Buscar

Apostila Matemática Cálculo CEFET Capítulo 04 Derivadas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 50 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 50 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 50 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Capítulo 4
DERIVADA
4.1 Introdução
Neste capítulo estabeleceremos a noção de derivada de uma função. A derivada envolve a
variação ou a mudança no comportamento de vários fenômenos. Inicialmente apresentaremos
a definição de reta tangente ao gráfico de uma função. Posteriormente, definiremos funções
deriváveis e derivada de uma função num ponto, dando ênfase ao seu significado geométrico.
4.2 Reta Tangente
Seja:
���������
	
uma função definida num domínio
�
que pode ser um intervalo aberto ou uma reunião de
intervalos abertos, ou ainda,
�
tal que para todo intervalo aberto � que contenha ��
 , se tenha:
�����
�����
�
������
ffflfi .
Considere ffi ff ���
! 
�
���
"�#�
e $�% ff ���&%
 
�
����%
�#�
( ' ff�(
 �)* �+*,-,-,-,-,-,
) pontos no gráfico de
�
, ffi
�
ff
$.% ;
seja /10 a reta secante que passa por ffi e $20 ; seu coeficiente angular é:
3
0
ff
�
���40
�
�5�
���
6�
�
0
�
��
,
Fixemos o ponto ffi e movamos $20 sobre o gráfico de
�
em direção a ffi , até um ponto $87 ff
���
7
 
�
���
7
�#�
tal que $ 7
�
ff
ffi ; seja / 7 a reta secante que passa por ffi e $ 7 ; seu coeficiente angular
é:
3
7
ff
�
���
7
�
�5�
����
�
�97
�
�
,
Suponha que os pontos $.% ( ' ff
(
 �)* �+*,-,-,-,-,-,
) vão se aproximando sucessivamente do ponto ffi
(mas sem atingir ffi ), ao longo do gráfico de
�
; repetindo o processo obtemos / 0
 
/
7
 
/;:
 <,-,-,
, retas
secantes de coeficientes angulares 3 0 3 7 3 :� <,-,-, , respectivamente. É possível provar, rigoro-
samente, que quando os pontos $.% vão se aproximando cada vez mais de ffi , os 3 % respectivos,
variam cada vez menos, tendendo a um valor limite constante, que denotaremos por 3>=6? .
141
142 CAPÍTULO 4. DERIVADA
P
x x x x x
Q
Q
Q Q
r
r
r
r
f(x)
n
1
2
3
n 3 2 10
n
3
2
1
Figura 4.1:
Definição 4.1. A reta passando pelo ponto ffi e tendo coeficiente angular 3 =6? , é chamada reta tangente
ao gráfico de
�
no ponto ��� 
 
�
����
�#�
.
Se
3 =
?
ff
�����
=���=6?
�
���
�
�>�
����
�
�
�
�
existe, fazendo a mudança � ff �
�
� 
 , temos:
3
=6?
ff
�����
	
�
�
���
�
�
�
�5�
���
6�
�
,
Como �9
 é um ponto arbitrário, podemos calcular o coeficiente angular da reta tangente ao
gráfico de
�
para qualquer ponto ��� 
�
���
�#� :
3 =
ff
�����
	
�
�
���
�
�
�5�
���
�
�
Assim, 3 = só depende � .
Definição 4.2. Se
�
for contínua em �
, então, a equação da reta tangente ao gráfico de
�
no ponto
����
 
�
���9
�#�
é:
�
�>�
���
<�
ff
3 =6?
���
�
�
<�
se o limite existe,
Exemplo 4.1.
[1] Determine a equação da reta tangente ao gráfico de
�
���
�
ff�
�
�
7 , no ponto � ( +1� .
4.2. RETA TANGENTE 143
Denotemos por 3 0 o coeficiente angular da reta tangente à parábola � ff 
�
�
7 passando pelo
ponto � (
 
�
�
(
�#�
ff
�
(
 +1�
. Seja ffi ff � (
 +1�
e $ ff ��� 
! 
�
�
7
�
pontos da parábola; o coeficiente
angular da reta secante à parábola passando por ffi e $ é:
3
���
ff
�
��� 
<�
�5�
�
(
�
�9
�
(
ff
�
��� 
 
(
� ,
Q
1
P
x0
Figura 4.2:
Do desenho, é intuitivo que se $ aproxima-se de ffi ( � 
 aproxima-se de ( ), os coeficientes angu-
lares de ambas as retas ficarão iguais; logo:
3
0
ff
�����
=6? �
0
3
���
ff
�
)*,
A equação da reta tangente ao gráfico de
�
, no ponto � (
 +1�
é �
�
+
ff
�
)
���
�
(
�
ou, equivalen-
temente, � 
�) � ff�� .
-1 1 2
1
2
3
4
Figura 4.3: Reta tangente a � ff�
�
�
7 , no ponto � (
 +1�
.
[2] Determine a equação da reta tangente ao gráfico de
�
���
�
ff
(
�
, no ponto � 0
7
 )1� .
Seja 3��
�
o coeficiente angular da reta tangente ao gráfico da função � ff
(
�
passando pelo ponto
�
(
)
 )1� . Seja ffi ff �
(
)
 )1� e $ ff
	 � 
; 
(
��
�
pontos da curva; o coeficiente angular da reta secante à
144 CAPÍTULO 4. DERIVADA
curva passando por ffi e $ é:
3
���
ff
�
��� 
6�
�>�
	
