Logo Passei Direto
Buscar
Material
páginas com resultados encontrados.
páginas com resultados encontrados.

Prévia do material em texto

Farmacogenética
Apresentação da farmacogenética como a ciência das respostas distintas a fármacos e suas implicações e
aplicações clínicas.
Profa. Camila Freze Baez
1. Itens iniciais
Próposito
Conhecer as bases da genética aplicadas à farmacologia e reconhecer o impacto de sua aplicação em
distúrbios genéticos da cinética e na ação dos fármacos, como bagagem fundamental para os profissionais
atuantes, direta ou indiretamente, na elaboração de novos fármacos e nos estudos de aplicações da medicina
moderna e personalizada.
Objetivos
Identificar os principais eventos genéticos e as implicações éticas da farmacogenética.
Reconhecer as principais relações genes-fármacos em farmacogenética.
Introdução
A humanidade é composta por bilhões de indivíduos, cada um de nós diferente dos demais. Nossas
características culturais, sociais, afetivas e físicas nos dão a ideia de indivíduos e, ao mesmo tempo, de
coletividade.
 
Uma das principais fontes das diferenças entre nós está profundamente conectada ao nosso organismo: a
informação genética. Literalmente, cada pessoa se difere da outra em nível genético, com a exceção de
gêmeos idênticos (sendo talvez a única).
 
Sociedades e culturas sempre se desenvolveram por meio das trocas comerciais e genéticas, o que causou
nossa variabilidade genética e permitiu nossa evolução. Cada indivíduo possui, dessa forma, uma miríade de
genes que podem ser muito semelhantes ou distintos do seu vizinho, e isso pode afetar diretamente como a
saúde de cada um funciona e nossas respostas a diferentes medicamentos.
 
A seguir, exploraremos como o ramo que estuda a relação entre a genética e a farmacologia surgiu, suas
ideias e técnicas principais, e suas aplicações clínicas e científicas.
• 
• 
Gregor Mendel.
1. Principais eventos genéticos e as implicações éticas da farmacogenética
História da farmacogenética e conceitos básicos
A farmacogenética é uma ciência recente que busca explicar variações na resposta a medicamentos e drogas
de caráter hereditário e populacional.
 
O entendimento de que indivíduos diferentes podem apresentar respostas variáveis ao mesmo medicamento,
por outro lado, não é novo. Remonta à Grécia Antiga e seus filósofos, precursores de muitos conceitos-chave
que temos hoje na filosofia e medicina ocidentais.
Saiba mais
Na época, já se reconhecia que a ingestão de determinados alimentos, como o feijão-fava, poderia
causar o adoecimento e ser potencialmente fatal para algumas pessoas, enquanto para outras não
apresentava qualquer problema após a ingestão. 
Por milênios, a exata causa de certas pessoas
reagirem diferentemente a determinados
compostos químicos permaneceu oculta. Foi
apenas no início do século passado que
começamos a desvendar a explicação para tal
fenômeno, com a redescoberta dos trabalhos
de Gregor Mendel (século XIX) sobre a herança
genética.
Saiba mais
Gregor Johann Mendel (1822-1884), foi um monge agostiniano, conhecido como o pai da genética pelos
seus relevantes estudos com ervilhas, o que lhe permitiu elaborar os conceitos fundamentais de como
as características são transmitidas de uma geração para a seguinte. 
Mendel observou que fatores hereditários eram transmitidos às gerações futuras por meio dos gametas
(células reprodutivas maduras) e postulou três leis principais:
Lei da Dominância
Explica o porquê de certa característica física predominar sobre outra, após cruzamento de dois
indivíduos com características discordantes ou após cruzamento de indivíduos com característica
dominante, porém híbridos geneticamente (também chamados de heterozigotos). A característica que
se manifesta mais frequentemente é chamada de dominante, e a que se manifesta menos
frequentemente é chamada de recessiva.
Lei da Segregação
Definida pela existência de pares de informações hereditárias (ou alelos) para cada característica, que
são separadas durante a produção de gametas, de forma que cada gameta apresente apenas uma
cópia de informação para cada característica.
Lei da Segregação Independente
Explica que cada par de alelos é segregado de forma independente de outros alelos, tornando os
fenótipos independentes.
Herança Mendeliana
Seus achados foram tão fundamentais para o campo, que Mendel é considerado o pai da genética.
Após a redescoberta dos trabalhos de Mendel, no início do século XX, foram criados os termos:
Gene
Do grego genos = nascimento, designando uma
unidade hereditária mendeliana.
Genótipo
Para descrever a composição genética de um
indivíduo.
Fenótipo
Como o conjunto de características físicas
determinadas geneticamente, mas também
influenciáveis pelo ambiente.
Genética
Como ciência que estuda a hereditariedade.
Posteriormente, características hereditárias mais complexas, como a existência de níveis de dominância e
penetração, fenótipos determinados por múltiplos alelos, além da existência de regulações genéticas em
diversos níveis, entre muitos outros tópicos de estudo, enriqueceram nossa compreensão da genética.
Por outro lado, a ideia de que fármacos e outros compostos químicos têm efeitos distintos entre
indivíduos de acordo com sua herança genética começou a ser formulada.
Em 1931, o médico britânico Archibald Garrod postulou a “química individual”, conceito sobre o qual escreveu
em seu livro Os Erros Inatos do Metabolismo (The Inborn Errors of Metabolism, em tradução livre). Em sua
obra, ele elabora a ideia de que todas as doenças são fruto de erros em alguma etapa dos processos químicos
do corpo, hipótese derivada de seus estudos de hereditariedade dos processos bioquímicos. Essa seria a
explicação para a observação de que “uma dose que é inócua para a maioria das pessoas, pode apresentar
efeitos tóxicos em alguns indivíduos, enquanto outros demonstram tolerância excepcional à mesma droga’”.
 
Após a publicação do livro de Garrod, outros dados começaram a dar forma e vislumbrar como a genética está
ligada às doenças e às diferentes reações a drogas. Larry Snyder foi um dos primeiros a associar uma reação
adversa a um composto orgânico com uma condição genética: algumas pessoas apresentavam inabilidade de
sentir o gosto amargo de feniltiocarbamida (phenylthiocarbamide — PTC) em padrão autossômico recessivo.
padrão autossômico
Padrão autossômico é uma forma de transmissão de características hereditárias. Nesse caso, o gene
está presente em cromossomos autossômicos, ou seja, não ligados à característica sexual. 
Em 1937, foi descrita a indução farmacológica de porfiria (uma doença de manifestação cutânea), que hoje
sabemos que pode ser induzida por vários medicamentos. Durante a Segunda Guerra Mundial, foi visto que a
primaquina, um antimalárico, era capaz de induzir doença hemolítica de soldados americanos
afrodescendentes. Anos depois, a hemólise desencadeada pela primaquina foi elucidada como uma alteração
metabólica das hemácias devido à deficiência de uma enzima (glicose-6-fosfato desidrogenase — G6FD) que
protege as hemácias contra danos oxidativos e destruição prematura.
antimalárico
A malária é causada por um parasita que infecta as hemácias. 
Fita de DNA em frasco de medicamento.
A farmacogenética começou a se tornar uma ciência independente e a ganhar foco na década de
1950, quando várias observações sobre a interação entre drogas e alterações genéticas foram
feitas.
Exemplo
Por exemplo, em 1953, cientistas observaram que a isoniazida, um antibiótico usado no tratamento da
tuberculose, poderia sofrer metabolização por acetilação (e inativação) de forma mais rápida ou lenta em
diferentes pacientes, alterando a efetividade da terapia. Muitos outros relatos de reações distintas a
fármacos foram feitos, de diferentes velocidades de metabolização a reações fatais a anestésicos. 
Na mesma época, houve uma revolução no conhecimento da genética, com as descobertas de que a
hereditariedade dos organismos está contida no DNA (ácido desoxirribonucleico), sua estrutura e como a
informação nele contida (genótipo) se converte — ou se traduz — em uma função ou estruturaresponsável
pelo fenótipo.
No final da década de 1950, o médico russo Arno Motulsky
refinou o conceito de que fatores genéticos que controlam
as enzimas estariam por trás da variabilidade de respostas
aos fármacos. Seu trabalho em genética humana e médica
levou à sua indicação pelo Conselho sobre Drogas da
Associação Médica Americana (Council on Drugs of the
American Medical Association) para resumir os dados da
época sobre genética e fármacos. Ele foi o primeiro a
formular o entendimento de que variações genéticas devem
levar à seleção de drogas de acordo com as necessidades
pessoais, conceito base para o desenvolvimento da 
medicina personalizada (MP). O termo farmacogenética foi
cunhado por ele e por Friedrich Vogel, com quem escreveu
o livro Genética Humana: Problemas e Abordagens (Human
Genetics: Problems and Approaches).
Um dos marcos históricos foi a identificação de alterações no metabolismo da debrisoquina (um anti-
hipertensivo) e da esparteína (um “cardiotônico” e antiarrítmico), a característica genética associada a essas
alterações e, principalmente, do gene que a causava: o da enzima citocromo P450 família 2 (cytochrome
P450, ou CYP), subfamília D, polipeptídeo 6 (ou apenas CYP2D6), entre a década de 1970 e 1980.
Posteriormente, ficaria provado que o CYP2D6 estaria envolvido no metabolismo de mais de 60 fármacos.
 
