networking https://doi.org/10.3390/jcm7060118 https://doi.org/10.1016/j.psychres.2017.11.012 https://doi.org/10.1016/j.psychres.2017.11.012 https://doi.org/10.1177/0894439318754490 https://doi.org/10.1007/s11469-018-0038-y https://doi.org/10.1007/s11469-018-0038-y https://doi.org/10.1016/j.eurpsy.2015.04.002 https://doi.org/10.1016/j.eurpsy.2015.04.002https://doi.org/10.1016/j.chb.2015.10.026 https://doi.org/10.1016/j.jadohealth.2020.02.014 https://doi.org/10.1016/j.jadohealth.2020.02.014 https://doi.org/10.1371/journal.pone.0189719 https://doi.org/10.1371/journal.pone.0189719 https://doi.org/10.1556/2006.8.2019.63 https://doi.org/10.1089/cyber.2018.0140 https://doi.org/10.1089/cyber.2018.0140 https://doi.org/10.1016/j.chb.2018.04.045 https://doi.org/10.1016/j.chb.2018.04.045 https://doi.org/10.1089/cyber.2019.0165 https://doi.org/10.1089/cyber.2016.0209 http://dx.doi.org/10.1016/j.abrep.2015.03.008 http://dx.doi.org/10.1016/j.abrep.2015.03.008 https://doi.org/10.5812/ijhrba.32773 https://doi.org/10.1007/s11469-017-9778-3 https://doi.org/10.1007/s11469-017-9778-3 http://dx.doi.org/10.7828/ljher.v13i1.1008 http://dx.doi.org/10.1556/2006.2020.00023 http://dx.doi.org/10.1556/2006.2020.00023 https://doi.org/10.1016/j.chb.2016.03.032 https://doi.org/10.1007/s11126-019-09685-6 https://doi.org/10.1007/s11469-018-0018-2 Huang 19 sites in Belgium: Prevalence, profile, and the role of attitude toward work and school. Cyberpsychology, Behavior, and Social Networking, 17, 166–171. https://doi.org/10.1089/ cyber.2013.0029 Dempsey, A. E., O’Brien, K. D., Tiamiyu, M. F., & Elhai, J. D. (2019). Fear of missing out (FoMO) and rumination mediate relations between social anxiety and problematic Facebook use. Addictive Behaviors Reports, 9, 100150. https://doi. org/10.1016/j.abrep.2018.100150 Dhir, A. (2018). Online social media fatigue and psychologi- cal wellbeing—A study of compulsive use, fear of missing out, fatigue, anxiety and depression. International Journal of Information Management, 40, 141–152. https://doi. org/10.1016/j.ijinfomgt.2018.01.012 Durak, H. Y. (2018). Modeling of variables related to problem- atic internet usage and problematic social media usage in adolescents. Current Psychology, 39(4), 1375–1387. https:// doi.org/10.1007/s12144-018-9840-8 Durak, H. Y., & Seferoğlu, S. S. (2019). Modeling of variables related to problematic social media usage: Social desirabil- ity tendency example. Scandinavian Journal of Psychology, 60, 277–288. https://doi.org/10.1111/sjop.12530 Gerhart, N. (2017). Technology addiction: How social network sites impact our lives. Informing Science, 20, 179–194. https://doi.org/10.28945/3851 Giota, K. G., & Kleftaras, G. (2013). The role of personality and depression in problematic use of social networking sites in Greece. Cyberpsychology, 7(3), article 1. https://doi. org/10.5817/CP201336 Guven, L. (2019). Relationship between social media use, self-esteem and satisfaction with life (Master’s Thesis). Available from ProQuest Dissertations and Theses Global. (UMI No. 13419382) Hawi, N. S., & Samaha, M. (2017). The relations among social media addiction, self-esteem, and life satisfaction in univer- sity students. Social Science Computer Review, 35, 576– 586. https://doi.org/10.1177/0894439316660340 Hawi, N. S., & Samaha, M. (2019). Identifying commonalities and differences in personality characteristics of Internet and social media addiction profiles: traits, self-esteem, and self-construal. Behaviour & Information Technology, 38, 110–119. https://doi.org/10.1080/0144929X.2018.1515984 Holmgren, H. G., & Coyne, S. M. (2017). Can’t stop scrolling! Pathological use of social networking sites in emerging adulthood. Addiction Research and Theory, 25, 375–382. http://dx.doi.org/10.1080/16066359.2017.1294164 Hong, F. Y., Huang, D. H., Lin, H. Y., & Chiu, S. L. (2014). Analysis of the psychological traits, Facebook usage, and Facebook addiction model of Taiwanese university stu- dents. Telematics and Informatics, 31, 597–606. https://doi. org/10.1016/j.tele.2014.01.001 Hou, J., Ndasauka, Y., Pan, X., Chen, S., Xu, F., & Zhang, X. (2018). Weibo or WeChat? Assessing preference for social networking sites and role of personality traits and psycho- logical factors. Frontiers in Psychology, 9, 545. https://doi. org/10.3389/fpsyg.2018.00545 Hussain, Z., & Griffiths, M. D. (2019). The Associations between problematic social networking site use and sleep quality, attention-deficit hyperactivity disorder, depres- sion, anxiety and stress. International Journal of Mental Health Addiction, Advanced online publication. https://doi. org/10.1007/s11469-019-00175-1 Hussain, Z., Simonovic, B., Stupple, E. J. N., & Austin, M. (2019). Using eye tracking to explore Facebook use and associations with Facebook addiction, mental well-being, and personality. Behavioral Sciences, 9(2), 19. Jasso-Medrano, J., & López-Rosales, F. (2018). Measuring the relationship between social media use and addictive behav- ior and depression and suicide ideation among university students. Computers in Human Behavior, 87, 183–191. https://doi.org/10.1016/j.chb.2018.05.003 Jeri-Yabar, A., Sanchez-Carbonel, A., Tito, K., Ramirez- delCastillo, J., Torres-Alcantara, A., Denegri, D., & Carreazo, Y. (2019). Association between social media use (Twitter, Instagram, Facebook) and depressive symp- toms: Are Twitter users at higher risk? International Journal of Social Psychiatry, 65, 14–19. https://doi. org/10.1177/0020764018814270 Kanat-Maymon, Y., Almog, L., Cohen, R., & Amichai- Hamburger, Y. (2018). Contingent self-worth and Facebook addiction. Computers in Human Behavior, 88, 227–235. https://doi.org/10.1016/j.chb.2018.07.011 Karakose, T., Yirci, R., Uygun, H., & Ozdemir, T. Y. (2016). Relationship between high school students’ Facebook addic- tion and loneliness status. Eurasia Journal of Mathematics, Science & Technology Education, 12, 2419–2429. https:// doi.org/10.12973/eurasia.2016.1557a Khattak, A. F., Ahmad, S., & Mohammad, H. (2017). Facebook addiction and depression: A comparative study of gender differences. Humanities and Social Sciences, 25, 55–62. Kim, H., & Park, D. (2015). Factors affecting Internet gaming addiction: SNS addiction tendencies, self-esteem, and inter- personal relationships among male middle school students. Indian Journal of Science and Technology, 8(S8), 212–218. https://doi.org/10.17485/ijst/2015/v8iS8/70509 Kircaburun, K. (2016). Self-esteem, daily Internet use and social media addiction as predictors of depression among Turkish adolescents. Journal of Education and Practice, 7, 64–72. Kircaburun, K., Demetrovics, Z., Király, O., & Griffiths, M. D. (2020). Childhood emotional trauma and cyberbullying perpetration among emerging adults: A multiple mediation model of the role of problematic social media use and psy- chopathology. International Journal of Mental Health and Addiction, 18, 548–566. https://doi.org/10.1007/s11469- 018-9941-5 Kircaburun, K., Demetrovics, Z., & Tosuntaş, Ş. B. (2019). Analyzing the links between problematic social media use, dark triad traits, and self-esteem. International Journal of Mental Health and Addiction, 17, 496–1507. https://doi. org/10.1007/s11469-018-9900-1 Kircaburun, K., Griffiths, M. D., & Billieux, J. (2019). Trait emo- tional intelligence and problematic online behaviors among adolescents: The mediating role of mindfulness, rumination, and depression. Personality and Individual Differences, 139, 208–213. https://doi.org/10.1016/j.paid.2018.11.024 Kircaburun, K., Griffiths, M. D., Şahin, F., Bahtiyar, M., Atmaca, T., & Tosuntaş, Ş. B. (2020). The mediating role of self/eve- ryday creativity and depression on the relationship between creative personality traits and problematic social media use among emerging adults. International Journal of Mental https://doi.org/10.1089/cyber.2013.0029 https://doi.org/10.1089/cyber.2013.0029 https://doi.org/10.1016/j.abrep.2018.100150 https://doi.org/10.1016/j.abrep.2018.100150 https://doi.org/10.1016/j.ijinfomgt.2018.01.012 https://doi.org/10.1016/j.ijinfomgt.2018.01.012 https://doi.org/10.1007/s12144-018-9840-8 https://doi.org/10.1007/s12144-018-9840-8 https://doi.org/10.1111/sjop.12530 https://doi.org/10.28945/3851 https://doi.org/10.5817/CP201336 https://doi.org/10.5817/CP201336https://doi.org/10.1177/0894439316660340 https://doi.org/10.1080/0144929X.2018.1515984 http://dx.doi.org/10.1080/16066359.2017.1294164 https://doi.org/10.1016/j.tele.2014.01.001 https://doi.org/10.1016/j.tele.2014.01.001 https://doi.org/10.3389/fpsyg.2018.00545 https://doi.org/10.3389/fpsyg.2018.00545 https://doi.org/10.1007/s11469-019-00175-1 https://doi.org/10.1007/s11469-019-00175-1 https://doi.org/10.1016/j.chb.2018.05.003 https://doi.org/10.1177/0020764018814270 https://doi.org/10.1177/0020764018814270 https://doi.org/10.1016/j.chb.2018.07.011 https://doi.org/10.12973/eurasia https://doi.org/10.12973/eurasia https://doi.org/10.17485/ijst/2015/v8iS8/70509 https://doi.org/10.1007/s11469-018-9941-5 https://doi.org/10.1007/s11469-018-9941-5 https://doi.org/10.1007/s11469-018-9900-1 https://doi.org/10.1007/s11469-018-9900-1 https://doi.org/10.1016/j.paid.2018.11.024 20 International Journal of Social Psychiatry 00(0) Health and Addiction, 18, 77–88. https://doi.org/10.1007/ s11469-018-9938-0 Kırcaburun, K., Kokkinos, C. M., Demetrovics, Z., Király, O., Griffiths, M. D., & Çolak, T. S. (2018). Problematic online behaviors among adolescents and emerging adults: Associations between cyberbullying perpetration, prob- lematic social media use, and psychosocial factors. International Journal of Mental Health and Addiction, 17, 891–908. https://doi.org/10.1007/s11469-018-9894-8 Koc, M., & Gulyagci, S. (2013). Facebook addiction among Turkish college students: The role of psychological health, demographic, and usage characteristics. CyberPsychology, Behavior, and Social Networking, 16, 279–284. https://doi. org/10.1089/cyber.2012.0249 Laconi, S., Verseillié, E., & Chabrol, H. (2018). Exploration of the problematic Twitter and Facebook uses and their relation- ships with psychopathological symptoms among Facebook users. International Journal of High Risk Behaviors & Addiction, 7, e61775. https://doi.org/10.5812/ijhrba.61775 LaRose, R., Wohn, D. Y., Ellison, N., & Steinfield, C. (2011). Facebook fiends: Compulsive social networking and adjustment to college. In Proceedings of the International Association for the Development of the Information Society. ICT 2011. Lee-Won, R., Herzog, L., & Park, S. G. (2015). Hooked on Facebook: The role of social anxiety and need for social assurance in problematic use of Facebook. Cyberpsychology, Behavior, and Social Networking, 18, 567–574. https://doi. org/10.1089/cyber.2015.0002 Li, B., Wu, Y., Jiang, S., & Zhai, H. (2018). WeChat addiction suppresses the impact of stressful life events on life satisfac- tion. Cyberpsychology, Behavior, & Social Networking, 21, 194–198. https://doi.org/10.1089/cyber.2017.0544 Lim, M. S. M., Cheung, F. Y. L., Kho, J. M., & Tang, C. S. (2019). Childhood adversity and behavioural addictions: The mediating role of emotion dysregulation and depres- sion in an adult community sample. Addiction Research & Theory, 28, 116–123. https://doi.org/10.1080/16066359.20 19.1594203 Lin, C.