(
)
�
��
�
(
)
ff
�
)
� 
,
1/2 0
P
Q
x
Figura 4.4:
Novamente do desenho, é intuitivo que se $ aproxima-se de ffi 	 � 
 aproxima-se de
(
)
�
os coe-
ficientes angulares de ambas as retas ficarão iguais; logo:
3��
�
ff
�����
=6? �
�
�
3
���
ff
�
,
A equação da reta tangente ao gráfico de
�
, no ponto � 0
7
 )1� é �
�
)
ff
�
���
�
0
7
� ou, equivalen-
temente, �
�
ff�
 .
0.5
4
Figura 4.5: Reta tangente a � ff 0= , no ponto � 0
7
 )1� .
[3] Determine a equação da reta tangente ao gráfico de
�
���
�
ff
�
:
�
�
( , no ponto � ( ( � .
Utilizemos agora diretamente a definição:
�����
	
�
�
�
(
�
�
� �
�
(
�
�
ff
�����
	
�
� � �
7
�+
�
�)1�
�
ff
�����
	
�
� �
7
 +
�
�)1�
ff
)*,
4.3. FUNÇÕES DERIVÁVEIS 145
Logo 3 0 ff ) . A equação da reta tangente ao gráfico de
�
, no ponto � ( ( � é �
�
) �
ff
�
( .
-2 -1 1 2
1
2
3
Figura 4.6:
Da definição segue que a equação da reta normal ao gráfico de
�
no ponto ��� 
! 
�
���
6�#� é:
�
�>�
���
6�
ff
�
(
3 =6?
	
�
�
�
�
 
se 3 = ?
�
ff��
4.3 Funções Deriváveis
Definição 4.3. Seja
�������&�
	
uma função definida num domínio
�
que pode ser um intervalo aberto
ou uma reunião de intervalos abertos ou ainda,
�
tal que para todo intervalo aberto � que contenha �
,
se tenha: ��� �
�����
�
"��� �
ffflfi .
�
é derivável ou diferenciável no ponto � 
 quando existe o seguinte
limite:
���
����
�
ff
�����
=���=6?
�
���
�
�>�
���
<�
�
�
�
Fazendo a mudança � ff �
�
�
 , temos:
���
���
6�
ff
�����
	
�
�
���9
�
�
�>�
����
�
�
,
�
�
���
"�
é chamada a derivada de
�
no ponto �
. Como �
é um ponto arbitrário, podemos
calcular a derivada de
�
para qualquer ponto ���
���
3
�
�
�
;
�
�
���
�
ff
�����
	
�
�
���
�
�
�>�
���
�
�
Assim
�
�
é função de � e
�
�
���
<�
�
	
.
Definição 4.4. Uma função
�
é derivável (ou diferenciável) em �
	
	
, se é derivável ou diferenciável
em cada ponto ����� .
Outras notações para a derivada de � ff � ���
�
são:
�
�
ou
�
=
�
.
146 CAPÍTULO 4. DERIVADA
Exemplo 4.2.
[1] Calcule
�
�
�
(
�
e
�
�
� )1�
, se
�
��� �
ff
�
7 .
���
��� �
ff
�����
	
�
�
��� 
 � �
�>�
��� �
�
ff
�����
	
�
��� 
 � �
7
�
�
7
�
ff
�����
	
�
� ) � 
 � �
ff
) � ,
Logo,
�
�
�
(
�
ff
(
)
e
�
�
� )1�
ff�
 .
[2] Calcule
�
�
�
(
)
�
se
�
��� �
ff�� (
�
�
7 .
���
��� �
ff
�����
	
�
�
(
�
��� 
 � �
7
�
�
(
�
�
7
�
ff
�����
	
�
�
) � 
 �
�
(
�
��� 
 � �
7
� (
�
�
7
ff
�
�
�
(
��
7
,
Logo,
�
�
�
(
)
�
ff
�
�
+
+
.
[3] Calcule
�
�
�
(
� se
�
���
�
ff�
�
�
7 .
�
�
���
�
ff
�����
	
�
�
���
�
�
�>�
���
�
�
ff
�����
	
�
�
� � �
�)
�
�
�
ff
�����
	
�
�
� �
�)
�
�
ff
�
)
�
,
Logo,
�
�
�
(
�
ff
�
) .
[4] Calcule
�
�
�
(
)
� se
�
���
�
ff
(
�
.
�
�
���
�
ff
�����
	
�
�
���
�
�
�>�
���
�
�
ff
�����
	
�
(
�
�
�
(
�
�
ff
�����
	
�
�
(
�
7
� �
ff
�
(
�
7
,
Logo,
�
�
�
(
)
�
ff
�
 .
Interpretação Geométrica
A função �
�
�
� � �
�
����
�&�
	
, definida por
� ���
�
ff
�
���
�
� �
����
�
�
�
�
 
representa, geometricamente, o coeficiente angular da reta secante ao gráfico de
�
passando
pelos pontos ���
! 
�
���
6�#�
e ���
 
�
���
�#�
. Logo, quando
�
é derivável no ponto �
, a reta de coefici-
ente angular
�
�
���
"� e passando pelo ponto ��� 
! 
�
���
6�#� é a reta tangente ao gráfico de
�
no ponto
���
! 
�
���
6�#�
. Se
�
admite derivada no ponto �
, então, a equação da reta tangente ao gráfico de
�
no ponto ��� 
 
