Prévia do material em texto
Exercícios de Aplicação das Propriedades da Transformada de Laplace Determinar a Transformada de Laplace das Funções (Alguns exercícios podem ser resolvidos de várias formas. Tente mais de uma para praticar). 1. f(t) = 3t 2. f(t) = 5 cos2t 3. ( ) t2ettf −+= 4. ( ) te5t10sen32tf −−+= 5. ( ) ( ) ( )3tu3t2costf −−= 6. ( ) ( )2tuttf −= 7. ( ) ( )1tuetf t3 −= − 8. ( ) ( )3tut2costf −= 9. ( ) tetf t2 = − 10. ( ) ( )tutetf t2 = − 11. ( ) t2cosetf t = − 12. ( ) tcostetf t = − 13. ( ) ( )tutcostetf t = − 14. ( ) tcost3coste8tf t2 = − 15. ( ) ( ) ( )2tu4t2sen4tf 2 −−= Resolver também os exercícios do livro texto 4ª Ed.: Pag. 694 - E16.4 a E16.9 Pág 711 – 16.2 a 16.10 Respostas 1. ( ) 2s 3 sF 2. ( ) 4s s5 sF 2 + = 3. ( ) 2s 1 s 1 sF 2 + += 4. ( ) 1s 5 100s 30 s 2 sF 2 + − + += 5. ( ) + = − 4s s esF 2 s3 6. ( ) += − s 2 s 1 esF 2 s2 7. ( ) ( ) ( )3s e sF 3s + = +− 8. ( ) + − + = − 4s 2 6sen 4s s 6cosesF 22 s3 9. ( ) ( )22s 1 sF + = 10. ( ) ( )22s 1 sF + = 11. ( ) ( ) 41s 1s sF 2 ++ + = 12. ( ) ( ) ( ) 22 2 11s 11s sF ++ −+ = 13. ( ) ( ) ( ) 22 2 11s 11s sF ++ −+ = 14. ( ) ( ) ( ) ( ) ( ) ++ −+ + ++ −+ = 22 2 22 2 162s 162s 42s 42s 4sF 15. ( ) s2 2 e 16s s s 1 2sF − + −= Exercícios do Livro, pág. 711 2. ( ) + = − 1s 1 x4 e sF a 3. ( ) 22 2 2 2 as sa as a s a s a sF + + + ++= 4. ( ) ( ) ( ) ( ) ++ ++ = +− senascos as e sF 22 as 5. ( ) ( ) ( ) + + + = +− as 4 as 1 esF 2 as4 6. ( ) ( ) as e sF as + = +− 7. ( ) ( ) ( ) + + + = +− as 1 as 1 esF 2 as 8. ( ) + += − 1s 1 s 1 esF 2 s 9. ( ) + − + = − 2s 1 1s 1 esF s2 10. ( ) + − + + − + = − sen s s2 coss s s s e sF 2222 22 22 s