-Y., Broström, A., Nilsen, P., Griffiths, M. D., & Pakpour, A. H. (2017). Psychometric validation of the Persian Bergen social media addiction scale using classic test theory and Rasch models. Journal of Behavioral Addictions, 6, 620– 629. https://doi.org/10.1556/2006.6.2017.071 Lin, C.-Y., Imani, V., Griffiths, M. D., Broström, A., Nygårdh, A., Demetrovics, Z., & Pakpour, A. H. (2020). Temporal associations between morningness/eveningness, problem- atic social media use, psychological distress and daytime sleepiness: Mediated roles of sleep quality and insomnia among young adults. Journal of Sleep Research, e13076. https://doi.org/10.1111/jsr.13076 Liu, C., & Ma, J. (2018). Development and validation of the Chinese social media addiction scale. Personality and Individual Differences, 134, 55–59. https://doi. org/10.1016/j.paid.2018.05.046 Majid, A., Yasir, M., Javed, A., & Ali, P. (2019). From envy to social anxiety and rumination: How social networking sites addiction is triggering task distraction among nurses? Journal of Nursing Management. Advanced online publica- tion. https://doi.org/10.1111/jonm.12948 Malik, S., & Khan, M. (2015). Impact of Facebook addiction on narcissistic behavior and self-esteem among students. Journal of the Pakistan Medical Association, 65, 260–263. Martinez-Pecino, R., & Garcia-Gavilán, M. (2019). Likes and problematic Instagram use: the moderating role of self- esteem. Cyberpsychology, Behavior, and Social Networking, 22, 412–416. https://doi.org/10.1089/cyber.2018.0701 Mennig, M., Tennie, S., & Barke, A. (2020). A psychometric approach to assessments of problematic use of online por- nography and social networking sites based on the concep- tualizations of internet gaming disorder. BMC Psychiatry, 20, 318. https://doi.org/10.1186/s12888-020-02702-0 Milošević-Đorđević, J. S., & Žeželj, I. L. (2014). Psychological predictors of addictive social networking sites use: The case of Serbia. Computers in Human Behavior, 32, 229–234. https://doi.org/10.1016/j.chb.2013.12.018 Mitra, R., & Rangaswamy, M. (2019). Excessive social media use and its association with depression and rumination in an Indian young adult population: A mediation model. Journal of Psychosocial Research, 14, 223–231. https://doi. org/10.32381/JPR.2019.14.01.24 Ndasauka, Y., Hou, J., Wang, Y., Yang, L., Yang, Z., Ye, Z., Hao, Y., Fallgatter, A. J., Kong, Y., & Zhang, X. (2016). Excessive use of Twitter among college students in the UK: validation of the microblog excessive use scale and rela- tionship to social interaction and loneliness. Computers in Human Behavior, 55, 963–971. http://dx.doi.org/10.1016/j. chb.2015.10.020 Omar, B., & Subramanian, K. (2013). Addicted to Facebook: Examining the roles of personality characteristics, gratifica- tions sought and Facebook exposure among youths. GSTF International Journal on Media & Communications, 1, 54– 65. http://dx.doi.org/10.5176/2335-6618_1.1.6 Ponnusamy, S., Iranmanesh, M., Foroughi, B., & Hyun, S. S. (2020). Drivers and outcomes of Instagram addiction: Psychological well-being as moderator. Computers in Human Behavior, 107, 106294. https://doi.org/10.1016/j.chb.2020.106294 Pontes, H. M. (2017). Investigating the differential effects of social networking site addiction and internet gaming disorder on psychological health. Journal of Behavioral Addictions, 6, 601–610. https://doi.org/10.1556/2006.6.2017.075 Pontes, H. M., Taylor, M., & Stavropoulos, V. (2018). Beyond ‘Facebook addiction’: The role of cognitive-related fac- tors and psychiatric distress in social networking addiction. CyberPsychology, Behavior and Social Networking, 21, 240–247. https://doi.org/10.1089/cyber.2017.0609 Przepiórka, A., & Błachnio, A. (2020). The role of Facebook intrusion, depression, and future time perspective in sleep problems among adolescents. Research on Adolescence, 30, 559–569. https://doi.org/10.1111/jora.12543 Rajesh, T., & Rangaiah, B. (2020). Facebook addiction and per- sonality. Heliyon, 6(1), e03184. https://doi.org/10.1016/j. heliyon.2020.e03184 Raudsepp, L. (2015). Brief report: Problematic social media use and sleep disturbances are longitudinally associ- ated with depressive symptoms in adolescents. Journal of Adolescence, 76, 197–201. https://doi.org/10.1016/j.adoles- cence.2019.09.005 Robinson, A., Bonnette, A., Howard, K., Ceballos, N., Dailey, S., Lu, Y., & Grimes, T. (2019). Social comparisons, https://doi.org/10.1007/s11469-018-9938-0 https://doi.org/10.1007/s11469-018-9938-0 https://doi.org/10.1007/s11469-018-9894-8 https://doi.org/10.1089/cyber.2012.0249 https://doi.org/10.1089/cyber.2012.0249 https://doi.org/10.5812/ijhrba.61775 https://doi.org/10.1089/cyber.2015.0002 https://doi.org/10.1089/cyber.2015.0002 https://doi.org/10.1089/cyber.2017.0544 https://doi.org/10.1080/16066359.2019.1594203 https://doi.org/10.1080/16066359.2019.1594203 https://doi.org/10.1556/2006.6.2017.071 https://doi.org/10.1111/jsr.13076 https://doi.org/10.1016/j.paid.2018.05.046https://doi.org/10.1016/j.paid.2018.05.046 https://doi.org/10.1111/jonm.12948 https://doi.org/10.1089/cyber.2018.0701 https://doi.org/10.1186/s12888-020-02702-0 https://doi.org/10.1016/j.chb.2013.12.018 https://doi.org/10.32381/JPR.2019.14.01.24 https://doi.org/10.32381/JPR.2019.14.01.24 http://dx.doi.org/10.1016/j.chb.2015.10.020 http://dx.doi.org/10.1016/j.chb.2015.10.020 http://dx.doi.org/10.5176/2335-6618_1.1.6 https://doi.org/10.1016/j.chb.2020.106294 https://doi.org/10.1556/2006.6.2017.075 https://doi.org/10.1089/cyber.2017.0609 https://doi.org/10.1111/jora.12543 https://doi.org/10.1016/j.heliyon.2020.e03184 https://doi.org/10.1016/j.heliyon.2020.e03184 https://doi.org/10.1016/j.adolescence.2019.09.005 https://doi.org/10.1016/j.adolescence.2019.09.005 Huang 21 social media addiction, and social interaction: An exami- nation of specific social media behaviors related to major depressive disorder in a millennial population. Journal of Applied Biobehavioral Research, 24, e12158. https://doi. org/10.1111/jabr.12158 Şahin, C. (2017). The predictive level of social media addiction for life satisfaction: A study on university students. The Turkish Online Journal of Educational Technology, 16(4), 120–125. Saleem, M., Irshad, R., Zafar, M., & Tahir, M. A. (2016). Facebook addiction causing loneliness among higher learn- ing students of Pakistan: A linear relationship. Journal of Applied and Emerging Sciences, 5, 26–31. Satici, S. A. (2019). Facebook addiction and subjective well- being: A study of the mediating role of shyness and loneli- ness. International Journal of Mental Health and Addiction, 17, 41–55. https://doi.org/10.1007/s11469-017-9862-8 Satici, S. A., & Uysal, R. (2015). Well-being and problematic Facebook use. Computers in Human Behavior, 49, 185– 190. https://doi.org/10.1016/j.chb.2015.03.005 Savci, M., Ercengiz, M., & Aysan, F. (2018). Turkish adap- tation of the social media disorder scale. Archives of Neuropsychiatry, 55, 248–255. https://doi.org/10.29399/ npa.19285. Sheldon, P., Antony, M. G., & Sykes, B. (2020). Predictors of problematic social media use: Personality and life-position indicators. Psychological Reports. Advance online publica- tion. https://doi.org/10.1177/0033294120934706 Shettar, M., Karkal, R., Kakunje, A., Mendonsa, R. D., & Chandran, V. V. M. (2017). Facebook addiction and loneli- ness in the post-graduate students of a university in southern India. International Journal of Social Psychiatry, 63, 325– 329. https://doi.org/10.1177/0020764017705895 Soraci, P., Ferrari, A., Barberis, N., Luvarà, G., Urso, A., Del Fante, E., & Griffiths, M. D. (2020). Psychometric analysis and validation of the Italian Bergen Facebook Addiction Scale. International Journal of Mental Health and Addiction. Advanced online publication. https://doi. org/10.1007/s11469-020-00346-5 Spraggins, A. (2009). Problematic use of online social network- ing sites for college students: Prevalence, predictors, and association with well-being addiction (Doctoral disserta- tion). Available from ProQuest Dissertations and Theses Global. (UMI No. 3425498) Steggink, B. W. (2015). Facebook addiction: Where does it come from? A study based on the Bergen Facebook addiction scale (Unpublished Master thesis). University of Twente, Netherlands. Stockdale, L. A., & Coyne, S. M. (2020). Bored and online: Reasons for using social media, problematic social net- working site