�
����
�#�
é:
�
� �
���
6�
ff
�
�
���
<�
���
�
�
"�
A equação da reta normal ao gráfico de
�
no ponto ���
! 
�
���
6�#�
é:
�
�>�
���
6�
ff
�
(
�
�
���
<�
���
�
�
"� 
se
���
���
"� �
ff �
4.3. FUNÇÕES DERIVÁVEIS 147
Figura 4.7: As retas tangente e normal ao gráfico de � ff
�
��� �
.
Exemplo 4.3.
[1] Determine as equações da reta tangente e da reta normal ao gráfico de
�
���
�
ff
�
7
( , no
ponto de abscissa � 
 ff ( .
Se �
ff ( então
�
���
6�
ff
)
; logo, a reta tangente passa pelo ponto � (
 )1�
e seu coeficiente angular
é
�
�
�
(
� . Temos:
�
�
���
�
ff
�����
	
�
�
���
�
�
�>�
���
�
�
ff
�����
	
�
���
�
�
7
(
�
���
7
(
�
�
ff
)
�
,
�
�
�
(
�
ff
) e as respectivas equações são: �
�
)
�
ff � e ) � 
 �
�
�.ff�� .
-1 1
1
2
3
Figura 4.8: As retas tangente e normal ao gráfico de � ff
�
���
�
.
[2] Determine a equação da reta tangente ao gráfico de
�
���
�
ff
�
� que seja paralela à reta
)
�
�
�
�
( ff�� .
Para determinar a equação de uma reta, necessitamos de um ponto ��� 
 
�
�
e do coeficiente
angular
�
�
���
"� . Neste problema, temos que determinar um ponto. Sejam / 	 a reta tangente,
/ a reta dada, 3 	 e 3 os correspondentes coeficientes angulares; como / 	 e / são paralelas,
então 3 	 ff 3 ; mas 3 ff ) e 3 	 ff
�
�
���
"� , onde � 
 é a abscissa do ponto procurado; como
�
�
���
"�
ff
(
)
�
�
, resolvendo a equação
�
�
���
6�
ff
) , obtemos � 
 ff
(
(��
e
�
�
(
(��
�
ff
(
; a equação é
(��
�
���
�
( ff�� .
148 CAPÍTULO 4. DERIVADA
1 2
1
Figura 4.9: Reta tangente ao gráfico de
�
��� �
ff
�
� paralela à reta ) �
�
�
�
( ff�� .
[3] Determine as equações das retas tangentes ao gráfico de
�
���
�
ff
�
:
+
�
( que sejam perpen-
diculares à reta � 
 � ff�� .
Sejam / 	 a reta tangente, / a reta dada, 3 	 e 3 os correspondentes coeficientes angulares; como
/
	 e / são perpendiculares, então 3 	 3 ff
�
( ; mas 3 ff
�
( e 3 	 ff
�
�
���9
�
, onde �9
 é a abscissa do
ponto procurado; resolvendo a equação
�
�
���
"�
ff ( , temos
�
�
���
"�
ff
�
7
e � 
 ff�� ( ; as equações
são:
+
�
�
+
�
� ff�� e
+
�
�
+
�
( ff�� .
Figura 4.10:
Teorema 4.1. Se
�
é derivável em � 
 então f é contínua em � 
 .
Para a prova veja o apêndice.
Exemplo 4.4.
Seja
�
���
�
ff��
�
� .
�
é contínua em todo
	
; em particular em � 
 ff � . Mas a derivada de
�
em �
não existe; de fato:
�
�
�
�
�
ff
�����
=��
�
���
�
�>�
�
�
�
�
ff
�����
=��
�
�
�
�
,
Calculemos os limites laterais:
4.3. FUNÇÕES DERIVÁVEIS 149
��
�
�
�
�
�
�
�
��
�����
=��
��
�
�
�
�
ff
�����
=��
	
�
�
�
ff (
�����
=��
��
�
�
�
�
ff
�����
=��
�
	
�
�
�
ff
�
(
,
Logo,
�
�
�
�
� não existe. Para ���
	 � �
�
� ,
�
�
��� � existe e:
���
��� �
ff	�
( se ��
 �
�
( se �
� � ,
Do teorema segue que não existe a derivada de
�
no ponto � 
 se
�
é descontínua no ponto � 
 .
Também não existe a derivada de
�
no ponto � 
 nos eguintes casos:
i) Se existe "quina"no gráfico da função contínua no ponto de abscissa �
, como no ponto �
ff��
do exemplo anterior.
ii) Se
�
é contínua em �
e se possui reta tangente vertical passando pelo ponto de abscissa �
.
Neste caso,
�����
=���=6?
�
�
�
���
�
�1ff�� .
Figura 4.11: Funções não deriváveis.
Exemplo 4.5.
[1] Seja
�
���
�
ff
�
�
�
�
7������
�
(
�
�
se �
�
ff��
� se � ff�� ,
���
�
�
�
ff
�����
=��
�
���
�
�>�
�
�
�
�
�
�
ff
�����
=��
���
�����
�
(
�
�#�
ff ���
logo, a derivada em � existe; então,
�
é contínua em � .
[2]
�
���
�
ffff�
�
� é contínua em todo
	
e não é diferenciável em � ff � . De fato:
���
�
�
�
ff
�����
=��
�
���
�
�5�
�
�
�
�
�
�
ff
�����
=��
(
�
�
�
7
ff
�
,
150 CAPÍTULO 4. DERIVADA
-2 -1 1 2
-1
1
Figura 4.12: Gráfico do exemplo [2].
4.4 Regras de Derivação
[1] Se � ��� � ff�� , então �
�
���
�
ff�� .
[2] Se � ��� � ff 3 � 
�
�
3
 
