Logo Passei Direto
Buscar
Material
páginas com resultados encontrados.
páginas com resultados encontrados.

Prévia do material em texto

Adonai Sant'Anna
Matemática e Sociedade
▼
segunda-feira, 5 de abril de 2010
Histórias e probabilidades
Sofia é uma bela jovem que pratica yoga três vezes por semana, é vegetariana, não
fuma e só consome bebida alcoólica com moderação. Um dia ela decide realizar um
exame clínico. Sofia leu em um jornal que já surgiram vítimas no mundo inteiro - com
um caso no Brasil - de uma nova forma de gripe que é rara, mas pode ser fatal. É uma
gripe que tem contaminado uma a cada 10.000 pessoas nos países onde a doença
está presente, através de verduras e cereais, os quais são agentes transmissores.
Como ela está com uma leve, mas insistente, dor de cabeça, decide fazer uma
consulta com sua médica, Dr.a Cassandra.
Cassandra: “Não se preocupe por antecipação, Sofia. Essa gripe é rara, e o teste para
diagnóstico é muito seguro. Ele tem um índice de acerto de 99%. Mesmo assim, quero
que me mantenha o tempo todo informada sobre quaisquer alterações em seu estado
de saúde. Por enquanto não vou receitar coisa alguma para sua dor de cabeça, já que
ela nem é tão forte assim. Desse modo poderemos acompanhar o desenvolvimento de
eventuais sintomas.”
Sofia: “OK. Quando a senhora diz que o índice de acerto do exame é de 99%, isso quer
dizer que em 99% dos casos o teste fornece um resultado verdadeiro, seja positivo ou
negativo. É isso?”
Cassandra: “É, é isso mesmo. Somente para uma a cada cem pessoas que o teste erra,
dando um falso positivo ou um falso negativo. É o exame que o mundo todo está
usando. Vou indicá-la para um laboratório muito bom.”
(Mover para…)
https://adonaisantanna.blogspot.com/?m=1
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjdaIvtw2PvaQGLe24_vZkXKTjMqCIfPFs_clntLd891iFVSye-hJavLpFQ-N1lo_VUAr4MMryA5kY4JVHkBH-_Lxh8LXjtT_paAR1I1S-jQduMC_BEGYwenPveiMHPxumKbNqzg6-iFeY/s1600/Untitled-2.jpg
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjdaIvtw2PvaQGLe24_vZkXKTjMqCIfPFs_clntLd891iFVSye-hJavLpFQ-N1lo_VUAr4MMryA5kY4JVHkBH-_Lxh8LXjtT_paAR1I1S-jQduMC_BEGYwenPveiMHPxumKbNqzg6-iFeY/s1600/Untitled-2.jpg
Sofia faz o exame no laboratório indicado pela médica e o resultado é positivo. Sofia
fica seriamente preocupada. Mais que preocupada, ela fica estressada. Já começa a
lamentar por não ter uma dieta limitada a massas, pelo menos enquanto a doença não
é controlada pela Saúde Pública. Ela percebe que sua dor de cabeça voltou mais forte.
Retorna à Dra. Cassandra, a qual a examina e diz que Sofia não tem sintoma algum da
gripe, com exceção da dor de cabeça.
Cassandra: “Se você estivesse com o vírus, a essa altura outros sintomas já teriam se
desenvolvido. O vírus, uma vez no corpo, provoca alguns dos sintomas mais graves em
poucos dias.”
Sofia conversa com um amigo, Pascal, sobre uma possível ação judicial contra o
laboratório, por danos morais. Afinal, o estresse que ela sofreu com o falso positivo,
prejudicou seu trabalho e sua vida pessoal. Dra. Cassandra diagnosticou a dor de
cabeça de Sofia como somatização das excessivas preocupações de Sofia. Já na
opinião de Sofia, o Brasil é um país que não conhece direito a nova gripe e, por isso, o
laboratório deve ter sido incompetente ao se propor a fazer um exame sobre o qual
não estava qualificado a fazer. Afinal, não são tantas as pessoas que fazem esse
exame, uma vez que a doença praticamente inexiste no país. Não é possível que
justamente com ela o laboratório foi cair na margem de erro do teste, pensou Sofia.
Pascal percebe que Sofia está sendo irracional.
...