use, and behavioral outcomes across the tran- sition from adolescence to emerging adulthood. Journal of Adolescence, 79, 173–183. https://doi.org/10.1016/j.adoles- cence.2020.01.010. Tesi, A. (2018). Social network sites addiction, internet addiction and individual differences: The role of big-five personality traits, behavioral inhibition/activation systems and loneli- ness. Applied Psychology Bulletin, 282(66), 32-44. Turel, O., Poppa, N. T., & Gil-Or, O. (2018). Neuroticism magnifies the detrimental association between social media addiction symptoms and wellbeing in women, but not in men: A three-way moderation model. Psychiatric Quarterly, 89, 605–619. https://doi.org/10.1007/s11126- 018-9563-x. Turel, O., & Qahri-Saremi, H. (2016). Problematic use of social networking sites: antecedents and consequence from a dual system theory perspective. Journal of Management Information Systems, 33, 1087–1116. https://doi.org/10.10 80/07421222.2016.1267529 Uysal, R., Satici, S. A., & Akin, A. (2013). Mediating effect of Facebook® addiction on the relationship between sub- jective vitality and subjective happiness. Psychological Reports, 113, 948–953. https://doi.org/10.2466/02.09.18. PR0.113x32z van den Eijnden, R., Lemmens, J. S., & Valkenburg, P. M. (2016). The social media disorder scale. Computers in Human Behavior, 61, 478–487. https://doi.org/10.1016/j. chb.2016.03.038 van den Eijnden, R., Koning, I., Doornwaard, S., van Gurp, F., & Bogt, T. T. (2018). The impact of heavy and dis- ordered use of games and social media on adolescents’ psychological, social, and school functioning. Journal of Behavioral Addictions, 7, 697–706. https://doi.org/10.1556/ 2006.7.2018.65 van Rooij, A. J., Ferguson, C. J., van, d. M., & Schoenmakers, T. M. (2017). Time to abandon internet addiction? Predicting prob- lematic internet, game, and social media use from psychoso- cial well-being and application use. Clinical Neuropsychiatry: Journal of Treatment Evaluation, 14, 113–121. Vangeel, J., De Cock, R., Klein, A., Minotte, P., Rosas, O., & Meerkerk, G. (2016). Compulsive use of social networking sites among secondary school adolescents in Belgium. In M. Walrave, K. Ponnet, E. Vanderhoven, J. Haers, & B. Segaert (Eds.). Youth 2.0: Social media and adolescence (pp. 179– 191). Springer International Publishing. Vernon, L., Modecki, K. L., & Barber, B. L. (2017). Tracking effects of problematic social networking on adolescent psychopathology: The mediating role of sleep disruptions. Journal of Clinical Child & Adolescent Psychology, 46, 269–283. https://doi.org/10.1080/15374416.2016.1188702 Walburg, V., Mialhes, A., & Moncla, D. (2016). Does school- related burnout influence problematic Facebook use? Children and Youth Services Review, 61, 327–331. https:// doi.org/10.1016/j.childyouth.2016.01.0 Wan, C. (2009). Gratifications and loneliness as predictors of campus-SNS websites addiction and usage pattern among Chinese college students. (Unpublished Master’s Thesis). Chinese University of Hong Kong, Hong Kong. Wang, J.-L., Gaskin, J., Wang, H.-Z., & Liu, D. (2016). Life sat- isfaction moderates the associations between motives and excessive social networking site usage. Addiction Research & Theory, 24, 450–457. https://doi.org/10.3109/16066359. 2016.1160283 Wang, P., Wang, X., Wu, Y., Xie, X., Wang, X., Zhao, F., Quyang, M., & Lei, L. (2018). Social networking sites addiction and adolescent depression: A moderated media- tion model of rumination and self-esteem. Personality and Individual Differences, 127, 162–167. https://doi. org/10.1016/j.paid.2018.02.008 Wegmann, E., Stodt, B., & Brand, M. (2015). Addictive use of social networking sites can be explained by the interaction https://doi.org/10.1111/jabr.12158 https://doi.org/10.1111/jabr.12158 https://doi.org/10.1007/s11469-017-9862-8 https://doi.org/10.1016/j.chb.2015.03.005 https://doi.org/10.29399/npa.19285 https://doi.org/10.29399/npa.19285 https://doi.org/10.1177/0033294120934706 https://doi.org/10.1177/0020764017705895 https://doi.org/10.1007/s11469-020-00346-5 https://doi.org/10.1007/s11469-020-00346-5 https://doi.org/10.1016/j.adolescence.2020.01.010 https://doi.org/10.1016/j.adolescence.2020.01.010 https://doi.org/10.1007/s11126-018-9563-x https://doi.org/10.1007/s11126-018-9563-x https://doi.org/10.1080/07421222.2016.1267529 https://doi.org/10.1080/07421222.2016.1267529 https://doi.org/10.2466/02.09.18.PR0.113x32z https://doi.org/10.2466/02.09.18.PR0.113x32z https://doi.org/10.1016/j.chb.2016.03.038 https://doi.org/10.1016/j.chb.2016.03.038https://doi.org/10.1556/2006.7.2018.65 https://doi.org/10.1556/2006.7.2018.65 https://doi.org/10.1080/15374416.2016.1188702 https://doi.org/10.1016/j.childyouth.2016.01.0 https://doi.org/10.1016/j.childyouth.2016.01.0 https://doi.org/10.3109/16066359.2016.1160283 https://doi.org/10.3109/16066359.2016.1160283 https://doi.org/10.1016/j.paid.2018.02.008 https://doi.org/10.1016/j.paid.2018.02.008 22 International Journal of Social Psychiatry 00(0) of internet use expectancies, internet literacy, and psycho- pathological symptoms. Journal of Behavioral Addictions, 4, 155–162. https://doi.org/10.1556/2006.4.2015.021 Wong, H. Y., Mo, H. Y., Potenza, M. N., Chan, M. N. M., Lau, W. M., Chui, T. K., Pakpour, A. H., & Lin, C.-Y. (2020). Relationships between severity of Internet gaming disor- der, severity of problematic social media use, sleep qual- ity and psychological distress. International Journal of Environmental Research and Public Health, 17, 1879. https://doi.org/10.3390/ijerph17061879 Wood, M., Center, H., & Parenteau, S. C. (2016). Social media addic- tion and psychological adjustment: religiosity and spirituality in the age of social media. Mental Health, Religion & Culture, 19, 972–983. https://doi.org/10.1080/13674676.2017.1300791 Worsley, J,D., McIntyre, J. C., Bentall, R. P., & Corcoran, R. (2018). Childhood maltreatment and problematic social media use: The role of attachment and depression. Psychiatry Research, 267, 88–93. https://doi.org/10.1016/j.psychres. 2018.05.023. Yam, C., Pakpour, A. H., Griffiths, M. D., Yau, W., Lo, C. M., Ng, J. M. T., Lin, C., & Leung, H. (2019). Psychometric testing of three Chinese online-related addictive behavior instruments among Hong Kong university students. Psychiatric Quarterly, 90, 117–128. https://doi.org/10.1007/s11126-018-9610-7 Young, L., Kolubinski, D. C., & Frings, D. (2020). Attachment style moderates the relationship between social media use and user mental health and wellbeing. Heliyon, 6, e04056. https://doi.org/10.1016/j.heliyon.2020.e04056 Yu, S., Wu, A. M. S., & Pesigan, I. J. A. (2016). Cognitive and psychosocial health risk factors of social networking addiction. International Journal of Mental Health and Addiction, 14, 550–564. https://doi.org/10.1007/s11469- 015-9612-8 Yurdagül, C., Kircaburun, K., Emirtekin, E., Wang, P., & Griffiths, M. D. (2019). Psychopathological consequences related to problematic Instagram use among adolescents: The mediating role of body image dissatisfaction and mod- erating role of gender. International Journal of Mental Health and Addiction. Advanced online publication. https:// doi.org/10.1007/s11469-019-00071-8 Zaffar, M., Mahmood, S., Saleem, M., & Zakaria, E. (2015). Facebook addiction: Relation with depression, anxiety, loneliness and academic performance of Pakistani students. Science International, 27, 2469–2475. https://doi.org/10.1556/2006.4.2015.021 https://doi.org/10.3390/ijerph17061879 https://doi.org/10.1080/13674676.2017.1300791 https://doi.org/10.1016/j.psychres.2018.05.023 https://doi.org/10.1016/j.psychres.2018.05.023 https://doi.org/10.1007/s11126-018-9610-7 https://doi.org/10.1016/j.heliyon.2020.e04056 https://doi.org/10.1007/s11469-015-9612-8 https://doi.org/10.1007/s11469-015-9612-8 https://doi.org/10.1007/s11469-019-00071-8 https://doi.org/10.1007/s11469-019-00071-8Measures of problematic SM use Researchers have used several instruments to measure problematic SM use. The most popular measure is the Bergen Facebook Addiction Scale (Andreassen et al., 2012), which assesses six key components, namely sali- ence, mood modification, tolerance, withdrawal, conflict and relapse. Each component is initially assessed by three items. After the deletion of items with relatively low item- total correlations, one item for each component is retained. The one-factor solution is supported by the confirmatory factor analysis. The Bergen Social Media Addiction Scale (Andreassen et al., 2017) is a modified version to measure problematic SM use in general by replacing ‘Facebook’ with ‘social media’ in each item. The Facebook Intrusion Questionnaire (Elphinston & Noller, 2011) is composed of eight items measuring cog- nitive salience, behavioral salience, interpersonal con- flict, conflict with other activities, euphoria, loss of control, withdrawal and relapse. Each item is assessed on a seven-point Likert scale. A unidimensional model was supported by exploratory factor analysis (Elphinston & Noller, 2011). The Social Media Disorder Scale (SMDS; van den Eijnden et al., 2016) was developed in the Netherlands, and is based on the DSM-5 criteria, namely preoccupation, tolerance, withdrawal, persistence, displacement, prob- lem, deception, escape, and conflict. Initially, three items are developed for each of the nine components, and the item with the highest factor loading within each of the nine criteria is selected. Other researchers (Baturay & Toker, 2017; Hong et al., 2014) adapted the Internet Addiction Test (IAT, Young, 1998) to measure problematic Facebook use or general problematic SM use. As these problematic SM use meas- ures assess different components, the relation between problematic SM use and mental health may vary as a func- tion of measures of problematic SM use. Huang 3 Measures of mental health