�
�
	
e 3 �ff�� , então �
�
���
�
ff
3 .
De fato, a função é contínua e seu gráfico coincide com sua reta tangente em qualquer ponto;
logo, tem o mesmo coeficiente angular. Equivalentemente,
� ���
�
�
�
� ���
�
�
ff
3
�
�
ff
3
,
[3] Se � ��� � ff ��� ; � ��� , então �
�
���
�
ff
�
���
	
0 .
De fato: � ���
�
�
�
� ���
�
ff
�
�
� �
�
�
��	
0
� �
�
�
�
	
0�
7
�
��	
7
�
,-,-,-,-, 
�
�
	
7
�#�
�
�
� e:
�
�
���
�
ff
�����
	
�
� ���
�
�
�
� ���
�
�
ff
�����
	
�
���
�
�
�
�
�
�
�
ff
�����
	
�
�
	
�
�
��	
0
�
	
�
�
��	
0�
7
�
�
	
7
�
,-,-,-,-, 
�
�
	
0
� �
�
ff
�
�
��	
0
,
Proposição 4.1. Sejam � ff �����
�
e � ff �9���
�
funções deriváveis; então:
1. Regra da soma: As funções � � � são deriváveis e
���
�
�
�
�
���
�
ff
�
�
���
�
�
�
�
���
�
2. Regra do produto: A função ����� é derivável e
�������
�
�
���
�ff
�
�
���
�
���9���
� 
� ���
�
���
�
���
�
3. Regra do quociente: A função
�
�
é derivável, e
�
�
���
�
���
�
ff
�
�
���
�
���9���
�
�
�����
�
���
�
���
�
���9���
�#�
7
se � ��� ���ff��
4.4. REGRAS DE DERIVAÇÃO 151
Veja as provas no apêndice.
Da regra do produto temos: ��� � ��� �#�
�
ff
� �
�
��� �
, para toda constante � . Da regra do quociente,
temos: se � ��� � ff � � � �ff�� , com � � � , então �
�
��� �
ff
�
� �
	
0 .
Exemplo 4.6.
[1] Calcule �
�
��� � , sendo ����� � ff
��� 
 + � 
(
���
; � �ff�� .
Note que: � ��� � ff � 	 0 
�+ � 	�� 
 � 	 � , temos:
�
�
��� �
ff
���
	
0
�+ �
	��
 �
	
�
�
�
ff
�
�
	
7
�
(
) �
	
�
�
�
�
	��
,
[2] Calcule �
�
���
�
sendo � ���
�
ff
���
:
�)
�
(
�
�
)
�
7
�+1� .
Aplicando diretamente as regras:
�
�
���
�
ff
�#���
:
�)
�
(
�#�
�
�
)
�
7
 +1� 
���
:
 )
�
(
�
�#�
)
�
7
�+1�#�
�
e �
�
���
�
ff ( �
�
�
�)
(
�
7
�
� .
[3] Calcule �
�
���
�
, sendo �����
�
ff
�
7
�
�
:
(
.
�
�
���
�
ff
	
�
7
�
�
:
(
�
�
ff
���
7
�
�
�
���
:
(
�
�
���
7
�
�
���
:
(
�
�
���
:
(
�
7
�
logo, �
�
���
�
ff
�
�
�
�
)
�
:
 )
�
(
���
:
(
�
7
ff
(
�
�
7
���
7
�
�
(
�
7
.
[4] Determine as equações das retas tangentes aos gráficos de:
(a)
�
���
�
ff
�
7
�
+
� que passa pelo ponto � +* 
�
� .
(b) � ���
�
ff
�
:
�
� , paralelas à reta �
�
)
�
ff � .
(a) O ponto dado não pertence ao gráfico de
�
. Por outro lado a equação da reta tangente ao
gráfico de
�
no ponto ��� 
! 
�
���
6�#� é � ��� � ff
�
���
6� 
�
�
���
"�
���
�
�
"� , onde
�
�
���
"�
ff
)
�
�
+ e
�
���
6�
ff
�
7
�
+
�
. O ponto �
+* 
�
�
pertence à reta tangente, logo, obtemos:
�
 ff
�
�
+1�
ff
�
7
�
+
��
�
)
�9
�
+1�
�
+
�
�9
�
ff
�
�
7
�
��
�
	