Essa história de Sofia é bastante parecida com muitas outras que conhecemos,
testemunhamos ou até vivenciamos. Estamos mergulhados em um mundo no qual
inúmeras ações e julgamentos admitem margem de erro inerente, como um
campeonato de tiro ao alvo, o testemunho de pessoas sobre algum evento
supostamente real, exame de DNA para fins de determinação de paternidade ou um
diagnóstico médico.
No entanto, mesmo o conhecimento científico básico, como as noções elementares de
probabilidade obviamente pouco dominadas pela jovem Sofia, ainda parece ter um
forte caráter hermético e, por isso, às vezes ainda é visto de forma um tanto confusa.
...
Pascal explica a Sofia.
Pascal: “Não acho uma boa idéia essa ação na Justiça. O laboratório não foi
necessariamente negligente ou incompetente, se seu único argumento é apenas o
falso positivo. Se quiser processar o laboratório, precisará de alguma base
argumentativa mais sólida. Em primeiro lugar, você sabia que havia a probabilidade de
erro na análise. Isso, por si só, já é motivo para repensar qualquer ação judicial. Mesmo
assim, você deve ponderar com muito cuidado o que realmente significa uma margem
de erro de 1%, em um país como o Brasil, no qual a doença praticamente não existe.
Segundo dados internacionais, uma em cada 10.000 pessoas fica contaminada nos
países onde a doença se mostra presente, certo? Isso significa que apenas cerca
de cem pessoas em cada milhão têm o vírus no corpo, em tais países. E com 1% de
probabilidade de erro, o teste aplicado a um milhão de pessoas falhará para cerca
de dez mil pessoas, sejam contaminadas ou não. Dessas dez mil pessoas, apenas
uma, em média, tem o vírus. Ou seja, cerca de 9.999 pessoas a cada milhão
diagnosticado terão falsos positivos. Em um país praticamente livre da doença, como
o nosso, o total de falsos positivos pode chegar a dez mil. Ou seja, a proporção de
falsos positivos seria maior do que a de falsos negativos. Uma coisa é a probabilidade
de o teste dizer que você está com o vírus, quando realmente está. Outra é a
probabilidade de você estar com o vírus, quando o teste disser que está. São dois
números calculados de formas diferentes. Você precisaria conhecer um pouco sobre
probabilidades, antes de emitir julgamentos precipitados. Os mais precisos testes
freqüentemente fornecem falsos positivos em populações saudáveis nas quais a
doença é muito rara. Por mais preciso que seja um teste, ele é muito mais confiável em
populações de risco do que em populações saudáveis, como é o caso do Brasil, que
teve apenas um registro oficial de pessoa contaminada. De maneira análoga,
testemunhos idôneos sobre eventos raros são muito menos confiáveis do que
testemunhos sobre fenômenos comuns, ainda que fornecidos pelas mesmas pessoas;
assim como as chances de um profissional do tiro se destacar entre amigos não-
profissionais são muito maiores do que as chances de ele se destacar entre outros
profissionais do tiro. Margens de erro em testemunhos de cidadãos idôneos jamais
podem ser avaliadas separadamente da probabilidade de real ocorrência do evento
testemunhado. Por isso, se um indivíduo confiável diz ter avistado no céu uma nave
extraterrestre ou a Virgem Maria, fica muito difícil considerar tal testemunho como
realmente confiável, uma vez que não se conhece a probabilidade de real ocorrência de
eventos como esses. Isso é muito diferente da confiabilidade de um testemunho de
assalto ou assassinato, eventos cujas probabilidades de ocorrência são mais ou
menos conhecidas. Margens de erro em diagnósticos jamais podem ser avaliadas
separadamente da probabilidade de incidência real de doenças. Você, Sofia, foi vítima
de um falso positivo em um país no qual a tal da gripe é raríssima.”
...
Se Sofia entendeu os argumentos de Pascal, deixo isso a cargo do leitor. Para tanto
basta se colocar no lugar dela. Ou seja, coloco o leitor no papel de Sofia.