Empirical studies have examined several positive indi- cators of mental health, such as self-esteem (e.g. Choi & Lim, 2016), life satisfaction (e.g. Hawi & Samaha, 2018), well-being (e.g. Verma & Kumari, 2016), happi- ness (e.g. Satici & Uysal, 2015), and positive affect (e.g. Satici, 2018). Self-esteem is the most common indicator of well-being. The most popular instrument to measure global self-esteem is the Rosenberg Self-Esteem Scale (Rosenberg, 1965) which consists of 5 positively-worded and 5 negatively-worded items. Due to brevity and easy administration, this scale has been adapted into more than 50 different languages (Schmitt et al., 2005). A shorter instrument to measure global self-worth is the Single Item Self-Esteem Scale (SISES; Robins et al., 2001) comprised of the item, ‘I have high self-esteem’, on a 7-point Likert scale. Life satisfaction is another common indicator of well- being, and the most popular measure is the Satisfaction with Life Scale (Diener et al., 1985), which consists of 5 items with 7 response categories ranging from 1 to 7. Thus, the total score ranges from 5 to 35. Total scores of 5 to 9 are viewed as ‘extremely dissatisfied’, 15 to 19 as ‘slightly dissatisfied’, 21 to 25 ‘slightly satisfied’, and 26 to 30 ‘sat- isfied’ (Pavot & Diener, 1993). Negative indicators of mental health can be represented by anxiety (e.g. Durak, 2018), depression (e.g. Worsley et al., 2018), loneliness (e.g. Yu et al., 2016), suicidal ideation (e.g. Jasso-Medrano & López-Rosales, 2018), distress (e.g. Laconi et al., 2018) and negative affect (e.g. Satici, 2018). Depression is the most examined indicator, with common measures such as the Patient Health Questionnaire-9 (PHQ- 9; Kroenke et al., 2001), the Center for Epidemiologic Studies Depression Scale (CES-D; Radloff, 1977), the depression subscale of the Depression Anxiety Stress Scales-21 (DASS-21; Lovibond & Lovibond, 1995), the depression subscale of Short Depression-Happiness Scale (SDHS; Joseph et al., 2004), Hamilton Depression Rating Scale (HAM-D; Hamilton, 1960, 1967), Montgomery– Åsberg Depression Rating Scale (MADRS; Montgomery & Åsberg, 1979), and Beck Depression Inventory (BDI; Beck, & Steer, 1987). The PHQ-9 assesses 9 depressive symptoms in primary care settings over the last two weeks with 4 response categories, 0 for ‘not at all’, 1 for ‘several days’, 2 for ‘more than half the days’, and 3 ‘Nearly every day’. Thus, the total score of the PHQ-9 ranges from 0 to 27. The cutoff scores for mild, moderate, moderately severe and severe depression are 5, 10, 15, and 20, respectively (Kroenke et al., 2001). On the other hand, the CES-D assessing depressive symptom for general population over the past week consists of 20 items on a 4-response scale, ranging from 0 to 3. The total score is from 0 to 60. An arbitrary cutoff score of 16 or higher is considered to indicate possible depression requiring clinical assessment (Radloff, 1977). The depression subscale of DASS-21 measures depres- sive emotional state over the past week, and consists of 7 items, each on a 4-point scale, ranging from 0 to 3 (Szabó, 2010) Scores of 10, 14, 21, and 28 indicate mild, moderate, severe and extremely severe depression (Lovibond & Lovibond, 1995). The depression subscale of the SDHS consists of 3 items with 4 response categories. The items are, ‘I felt dissatisfied with my life’, ‘I felt cheerless’, and ‘I felt that life was meaningless’. Cutoff scores for the depression subscale are not provided in Joseph et al. (2004). The HAM-D has 6-, 17-, 21-, and 24-item versions, and is often used to measure treatment effect instead of state of depression (Santen et al., 2008). The most popular version, consisting of 17 items, is on a 3- or 5-point scale. The mul- tidimensional factor is supported, but the number of factors varies across studies (Bagby et al., 2004). Another popular measure for assessing change of depressive symptoms in clinical trial research is the MADRS, which comprises 10 items chosen by reliability and validity from an original set of 17 items from the Comprehensive Psychopathological Rating Scale (Montgomery & Åsberg, 1979). The factor structure of the MADRS varied across patient groups (Ketharanathan et al., 2016). As both HAM-D and MADRS were usually used in clinical research, their scores are strongly correlated (Heo et al., 2007). The BDI consisting of 21 items on a 4-point scale is a self-reporting measure to assess depression for adolescents and adults (Beck & Steer, 1987). The latest version of the BDI, the Beck Depression Inventory–II (BDI–II), is derived from DSM-IV (American Psychiatric Association, 1994), with the items of Body Image Change, Work Difficulty, Weight Loss and Somatic Preoccupation in the BDI replaced with Agitation, Worthlessness, Loss of Energy, and Concentration Difficulty in the BDI–II. The items of Changes in Sleeping Pattern and Changes in Appetite have seven response categories, and the remain- ing 19 items have four (Beck et al., 1996). The most prevalent measure to assess loneliness is the UCLA Loneliness Scale (Russell et al., 1980), consisting of 10 positive-worded and 10 negative-worded items, each item on a 4-point Likert scale. The UCLA Loneliness Scale has sound psychometric properties (Hartshore, 1993), and the 3-factor (isolation, relational connected- ness, and collective connectedness) structure was sup- ported (Dussault et al., 2009). Platform Some researchers focused on problematic use of SM in general. For example, Worsley et al. (2018) examined the relation between problematic use in general and depres- sion for 1029 university students in UK, and found that the relation was r = .27. Some researchers focused specifi- cally on problematic Facebook use. Steggink (2015) used a sample of 315 users recruited online with mean age of 4 International Journal of Social Psychiatry 00(0) 28.74 years, and found that the correlation betweenprob- lematic Facebook use and depression was r = .10. Whether the magnitude of correlation varied with platform was unknown, and this meta-analysis addressed this possibility. Participant age Few longitudinal and cross-sectional studies have been conducted to examine the age effect on the relation between problematic SM use and mental health. van den Eijnden et al. (2018) adopted a three-wave design with a one-year interval between adjacent assessments for a sample of 543 teenagers with mean 12.9 years at study inception. The correlations of problematic use of SNSs assessed at time 1 with life satisfaction assessed at times 2 and 3 for boys were r = −.21 and r = −.11, respec- tively. The corresponding correlations of time 2 problem- atic use of SNSs with time 2 and 3 life satisfactions for boys were r = −.33 and r = −.09, respectively. For girls, the correlation of time 1 problematic use of SNSs with time 2 and 3 life satisfaction were r = −.43 and r = −.33, respectively and those of time 2 problematic use of SNSs with time 2 and 3 life satisfaction were r = −.48 and r = −.55, respectively. The age effect seemed to be supported in the cross-sectional study. Kanat-Maymon et al. (2018) found that the relation between problematic Facebook use and self-esteem for an online adult sample with mean age of 33.36 years was r = −.52. The corresponding cor- relation for a sample of 80 undergraduate students was only small, at r = −.05. The age effect on the relations of problematic Facebook use with psychological distress and well-being were not supported in Marino et al. (2018a). The number of effect sizes in that meta-analysis was small and non-significant findings can be caused by low statistical power. Participant gender Griffiths (2000) revealed that technology addicts are usu- ally male. Some researchers examined the relation between problematic SM use and mental health espe- cially for males. For example, Kim and Park (2015) found that the correlation between problematic SNS use and self-esteem among 213 male middle-school students was r = −.38. Some researchers examined the moderat- ing effect of gender on the relation between problematic SNS use and mental health. For example, van den Eijnden et al. (2018) examined the moderating effect of gender for teenagers, and found that the correlation between problematic SNS use and life satisfaction was r = −.48 for girls and r = −.33 for boys. Walburg et al. (2016) selected 115 boys and 171 girls, and found that the cor- relations of problematic Facebook use with depression and suicidal ideation were r = .37 and r = .23 for boys, and r = .10 and r = .20 for girls. Marino et al. (2018a) examined the gender effect repre- sented by the proportion of female users on the relations of problematic Facebook use with psychological distress and well-being and the gender effects were not significant. Re-examination of the gender effect is prominent for three reasons. First, the small number of effect size in Marino et al. (2018a) could lead to a low statistical power. Second, empirical studies rarely address the issue of gender effect on the relation between SM addiction and mental health. Third, empirical studies mentioned above seemed to dem- onstrate a potential gender effect. Previous reviews and meta-analyses Frost and Rickwood (2017) reviewed the relation between Facebook addiction and mental health based on 5 cross- sectional and 1 longitudinal studies. They concluded that Facebook addiction was associated with poor mental health. Ryan et al. (2014) identified three studies (Hong et al., 2014; Koc & Gulyagci, 2013; Uysal et al., 2013), and reported that Facebook addiction was related to depression and anxiety. Another review by Keles et al. (2019) that identified three articles also supported that addiction to SNSs was related to depression. Marino et al. (2018a) identified 23 samples that examined