Prévia do material em texto
SOLUTIONSMANUAL TO ACCOMPANY ATKINS' PHYSICAL CHEMISTRY 261 +1 0 +2 −1 −2 +3 −3 z +1 −1 +2 −2 +3 −3 0 Figure 7.12 (iii) l̂z(cos ϕ) = (ħ/i)d/dϕ(cos ϕ) = (ħ/i) × (− sin ϕ) = −(ħ/i) sin ϕ. Hence cos ϕ is not an eigenfunction of the operator (ħ/i)d/dϕ. (iv) l̂z(cos χeiϕ+sin χe−iϕ) = (ħ/i)(d/dϕ)(cos χeiϕ+sin χe−iϕ) = (ħ/i)× (i cos χeiϕ − i sin χe−iϕ) = ħ(cos χeiϕ − sin χe−iϕ). Hence cos χeiϕ − sin χe−iϕ is not an eigenfunction of the operator (ħ/i)d/dϕ. (b) For ψ = cos ϕ, ⟨lz⟩ = ∫ 2π 0 ψ∗ l̂zψ dϕ ∫ 2π 0 ψ∗ψ dϕ = −(ħ/i) ∫ 2π 0 cos ϕ sin ϕ dϕ ∫ 2π 0 cos2 ϕ dϕ = −(ħ/2i) sin 4π ∫ 2π 0 cos2 ϕ dϕ = 0 where Integral T.7 is used to evaluate the numerator. For ψ = cos χeiϕ + sin χe−iϕ , ⟨lz⟩ = ∫ 2π 0 ψ∗ l̂zψ dϕ ∫ 2π 0 ψ∗ψ dϕ = ∫ 2π 0 (cos χe−iϕ + sin χeiϕ)ħ(cos χeiϕ − sin χe−iϕ)dϕ ∫ 2π 0 (cos χe−iϕ + sin χeiϕ)(cos χeiϕ + sin χe−iϕ)dϕ = ħ ∫ 2π 0 cos2 χ − sin2 χ − cos χ sin χe−2iϕ + cos χ sin χe2iϕ dϕ ∫ 2π 0 cos2 χ + sin2 χ + cos χ sin χe−2iϕ + cos χ sin χe2iϕ dϕ Note that as einϕ is periodic over 2π for integer n, ∫ 2π 0 einϕdϕ = 0. Hence ⟨lz⟩ = ħ2π(cos2 χ − sin2 χ) 2π(cos2 χ + sin2 χ) = ħ cos 2χ (c) (i) For ψ = eiϕ T̂ψ = −(ħ2/2I)d2(eiϕ)/dϕ2 = −(ħ2/2I)(i)2eiϕ = (ħ2/2I)eiϕ Hence ψ is an eigenfunction with eigenvalue ħ2/2I .