Se Sofia pensar somente em termos de probabilidade de erro de diagnóstico de
apenas 1%, ela pode ainda insistir que as chances de erro de exame laboratorial
extrapolam o fato de que justamente com ela o exame foi falhar. Como no Brasil não
há acompanhamento estatístico sistemático de erros médicos e laboratoriais, qualquer
sensação de desconforto pode facilmente se transformar em paranóia. No entanto, se
Adonai às 18:23
Sofia perceber que teoria de probabilidades não é um luxo intelectual, mas que
encontra aplicações fundamentais na vida diária de todos nós, ela poderá
compreender que um processo judicial com base em seu raciocínio anteriorsó pode
causar danos a todos os envolvidos.
Em teoria das decisões sabe-se que a boa decisão não é aquela que gera bons
resultados, mas aquela que foi tomada em bases racionais. Se uma loteria, por
exemplo, paga um milhão de reais para cada real investido, mas com probabilidades
de acerto de apenas uma a cada cinqüenta milhões de tentativas, percebe-se que jogar
em loteria não é uma boa decisão. Mesmo que um apostador ganhe o tão sonhado
prêmio, ainda foi uma decisão ruim. E, na prática, todos os apostadores tomam
decisões ruins. Daí o ditado “a casa sempre vence.” Ou seja, o fato de ocasionalmente
haver ganhadores de prêmios de loterias apenas alimenta o sonho irracional de ficar
milionário do dia para a noite, fazendo com que milhões de apostadores tomem
decisões com bases emocionais e não racionais. Um governo federal que alimente tal
sistema não apenas está iludindo seu próprio povo, como está em franco desencontro
àquilo que deveria ser ensinado nas escolas de maneira ostensiva e competente: teoria
de probabilidades.
Para o leitor deste blog que estiver interessado em uma abordagem suave, mas
altamente precisa e profunda do uso de probabilidades no dia-a-dia, recomendo o livro
de Ian Hacking, An Introduction to Probability and Inductive Logic (Cambridge,
Cambridge University Press, 2001).
Teoria de probabilidades é assunto extremamente complicado e demanda
conhecimento profundo de matemática. No entanto, a obra de Hacking consegue
viabilizar noções elementares, úteis e aprofundadas mesmo para o leitor com pouca
familiaridade em matemática. A transposição competente de teoria de probabilidades
para o ensino médio ainda não aconteceu de forma sistemática em nosso país. No
entanto, noções precisas e úteis sobre probabilidades deveriam ser lecionadas em
nossas escolas para que tenhamos chances de contar com novas gerações de
cidadãos mais independentes, críticos e capazes de construir um país melhor.
Compartilhar
Um comentário:
Adonai 7 de abril de 2010 às 18:00
Nossa, Aline. Essa foi inesperada. Adoro comentários inesperados. Como agora estou envolvido na
concepção de roteiros para cinema, preciso lembrar dessa para colocar na fala de alguém. Genial!
Responder
https://www.blogger.com/profile/01496591352112715128
https://www.blogger.com/profile/01496591352112715128
https://adonaisantanna.blogspot.com/2010/04/historias-e-probabilidades.html?m=1
javascript:void(0);
https://www.blogger.com/profile/01496591352112715128
https://adonaisantanna.blogspot.com/2010/04/historias-e-probabilidades.html?showComment=1270674051896&m=1#c5308606185664528408
javascript:;
‹ ›Página inicial
Ver versão para a web
Digite um comentário
Respostas a comentários dirigidos ao
Administrador demoram usualmente até três
dias.
Adonai
Professor Associado do Departamento de Matemática da UFPR. Autor de dois livros sobre
lógica publicados no Brasil, e de dezenas de artigos publicados em periódicos especializados de
matemática, física e filosofia, no Brasil e no exterior. Atualmente está trabalhando em dois projetos
cinematográficos, sendo que um deles visa uma crítica inédita às universidades federais brasileiras. Para mais
detalhes ver a página "Sobre o autor do blog".
Ver meu perfil completo
Quem sou eu
Tecnologia do Blogger.
https://adonaisantanna.blogspot.com/2010/04/matematica-logica-e-misticismo.html?m=1
https://adonaisantanna.blogspot.com/2009/12/probabilidades-no-ensino-medio.html?m=1
https://adonaisantanna.blogspot.com/?m=1
https://adonaisantanna.blogspot.com/2010/04/historias-e-probabilidades.html?m=0
https://www.blogger.com/profile/01496591352112715128
https://www.blogger.com/profile/01496591352112715128
https://www.blogger.com/profile/01496591352112715128
https://www.blogger.com/