the relations of problematic Facebook use with psychological distress and well-being. The mean correlation between problematic Facebook use and psy- chological distress was r = .29, and the correlation cor- rected for attenuation was ρ = .34. The correlations for specific factors were r = .30 and ρ = .35 for depression; r = .29 and ρ = .33 for anxiety; r = −.19 and ρ = −.22 for general well-being; r = −.16 and ρ = −.19 for life satisfaction. Marino et al. (2018b) meta-analyzed 8 cor- relations between problematic Facebook use and self- esteem, and found that the mean correlation was r = −.23. No moderator analyses were conducted for this correlation. As two previous meta-analyses (Marino et al., 2018a, 2018b) specifically focused on problematic Facebook use, their conclusions may not be valid for studies addressing problematic use of other SM or general problematic use of SM. The current meta-analysis aimed to conduct a com- prehensive analysis of accumulating empirical evidence obtained by studies examining the association between problematic SM use and mental health. Method Literature search To identify relevant studies, the ERIC, PsycINFO and ProQuest Dissertations and Theses Global databases were searched using SM terms (namely, Facebook, Twitter, Instagram, MySpace, ‘social media’, ‘online social net- work*’, and ‘social network* site*’) and problematic use Huang 5 terms (addict*, abuse, misuse, overuse, intrusion, ‘prob- lematic use’, ‘excessive use’, ‘compulsive use’, ‘patho- logical use’, ‘disordered use’) through July 19, 2020. The ERIC, PsycINFO and ProQuest databases yielded 157, 1,553 and 287 articles, respectively. The reference lists for eligible articles and previous meta-analysis (Marino et al., 2018a, 2018b) were then examined. The author screened each article by reviewing the title and abstract. The full texts of studies passing the initial screening were then identified to determine eligibility based on three inclusion criteria. First, studies should provide sufficient statistics to compute the correlation between problematic SM use and mental health. Second, studies should report the sample size. Lastly, the study should be published in English. Four unpublished datasets in Marino et al. (2018a) were not available because they did not report titles, sources or manuscripts. Analysis The Pearson Product-Moment correlation between prob- lematic SM use and mental health was coded. The distri- bution of r depends on the population correlation, ρ, and sample size. Unless the sample size is sufficiently large, the distribution of sample correlation is skewed (Card, 2012). To normalize the sample correlation, the correla- tion r was converted to Zr using the Fisher’s transforma- tion equation. The inverse variance (N-3) was used as a weight to compute the mean correlation. Random-effects were used. Results This study included 123 articles presented in the Appendix. Andreassen et al. (2016) and Andreassen et al. (2017) ana- lyzed the same data, yielding 122 studies. Of these 122 studies, 111 were published in journals, 5 in doctoral dis- sertations, 3 in Master theses, 2 in conferences, and 1 in a book chapter. Eleven studies each consisted of 2 samples, and thus 133 independent samples involving 244,676 par- ticipants were analyzed in the subsequent analyses. Table 1 presents the descriptive statistics of the 133 samples. When multiple indicators of mental health, multiple platforms, or multiple measures of problematic use SM were assessed, all relevant effect sizes were coded. The summary of all effect sizes were presented in Table 2. Mean correlation between problematic SM use and mental health The same sample analyzed in Andreassen et al. (2016) and Andreassen et al. (2017) had over 23,000 participants, and that in Boer et al. (2020) had 154,981 participants. As the inverse variance (N-3) was used as a weight to compute the mean correlation, these two studies would receive extremely large weights. However, the common winsori-zation method, which recodes the sample size at two or three standard deviations above the mean (Lipsey & Wilson, 2001) was not appropriate, as the standard devia- tion shown in Table 1 was also extremely large (13,536.57). The sample sizes of these two samples were set at 3 times the mean (5,519). Table 3 lists the weighted mean correlations between problematic SM use and mental health indicators. Eighty- five effect sizes were related to well-being. Of these, 4 were for happiness, 30 for life satisfaction, 3 for positive affect, 2 for mental health, 42 for self-esteem, 3 for over- all well-being and 1 for psychiatric well-being. As expected, the correlations between problematic SM use and well-being indicators were negative, ranging from −.11 to −.30. The mean correlations of problematic SM use with happiness, life satisfaction, positive affect and self-esteem were significantly different from 0. The homogeneity test for the correlation between problematic SM use and self-esteem was significant, indicating sig- nificant between-study variation. Many studies examined the correlations between problematic SM use and distress indicators, and all mean correlations were positive. The relation between prob- lematic SM use and depression attracted most research attention. The mean correlation was moderate at r = .31, indicating possible moderate detrimental impact of problematic SM use. Except for the correlations of prob- lematic SM use with negative affect and social loneli- ness, other mean correlations were significantly different from 0. Moderator analyses of the relation between problematic SM use and self-esteem Due to insufficient numbers of effect sizes, moderator analyses were conducted for correlations of problematic SM use with self-esteem (k = 42), life satisfaction (k = 30), depression (k = 59), and loneliness (k = 29). The mean correlations were computed for categories of mod- erators with at least 4 effect sizes. Table 4 lists the categor- ical moderator effects on the relation between problematic Table 1. Descriptive statistics of the 132 independent samples included in the meta-analysis. variable k Min Max Mean SD N 133 55 154981 1839.67 13536.57 age 125 13.02 50.13 21.89 6.22 female 129 0 1 0.59 0.17 ES 133 –0.57 0.59 0.10 0.27 age = mean age of the sample; female = proportion of females in the sample. 6 International Journal of Social Psychiatry 00(0) T ab le 2 . Su m m ar y of s am pl es e xa m in in g th e pr ob le m at ic s oc ia l m ed ia u se a nd m en ta l h ea lth . St ud y C ou nt ry N A ge FM M H M H M ea s. SM SM M ea s. ES A bb as i a nd D ro ui n (2 01 9) m is ce lla ne ou s 74 2 27 .4 4 0. 64 ne ga tiv e af fe ct PA N A S Fa ce bo ok FI Q 0. 13 A bu D am ou s (2 02 0) U S 26 4 36 .8 5 0. 54 se lf- es te em SI SE S SM Be rg en − 0. 05 A ki n an d A ki n (2 01 5) T ur ke y 37 0 20 .2 0 0. 53 lif e sa tis fa ct io n SW LS Fa ce bo ok Be rg en − 0. 39 A l M am un a nd G ri ffi th s (2 01 9) Ba ng la de sh 30 0 19 .5 0 0. 39 de pr es si on PH Q -9 Fa ce bo ok Be rg en 0. 26 A la dw an i a nd A lm ar zo uq ( 20 16 ) K uw ai t 40 7 20 .0 4 0. 54 se lf- es te em R os en be rg SM M ee rk er k (2 00 7) − 0. 24 A nd re as se n et a l. (2 01 6) N or w ay 23 53 3 35 .8 0 0. 65 an xi et y, d ep re ss io n H A D S SM Be rg en 0. 34 , 0 .1 9 A nd re as se n et a l. (2 01 7) N or w ay 23 53 2 35 .8 0 0. 65 se lf- es te em R os en be rg SM Be rg en − 0. 25 A pa ol az a et a l. (2 01 9) Sp ai n 34 6 18 .7 3 0. 52 se lf- es te em , s oc ia l a nx ie ty R os en be rg , S oc ia l A nx io us ne ss S ca le W ha ts A pp Fa be r an d O 'G ui nn ( 19 92 ) − 0. 42 0 .4 4 A tr os zk o et a l. (2 01 8) Po la nd 11 57 20 .3 3 .5 2 se lf- es te em , l on el in es s, s oc ia l an xi et y A tr os zk o et a l. (2 01 8) , S ho rt L on el in es s Sc al e, LS A S Fa ce bo ok Be rg en − 0. 10 , 0 .1 3, 0. 19 A yd in e t al . ( 20 20 ) T ur ke y 11 1 30 .1 4 0. 55 de pr es si on M on tg om er y- A sb er g D ep re ss io n R at in g Sc al e SM Be rg en 0. 20 Ba lc er ow sk a et a l. (2 02 0) Po la nd 10 99 21 .4 4 0. 72 w el l-b ei ng U ltr a- Sh or t Pr ot oc ol fo r M ea su ri ng S ub je ct iv e W el l-b ei ng SN Ss , F ac eb oo k Be rg en − 0. 15 − .1 3 Ba lc i a nd G öl cü ( 20 13 ) T ur ke y 89 2 21 .1 0 0. 59 lo ne lin es s N A Fa ce bo ok Ba lc i a nd G öl cü ( 20 13 ) 0. 35 Ba lc i a nd T ir ya ki ( 20 14 ) T ur ke y 48 6 17 .6 0 0. 51 lo ne lin es s N A Fa ce bo ok Be rg en 0. 04 Ba tu ra y an d T ok er ( 20 17 ) T ur ke y 12 0 21 .4 6 0. 53 se lf- es te em , p sy ch ia tr ic w el l- be in g R os en be rg , G H Q -1 2 Fa ce bo ok IA T − 0. 43 , − 0. 29 Bé ra il et a l. (2 01 9) m is ce lla ne ou s 93 2 21 .2 5 0. 73 so ci al a nx ie ty , l on el in es s LS A S, U C LA Y ou tu be IA T 0. 32 , 0 .2 8 Bi ol ca ti et a l. (2 01 8) It al y 75 5 25 .1 7 0. 80 so ci al lo ne lin es s, li fe sa tis fa ct io n SE LS A -S , S W LS Fa ce bo ok Be rg en 0. 27 , − 0. 24 Bł ac hn io a nd P rz ep ió rk a (2 01 8) Po la nd 36 0 22 .2 2 .6 4 lif e sa tis fa ct io n SW LS Fa ce bo ok FI Q 0. 01 Bł ac hn io a nd P rz ep ió rk a (2 01 9) Po la nd 59 7 21 .2 2 0. 68 lo ne lin es s, s el f- es te em , l ife sa tis fa ct io n D e Jo ng G ie rv el d Lo ne lin es s Sc al e, R os en be rg , SW LS Fa ce bo ok FI Q 0. 15 , − 0. 12 , − 0. 02 Bł ac hn io e t al . ( 20 19 ), # 1 It al y 31 7 24 .6 6 0. 67 se lf- es te em , l ife s at is fa ct io n R os en be rg , S W LS Fa ce bo ok FI Q − 0. 24 , − 0. 01 Bł ac hn io e t al . ( 20 19 ), # 2 U S 23 8 N A 0. 73 se lf- es te em , l ife s at is fa ct io n R os en be rg , S W LS Fa ce bo ok FI Q − 0. 23 , − 0. 17 Bł ac hn io e t al . ( 20 15 ) Po la nd 67 2 27 .5 3 .6 5 de pr es si on C ES -D Fa ce bo ok FI Q 0. 45 Bł ac hn io e t al . ( 20 16 ) Po la nd 38 1 20 .7 3 0. 63 se lf- es te em , l ife s at is fa ct io n R os en be rg , S W LS Fa ce bo ok Be rg en − 0. 