,
Resolvendo a equação, obtemos: � 
 ff ( e � 
 ff � . Então, as equações obtidas são � 
 � 
 ( ff��
e �
���
�
 )
�.ff�� .
(b) O coeficiente angular da reta tangente no ponto � 
 é �
�
���
6�
ff
+
�
7
�
( e deve ser igual ao
coeficiente angular da reta dada; então
+
�
7
�
( ff
)
; logo, �
ff � ( . As equações das retas
tangentes são �
�
)
�
�)
ff � e �
�
)
�
�
)
ff�� .
152 CAPÍTULO 4. DERIVADA
3
-4
-1 1
Figura 4.13: Gráficos do exemplo [4].
4.5 Derivada da Função Composta
Suponha que desejamos derivar a seguinte expressão: � ���
�
ff
�����
�
�
(
�
0
#
#
 com as regras
dadas. Só temos a possibilidade de desenvolver o trinômio e aplicar sucessivamente a regra
da soma ou escrever como produto de ( � � � polinômios e usar a regra do produto. Como
ambas as possibilidades são tediosas, vamos tentar reescrever esta função. Seja �9���
�
ff
�
0
#
#
e
�
���
�
ff
�
� 
� �
( ; é claro que � ��� � ff � ���
�
�
���
� . Logo, se soubermos derivar a composta
de funções o problema estará resolvido. O seguinte teorema nos ensina a derivar uma função
composta ���
�
em termos das derivadas de
�
e � , que são mais simples.
Teorema 4.2. Regra da Cadeia
Sejam
�
e � funções, tais que ���
�
esteja bem definida. Se
�
é derivável em � e � é derivável em
�
���
�
,
então ���
�
é derivável em � e:
� ���
�
�
�
���
�
ff
�
�
�
�
���
�#�
�
���
���
�
Outra maneira de escrever o último parágrafo é: se � ff �9��� � e � ff
�
� �
� , nas hipóteses do
teorema, temos que:
�
�
ff
�
�
�
�
Para a prova, veja o apêndice.
Aplicação: Seja �9��� � ff ��� ��� �#� � , onde � �
�
. Então: �
�
���
�
ff
�
��� ���
�#�
��	
0
�
�
���
� .
Exemplo 4.7.
[1] Calcule �
�
���
�
se �9���
�
ff
�����
�
�
(
�
0
#
#
 .
Neste caso � ��� � ff � � 
 ��� 
 ( ; logo, �
�
���
�
ff
	
��	
�
�
� e � ff ( � � � ; então:
�
�
���
�
ff
�#��� ���
�#�
0
#
#
�
�
ff ( � � �
��� ���
�#�
�
�
�
�
�
���
�
ff ( � � �
���
�
�
�
(
�
�
�
�
�
	
�
	
�
�
�
� ,
[2] Calcule
�
�
se � ff �9���
�
ff
�
:
�
( e � ff ��� �
�
ff
�
7
( .
4.5. DERIVADA DA FUNÇÃO COMPOSTA 153
Pela regra da cadeia:
�
�
ff
�
�
�
�
ff
) � � + �
7
(
�
ff �
� � �
7
(
�
7
 ) � ,
[3] Seja � uma função derivável e �4��� � ff �9��� 7 
 ( � . Calcule �
�
�
(
�
se �
�
� )1�
ff � .
Observemos que �4��� � ff � � �
�
� ��� � , onde
�
��� �
ff
�
7
( ; pela regra da cadeia: �
�
��� �
ff
�
�
�
�
��� �#�
�
�
��� �
, e
�
�
��� �
ff
) �
. Logo, �
�
��� �
ff
�
�
���
7
(
� ) �
. Calculando a última expressão
em � ff ( , temos que: �
�
�
(
�
ff
) �
�
� )1�
ff ( � .
[4] Se � ff � :
 �
7
�+
e � ff
) �
7
�
( , calcule
�
�
.
Pela regra da cadeia:
�
�
ff
�
�
�
�
ff�
� �
+
�
7
�)
�
�
ff�
� �
+
�
)
�
7
�
(
�
7
�)
�
)
�
7
�
(
�#�
ff�
�
(
)
�
�
� �
�
:
�
�
�
ou, fazemos a composta das funções:
�
ff
�
:
�
7
�+
ff
�
)
�
7
�
(
�
:
�
)
�
7
�
(
�
7
 +
e �
�
ff 
�
(
)
�
�
� �
�
:
�
� ,
[5] Determine
�
�
�
(
�
se
�
���
�
ff
� ���4���4���
�#�#�
, � � (
�
ff ( e �
�
�
(
�
ff
)
.
Pela regra da Cadeia:
�
�
���
�
ff
�
�
���
�
�
�
��� ���
�#�
�
�
���4��� ���
�#�#�
; logo,
�
�
�
(
�
ff
�
.
Teorema 4.3. Função Inversa
Seja
�
uma função definida num intervalo aberto � . Se
�
é derivável em � e
�
�
���
�.�
ff � para todo � ��� ,
então
�
possui inversa
�
	
0 derivável e:
�
�
	
0
�
�
���
�
ff
(
�
�
�
�
	
0
���
�#�
Para a prova da primeira parte veja a bibliografia avançada. A fórmula pode ser obtida dire-
tamente da regra da cadeia. De fato, �
�
�
�
	