Outro grande marco foi atingido nessa época, com os estudos populacionais. Pesquisadores demonstraram
que uma parte de indivíduos pertencentes a determinado grupo étnico poderia ter maior ou menor
sensibilidade, diferentes taxas de metabolização e distintas reações a fármacos. Tomando como exemplo o
estudo que viu doença hemolítica em afro-americanos após uso de antimalárico, outros estudos surgiram
mostrando que populações do leste asiático apresentam metabolismo alterado de barbitúricos, e que
populações de origens africanas e chinesas diferem das de origem europeia na velocidade de metabolização
de debrisoquina, dentre muitos outros.
Como podemos ver, as primeiras relações entre fármacos e genética foram determinadas principalmente por
meio da variabilidade de parâmetros farmacocinéticos. Os pesquisadores olhavam respostas distintas à
determinada droga e avaliavam as velocidades de absorção, eliminação e as concentrações plasmáticas do
fármaco ativo de pessoas com respostas “normais”, em comparação com aquelas que apresentavam resposta
clínica alterada. Em seguida, os cientistas relacionavam a observação farmacocinética com uma alteração
metabólica determinada geneticamente que alterasse esses parâmetros.
 
Já no final da década de 1980, pesquisadores identificaram que variações genéticas em proteínas-alvo de
determinados fármacos poderiam reduzir sua eficácia, sem, contudo, alterar parâmetros farmacocinéticos.
 
Um dos primeiros relatos de alterações genéticas afetando a farmacodinâmica (ou seja, o mecanismo de ação
de um determinado fármaco) surgiu com a observação de que determinados indivíduos apresentavam
resistência hereditária a certos anticoagulantes, especialmente à varfarina. No entanto, foi apenas no século
XXI que o gene em si foi identificado. Outros medicamentos que possuem efeitos adversos promovidos por
alteração genética na farmacodinâmica incluem anti-hipertensivos, anticoagulantes, antidepressivos e muitos
outros.
 
Assim, considerando os mecanismos farmacocinéticos e farmacodinâmicos de variação genética afetando a
resposta aos fármacos, podemos classificar o uso da farmacogenética em três categorias:
Categoria 1
Predição da dosagem de fármacos de forma 
individual, baseada nas características
metabólicas de cada pessoa.
Categoria 2
Predição de ausência completa de resposta ao
medicamento.
Categoria 3
Predição de risco de toxicidade caso o fármaco
seja usado.
Com o passar das décadas, mais e mais evidências comprovavam que as diferentes respostas a
medicamentos seriam decorrentes não só de alterações genéticas pontuais, mas sim de múltiplos fatores
genéticos que interagem entre si, além de fatores ambientais como a nutrição e idade.
 
Em 2002, foi criado um projeto ambicioso para catalogar as variações genéticas mais comuns. O chamado 
HapMap foi concluído em 2009 e gerou um banco de dados extenso, gratuito e de acesso livre para cientistas
do mundo inteiro. Apesar de seu principal objetivo ter sido a identificação de variantes genéticas envolvidas
em doenças humanas, o HapMap também é útil na predição da resposta farmacogenética.
HapMap
Em inglês, apelido para “mapa de haplótipos”. Os haplótipos são a forma de herança de genes que,
apesar de existirem como unidades separadas, são herdados juntos mais frequentemente. 
O HapMap, somado aos estudos de genômica que têm sido desenvolvidos desde o início do século
XXI, permitiu que a farmacogenética ganhasse contorno mais holístico (global) com o
desenvolvimento da farmacogenômica.
E qual é a diferença entre farmacogenética e farmacogenômica?
 
Por vezes, os termos farmacogenética e farmacogenômica são usados de forma intercambiável.
A farmacogenômica trouxe novos níveis de compreensão de como fármacos e drogas interagem com
organismos vivos complexos. As interações entre variantes genéticas e fatores externos têm sido objeto de
estudos em um campo novo e particularmente promissor da Medicina, a chamada medicina personalizada.
Mas, para entendermos com profundidade como fatores hereditários influenciam na resposta aos fármacos,
precisamos primeiro conhecer alguns princípios básicos da genética molecular.
Descobrindo e entendendo a farmacogenômica
A especialista Camila Baez abordará o histórico da farmacogenômica, sua importância e aplicações e as
perspectivas futuras.
Conteúdo interativo
Acesse a versão digital para assistir ao vídeo.
Conceitos em genética molecular
Como sabemos, os seres vivos apresentam padrões de hereditariedade. Existem características físicas (e
metabólicas) que são passadas de geração em geração. Para entendermos a existência de variações
genéticas em nível molecular que afetam a farmacocinética e a farmacodinâmica, precisamos revisar alguns
conceitos básicos de genética molecular.
 