16 , 0 .0 3 Bo er e t al . ( 20 20 ) m is ce lla ne ou s 15 49 81 13 .5 4 .5 1 lif e sa tis fa ct io n C an tr il La dd er SM SM D S − 0. 20 Br ai lo vs ka ia a nd M ar gr af ( 20 17 ) G er m an y 17 9 22 .5 2 0. 77 de pr es si on , a nx ie ty D A SS -2 1 Fa ce bo ok Be rg en 0. 22 , 0 .3 2 Br ai lo vs ka ia , R oh m an n, B ie rh of f, M ar gr af , a nd K öl ln er , e t al . ( 20 19 ) G er m an y 34 9 50 .1 3 0. 70 de pr es si on , m en ta l h ea lth BD I-I I, Lu ka t et a l. (2 01 6) Fa ce bo ok Be rg en 0. 23 , − 0. 30 Br ai lo vs ka ia , S ch ill ac k, M ar gr af , et a l. (2 01 8) G er m an y 52 0 22 .4 2 0. 75 de pr es si on , a nx ie ty , h ap pi ne ss D A SS -2 1, S H S Fa ce bo ok Be rg en 0. 40 a , 0. 42 a , − 0. 25 a Br ai lo vs ka ia e t al . ( 20 18 ) G er m an y 12 2 22 .7 0 .8 3 m en ta l h ea lth Lu ka t et a l. (2 01 6) Fa ce bo ok Be rg en − 0. 27 Br ai lo vs ka ia , V el te n, M ar ga f, et a l. (2 01 9) , # 1 G er m an y 53 1 21 .6 3 .7 5 de pr es si on D A SS -2 1 Fa ce bo ok Be rg en 0. 43 Br ai lo vs ka ia , V el te n, M ar ga f, et a l. (2 01 9) , # 2 U S 90 9 37 .2 4 0. 48 de pr es si on D A SS -21 Fa ce bo ok Be rg en 0. 55 Br ow n (2 01 5) U S 55 19 .5 0 0. 82 se lf- es te em R os en be rg Fa ce bo ok Fa ce bo ok C om pu ls io n In ve nt or y − 0. 17 (C on tin ue d) Huang 7 St ud y C ou nt ry N A ge FM M H M H M ea s. SM SM M ea s. ES Bu rn el l a nd K ut he r (2 01 6) U S 25 6 25 .4 1 0. 62 se lf- es te em R os en be rg SM A l-M en ay es ( 20 15 ) − 0. 26 C ar gi ll (2 01 9) U S 22 4 33 .0 1 0. 82 an xi et y ST A I SM IA T 0. 29 C as al e an d Fi or av an ti (2 01 5) , # 1 It al y 19 3 22 .4 5 0 so ci al a nx ie ty SI A S SN Ss G PI U S2 0. 44 C as al e an d Fi or av an ti (2 01 5) , # 2 It al y 20 7 22 .4 5 1 so ci al a nx ie ty SI A S SN Ss G PI U S2 0. 22 C ha br ol e t al . ( 20 17 ) Fr an ce 45 6 20 .5 0 0. 76 de pr es si on , s oc ia l a nx ie ty C ES -D , S A SA Fa ce bo ok IA T 0. 31 , 0 .3 0 C ha e et a l. (2 01 8) So ut h K or ea 25 3 21 .5 0 0. 64 de pr es si on C ES -D SN Ss SN S A dd ic tio n Pr on en es s Sc al e fo r C ol le ge S tu de nt s 0. 42 C ha ve z an d C ha ve z (2 01 7) Ph ili pp in es 11 9 15 .0 0 N A lo ne lin es s U C LA Fa ce bo ok Ba lc i a nd G öl cü ( 20 13 ) 0. 21 C he n et a l. (2 02 0) H on g K on g 30 8 23 .7 5 0. 68 an xi et y & d ep re ss io n H A D S SM Be rg en 0. 21 C ho i a nd L im ( 20 16 ) So ut h K or ea 41 9 25 .9 8 0. 49 se lf- es te em R os en be rg Fa ce bo ok K oc a nd G ul ya gc i ( 20 13 ) − 0. 22 C ro w el l ( 20 14 ) U S 38 0/ 38 1 33 .5 6 0. 80 se lf- es te em , l ife s at is fa ct io n R os en be rg , Q ua lit y of L ife E nj oy m en t an d Sa tis fa ct io n Q ue st io nn ai re S ho rt F or m Fa ce bo ok Be rg en 0. 24 , − 0. 20 C ud o et a l. (2 02 0) Po la nd 23 5 21 .7 9 .6 3 se lf- es te em , d ep re ss io n R os en be rg , P H Q -9 Fa ce bo ok FI Q − 0. 05 , 0 .2 7 da V ei ga e t al . ( 20 19 ) Po rt ug al 40 4 21 .6 5 0. 73 de pr es si on , a nx ie ty BS I Fa ce bo ok Be rg en 0. 29 , 0 .2 3 D e C oc k et a l. (2 01 4) Be lg iu m 10 00 43 .0 0 N A se lf- es te em , l on el in es s, de pr es si on R os en be rg , R as ch -T yp e Lo ne lin es s Sc al e, D M L SN Ss Be rg en − 0. 29 , 0 .2 2, 0. 38 D em ps ey e t al . ( 20 19 ) U S 29 1 20 .0 3 0. 58 lif e sa tis fa ct io n, d ep re ss io n, so ci al a nx ie ty SW LS , P H Q -9 , S IA S Fa ce bo ok Be rg en − 0. 07 , 0 .2 0, 0. 30 D hi r et a l. (2 01 8) , # 1 In di a 15 54 14 .6 3 0. 46 de pr es si on , s oc ia l a nx ie ty Sa lo ka ng as e t al . ( 19 95 ), SA SA Fa ce bo ok Be rg en 0. 38 , 0 .3 3 D hi r et a l. (2 01 8) , # 2 In di a 11 44 14 .8 8 0. 44 de pr es si on , s oc ia l a nx ie ty Sa lo ka ng as e t al . ( 19 95 ), SA SA Fa ce bo ok Be rg en 0. 31 , 0 .2 2 D ur ak ( 20 18 ) T ur ke y 45 1 15 .0 0 0. 48 so ci al a nx ie ty SA SA SM SM D S 0. 58 D ur ak a nd S ef er oğ lu ( 20 19 ) T ur ke y 58 0 22 .9 0 0. 60 so ci al a nx ie ty , l on el in es s LS A S, U C LA SM SM D S 0. 37 , 0 .3 1 G er ha rt ( 20 17 ) U S 41 3 19 .5 0 0. 48 lif e sa tis fa ct io n SW LS SN Ss G er ha rt ( 20 17 ) 0. 11 G io ta a nd K le ft ar as ( 20 13 ) G re ec e 14 3 23 .8 0 0. 58 de pr es si on Q ue st io nn ai re o f S el f E va lu at ed D ep re ss iv e Sy m po m at ol og y SN Ss G PI U S 0. 26 G uv en ( 20 19 ) U S 18 8 N A 0. 78 se lf- es te em , l ife s at is fa ct io n, po si tiv e af fe ct , n eg at iv e af fe ct R os en be rg , U C LA , P A N A S SM FI Q 0. 23 , − 0. 08 , − 0. 16 , − 0. 33 H aw i a nd S am ah a (2 01 7) Le ba no n 36 4 21 .1 0 0. 48 se lf- es te em , l ife s at is fa ct io n R os en be rg , S W LS SM FI Q − 0. 23 , − 0. 03 H aw i a nd S am ah a (2 01 9) Le ba no n 51 2 21 .2 3 0. 44 se lf- es te em , l ife s at is fa ct io n R os en be rg , S W LS SM FI Q − 0. 20 , − 0. 04 H ol m gr en a nd C oy ne ( 20 17 ) U S 44 2 18 .8 6 0. 52 de pr es si on C ES -D C SM PU M P 0. 29 H on g et a l. (2 01 4) T ai w an 24 1 20 .0 0 0. 41 se lf- es te em R os en be rg Fa ce bo ok IA T − 0. 12 (C on tin ue d) T ab le 2 . ( C on tin ue d) 8 International Journal of Social Psychiatry 00(0) St ud y C ou nt ry N A ge FM M H M H M ea s. SM SM M ea s. ES H ou e t al . ( 20 18 ) C hi na 71 4 19 .8 0 0. 62 lo ne lin es s U C LA W ei bo ,W ec ha t M ic ro bl og E xc es si ve U se Sc al e, W eC ha t Ex ce ss iv e U se Sc al e 0. 14 , 0 .0 3 H us sa in a nd G ri ffi th s (2 01 9) m is ce lla ne ou s 63 8 32 .0 3 0. 47 de pr es si on , a nx ie ty D A SS -2 1 SM Be rg en 0. 32 , 0 .3 8 H us sa in e t al . ( 20 19 ) U K 69 23 .0 9 .6 8 se lf- es te em , d ep re ss io n, an xi et y R os en be rg , D A SS -2 1 Fa ce bo ok Be rg en − 0. 12 , 0 .2 4, 0. 16 Ja ss o- M ed ra no a nd L óp ez -R os al es (2 01 8) M ex ic o 37 4 20 .0 1 0. 59 de pr es si on , s ui ci da l i de at io n C ES -D , P os iti ve a nd N eg at iv e Su ic id al Id ea tio n In ve nt or y SM So ci al N et w or k A dd ic tio n Q ue st io nn ai re 0. 25 , 0 .1 6 Je ri -Y ab ar e t al . ( 20 19 ) Pe ru 21 2 20 0. 45 de pr es si on BD I SN Ss N A 0. 46 K an at -M ay m on e t al . ( 20 18 ), # 1 Is ra el 33 7 33 .3 6 0. 55 se lf- es te em R os en be rg Fa ce bo ok Be rg en − 0. 52 K an at -M ay m on e t al . ( 20 18 ), # 2 Is ra el 80 22 .9 1 0. 91 se lf- es te em SI SE S Fa ce bo ok Be rg en − 0. 05 K ar ak os e et a l. (2 01 6) T ur ke y 71 2 16 .0 0 0. 58 lo ne lin es s U C LA Fa ce bo ok Be rg en 0. 13 K ha tt ak e t al . ( 20 17 ) Pa ki st an 20 0 N A 0. 50 de pr es si on BD I-I I Fa ce bo ok Be rg en 0. 24 K im a nd P ar k (2 01 5) So ut h K or ea 21 3 14 .0 0 0 se lf- es te em K an g (2 00 7) SN Ss C ho a nd S uh ( 20 13 ) − 0. 38 K ir ca bu ru n (2 01 6) T ur ke y 11 30 14 .6 7 0. 59 de pr es si on , s el f- es te em C D I, R os en be rg SM A rs la n an d K ir ik ( 20 13 ) 0. 13 , − 0. 09 K ir ca bu ru n, D em et ro vi cs e t al ., (2 02 0) T ur ke y 34 4 20 .7 6 0. 82 de pr es si on , s el f- es te em SD H S, S IS ES SN Ss X an id is a nd B ri gn el l ( 20 16 ) 0. 22 , − 0. 21 K ir ca bu ru n et a l. (2 01 9) T ur ke y 82 7 20 .3 6 0. 60 se lf- es te em SI SE S SM SM D S − 0. 06 K ir ca bu ru n, G ri ffi th s, B ill ie ux e t al . (2 01 9) T ur ke y 47 0 16 .2 9 0. 60 de pr es si on SD H S SM Be rg en 0. 32 K ir ca bu ru n et a l. (2 02 0) T ur ke y 46 0 19 .7 4 0. 61 de pr es si on , l on el in es s SD H S, U C LA SN Ss X an id is a nd B ri gn el l ( 20 16 ) 0. 34 , 0 .2 6 K ır ca bu ru n et a l. (2 01 8) , # 1 T ur ke y 80 4 16 .2 0 0. 48 de pr es si on , s el f- es te em SD H S, S IS ES SN Ss X an id is a nd B ri gn el l ( 20 16 ) 0. 37 , − 0. 15 K ır ca bu ru n et a l. (2 01 8) , # 2 T ur ke y 76 0 21 .4 8 0. 60 de pr es si on , s el f- es te em SD H S, S IS ES SN Ss X an id is a nd B ri gn el l ( 20 16 ) 0. 22 , − 0. 11 K oc a nd G ulya gc i ( 20 13 ) T ur ke y 44 7 21 .6 4 0. 22 de pr es si on G H Q -2 8 Fa ce bo ok K oc a nd G ul ya gc i ( 20 13 ) 0. 28 La co ni e t al . ( 20 18 ) Fr an ce 82 2 21 .6 0 0. 55 di st re ss BS I Fa ce bo ok , T w itt er Be rg en 0. 33 , 0 .2 2 La R os e et a l. (2 01 1) U S 36 4 17 .7 6 0. 70 se lf- es te em , l on el in es s SI SE S, U C LA SN Ss C ap la n (2 01 0) a nd M ee rk er k et a l. (2 00 9) − 0. 23 , 0 .0 6 Le e- W on e t al . ( 20 15 ) U S 24 3 19 .5 0 0. 72 so ci al a nx ie ty Fe ni gs te in e t al . ( 19 75 ) Fa ce bo ok K oc a nd G ul ya gc i ( 20 13 ) 0. 18 Li e t al . ( 20 18 ) C hi na 46 3 19 .1 2 0. 53 lif e sa tis fa ct io n SW LS W ec ha t W eC ha t A dd ic tio n Sc al e 0. 10 Li m e t al . ( 20 20 ) U S 12 31 37 .2 8 0. 54 de pr es si on PH Q -9 SM SM D S 0. 30 Li n et a l. (2 01 7) Ir an 26 76 15 .5 4 0. 44 de pr es si on , a nx ie ty D A SS -2 1 SM Be rg en 0. 21 , 0 .1 7 Li n et a l. (2 02 0) Ir an 17 91 27 .2 0 0. 70 an xi et y, d ep re ss io n H A D S SM Be rg en 0. 31 , 0 .2 3 Li u an d M a (2 01 8) C hi na 30 1 26 .9 2 0. 27 se lf- es te em R os en be rg SM N A − 0. 16 M aj id e t al . ( 20 19 ) Pa ki st an 37 8 N A 0. 70 so ci al a nx ie ty SI A S SN Ss M oq be l a nd K oc k (2 01 8) 0. 30 M al ik a nd K ha n (2 01 5) Pa ki st an 20 0 N A 0. 50 se lf- es te em R os en be rg Fa ce bo ok Be rg en − 0. 18 M ar tin ez -P ec in o an d G ar ci a- G av ilá n (2 01 9) Sp ai n 23 3 15 .1 2 0. 47 se lf- es te em R os en be rg In st ag ra m M ar in o et a l. (2 01 7) − 0. 14 a (C on tin ue d) T ab le 2 . ( C on tin ue d) Huang 9 St ud y C ou nt ry N A ge FM M H M H M ea s. SM SM M ea s. ES M en ni ng e t al . ( 20 20 ) G er m an y 70 0 25 .6 0 0. 76 di st re ss BS I SN Ss SN SD Q 0. 06 M ilo še vi ć- Đ or đe vi ć an d Ž ež el j (2 01 4) Se rb ia 20 14 N A 0. 52 se lf- es te em R os en be rg SN Ss M ilo še vi ć- Đ or đe vi ć an d Ž ež el j ( 20 14 ) − 0. 35 M itr a an d R an ga sw am y (2 01 9) In di a 26 4 21 .5 6 0. 62 de pr es si on C lin ic al ly U se fu l D ep re ss io n O ut co m e Sc al e SM SM D S 0. 