0
�
���
�
ff
� para todo � � � . Derivando ambos os
lados, temos que:
�
�
�
�
	
0
�
�
���
�
ff
�
�
�
�
	
0
���
�#�
���
�
	
0
�
�
���
�
ff (
,
Exemplo 4.8.
[1] Seja
�
���
�
ff
�
7
 
���
� ; logo sua inversa é
�
	
0
���
�
ff
�
�e
�
�
���
�
ff
)
�
�
ff � se � �ff � ; logo,
�
�
�
�
	
0
���
�#�
ff
)
�
� . Aplicando o teorema:
�
�
	
0
�
�
���
�
ff
(
)
�
�
 
�
�
ff��
,
[2] Seja
�
���
�
ff
�
: ; logo sua inversa é
�
	
0
���
�
ff
�
�
� e
�
�
���
�
ff
+
�
7
�
ff � se � �ff � ;
�
�
�
�
	
0
���
�#�
ff
+
�
�
�
7 . Aplicando o teorema:
�
�
	
0
�
�
���
�
ff
(
+
�
�
�
7
 
�
�
ff��
,
154 CAPÍTULO 4. DERIVADA
[3] Se � � � , então: ���� � �
�
ff
�
�
�
	
0
�
, para todos os valores de � tais que �� � seja definida.
De fato, seja ����� � ff � � ; para � par, � 
 � e para � ímpar, � não tem restrições; a inversa de � é
� 	
0
��� �
ff
�
�
� e �
�
��� �
ff
�
���
	
0 ; �
�
��� ���
ff � se � �ff � . Aplicando o teorema, temos:
	
�
�
�
�
�
ff
���
	
0
��� �#�
�
ff
(
�
�
���
	
0
��� �#�
ff
�
�
�
	
0
�
,
Em geral, pela regra da cadeia, se � ff ����� � é uma função derivável e �9��� � ff ��� ��� �#�
�
, � �
�
;
então, �
�
��� �
ff
�
��� ��� �#�
�
	
0
�
�
��� �
.
[4] Calcule
�
�
��� �
, se
�
��� �
ff
�
�
7
( . Escrevemos
�
ff
��� � , onde �9��� � ff � � e �4��� � ff � 7 
 ( ;
logo, �
�
��� �
ff
(
)
�
�
e �
�
��� �
ff
) � ; então:
�
�
��� �
ff
�
�
���4��� �#� �
�
��� �
ff
�
�
�
7
(
.
[5] Determine
�
�
�
�
� , se
�
���
�
ff
�4���
���
�
� ���
� 
( , � � � � ff�� e �
�
�
�
�
ff ( . Pela regra da cadeia:
���
���
�
ff
�
�
���
�
�
�
�4���
�#�
�
�
�
(
� ���
�#�
:
�
logo,
�
�
�
�
�
ff ( .
4.6 Derivadas das Funções Elementares
4.6.1 Função Exponencial
Seja ���
	
tal que � ���
�
ff ( e �����
�
ff
�
=
Então,
�
�
���
�
ff
	
�
���
�
�
=
De fato, �
�
���
�
ff
�����
	
�
�
=
�
	
�
�
=
�
ff
�
=
�����
	
�
�
	
�
(
�
ff�	
�
���
�
�
=
. Em particular, se � ff � , temos :
�
�
=
�
�
ff
�
=
Seja � ff � ���
�
uma função derivável e considere a função: �����
�
ff
���
�
=
 Então:
�
�
���
�
ff
	
�
���
�
�
�
�
=
�
�
���
�
De fato, �
�
�
=
ff
�
�
�
=
��
�
���
 ; usando a regra da cadeia para � ���
�
ff
�
=
e
�
���
�
ff
�9���
�
	
�
���
�
, temos
que � ��� � ff � � �
�
�
���
� ; então �
�
���
�
ff
�
=
e �
�
�
�
���
�#�
ff
�
�
�
=
��
�
���
ff
�
�
�
=
 e
�
�
���
�
ff
�
�
���
�
	
�
���
� ; logo,
em particular,
�
�
�
�
=
�
�
ff
�
�
�
=
�
�
���
�
O crescimento ou decrescimento exponencial, expresso pela função
$ � �
�
ff
$
���
	
 
���
�
ff��
�
4.6. DERIVADAS DAS FUNÇÕES ELEMENTARES 155
tem a propriedade $
�
� � �
ff
� $2� � � , isto é, a sua derivada é proporcional à função. Aliás, isto
é o que caracteriza a função exponencial. Nos desenhos, a função exponencial em azul e sua
derivada em vermelho; para � ��� � ( e � 
 ( , respectivamente:
Figura 4.14:
Exemplo 4.9.
[1] Seja � ff ���
=
.
Fazendo � ���
�
ff
�
� , temos �
�
ff
�
�
�
�
=
�
�
ff
�
�
�
=
�
�
���
�
ff���� �
7
�
= .
[2] Seja � ff 	 0
7
�
�
�
.
Fazendo � ��� � ff 0= , temos �
�
ff
�
	
�
�
)1�
	
0
7
�
�
� �
�
���
�
ff
	
�
�
)1�
	
0
7
�
�
�
0
=
� .
[3] Determine a equação da reta tangente ao gráfico da função � ff � 	
=
�
no ponto de abscissa ( .
Derivando �
�
ff
�
)
�
�
	
=
�
; �
�
�
(
�
ff
�
)
�
	
0 e � � (
�
ff
�
	
0 ; logo, a equação da reta tangente
passando pelo ponto � (
 
�
�
(
�#�
, é �
�)
�
�
	
0
�
+
�
	
0
ff�� .
4.6.2 Função Logarítmica
Seja � �
	
tal que � � � �ff ( e � ��� � ff
	
�
�
�
���
� . Usando o teorema da função inversa para
�
	
0
ff
� e
�
���
�
ff
�
=
, temos que:
�
�
���
�
ff
	
�
�
�
�
�
�
�
De fato, �
�
���
�
ff
0
�	�
�
�
�
�
�
=
 
ff
0
=
�
�
���
ff
��
���
�
�
= . Em particular, se � ff � :
�
	
�
���
�#�
�
ff
(
�
Usemos a regra da cadeia para calcular a derivada de � ���
�
ff
	