Apesar dos grandes avanços em genética feitos por Mendel e outros cientistas, o meio bioquímico pelo qual
os fatores hereditários existiam permaneceu um mistério até meados do século XX, quando o ácido
desoxirribonucleico (DNA) foi identificado como o responsável pela informação genética.
Farmacogenética 
Remete a como um gene específico
influencia a resposta a um fármaco.
Farmacogenômica 
Enquanto a farmacogenômica explora
como um conjunto de genes pode
influenciar a resposta a um ou vários
fármacos da mesma classe.
O que é DNA?
O DNA consiste em uma longa sequência de nucleotídeos
que se organizam em estruturas complexas e compactas,
os cromossomos. Em eucariontes (organismos que
apresentam membrana nuclear em suas células), os
cromossomos são lineares e encontrados no núcleo. Cada
cromossomo possui diversos genes, as unidades
hereditárias mendelianas, que nada mais são que
sequências de DNA que codificam uma função específica.
Representação da estrutura genética
do DNA
Os humanos possuem duas cópias da maioria dos genes presentes em cromossomos homólogos (ou seja, que
apresentam estruturas genéticas e físicas muito semelhantes), e, por isso, somos chamados diploides — em
contraste, nossos gametas têm apenas uma cópia de cada cromossomo e, por isso, são chamados haploides.
A cópia que cada cromossomo homólogo tem de um determinado gene é chamada de alelo. Portanto, alelos
são versões alternativas de sequências genéticas localizadas no mesmo lócus em cromossomos homólogos.
Geralmente, um alelo contém uma versão — ou um genótipo — que predomina sobre o outro alelo,
determinando, assim, o fenótipo, ou seja, é dominante sobre outro alelo, o recessivo.
Ploidia e alelos.
Polimorfismos genéticos
Um dos momentos cruciais para a variabilidade genética é a duplicação do DNA. Quando a célula está no
momento certo para a multiplicação, o DNA é duplicado pelaDNA polimerase em um processo conhecido por
replicação e que pode ser dividido em três etapas:
Representação do complexo de replicação do DNA em uma célula.
Helicase
Abertura da dupla hélice e separação das duas fitas de DNA promovida pela enzima helicase.
Primase
Em seguida, um complexo enzimático prepara as fitas-molde para a replicação. Nesta etapa, a
primase inicia a replicação, adicionando os primeiros nucleotídeos às fitas-filhas.
DNA polimerase
Após a colocação dos nucleotídeos iniciais (ou primers), a DNA polimerase se liga à fita-molde com as
bases nitrogenadas expostas, pareando-as por complementariedade a nucleotídeos trifosfatados
livres e catalisando a ligação fosfodiéster entre nucleotídeos. Essa ligação usa a energia do trifosfato
do nucleotídeo livre e é feita entre seu fosfato e o açúcar do nucleotídeo já presente na fita-filha.
Atenção
De certa forma, a DNA polimerase lê o DNA fita simples e duplica sua informação em uma nova fita. Por
vezes, no entanto, a DNA polimerase adiciona nucleotídeos errados à fita nascente de DNA, gerando o
que chamamos de mutações. 
O que são mutações?
As mutações são uma das principais formas de
variabilidade genética e podem ser classificadas de
acordo com seu tamanho e função. De forma geral,
são consideradas mutações as alterações
genéticas que alteram o número ou estrutura dos
cromossomos (mutações cromossômicas) ou
alteram a sequência de DNA em porções menores
que 100kb (mutações gênicas).
As mutações gênicas podem ser categorizadas em
mutações pontuais por substituição de bases (com ou sem
alteração na sequência de proteínas), inserções e deleções
de pequenos trechos do genoma. Ainda, as mutações
podem acontecer tanto em células somáticas quanto em células germinativas (ou gametas).
Algumas mutações são prejudiciais às células e estão associadas a doenças genéticas que, de forma geral,
são raras. Por outro lado, as demais mutações podem permanecer na composição genética das populações,
alterando a sequência de DNA original de alelos, e constituindo uma variante. Conforme um alelo variante é
passado através das gerações e sua proporção na população aumenta, passamos a ter o chamado 
polimorfismo genético. Por outro lado, chamamos de “alelo selvagem” ou “comum” o alelo polimórfico que
corresponde à maioria populacional, e que normalmente não está envolvido com nenhum fenótipo
farmacogenético.
Atividade discursiva
Como ocorre o polimorfismo genético?
Chave de resposta
Por definição, polimorfismo genético ocorre quando uma ou mais variações de um alelo são vistas em mais
de 1% da população de determinada espécie, independentemente de o tipo de mutação ser cromossômica
ou gênica. Assim, podemos considerar a existência de sexos em organismos superiores como exemplo de
polimorfismo, ou a existência de tipos sanguíneos (sistema ABO) em humanos.
A vasta maioria dos polimorfismos é do tipo mutações gênicas pontuais sinônimas (ou silenciosas, que não
trocam aminoácidos nas proteínas) ou não sinônimas (que resultam na alteração da sequência da proteína),
ambas conhecidas como SNPs (single nucleotide polymorphisms — polimorfismos de nucleotídeos simples).
Atualmente, mais de 14 milhões de SNPs são conhecidos, o que representa mais de 0,3% de bases trocadas
de um total de 3 bilhões de pares de base presentes no genoma humano. No entanto, a maior parte dessas
mutações não têm efeito conhecido. Em farmacogenética, estamos particularmente interessados em
polimorfismos que alterem a sequência de aminoácidos de proteínas, o que pode resultar em alterações na
interação com fármacos, porém há exemplos de SNPs que não alteram a proteína e influenciam na resposta
das proteínas.
SNP não-sinônimos.
Ainda assim, mutações em regiões não codificadoras, como promotores e íntrons (regiões não codificadoras
intercaladas no meio das regiões codificadoras de um gene — os éxons), também podem influenciar na
expressão da proteína e são alvo da farmacogenética — apesar de serem consideravelmente mais raras e de
interpretação mais difícil.
 
Por serem largamente frequentes nas diversas populações humanas sem, na maioria das vezes, causar
nenhum fenótipo prejudicial, os polimorfismos podem permanecer indetectáveis clinicamente até que
determinada droga seja utilizada. Na maioria dos casos, no entanto, os polimorfismos não correspondem a
nenhuma alteração. Pelo contrário, eles são, de certa forma, o que nos dá a beleza da diversidade genética.
 
Junto com nossa capacidade técnica de conhecer o genoma humano em profundidade para estudarmos a
farmacogenética e farmacogenômica de forma mais detalhada, vimos surgir desafios éticos importantes,
como discutiremos a seguir.
Questões éticas da farmacogenética
A descoberta dos fenômenos biológicos relacionados às interações entre o perfil genético de indivíduos a
medicamentos específicos que hoje conhecemos como farmacogenética foi possível graças ao progresso
científico.
 
O surgimento de ferramentas para exploração em detalhes dos mecanismos de funcionamento das drogas
(para além dos efeitos observados pelos pacientes ou usuários), a capacidade de identificar variações
genéticas nas populações, e, é claro, a observação de que diferentes grupos ou indivíduos reagem de formas
distintas a um mesmo medicamento ou droga foram fundamentais. Tais ferramentas têm sido continuamente
melhoradas e substituídas por técnicas ainda mais eficazes na identificação dos eventos genéticos que
possam contribuir para um efeito farmacológico adverso. A contínua evolução científica, logicamente, veio
com alguns ônus, especialmente trazendo à tona questões éticas relevantes.
Quais seriam essas questões éticas?
Um dos principais pontos éticos que levam ao
questionamento do uso da farmacogenética em
rotina clínica é sua acessibilidade.
 
Décadas de investimento em pesquisa e
desenvolvimento de fármacos melhores para
cada grupo genético representaram um custo
que, em última instância, é frequentemente
repassado ao paciente.
 
O que vemos na prática é que os pacientes e
familiares de maior renda conseguem acesso às
terapias mais personalizadas, enquanto aqueles de menor renda não possuem qualquer amparo.
Tal desigualdade é vista, inclusive, no nível das nações: países com Índice de Desenvolvimento Humano (IDH)
elevado apresentam muito mais oportunidades de terapia por farmacogenética do que os de IDH inferiores. De
fato, os países de IDH alto também possuem número muito maior de pesquisas genéticas voltadas à
farmacologia do que os demais. Isso em si induz a um viés: a maior parte das doenças investigadas pela
farmacogenética são doenças prevalentes em países ricos, pouco se conhecendo sobre variações
farmacogenéticas em países empobrecidos, com especial ausência de estudos em minorias étnicas.
 
No mapa-múndi podemos observar as diferenças entre os IDH ao redor do mundo.
Contudo, é entendido pela Organização Mundial da Saúde que o acesso à saúde e sua promoção sejam
universais. Esse assunto leva a alguns questionamentos:
 
Como podemos garantir que pessoas localizadas em países com IDH desiguais tenham o mesmo
acesso a terapias personalizadas e de alta performance, como a farmacogenética e farmacogenômica
prometem?
 
Como dizer que buscamos a igualdade na medicina se nem ao menos investimos o mesmo tempo e
dinheiro em investigar doenças genéticas e farmacogenéticas que acometem apenas populações
empobrecidas — e, é lógico, oferecer-lhes a mesma dedicação no desenvolvimento de medicamentos
eficazes?
 
Como podemos resolver essa desigualdade tão grave, quando não conseguimos nem garantir que
pacientes oriundos do mesmo país de altíssimo IDH tenham o mesmo direito e acesso à
farmacogenética independentemente de sua condição financeira?
 
Infelizmente, não há resposta clara e objetiva para solução dessas questões, uma vez que a farmacogenética
em si exige uma gama de recursos altamente especializados, como exames de diagnóstico, clínicas e
• 
• 
• 
hospitais para aplicação e acompanhamento de terapias mais complexas,institutos de pesquisa para
conhecimento das doenças e desenvolvimento de medicamentos, e pessoal médico e de saúde altamente
treinados.
 
Mesmo que consideremos aquele seleto grupo que tem acesso à farmacogenética, outras questões
fundamentais surgem quando pensamos no conteúdo da informação que clínicas e institutos têm a respeito
da genética de uma grande população: o que eles podem fazer com tamanha informação?
Mesmo em países de alto IDH, questionamentos quanto à 
confidencialidade e privacidade da informação genética dos
usuários e pacientes têm sido levantados. Uma das
principais preocupações quanto à informação genética é a
de quebra da confidencialidade e privacidade por empresas
de seguro ou planos de saúde, empregadores e outras
instituições e indivíduos que possam levar à discriminação
contra alguém que possua uma condição genética.
Exemplo
Planos e seguros de saúde podem aumentar os valores de mensalidade e coparticipação de exames e
terapias, ou até mesmo se recusarem a oferecer cobertura e serviços a pacientes baseados em perfis
genéticos mais “dispendiosos”. 
Seria um futuro perturbador se não fizesse parte do passado: na década de 1970, populações afro-
americanas em alguns estados dos EUA foram compelidas a fazerem triagens para doenças genéticas e
posteriormente discriminadas por empregadores e seguradoras de saúde caso apresentassem doença ou
fossem portadoras do gene para a doença.
 