40 N da sa uk a et a l. (2 01 6) U K 25 6 21 .4 0 0. 53 lo ne lin es s U C LA T w itt er M ic ro bl og E xc es si ve U se Sc al e 0. 22 O m ar a nd S ub ra m an ia n (2 01 3) M al ay si a 40 0 19 .5 0 N A lo ne lin es s U C LA Fa ce bo ok K im a nd K ar id ak is ( 20 09 ) 0. 25 Po nn us am y et a l. (2 02 0) M al ay si a 36 4 22 .5 0 0. 51 lif e sa tis fa ct io n, lo ne lin es s SW LS , U C LA In st ag ra m Be rg en 0. 59 , 0 .1 9 Po nt es ( 20 17 ) Po rt ug al 49 5 13 .0 2 0. 47 de pr es si on , a nx ie ty D A SS -2 1 Fa ce bo ok Be rg en 0. 33 , 0 .3 1 Po nt es e t al . ( 20 18 ) U K 51 1 27 .5 0 0. 65 di st re ss Sy m pt om C he ck lis t- 6 SM Be rg en 0. 44 Pr ze pi ór ka a nd B ła ch ni o (2 02 0) Po la nd 42 6 14 .6 7 0. 49 de pr es si on C ES -D Fa ce bo ok FI Q 0. 35 R aj es h an d R an ga ia h (2 02 0) In di a 11 4 24 .0 0 0. 32 lo ne lin es s U C LA Fa ce bo ok Be rg en 0. 38 R au ds ep p (2 01 9) Es to ni a 24 9 15 .3 0 0. 53 de pr es si on C ES -D SM Be rg en 0. 34 R ob in so n (2 01 9) U S 50 4 20 .4 0 0. 82 de pr es si on PH Q -9 SM Be rg en 0. 20 Şa hi n (2 01 7) T ur ke y 61 2 20 .3 4 0. 62 lif e sa tis fa ct io n SW LS SM Şa hi n an d Y ağ cı ( 20 17 ) − 0. 31 Sa le em e t al . ( 20 14 ) Pa ki st an 60 0 19 .5 0 0. 50 lo ne lin es s U C LA Fa ce bo ok IA T 0. 23 Sa tic i ( 20 19 ) T ur ke y 28 0 21 .0 4 0. 58 po si tiv e af fe ct , n eg at iv e af fe ct , lif e sa tis fa ct io n, lo ne lin es s PA N A S, S W LS , U C LA Fa ce bo ok Be rg en − 0. 16 , 0 .1 6, − 0. 19 0 .1 5 Sa tic i a nd U ys al ( 20 15 ) T ur ke y 31 1 20 .8 6 0. 58 lif e sa tis fa ct io n, h ap pi ne ss SW LS , S H S Fa ce bo ok Be rg en − 0. 32 , − 0. 32 Sa vc i e t al . ( 20 18 ) T ur ke y 18 7 N A 0. 47 po si tiv e af fe ct , n eg at iv e af fe ct PA N A S SM SM D S − 0. 23 , 0 .3 6 Sh el do n et a l. (2 02 0) U S 33 7 23 .3 5 .5 8 lif e sa tis fa ct io n Li fe P os iti on S ca le Fa ce bo ok , In st ag ra m ,S na pc ha t Be rg en − 0. 13 , − 0. 15 , − 0. 04 Sh et ta r et a l. (2 01 7) In di a 10 0 27 .5 5 0. 46 lo ne lin es s U C LA Fa ce bo ok Be rg en 0. 24 So ra ci e t al . ( 20 20 ) It al y 21 7 32 .1 4 0. 64 an xi et y, d ep re ss io n, s el f- es te em A du lt PR O M IS E m ot io an l D is tr es s/ A nx ie ty - Sh or t Fo rm , A du lt PR O M IS E m ot io an l D is tr es s/ D ep re ss io n- Sh or t Fo rm , R os en be rg Fa ce bo ok Be rg en 0. 47 , 0 .4 8, 0. 23 Sp ra gg in s (2 00 9) U S 35 0 20 .0 0 0. 81 so ci al a nx ie ty , l ife s at is fa ct io n, lo ne lin es s, de pr es si on , s el f- es te em , h ap pi ne ss So ci al A vo id an ce a nd D is tr es s Sc al e, SW LS ,U C LA , C ES -D , R os en be rg , O xf or d H ap pi ne ss Q ue st io nn ai re SN Ss G PI U S 0. 22 , − 0. 13 , 0. 28 , 0 .2 8, − 0. 30 , − 0. 28 St eg gi nk ( 20 15 ) N et he rl an ds 31 5 28 .7 4 0. 43 So ci al lo ne lin es s, d ep re ss io n, so ci al a nx ie ty SE LS A -S , D A SS -2 1, Se lf- C on sc io us ne ss S ca le ; Sc re en fo r C hi ld A nx ie ty R el at ed E m ot io na l D is or de rs Fa ce bo ok Be rg en 0. 09 , 0 .1 0, 0. 10 St oc kd al e an d C oy ne ( 20 20 ) U S 38 5 20 .0 1 0. 53 lif e sa tis fa ct io n, a nx ie ty , de pr es si on Bl ai s et a l. (1 98 9) & S W LS , S pe nc e C hi ld A nx ie ty In ve nt or y, C ES -D C SN Ss M er lo e t al . ( 20 13 ) 0. 11 , 0 .2 4, 0. 28 T es i ( 20 18 ) It al y 58 0 32 .0 0 0. 62 lo ne lin es s U C LA SM Be rg en 0. 19 T ab le 2 . ( C on tin ue d) (C on tin ue d) 10 International Journal of Social Psychiatry 00(0) St ud y C ou nt ry N A ge FM M H M H M ea s. SM SM M ea s. ES T ur el e t al . ( 20 18 ) Is ra el 21 5 26 .9 9 0. 73 w el l-b ei ng W H O -5 Fa ce bo ok Be rg en − 0. 57 T ur el a nd Q ah ri -S ar em i ( 20 16 ), # 1 U S 34 1 23 .0 0 0. 52 se lf- es te em R os en be rg Fa ce bo ok T ur el a nd B ec ha ra ( 20 16 ) − 0. 05 T ur el a nd Q ah ri -S ar em i ( 20 16 ), # 2 U S 60 19 .5 0 N A se lf- es te em R os en be rg Fa ce bo ok T ur el a nd B ec ha ra ( 20 16 ) 0. 01 U ys al e t al . ( 20 13 ) T ur ke y 29 7 20 .1 0 0. 53 ha pp in es s SH S Fa ce bo ok Be rg en − 0. 37 va n de n Ei jn de n et a l. (2 01 6) , # 1 N et he rl an ds 72 4 14 .3 6 0. 54 se lf- es te em , d ep re ss io n R os en be rg , K ut ch er A do le sc en t D ep re ss io n Sc al e SM SM D S − 0. 19 , 0 .3 7 va n de n Ei jn de n et a l. (2 01 6) , # 2 N et he rl an ds 87 3 14 .2 8 0. 48 de pr es si on , l on el in es s K ut ch er A do le sc en t D ep re ss io n Sc al e, U C LA SM SM D S 0. 29 , 0 .2 4 va n de n Ei jn de n et a l. (2 01 8) , # 1 N et he rl an ds 27 5 13 .9 01 lif e sa tis fa ct io n SW LS SM SM D S − 0. 48 va n de n Ei jn de n et a l. (2 01 8) , # 2 N et he rl an ds 26 3 13 .9 0 0 lif e sa tis fa ct io n SW LS SM SM D S − 0. 33 va n R oo ij et a l. (2 01 7) N et he rl an ds 39 45 13 .0 4 .5 0 lif e sa tis fa ct io n, d ep re ss io n, se lf- es te em , l on el in es s, s oc ia l an xi et y St ud en ts ' L ife S at is fa ct io n Sc al e, D M L, R os en be rg , | U C LA , S A SA SM M ee rk er k (2 00 7) − 0. 30 , 0 .4 5, − 0. 29 , 0 .3 2, 0. 20 V an ge el e t al . ( 20 16 ) Be lg iu m 10 02 15 .2 1 0. 51 se lf- es te em , l on el in es s, de pr es si on R os en be rg , R as ch -T yp e Lo ne lin es s Sc al e, D M L SN Ss Be rg en − 0. 23 , 0 .2 5, 0. 33 V er no n et a l. (2 01 7) A us tr al ia 87 4 14 .4 0 0. 59 de pr es si on M ic hi ga n St ud y of A do le sc en t Li fe T ra ns iti on s SN Ss IA T 0. 31 W al bu rg e t al . ( 20 16 ), # 1 Fr an ce 11 5 16 .6 1 0 de pr es si on , s ui ci da l i de at io n C ES -D , G ar ri so n et a l. (1 99 9) Fa ce bo ok IA T 0. 37 , 0 .2 3 W al bu rg e t al . ( 20 16 ), # 2 Fr an ce 17 1 16 .4 3 1 de pr es si on , s ui ci da l i de at io n C ES -D , G ar ri so n et a l. (1 99 9) Fa ce bo ok IA T 0. 10 , 0 .2 0 W an ( 20 09 ) C hi na 33 5 23 .5 0 0. 56 lo ne lin es s U C LA X ia no ne i IA T 0. 39 W an g et a l. (2 01 6) , # 1 C hi na 38 0 19 .9 3 0. 75 lif e sa tis fa ct io n SW LS W ei bo Be rg en − 0. 11 W an g et a l. (2 01 6) , # 2 C hi na 53 5 19 .8 3 0. 78 lif e sa tis fa ct io n SW LS W ei bo Be rg en 0. 05 W an g et a l. (2 01 8) C hi na 36 5 15 .9 6 0. 52 de pr es si on , S el f- es te em C ES -D , R os en be rg SN Ss FI Q 0. 18 , − 0. 07 W eg m an n et a l. (2 01 5) G er m an y 33 4 19 .2 7 0. 72 de pr es si on BS I SN Ss IA T 0. 48 W on g et a l. (2 02 0) H on g K on g 30 0 20 .8 9 0. 59 de pr es si on , a nx ie ty D A SS -2 1 SM Be rg en 0. 34 , 0 .3 4 W oo d et a l. (2 01 6) U S 20 9 20 .2 3 0. 73 de pr es si on , a nx ie ty D A SS -2 1 SM FI Q 0. 18 , 0 .2 1 W or sl ey e t al . ( 20 18 ) U K 10 29 19 .8 0 0. 75 de pr es si on PH Q -9 SM Be rg en 0. 27 Y am e t al . ( 20 19 ) H on g K on g 30 7 21 .6 4 .6 8 an xi et y, d ep re ss io n H A D S SM Be rg en 0. 19 , 0 .1 8 Y ou ng e t al . ( 20 20 ) U S 12 4 30 .5 8 0. 80 de pr es si on , l ife s at is fa ct io n PH Q -9 , S W LS SM G PI U S 0. 40 , − 0. 20 Y u et a l. (2 01 6) M ac ao 39 5 19 .0 5 0. 63 lo ne lin es s U C LA SN Ss Be rg en 0. 24 Y ur da gü l e t al . ( 20 19 ) T ur ke y 49 1 15 .9 2 0. 59 lo ne lin es s, d ep re ss io n, a nx ie ty , so ci al a nx ie ty U C LA , S D H S, S T A I, SA SA In st ag ra m Be rg en 0. 14 , 0 .2 5, 0. 22 , 0 .2 8 Z af fa r et a l. (2 01 5) Pa ki st an 15 0 N A 0. 50 de pr es si on , a nx ie ty , l on el in es s PH Q -9 , S ev er ity M ea su re fo r G en er al iz ed A nx ie ty D is or de r, U C LA Fa ce bo ok Be rg en 0. 39 , 0 .5 1, 0. 07 N A = n ot a va ila bl e; F M = p ro po rt io n of fe m al es in t he s am pl e; M H = m en ta l h ea lth in di ca to r; M H M ea s = m ea su re s of m en ta l h ea lth ; S M = t yp e of s oc ia l m ed ia m ea su re d; S M m ea s = m ea su re s of s oc ia l m ed ia ; E S = e ffe ct s iz e. a E ffe ct s iz es w er e ob ta in ed fr om t he a ut ho rs . T ab le 2 . ( C on tin ue d) Huang 11 SM use and mental health. Regarding publication outlet, 1 correlation between problematic SM use and self-esteem was reported in a book chapter, 1 in a conference, 1 in a Master’s thesis, 4 in Doctoral dissertations and 35 in jour- nals. The effect of publication outlet was not significant with QB = 3.43, indicating the absence of a file-drawer problem. For the country effect, 17 countries reported the relation between problematic SM use and self-esteem, and 3 of them had at least 4 effect sizes. Again, QB = 1.32 was not significant, indicating that the mean correlations of US, Poland, and Turkey were comparable. The majority of studies used the Rosenberg Self-Esteem Scale (Rosenberg, 1965) to assess global self-worth, and the mean correlation for these studies was r = −.18. Seven studies used the Single Item Self-Esteem Scale (Robins et al., 2001) and these had a mean correlation of r = −.13. The correlation between problematic SM use and self-esteem did not vary with self-esteem measure. The included studies used 18 measures of problematic SM use. Twelve samples used the Bergen Social Media Addiction Scale (Andreassen et al., 2016), Bergen Facebook Addiction Scale (Andreassen et al., 2012) or their adapta- tions, and 8 samples used the Facebook Intrusion Questionnaire (Elphinston & Noller, 2011) and its adapta- tions. The mean correlations of these measures were quite comparable. Twenty-two effect sizes were related to problematic use in general; 18 were for problematic Facebook use; 1 for problematic Twitter use, and 1 for problematic WhatsApp use. The platform to which users were addicted did not exert a significant effect on the relation between problem- atic SM use and self-esteem. Table 5 presents the effects of mean age and gender composition of the sample on the correlations between problematic SM use and mental health indicators. The mean age was reported in 38 samples, and the age effect was not significant. The effect of gender composition was significant, and the meta-regression model was r = −.38 + .36 × proportion of females in the sample. Thus, the expected correlation was r = −.38 for all-male samples, and r = −.02 for all-female samples. Moderator analyses the relation between problematic SM use and life satisfaction The effect of publication status was not examined, because journal articles were the only outlet having more than 3 effect sizes. For the country effect, Turkey and US are the only two countries with more than 3 effect sizes and the mean correlations were moderate and small, respectively ( r = −.31 and r = −.08, respectively). The country dif- ference was significant with QB = 13.57. The mean cor- relations were not compared among different life satisfaction measures, as the Satisfaction with Life Scale (Diener et al., 1985) was the only measure having more than 3 effect sizes. The effect of measure of problematic SM use was not significant, and the means for studies using the Bergen and FIQ were both small. Similarly, the effects of platform and of two continuous moderators were not significant. Table 3. Summary of mean correlations between problematic social media use and mental health. k r 95% CI Q p upper lower Well-beinga 85 −0.16 −0.20 −0.13 117.21 0.01** Happiness 4 −0.30 −0.38 −0.21 2.96 0.40 Life satisfaction 30 −0.11 −0.18 −0.03 35.94 0.18 Positive affect 3 −0.18 −0.34 −0.01 0.73 0.69 Mental Health 2 −0.29 −0.71 0.28 0.07 0.80 Self-esteem 42 −0.17 −0.22 −0.13 57.26 0.05* Overall well-being 3 −0.29 −0.65 0.17 4.54 0.10 Distress 136 0.27 0.25 0.29 150.37 0.17 Anxiety 17 0.30 0.25 0.35 17.00 0.39 Depression 59 0.31 0.28 0.33 46.69 0.86 Overall distress 4 0.27 0.01 0.49 3.36 0.34 Loneliness 29 0.21 0.17 0.25 25.34 0.61 Negative affect 4 0.08 −0.29 0.44 4.55 0.21 Social Anxiety 17 0.30 0.24 0.35 19.65 0.24 Social loneliness 2 0.19 −0.76 0.88 1.00 0.32 Suicidal ideation 3 0.18 0.02 0.34 0.53 0.77 aOne correlation between problematic use of social media andpsychiatric well-being was reported and thus mean correlation was not computed. *ponline gaming addiction. These treatments can be considered and modi- fied to treat male users at high risk of SM addiction. The study country was related to the correlation between problematic SM use and life satisfaction. The correlation was moderate for Turkey, and small for US. Although the country effect on the relation between problematic Facebook use and psychological distress was significant, Marino et al. (2018a) found that Western countries had larger effect sizes than Asian countries. The inconsistent findings can be caused by the composition of both the Western and Asian country categories in Marino et al. (2018a). In Marino et al. (2018a), US only contributed one effect size in the Western country category, and Asian countries included Turkey, Taiwan and Thailand. Implications, limitations, and future directions This meta-analysis has important implications for practice and research. As the magnitudes of correlations varied by mental health indicator, future practitioners and research- ers should use multiple indicators for a comprehensive assessment of the effect of problematic SM use on well- being and distress. The magnitudes of these correlations did not vary with publication status, instruments, SM plat- forms or mean age. The strength of correlation between problematic SM use and mental health was similar in most research conditions. Thus, the magnitude of these correlations can generalize across most moderator condi- tions, supporting the stability of correlations between problematic SM use and mental health indicators in most research conditions. Moreover, the moderating effect of study country was investigated to examine possible cul- tural differences. Turkish studies revealed a relatively strong correlation between SM use and life satisfactions. Since some countries had few studies, more international research should be conducted to examine the possible country effect. This study searched articles published in English. Different languages or countries might have different 14 International Journal of Social Psychiatry 00(0) dominant SM platforms. Few included studies investi- gated main SM platforms other than Facebook from differ- ent countries (e.g. WeChat in China). Therefore, future research should examine whether the moderating effect of SM platform is different across cultures. As each SM plat- form has distinctive features, the country effect may be confounded with platform effect. One limitation of this study was that it treated multiple effect sizes from a single sample independent. For exam- ple, correlations between multiple measures of problem- atic SM use and multiple mental health indicators were all coded. Moreover, some moderator effects could not be examined, because those moderators did not have enough effect sizes to warrant stable estimates of mean correla- tions. Lastly, systematic reviews tend to use multiple reviewers or readers (Buscemi et al., 2005). Only one reader performed data extraction and coding, possibly leading to errors. Funding The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Funding for this study was provided by Ministry of Science and Technology (MOST) of the Republic of China, Taiwan Grant No. 108-2511-H-018-026. ORCID iD Chiungjung Huang https://orcid.org/0000-0001-9687-8608 References Aladwani, A. M., & Almarzouq, M. (2016). Understanding com- pulsive social media use: The premise of complementing self-conceptions mismatch with technology. Computers in Human Behavior, 60, 575–581. https://doi.org/10.1016/j. chb.2016.02.098 American Psychiatric Association (1994). Diagnostic and statis- tical manual of mental disorders, DSM-IV (4th ed.). APA. Andreassen, C. S. (2015). Online social network site addiction: A comprehensive review. Current Addiction Reports, 2, 175–184. https://doi.org/10.1007/s40429-015-0056-9 Andreassen, C. S., Billieux, J., Griffiths, M. D., Kuss, D. J., Demetrovics, Z., Mazzoni, E., & Pallesen, S. (2016). The relationship between addictive use of social media and video games and symptoms of psychiatric disorders: A large-scale cross-sectional study. Psychology of Addictive Behaviors, 30, 252–262. https://doi.org/10.1037/adb0000160 Andreassen, C. S., Pallesen, S., & Griffiths, M. D. (2017). The relationship between addictive use of social media, nar- cissism, and self-esteem: Findings from a large national survey. Addictive Behaviors, 64, 287–293. https://doi. org/10.1016/j.addbeh.2016.03.006 Andreassen, C. S., Torsheim, T., Brunborg, G. S., & Pallesen, S. (2012). Development of a Facebook addiction scale. Psychological Reports, 110, 501–517. https://doi. org/10.2466/02.09.18.PR0.110.2.501-517 Bagby, R. M., Ryder, A. G., Schuller, D.R., & Marshall, M. B. (2004). The Hamilton Depression Rating Scale: Has the gold standard become a lead weight? American Journal of Psychiatry, 161, 2163–77. https://doi.org/10.1176/appi.ajp.161.12.2163 Baturay, M. H., & Toker, S. (2017). Self-esteem shapes the impact of GPA and general health on Facebook addiction: A mediation analysis. Social Science Computer Review, 35, 555–575. https://doi.org/10.1177/08944393166566 Beck, A. T., Steer, R. A., & Brown, G. K. (1996). Manual for the Beck Depression Inventory–II. San Antonio, TX: Psychological Corporation. Beck, A. T., & Steer, R. A. (1987). Beck Depression Inventory manual. New York: Psychological Corporation. Biolcati, R., Mancini, G., Pupi, V., & Mugheddu, V. (2018). Facebook Addiction: Onset Predictors. Journal of Clinical Medicine, 7, 118. https://doi.org/10.3390/jcm7060118 Błachnio, A., Przepiórka, A., & Pantic, I. (2015). Internet use, Facebook intrusion, and depression: Results of a cross-sec- tional study. European Psychiatry, 30, 681–684. https://doi. org/10.1016/j.eurpsy.2015.04.00 Brailovskaia, J., Teismann, T., & Margraf, J. (2018). Physical activity mediates the association between daily stress and Facebook addiction disorder (FAD)—A longitu- dinal approach among German students. Computers in Human Behavior, 86, 199–204. https://doi.org/10.1016/j. chb.2018.04.045 Buscemi, N., Hartling, L., Vandermeer, B., Tjosvold, L., & Klassen, T. P. (2005). Single data extraction generated more errors than double data extraction in systematic reviews. Journal of Clinical Epidemiology, 59, 697–703. https://doi. org/10.1016/j.jclinepi.2005.11.010 Caldiroli, A., Serati, M., & Buoli, M. (2018). Is Internet addic- tion a clinical symptom or a psychiatric disorder? A com- parison with bipolar disorder. The Journal of Nervous and Mental Disease, 206, 644–656. https://doi.org/10.1097/ NMD.0000000000000861. Caplan, S. E. (2010). Theory and measurement of generalized problematic Internet use: A two-step approach. Computers in Human Behavior, 26, 1089–1097. https://doi.org/10.1016/j. chb.2010.03.012 Card, N. A. (2012). Applied meta-analysis for social science research. New York: Guilford Press. Carr, C. T., & Hayes, R. A. (2015). Social media: Defining, devel- oping, and divining. Atlantic Journal of Communication, 23, 46–65. https://doi.org/10.1080/15456870.2015.972282 Chabrol, H., Laconi, S., Delfour, M., & Moreau, A. (2017). Contributions of psychopathological and interpersonal vari- ables to problematic Facebook use in adolescents and young adults. International Journal of High Risk Behavioral Addiction, 6, e32773. https://doi.org/10.5812/ijhrba.32773. Chamberlain, S., Lochner, C., Stein, D., Goudriaan, A., Holst, R., Zohar, J., & Grant, J. E. (2016). Behavioural addic- tion-a rising tide? European Neuropsychopharmacology, 26, 841–855. https://doi.org/10.1016/j.euroneuro.2015.08 .013 Choi, S. B., & Lim, M. S. (2016). Effects of social and technol- ogy overload on psychological well-being in young South Korean adults: The mediatory role of social network service addiction. Computers in Human Behavior, 61, 245–254. https://doi.org/10.1016/j.chb.2016.03.032