�
�
�
��� ���
�#�
onde � ���
�
� é uma
função derivável. Em tal caso:
�
�
���
�
ff
	
�
�
�
�
�
�
�
�
���
�
�9���
�
156 CAPÍTULO 4. DERIVADA
Em particular, se � ff � :
�
	
�
��� ��� �#�#�
�
ff
�
�
��� �
�9��� �
1 1
Figura 4.15: Função logarítmica em azul e sua derivada em vermelho; para � �
� � ( e �
 ( ,
respectivamente.
4.6.3 Aplicações
Para todo � �
	
, se �����
�
ff
�
�
, � 
 � ; então, �
�
���
�
ff
���
�
�
�
ff
�
�
�
	
0 . De fato, seja � ff � ���
�
.
Aplicando logaritmo à expressão � ff � ��� � ff �
�
: temos, 	 � � � � ff�	 � ������� �#� ff � 	 � ��� � . Derivando,
temos
�
	
�
�
�
�#�
�
ff
�
�
���
�
� ���
�
ff
�
�
�
�
ou seja,
�
�
�
ff
�
�
; logo,
�
�
ff
�
	
�
�
�
ff
�
�
�
�
ff
�
�
�
	
0
,
Em geral, se ����� � ff ��� ��� �#�
�
, onde �9��� � 
 � e � �
	
, temos:
�
�
���
�
ff
�
���9���
�#�
�
	
0
�
�
���
� ,
Seja � ff ��� ���
�#�
�
�
=
 , onde � ���
�
� . Aplicando logaritmo à expressão � ff �������
�#�
�
�
=
 ; temos que,
	
�
�
�
�
ff
�9���
�
	
�
�������
�#�
. Derivando, temos:
�
�
�
ff
�
�
���
�
	
�
�������
�#� 
�
�
���
�
� ���
�
� ���
�
 
e �
�
���
�
ff
�
���
���
�
�
���
�
	
�
��� ���
�#� 
�
�
���
�
� ���
�
� ���
�
�
,
Então, se � ff ��� ��� �#�
�
�
=
 :
�
�
ff
��� ���
�#�
�
�
=
�
�
�
���
�
	
�
��� ���
�#� 
�
�
���
�
�9���
�
�����
�
�
4.6. DERIVADAS DAS FUNÇÕES ELEMENTARES 157
Exemplo 4.10.
[1] Calcule a derivada de � ff
+
�
� 
 �
	
�
�)
�
�
�
: , �
 � .
Aqui � ff 0
7
, � ff
�
� e � ff :
�
, respectivamente; logo: �
�
ff
:
7
�
	
�
�
�
�
� 	��
:
7
�
	
�
�
.
[2] Calcule a derivada de � ff
�
�
� �
=
���
7
 � 
(
�
�
.
Aplicando logaritmo à função e usando as propriedades da função logarítmica, temos:
	
�
�
�
�
ff�	
�
�
�
� � 
	
�
�
�
�
=
�
�
 	
�
���
7
 � 
(
�
ff
	
�
��� �
)
�
�
�
 	
�
���
7
 � 
(
� ,
Derivando: �
�
�ff
0
7
=
0
7 �
=
�
	
=
�
�
=
�
�9=
�
0
,logo:
�
�
ff
�
���
�
	
(
)
�
(
)
�
�
�
�
�
�
7
�
(
�
ff
�
�
� �
=
���
7
�
(
�
�
	
(
)
�
(
)
�
�
�
�
�
�
7
�
(
�
,
[3] Calcule a derivada de � ff �
=
 
��
� .
Aplicando logaritmo à expressão e usando as propriedades da função logarítmica, temos:
	
�
�
�
�
ff
�
	
�
���
� . Derivando:
�
�
�
ff
	
�
���
� 
( e,
�
�
ff
�
���
�
�
	
�
���
� 
(
�
ff
�
	
�
���
� 
(
�
�
=
,
[4] Calcule a derivada de � ff � �
=
 
�
� .
Aplicando logaritmo à expressão e usando as propriedades da função logarítmica, temos:
	
�
�
�
�
ff
	
�
���
�
�
� . Derivando:
�
�
�
ff
	
�
���
�
)
�
�
(
�
�
, logo:
�
�
ff
�
���
�
	
	
�
���
�
)
�
�
(
�
�
�
ff
	
	
�
���
� 
�)
)
�
�
�
�
�
=
,
[5] Determine a equação da reta tangente ao gráfico de
�
���
�
ff
�
=
�
, ( � 
 � ) no ponto de abscissa
��
ff ( .
Aplicando logaritmo a ambos os lados de � ff �
=
�
, temos que: 	 � � � � ff � 7 	 � ��� � ; derivando,
obtemos �
�
ff
�
�
)
�
	
�
���
� 
�
�
ff
�
=
�
�
0
�
)
	
�
���
��
(
�
; �
�
�
(
�
ff�( e a equação da reta tangente é
�
�
�
ff � .
1
1
Figura 4.16: Gráfico de
�
���
�
ff
�
=
�
.
158 CAPÍTULO 4. DERIVADA
[6] Seja
�
��� �
ff
	