Foi apenas em 2008, após diretrizes internacionais terem sido estabelecidas, que o congresso americano
aprovou a lei-ato de não discriminação quanto à informação genética (Genetic Information Nondiscrimination
Act — GINA). O objetivo do ato é coibir os estados de requererem testagens genéticas, proibir os seguros de
saúde de cometerem discriminação genética (como critério de elegibilidade para o seguro ou para
determinação do preço do prêmio), e protegendo funcionários contra exigências de empregadores (como
requerimento de testes genéticos) ou de usar informações genéticas em tomadas de decisão (contratações,
demissões e promoções).
 
Os esforços internacionais contra a discriminação genética, entretanto, haviam começado cerca de uma
década antes da GINA ser aprovada nos EUA. Com o progresso no conhecimento da genética de diversas
populações humanas obtido pelo Projeto Genoma Humano, e a produção de quantidades gigantescas de
dados genéticos, discussões internacionais foram iniciadas para disposição de mecanismos que impedissem a
discriminação genética. Na virada do milênio, a Organização das Nações Unidas para a Educação, Ciência e
Cultura (UNESCO) aprovou a Declaração Universal sobre o Genoma Humano e os Direitos Humanos (1997),
complementada pela Declaração Internacional sobre os Dados Genéticos Humanos (2004).
 
A redução de um indivíduo à sua condição genética, seja ela considerada favorável ou desfavorável em
qualquer ângulo, é eticamente reprovável e cientificamente errada. Ainda mais que, atualmente, é reconhecido
que a maioria das doenças genéticas têm influência multifatorial em diferentes níveis.
Declaração Internacional sobre os Dados Genéticos Humanos (2004)
Representa um guia para que Estados e nações formulem suas próprias legislações, para evitar a
discriminação genética, garantir o respeito à dignidade e direitos humanos e das liberdades
fundamentais, particularmente no tratamento e conservação de dados genéticos humanos e afins.
Países como EUA, Austrália, Canadá e a União Europeia (com variações entre os países que fazem parte
do bloco) já possuem legislação específica para promoção da não discriminação genética. O Brasil,
apesar de ser signatário da Declaração da UNESCO, permanece sem legislação específica contra a
discriminação genética e que regulamente o uso da farmacogenética. 
Resumindo
Em outras palavras, a mera presença de um determinado genótipo associado a uma condição
considerada hereditária nem sempre é determinante para que ela ocorra, pois outros vários fatores
podem influenciar sua ocorrência. Reduzir indivíduos à sua informação genética pode não só acentuar
racismo e preconceitos que precisam ser removidos das sociedades, como gerar outras
marginalizações. 
Verificando o aprendizado
Questão 1
Gregor Mendel é considerado o pai da genética, porém, apenas décadas após a publicação de
seus trabalhos, desvendamos como a herança genética é codificada. Sobre variabilidade
genética, é correto afirmar que:
A
Erros da helicase ao abrir a forquilha de replicação são a principal fonte de mutações, uma vez que há
incorporação de nucleotídeos fora da ordem original.
B
Polimorfismos são alterações genéticas graves, frequentemente manifestadas como doenças genéticas e
incompatibilidade com a vida.
C
A incorporação errada de nucleotídeos pontuais pela DNA polimerase é a principal fonte de mutações e,
consequentemente, de polimorfismos do tipo SNP.
D
A incorporação errada de nucleotídeos pontuais pela primase é a principal fonte de mutações e,
consequentemente, de polimorfismos do tipo SNP.
E
Mutações são extremamente comuns no genoma humano e normalmente são benéficas à saúde humana.
A alternativa C está correta.
A DNA polimerase é a enzima responsável pelo pareamento e inserção de nucleotídeos corretos à fita-
nascente de DNA. Erros não corrigidos pela adição de nucleotídeos singulares são chamados de mutações,
e os que afetem mais de 1% da população sem causar doença são chamados de polimorfismos do tipo SNP.
Questão 2
Leia o fragmento retirado do 6º Artigo da Declaração Internacional sobre os Dados Genéticos
Humanos (UNESCO):
 
“(a) Do ponto de vista ético, é imperativo que os dados genéticos humanos e os dados proteômicos humanos
sejam recolhidos, tratados, utilizados e conservados com base em procedimentos transparentes e eticamente
aceitáveis. (...)”
 
Com base em nossos estudos, é considerado ético:
A
Usar informações genéticas para cálculo do valor de seguros ou planos de saúde.
B
Garantir a contratação de um potencial funcionário baseado em dados genômicos.
C
Garantir que candidatos a emprego ou a seguros ou planos de saúde façam exames genéticos.
D
Garantir que estudos e dados genéticos estejam disponíveis para as diferentes populações.
E
Permitir a divulgação de informações genéticas individuais e coletivas, contanto que sejam negociadas
financeiramente.
A alternativa D está correta.
Uma das questões éticas envolvendo a farmacogenética é o custo. Garantir que estudos sejam conduzidos
em populações de países e regiões menos desenvolvidas tem o potencial de salvar e melhorar a vida de
milhares de pessoas.
2. Principais relações genes-fármacos em farmacogenética
Introdução 
Com as evidências acumuladas de que polimorfismos genéticos frequentemente afetam a resposta a
fármacos em diferentes populações, a farmacogenética e farmacogenômica vêm crescendo em conhecimento
e atenção. Respostas inadequadas a medicamentos levaram a graves distúrbios e à morte de pacientes no
passado, o que seria completamente inaceitável nos dias de hoje, com as ferramentas e o conhecimento
disponíveis.
Atenção
Ainda assim, estimam-se milhares de mortes ao ano por reações adversas a medicamentos,
potencialmente preveníveis com o uso da farmacogenética. Somado a isso, anos ou décadas de estudos
no desenvolvimento farmacológico são, por vezes, desperdiçados ao não contemplarem os perfis
genéticos populacionais. 
Múltiplos fatores têm influenciado a decisão sobre diferentes tratamentos, dentre ambientais, nutricionais,
idade, gênero, e genéticos, e, se usados em conjunto, podemos maximizar a eficácia das terapias e ao mesmo
tempo reduzir os riscos de reações adversas. Nesse sentido, a farmacogenética e a farmacogenômica
enriquecem grandemente o processo de tomada de decisão clínica a respeito do melhor tratamento individual.
Hoje, vemos começar um novo e excitante campo de intercessão entre clínica, diagnóstico genético, fatores
ambientais e farmacologia: a medicina personalizada.
Medicina personalizada
A medicina personalizada, tambémconhecida como medicina de precisão, baseia-se na ideia de utilizarmos a
informação genética e o uso de biomarcadores como preditores para a melhor decisão terapêutica para cada
paciente.
Como a medicina personalizada pode ajudar?
A MP ajuda no acerto de doses e na combinação de
terapias, monitoramento da segurança, predição de riscos
genéticos para que ferramentas de prevenção específicas
possam ser usadas, e a diminuição de custos e do tempo de
tratamento, uma vez que ele pode ser direcionado. Com
isso, a medicina personalizada maximiza o bem-estar do
paciente e tem o potencial de revolucionar a medicina e
melhorar todo o sistema de cuidado à saúde.
Em alguns setores da medicina, essa revolução já começou.
A MP já mostra impacto na medicina preventiva, com o
diagnóstico de predisposições genéticas a doenças que
pode auxiliar na prevenção ou no tratamento precoce de
enfermidades. Além disso, a MP tem se desenvolvido
simultaneamente às técnicas de diagnóstico molecular de polimorfismos mais rápidas, precisas e baratas, que
permitem a determinação de fatores genéticos com a agilidade necessária, “da bancada à beira-do-leito”.
Pacientes com doenças graves e com risco de
morte também têm sido beneficiados com uma
abordagem personalizada de seu tratamento.
Em muitos casos, a ideia de usarmos um
mesmo tratamento na mesma dosagem para
todos, no estilo “tamanho único”, tem
prejudicado o prognóstico e, em pacientes
terminais, a sobrevida e a qualidade de vida
após um diagnóstico sombrio.
Uma das áreas que mais se desenvolveu da MP
e que exemplifica bem como ela pode melhorar
diversos aspectos da terapia e bem-estar do
paciente é o tratamento oncológico, em que a susceptibilidade de diversos tumores a drogas começa a ser
diagnosticada a partir das alterações moleculares específicas de cada paciente.
 
A imagem a seguir ilustra como a farmacogenética pode ajudar a definir o melhor fármaco, dosagem e
interações de acordo com as características genéticas da população.
Tamanho único.
A MP tem enfrentado dificuldades em sua universalização.
Atividade discursiva
E quais seriam os desafios da medicina personalizada?
Chave de resposta
Uma das frentes em que a MP encontra desafios é na sua própria implementação. Devido aos custos do
diagnóstico molecular, à falta de estudos para populações étnicas variadas e à falta de acesso médico
básico, a MP tem se restringido a países e pacientes ricos, que podem arcar com os altos custos do
desenvolvimento da ciência por detrás dela. Em adição, é necessário criar uma constelação de dados
clínicos, epidemiológicos, familiares, e de estilo de vida (como prática de exercício e nutrição) para que a
MP possa dar significado a achados laboratoriais.
Diante de tamanha quantidade de dados obtidos, surge outro desafio: o de analisar o grande número de
dados, que permanece como um dos gargalos à aplicação da MP na rotina clínica, terapêutica e preventiva.
Aliadas à abordagem multifatorial da MP, a farmacogenética e a farmacogenômica contribuem grandemente
ao apontarem genes relevantes ao funcionamento de medicamentos. A variação na resposta a fármacos
devido a polimorfismos genéticos, apesar de não ser completamente absoluta, causa perdas econômicas e
sociais enormes.
 
Aprendemos que as variações genéticas podem influenciar na dosagem, na susceptibilidade e na toxicidade
de fármacos. Nesse contexto, existem diversas formas em que a genética pode induzir a respostas distintas a
medicamentos, como alterações no metabolismo, no transporte, e no alvo de fármacos, que podem ser
enzimas, receptores, transportadores e outras moléculas efetoras. Assim, podemos classificar o uso da
farmacogenética relacionado à farmacocinética e à farmacodinâmica.
Farmacogenética e farmacocinética
A maioria dos fármacos ingeridos passa por etapas até sua eliminação:
 
Primeiro são absorvidos
Distribuídos
Metabolizados (antes ou depois de agirem em seus alvos farmacológicos)
Por fim, excretados
 
Apesar de todas as etapas serem potencialmente variáveis entre indivíduos, a metabolização é um dos
processos mais complexos e mais frequentemente observado em associação com alterações farmacológicas.
 
O metabolismo de drogas e fármacos pode ocorrer antes ou depois da ação farmacológica. Alguns
medicamentos são ministrados na forma de pró-fármacos, formas inativas de medicamentos que são
metabolizados em fármacos ativos por meio da bioativação. Outros medicamentos são processados de forma
a perderem a atividade, aumentarem a solubilidade e serem mais facilmente excretados. Entre as principais
alterações sofridas pelos fármacos durante seu metabolismo, temos a oxidação, redução, hidrólise (também
conhecidas como reações de fase I), e os de conjugação (ou de fase II, como acetilação, glicuronidação,
sulfatação, metilação, entre outros).
 
A maioria dos processos de biotransformações ocorre no fígado, o grande centro metabólico do nosso
organismo, embora outros órgãos também metabolizem drogas, como os rins e os pulmões. O metabolismo de
fármacos pelo fígado acontece em grande parte pela superfamília de enzimas citocromo P450, ainda que
outras enzimas metabólicas também sejam relevantes em farmacogenética.
 
Para estudarmos em detalhes as aplicações das enzimas, precisamos primeiro entender como polimorfismos
podem influenciar o metabolismo de fármacos e drogas.
 
Como aprendemos, a maioria dos genes presentes no genoma humano apresentam dois alelos, um em cada
cromossomo homólogo. Podemos considerar que, de acordo com o tipo e a quantidade de alelos afetados por
• 
• 
• 
• 
polimorfismos, teremos diferentes fenótipos. Dessa forma, podemos classificar os fenótipos de metabolização
de fármacos em 4 tipos:
Metabolizadores pobres (MP)
Metabolizam a medicação muito lentamente. Em geral, apresentam dois alelos defeituosos que
cancelam a atividade enzimática. Podem apresentar efeitos colaterais em doses normais, ter excesso
de medicação em doses normais, ou concentrações insuficientes em caso de pró-fármacos.
Metabolizadores intermediários (MI)
Metabolizam a medicação lentamente. Apresentam um alelo defeituoso e um alelo selvagem (ou
comum) ou, ainda, dois alelos parcialmente defeituosos, com menor atividade enzimática. Podem ter
excesso de medicação em doses normais, ou concentrações insuficientes em caso de pró-fármacos.
Metabolizadores normais (MN)
Metabolizam a medicação em velocidade normal. Apresentam dois alelos selvagens e funcionais para
atividade enzimática. Têm concentrações normais de fármacos após a dosagem normal.
Metabolizadores rápidos (MR)
Podem ser resultado de alelos duplicados e número aumentado de enzimas ou variações genéticas
com enzimas mais eficientes. Podem não ter concentrações suficientes de medicamento ministrados
ou sofrer de superdosagem no caso de pró-fármacos.
Conteúdo interativo
Acesse a versão digital para ver mais detalhes da imagem
abaixo.
Tipos de metabolizadores.
Cada tipo de metabolizador terá um risco diferente: em metabolizadores mais lentos (como MP ou MI), existe
um risco aumentado de efeitos adversos em decorrência do acúmulo de fármacos que, em doses padrões,
não causariam dano. Os MR, por outro lado, podem não experimentar os efeitos terapêuticos da dose-padrão
porque o medicamento está sendo metabolizado e excretado muito rapidamente.
 
No caso da administração de pró-fármacos, os MR correm risco de efeitos adversos e superdosagem, por
produzirem o fármaco ativo mais rápido sem, contudo, eliminá-lo rapidamente, enquanto os MP não observam
os efeitos terapêuticos desejados.
Por isso, a investigação farmacogenética do metabolismo de drogas e fármacos pode orientar a
prescrição de dosagens adequadas para cada caso, de acordo com o perfil metabolizador.
Farmacogenética e superfamília CYP
As CYP são enzimas que contêm o grupamento químico heme (que contém ferro em seu interior) presente em
diversos tecidos e que catalisam a oxidação de compostos.
 
As CYP são classificadas de acordo com as similaridades genéticas emfamílias (denominadas por números) e
subfamílias (denominadas por letras).
CYP
Classificação das CYP.
Apesar de termos mais de 50 enzimas CYP, apenas 6 delas metabolizam
cerca de dos fármacos, e são importantes porque possuem diversos
polimorfismos descritos, sendo o grupo de enzimas mais bem estudado
quanto às aplicações em farmacogenética.
CYP2D6
Uma das primeiras descrições da farmacogenética se deu com a
identificação da CYP2D6 como responsável pela divergência no
metabolismo da debrisoquina e esparteína. Hoje, conhecemos mais de
80 alelos polimórficos diferentes para CYP2D6, com fenótipos que variam
de MP a MR. Os polimorfismos em CYP2D6 afetam o metabolismo de
mais de 60 medicamentos, e perfis MP podem ser identificados
geneticamente com quase 100% de precisão.
Dentre as diversas drogas metabolizadas por CYP2D6, a metabolização
ultrarrápida da codeína aumenta em até 30 vezes a quantidade de
morfina. O relato do falecimento de um bebê após superdosagem por
morfina ingerida por meio do leite de sua mãe metabolizadora
ultrarrápida mostra quão grave perfis MR podem ser.
Outras drogas metabolizadas por CYP2D6 incluem anti-hipertensivos
como o metoprolol, antidepressivos tricíclicos e inibidores seletivos da
recaptação da serotonina, e medicamentos contra o câncer.
CYP3A4
Uma das enzimas CYP mais abundantes no fígado, a CYP3A4 é
responsável pelo metabolismo de mais de 50% dos medicamentos
usados atualmente. Cerca de 20 alelos polimórficos foram identificados
para CYP3A4, a maioria deles relacionados à redução da atividade
enzimática e mais frequentes em caucasianos do que em asiáticos e
africanos.
CYP3A5, por outro lado, é extremamente variável. Os fenótipos dos
polimorfismos de CYP3A4 e CYP3A5 são mais extensos quando há
combinação de alelos variantes das duas enzimas. Isso é devido ao fato
de ambas metabolizarem alguns dos mesmos substratos, o que faz com
que sejam frequentemente referidas como CYP3A4/5.
Portanto, apesar de muitas classes de fármacos serem metabolizados por essas enzimas, os fenótipos de
polimorfismos isolados não estão claros em muitos casos, o que reflete a importância da farmacogenômica na
integração gênica das diferentes combinações de polimorfismos.
 
Outras enzimas da superfamília CYP com importantes aplicações farmacogenéticas incluem a CYP2C9 e a
CYP2C19.
CYP2C9
Possui mais de 60 alelos polimórficos, alguns deles mais frequentes em populações europeias,
enquanto outros são mais comuns em populações de origem africana. A CYP2C9 corresponde a cerca
de 20% das enzimas citocromo hepáticas e metaboliza aproximadamente 10% dos fármacos
comercializados, dentre os quais se destacam os anti-inflamatórios não esteroidais, antidiabéticos,
antiepiléticos e anticoagulantes. Um dos anticoagulantes metabolizados pela CYP2C9, a varfarina,
possui janela terapêutica estreita. Isso traz risco de hemorragias graves e potencialmente fatais em
função das diferenças na velocidade de metabolismo da varfarina pela CYP2C9. Portanto, o
diagnóstico farmacogenético é fundamental no uso desse anticoagulante.
CYP2C19
A enzima CYP2C19, por outro lado, não possui tantos alelos polimórficos, nem afeta o metabolismo de
tantas drogas quanto a CYP2D6 e CYP2C9. No entanto, polimorfismos nessa enzima, que reduzem
sua atividade, afetam o metabolismo de inibidores da bomba de prótons, usados no tratamento de
úlceras pépticas e distúrbios gástricos.
Além disso, polimorfismos em CYP2C19 afetam a bioativação de um antiplaquetário, Clopidogrel, em
sua forma ativa. Outros fármacos que podem ter seu metabolismo alterado por variações em
CYP2C19 incluem medicamentos neurotrópicos, antifúngicos e anticâncer.
Enzimas CYP e suas funções no corpo humano.
Farmacogenética e enzimas de fase II
Vimos duas das primeiras enzimas descritas como responsáveis pela alteração da resposta a fármacos: a
deficiência da glicose-6-fosfato desidrogenase ligada à hemólise após administração de primaquina e a
velocidade de metabolização da isoniazida por acetilação.
 
Hoje, sabemos que a primaquina é metabolizada pelas enzimas CYP e resulta em um metabólito tóxico que
provoca estresse oxidativo e, em pacientes com deficiência funcional da G6FD, as hemácias estão mais
vulneráveis à lise por estresse oxidativo. A velocidade de metabolização da isoniazida, por outro lado, é
determinada por enzimas chamadas de N- acetiltransferases (NATs). Pacientes com alelos polimórficos da
enzima NAT2 podem ser classificados em acetiladores rápidos (AR) ou lentos (AL). Pelo menos três
polimorfismos por SNP estão associadas a AL, que são muito mais frequentes na população árabe do que na
caucasiana e asiática. Complicações decorrentes das altas concentrações plasmáticas de isoniazida e outros
medicamentos acetilados como a hidralazina (vasodilatador e anti-hipertensivo) e a procainamida (um
antiarrítmico) em AL incluem síndromes autoimunes induzidas por medicamentos, hepatotoxicidade e
neuropatia.
 
Outro grupo de enzimas envolvido no metabolismo e eliminação de drogas e que foram mais bem estudadas
do ponto de vista farmacogenético são as metiltransferases. Dentre elas, a tiopurina metiltransferase (TPMT)
possui polimorfismos que alteram sua capacidade de metilar tiopurinas, uma classe de nucleotídeos
modificados com função pró-fármaco.
Estrutura química de fármacos tiopurinas.
Quando bioativadas, as tiopurinas são convertidas em compostos tóxicos e, por isso, são usadas na
supressão de células imunológicas em leucemias, linfomas e terapias imunossupressoras em transplante e
doenças autoimunes. Existem apenas 3 alelos principais associados a mais de 90% dos metabolizadores
pobres (MP) da TPMT, que ocorrem em menos de 1% da população caucasiana. MPs podem sofrer de
toxicidade à medula óssea (toxicidade hematopoiética) por acúmulo de tiopurinas, reduzindo o número total
de células sanguíneas, tanto hemácias quanto leucócitos. O paciente sofre de cansaço extremo, falta de ar, e
risco aumentado a infecções que podem levá-lo rapidamente ao óbito.
Atenção
Por isso, a recomendação é que pacientes com distúrbios imunológicos que necessitem de tiopurinas
sejam testados geneticamente e, caso tenham fenótipo MP para TPMT, tomem apenas uma fração da
dose padrão do fármaco. 
Farmacogenética e transportadores
As variações genéticas envolvidas na farmacocinética não se restringem a polimorfismos em enzimas. Os
processos de absorção e eliminação de substâncias afetam diretamente sua concentração, aumentando ou
diminuindo-a. As principais proteínas envolvidas nesse processo são as transportadoras, presentes em grande
número nos epitélios intestinais, endoteliais e renais, e nas células hepáticas. Essas proteínas presentes nas
membranas plasmáticas medeiam o transporte de solutos através das membranas biológicas e são grandes
reguladoras da homeostase celular, tecidual e do organismo.
 
Entre as principais famílias de transportadores, está a dos transportadores de efluxo ABC (adenosine-
triphosphate binding cassete (ABC), um dos responsáveis pelo fenótipo de resistência a múltiplas drogas — 
multiple drugs resistence (ou MDR)).
Transportadores de efluxo ABC.
O gene ABCB1 é um dos mais polimórficos dentre os transportadores, com mais de 50 SNPs e ao menos 3
eventos de inserção ou deleção descritos. Polimorfismos em ABCB1 que reduzam sua capacidade
transportadora de efluxo (ou seja, de saída das células) podem causar aumento da concentração plasmática
de digoxina (um digitálico e glicosídeo cardiotônico usado no tratamento de insuficiência cardíaca) por
redução da eliminação renal. O uso desse digitálico com janela terapêutica muito estreita, aliado a
polimorfismos em ABCB1, está associado a risco aumentado de morte súbita por doença cardíaca durante
tratamento com digoxina. Outros medicamentos com eliminação reduzida incluem inibidores da protease viral
(usados na terapia antirretroviral contra o vírus da imunodeficiência humana (HIV)), e estatinas (usadas no
controle da hipercolesterolemia). Por outro lado, variações genéticas em ABCC1/2têm sido associadas com
alteração da excreção biliar de estatinas e quimioterápicos de diferentes ações (como tamoxifeno — um
análogo de estrogênio usado na terapia do câncer de mama; e metotrexato, um antifolato usado na
quimioterapia de leucemia).
 
Os transportadores conhecidos como SLC (solute carriers, ou carreadores de soluto, em português)
compreendem mais de 300 transportadores de membrana que movimentam íons que não podem passar pela
membrana livremente por serem hidrossolúveis. Envolvidos na entrada de moléculas nas células (influxo), os
alelos polimórficos de SLCs têm sido associados à redução da entrada de fármacos nos hepatócitos, gerando
acúmulo plasmático. Um exemplo de medicamento afetado por variações genéticas em SLCs é o acúmulo de
pravastatina plasmática, com redução de sua função farmacológica, que ocorre nos hepatócitos.
Representação ilustrando exemplos de carreadores de solutos SLC.
Farmacogenética e farmacodinâmica
O estudo da farmacodinâmica se propõe a explorar os mecanismos de ação moleculares, bioquímicos e
fisiológicos de drogas nas células e no organismo. Os fármacos podem ter diversos alvos terapêuticos, sendo
mais frequentes as proteínas que atuam como receptores celulares de membrana, enzimas e canais iônicos.
Variações genéticas que resultem na alteração dessas proteínas, ou até mesmo em outras proteínas que
interagem com elas, podem levar a alterações farmacológicas. Portanto, as diferenças na farmacodinâmica
também são objeto de estudo da farmacogenética.
Farmacogenética e polimorfismos de receptores e transportadores
Os receptores de membrana plasmática correspondem a cerca de 50% dos alvos farmacológicos. Presentes
na superfície das células e expressos de forma específica para cada tecido e tipo celular, os receptores são a
interface de contato entre o meio extracelular e o interior da célula. Quando interagem com seus ligantes, os
receptores promovem respostas intracelulares específicas, conhecidas como transdução de sinais.
Receptores podem alterar muitos aspectos do metabolismo celular, incluindo a vida ou a morte da célula.
Portanto, têm sido amplamente usados como alvos farmacológicos para modulação da resposta celular, seja
para amplificação, redução, ativação, inativação ou diferenciação. Para entendermos melhor os efeitos dos
polimorfismos em receptores, precisamos observar seu funcionamento.
Representação do funcionamento de receptores de membrana plasmática.
Um dos receptores mais estudados quanto à variabilidade genotípica são os adrenorreceptores do tipo β (ou
receptores β-adrenérgicos), responsivos às catecolaminas (adrenalina e noradrenalina) quando a resposta
simpática de “luta-ou-fuga” é desencadeada.
 
A ação dos adrenorreceptores β envolve diversos tecidos e atua no aumento da frequência cardíaca, aumento
da força de contração cardíaca e relaxamento de musculatura lisa (vascular e respiratória), com o intuito de
aumentar a velocidade e força da resposta muscular esquelética (seja para luta, seja para fuga).
 
A principal categoria de fármacos que agem em receptores β são antagonistas, os chamados β-bloqueadores,
que são usados no tratamento de doenças cardiovasculares e respiratórias como hipertensão, insuficiência
cardíaca e asma.
Exemplo
Metoprolol, atenolol e carvedilol, são exemplo comuns de fármacos β-bloqueadores. 
O gene do receptor adrenérgico β1 (ADRB1) possui polimorfismos que afetam a ação farmacológica dos β-
bloqueadores. Dois polimorfismos SNP são frequentemente vistos em conjunto formando um haplótipo (S49-
R389) em ADBR1: um localizado na porção extracelular do receptor, e outro na porção intracelular. O haplótipo
produz maior resposta a agonistas que o alelo selvagem, o que leva a um risco de morte três vezes maior em
pacientes portadores de doenças cardíacas. Esses dois SNP de ADBR1 também apresentam maior resposta a
β-bloqueadores, e têm sido associados a menor risco de morte em portadores do haplótipo com doenças
cardíacas ― ou seja, os β-bloqueadores promovem um efeito protetivo contra o haplótipo.
 
Outro grande ramo da farmacogenética compreende medicamentos psiquiátricos, e, em especial, os
receptores de serotonina. A serotonina, também conhecida como 5-HT (sigla em inglês para 5-
hidroxitriptamina), é um neurotransmissor envolvido em diversos processos cognitivos, como na regulação do
humor e emoções.
Processos que envolvam a inibição da serotonina têm sido
associados a quadros como a depressão, ansiedade, e
outros transtornos relacionados. Por isso, existem
medicamentos antidepressivos cujo objetivo é evitar que a
serotonina seja recapturada, de forma que ela permaneça
na sinapse, local entre os neurônios em que ela exerce seus
efeitos; outros fármacos funcionarão como antagonistas ou
agonistas seletivos, dependendo do receptor de serotonina
em questão.
Uma das classes de fármacos importantes do ponto de
vista farmacogenético são os inibidores seletivos de
recaptação da serotonina (ISRS): em certas situações, para
que a concentração sináptica da serotonina seja mantida
elevada, bloqueamos a recaptura da serotonina no neurônio pré-sináptico, permitindo que ela aja no neurônio
pós-sináptico. No entanto, o principal transportador de serotonina (da sigla em inglês, SERT) é codificado pelo
gene polimórfico SLC6A4. Uma inserção-deleção polimórfica no promotor desse gene, conhecida como 5-
HTTLPR-L, tem maior resposta a ISRS, já que sua expressão é duas vezes maior do que a outra variante (5-
HTTLPR-S).
Farmacogenética e variações em enzimas-alvo
Já estudamos como polimorfismos em enzimas podem alterar a forma e a velocidade de metabolização de
fármacos. No entanto, as enzimas também são alvos farmacológicos, sendo seu antagonismo (ou bloqueio) o
principal mecanismo farmacológico.
 
Conheça dois exemplos de enzimas que podem ter sua susceptibilidade a drogas alterada devido a
polimorfismos:
Exemplo 1
É a enzima conversora de angiotensina (ECA), umas das mais estudadas do ponto de vista
farmacogenético. A ECA converte angiotensina I em angiotensina II, um vasoconstritor que também
atua aumentando o volume sanguíneo. Sua inibição farmacológica é usada no tratamento da
hipertensão. Existem dois tipos principais de polimorfismos em ECA: uma deleção e uma inserção em
um íntron. A deleção tem sido associada a maiores concentrações plasmáticas de ECA. A
maximização da dose de inibidores da ECA, como o captopril, tem resultado em melhor prognóstico
em pacientes portadores do polimorfismo de deleção, cujo risco de morte por insuficiência cardíaca é
maior do que nos portadores de alelos selvagens.
Exemplo 2
É a enzima epóxido-redutase da vitamina K (VKORC1 ― vitamin K epoxide reductase complex 1), alvo
da varfarina. A varfarina se liga ao VKORC1 e impede que a vitamina K 2,3-epóxido seja reduzida em
vitamina K ativa, composto essencial na cascata de coagulação. Polimorfismos em VKORC1 têm sido
associados à necessidade de ajuste de dose da varfarina. Em especial, os genótipos 1639 G > A e
1173C > T, ambos em regiões não codificantes de VKORC1, são frequentemente encontrados juntos
(haplótipo) e requerem dose menor de varfarina. Um terceiro SNP em região não codificadora, 3730 G
> A, requer dose aumentada de varfarina para que o efeito anticoagulante seja obtido.
É interessante notarmos que, mesmo sendo raro, mutações em regiões não codificadoras também podem
influenciar a expressão de genes, a farmacodinâmica e a farmacogenética. Além disso, a varfarina se torna um
excelente exemplo de como a farmacogenômica é fundamental na predição de doses, pois combina
alterações genéticas importantes tanto no metabolismo quanto no alvo terapêutico.
Farmacogenética na oncologia
A especialista Camila Baez falará sobre a importância da farmacogenética na terapia oncológica.
Conteúdo interativo
Acesse a versão digital para assistir ao vídeo.
Verificando o aprendizado
Questão 1
Um dos objetivos em se estudar interações entre genes e respostas a fármacos é para tentar
personalizar a abordagem terapêuticade acordo com a necessidade. Sobre a
farmacogenética, é incorreto afirmar que:
A
Visa identificar polimorfismos que alterem a capacidade de metabolização de fármacos.
B
A variação na concentração de enzimas pode afetar a biodisponibilidade de fármacos.
C
Os principais polimorfismos observados são os SNP (polimorfismos de nucleotídeos simples).
D
A velocidade de eliminação de fármacos é irrelevante para a farmacogenética.
E
Polimorfismos em proteínas-alvo farmacológicos são um dos mecanismos estudados pela farmacogenética.
A alternativa D está correta.
Um dos grupos de proteínas polimórficas envolvidas em alterações farmacocinéticas são os
transportadores. Uma das principais funções dos transportadores é o efluxo e eliminação de fármacos por
meio da urina ou intestinos.
Questão 2
Polimorfismos em diferentes genes podem ter efeitos distintos no metabolismo e resposta de
fármacos. Baseado nisso, assinale a afirmação correta:
A
As enzimas CYP são um dos principais alvos farmacológicos que podem ter respostas alteradas devido a
SNPs.
B
A acetilação e metilação são etapas da eliminação de compostos que podem sofrer alterações devido a
polimorfismos.
C
Os transportadores são alvos farmacológicos normalmente afetados por polimorfismos.
D
Os polimorfismos em enzimas só são relevantes caso alterem a capacidade de metabolização e eliminação de
fármacos.
E
A farmacogenética da varfarina se restringe a alterações no nível de algesia do paciente, sem relação com
gravidade.
A alternativa B está correta.
A acetilação e metilação são exemplos de alterações enzimáticas de fase II para eliminação de fármacos.
Polimorfismos nas acetiltransferases e metiltransferases podem levar a diferentes níveis na metabolização
de fármacos.
3. Conclusão
Considerações finais
A farmacogenética surgiu com a observação de que indivíduos têm reações distintas a compostos químicos,
como drogas e medicamentos. Após décadas de estudo e o desenvolvimento de técnicas de biologia
molecular eficazes, descobrimos que a variabilidade genética entre indivíduos e populações afeta como cada
organismo absorve, metaboliza e excreta fármacos. A ação dos fármacos em cada organismo também pode
variar de acordo a genética. Do conhecimento acumulado sobre as interações entre polimorfismos e respostas
distintas a drogas emerge uma prática mais personalizada da medicina e a prevenção de reações adversas
graves e até fatais.
Podcast
Agora, a especialista Camila Freze Baez encerra o tema falando um pouco mais sobre a prática da
farmacogenética.
Conteúdo interativo
Acesse a versão digital para ouvir o áudio.
Explore +
Para saber mais sobre os assuntos tratados neste conteúdo, leia:
 
Sobre ética e a farmacogenética, “Declaração Internacional sobre os Dados Genéticos Humanos”, da UNESCO.
 
Sobre a medicina personalizada, farmacogenética e farmacogenômica:
 
“Farmacogenética e a Medicina Personalizada”, de Miguel Brito, na revista Saúde & Tecnologia.
“Farmacogenética e farmacogenômica: evidências de como a genética pode influenciar a eficácia de
fármacos e a busca por novos alvos farmacológicos”, de Renata F. Pessôa, Flávio E. Nácul e François
Noël, Infarma.
Referências
ALTMAN, R.; FLOCKHART, D.; GOLDSTEIN, D. Principles of Pharmacogenetics and Pharmacogenomics.
Cambridge: Cambridge University Press, 2012.
 
DNA FROM THE BEGINNING. Concept 13: Mendelian laws apply to human beings. Consultado na Internet em:
5 abr. 2021.
 
EL SHAMIEH, S.; ZGHEIB, N.K. Pharmacogenetics in developing countries and low resource environments. Hum
Genetics. Publicado em: 9 fev. 2021. Consultado na Internet em: 15 jun. 2021.
 
GONG, L. et al. The Role of Pharmacogenetics in Precision Medicine. Pharmacy Times, n. 7. vol. 82, jul. 2016.
• 
• 
 
HEDIGER, M. A.; CLEMENÇON, B.; BURRIER, R. E.; BRUFORD, E. A. The ABCs of membrane transporters in
health and disease (SLC series): introduction. Mol Aspects Med. abr. – jun. 2013.
 
IRIART. Medicina de precisão/medicina personalizada: análise crítica dos movimentos de transformação da
biomedicina no início do século XXI. Cad. Saúde Pública, 2019; 35(3):e00153118.
 
JARVIK, G. P. Arno G. Motulsky, MD (1923–2018): Holocaust survivor who cofounded the field of medical
genetics. Genet Med. 20, 477–479 (2018).
 
KALOW, W. Pharmacogenetics and pharmacogenomics: origin, status, and the hope for personalized medicine.
Pharmacogenomics J., 6, 162–165 (2006).
 
KHOURY M. J. et al. A population approach to precision medicine. Am. J. Prev. Med. 2012;42(6):639-645. doi:
10.1016/j.amepre.2012.02.012.
 
LAM, Y. W. F. Principles of Pharmacogenomics: Pharmacokinetic, Pharmacodynamic, and Clinical Implications.
In: Pharmacogenomics. 2. ed. (s.l): Academic Press, 2019.
 
LIN, L. et al. SLC transporters as therapeutic targets: emerging opportunities. Nat. Rev. Drug. Discov., n. 14.
2015.
 
LUNDSTROM, K. An overview on GPCRs and drug discovery: structure-based drug design and structural
biology on GPCRs. G Protein-Coupled Receptors in Drug Discovery. Methods in Molecular Biology, 552, 51–66,
2009.
 
MEDLINE PLUS WEBSITE. What is the International HapMap Project. Consultado na Internet em: 7 abr. 2021.
 
MEDLINE PLUS WEBSITE. Thiopurine S-methyltransferase deficiency. Consultado na Internet em: 10 abr. 2021.
 
MORAIS, L. S. et al. Perspectivas internacionais e nacionais sobre a privacidade do uso e acesso de
Informações Genéticas. In: XI Semana de Extensão, Pesquisa e Pós-Graduação ‒ SEPesq Centro Universitário
Ritter dos Reis, 2015.
 
NATIONAL HUMAN GENOME RESEARCH INSTITUTE. Genetic Discrimination . Consultado na Internet em: 9
abr. 2021.
 
NATIONAL INSTITUTES OF HEALTH (US). Understanding Human Genetic Variation. National Institutes of
Health (US), 2007. Consultado na Internet em: 15 jun. 2021.
 
NIEMEIJER, M. N. et al. ABCB1 gene variants, digoxin and risk of sudden cardiac death in a general population.
Heart, n. 101, dez. 2015.
 
NUSSBAUM, R. L. et al. Thompson & Thompson – Genética Médica. 7. ed. Rio de Janeiro: Guanabara Koogan,
2008.
 
OWEN R. P. et al. VKORC1 pharmacogenomics summary. Pharmacogenet. Genomics, out. 2010.
 
PALLASCH, T. J. Principles of pharmacotherapy: VI. Pharmacogenetics. Anesth. Prog. 1989;36(6):249-251.
 
POLYMORPHISM. In: Britannica, 2021. Consultado na Internet em: 15 jun. 2021.
 
SCITABLE – NATURE EDUCATION. Cells Can Replicate Their DNA Precisely. Consultado na Internet em: 6 abr.
2021.
 
US FOOD & DRUG ASSOCIATION. Personalized medicine: a biological approach to patient treatment.
Consultado na Internet em: 10 abr. 2021.
 
VOGENBERG F. R. et al. Personalized medicine part 1: evolution and development into theranostics. P&T.
2010;35(10):560-576. Consultado na Internet em: 15 jun. 2021.
	Farmacogenética
	1. Itens iniciais
	Próposito
	Objetivos
	Introdução
	1. Principais eventos genéticos e as implicações éticas da farmacogenética
	História da farmacogenética e conceitos básicos
	Saiba mais
	Saiba mais
	Lei da Dominância
	Lei da Segregação
	Lei da Segregação Independente
	Gene
	Genótipo
	Fenótipo
	Genética
	Exemplo
	Categoria 1
	Categoria 2
	Categoria 3
	E qual é a diferença entre farmacogenética e farmacogenômica?
	Descobrindo e entendendo a farmacogenômica
	Conteúdo interativo
	Conceitos em genética molecular
	O que é DNA?
	Representação da estrutura genética do DNA
	Polimorfismos genéticos
	Helicase
	Primase
	DNA polimerase
	Atenção
	O que são mutações?
	As mutações são uma das principais formas de variabilidade genética e podem ser classificadas de acordo com seu tamanho e função. De forma geral, são consideradas mutações as alterações genéticas que alteram o número ou estrutura dos cromossomos (mutações cromossômicas) ou alteram a sequência de DNA em porções menores que 100kb (mutações gênicas).
	Como ocorre o polimorfismo genético?
	Questões éticas da farmacogenética
	Exemplo
	Resumindo
	Verificando o aprendizado
	Gregor Mendel é considerado o pai da genética, porém, apenas décadas após a publicação de seus trabalhos, desvendamoscomo a herança genética é codificada. Sobre variabilidade genética, é correto afirmar que:
	Leia o fragmento retirado do 6º Artigo da Declaração Internacional sobre os Dados Genéticos Humanos (UNESCO):
	Com base em nossos estudos, é considerado ético:
	2. Principais relações genes-fármacos em farmacogenética
	Introdução
	Atenção
	Medicina personalizada
	Como a medicina personalizada pode ajudar?
	E quais seriam os desafios da medicina personalizada?
	Farmacogenética e farmacocinética
	Metabolizadores pobres (MP)
	Metabolizadores intermediários (MI)
	Metabolizadores normais (MN)
	Metabolizadores rápidos (MR)
	Conteúdo interativo
	Farmacogenética e superfamília CYP
	CYP
	CYP2D6
	CYP3A4
	CYP2C9
	CYP2C19
	Enzimas CYP e suas funções no corpo humano.
	Farmacogenética e enzimas de fase II
	Atenção
	Farmacogenética e transportadores
	Farmacogenética e farmacodinâmica
	Farmacogenética e polimorfismos de receptores e transportadores
	Exemplo
	Farmacogenética e variações em enzimas-alvo
	Exemplo 1
	Exemplo 2
	Farmacogenética na oncologia
	Conteúdo interativo
	Verificando o aprendizado
	Um dos objetivos em se estudar interações entre genes e respostas a fármacos é para tentar personalizar a abordagem terapêutica de acordo com a necessidade. Sobre a farmacogenética, é incorreto afirmar que:
	Polimorfismos em diferentes genes podem ter efeitos distintos no metabolismo e resposta de fármacos. Baseado nisso, assinale a afirmação correta:
	3. Conclusão
	Considerações finais
	Podcast
	Conteúdo interativo
	Explore +
	Referências

Mais conteúdos dessa disciplina