�
��� � . Sabendo que
�
�
�
(
�
ff ( , verifique que:
�����
	
�
� � 
(
�
�
�
ff
� .
� �
�
(
�
ff
�����
	
�
�
� � 
(
�
�>�
�
(
�
�
ff
�����
	
�
	
�
� � 
(
�
�
ff
�����
	
�
	
�
�#� � 
(
�
�
�
�
ff
	
�
	
�����
	
�
� � 
(
�
�
�
�
�
então, ( ff
	 � 	
�����
	
�
� � 
(
�
�
�
�
; logo:
�����
	
�
� � 
(
�
�
�
ff
� .
Tabela
Sejam � ��� � , �9��� � funções diferenciáveis e � uma constante. Se:
[1] � ff � , então �
�
ff�� .
[2] � ff � , então �
�
ff ( .
[3] � ff � � ��� � , então �
�
ff
� �
�
���
� .
[4] � ff ����� � � � ��� � , então �
�
ff
�
�
���
�
�
�
�
���
�
.
[5] � ff �����
�
��� ���
�
, então �
�
ff
�
�
���
�
���9���
� 
� ���
�
���
�
���
�
.
[6] � ff
� ���
�
�9���
�
 
�9���
���
ff�� , então �
�
ff
�
�
���
�
���9���
�
�
�����
�
���
�
���
�
���9���
�#�
7
.
[7] � ff �
�
�
=
 , então �
�
ff
�
�
�
=
�
	
�
���
�
���
�
���
� .
[8] � ff �
�
�
=
 , então �
�
ff
�
�
���
�
�
�
�
=
[9] � ff
	
�
�
�
�������
�#� , então �
�
ff�	
�
�
�
�
�
�
�
�
���
�
�����
�
.
[10] � ff
	 � ��� ���
�#�
, então �
�
ff
�
�
���
�
�����
�
.
[11] � ff �������
�#�
�
, � �
	
, então �
�
ff
�
��� ���
�#�
�
	
0
�
�
���
�
.
[12] Seja � ff ��� ��� �#�
�
�
=
 , onde ����� � 
 � , então �
�
ff
��� ���
�#�
�
�
=
�
�
�
���
�
	
�
��� ���
�#� 
�
�
���
�
� ���
�
� ���
�
�
,
4.6.4 Funções Trigonométricas
Se � ff ����� ���
�
, então ����� ���
�
�
�
�����
���
�
ff
)
�����
���
�
�
�
�
���
�
�
, onde � ff
	
7
. Logo:
�
�
���
�
ff
�����
	
�
�����
���
�
�
�
�����
���
�
�
ff
�����
�
�
�����
���
�
�
�
�
���
�
�
�
ff
�����
�
�
�����
���
�
�
�
�
�
���
�
�
ff��
�
�
���
�
onde, para calcular o último limite usamos um limite fundamental. Se � ff��
�
�
���
�
, sabendo que
�
�
�
���
�
ff
�����
�
�
7
�
�
�
e utilizando a regra da cadeia com �����
�
ff
�
)
�
� , temos:
4.6. DERIVADAS DAS FUNÇÕES ELEMENTARES 159
�
�
ff��
�
�
������� �#� �
�
��� �
ff
�
�
�
�
	
�
)
�
�
�
ff
�
�����
��� � ,
Se � ff � �9��� � , sabendo que � �9��� � ff
�����
��� �
�
�
�
��� �
e utilizando a regra do quociente, temos:
�
�
ff
�
�
�;7
��� � 
����� 7
��� �
�
�
�
7
��� �
ff
���
�
7
��� � ,
Se � ff ����� ��� � , então �
�
ff��
�
�
��� � .
Se � ff��
�
�
��� �
, então �
�
ff
�
�����
��� �
Se � ff � �9��� � , então �
�
ff
���
�
7
���
�
Se � ff��
�
� �9��� � , então �
�
ff
�
�
�
���
�
7
��� �
Se � ff ��� � ��� � , então �
�
ff
� �9��� �
���
�
��� �
Se � ff��
�
���
�
���
� , então �
�
ff
�
�
�
� �9���
�
�
�
���
�
���
� .
Tabela
Sejam � ���
�
, �9���
�
funções diferenciáveis e � uma constante. Se:
[13] Se � ff ����� ��� ���
�#�
, então �
�
ff��
�
�
��� ���
�#�
�
�
���
�
.
[14] Se � ff��
�
�
�������
�#� , então �
�
ff
�
�����
�������
�#�
�
�
���
� .
[15] Se � ff � �9��� ���
�#�
, então �
�
ff
���
�
7
��� ���
�#�
�
�
���
�
.
[16] Se � ff��
�
� �9�������
�#�
, então �
�
ff
�
�
�
���
�
7
��� ���
�#�
�
�
���
�
.
[17] Se � ff ��� � ��� ��� �#� , então �
�
ff
� � ��� ���
�#�
���
�
�������
�#�
���
�
���
� .
[18] Se � ff��
�
���
�
�������
�#�
, então �
�
ff
�
�
�
� �9��� ���
�#�
�
�
���
�
�������
�#�
�
�
���
�
.
Exemplo 4.11.
[1] Se � ff ����� � � � � , � �
	
.
Fazendo �����
�
ff
�
� , temos �
�
���
�
ff
� ; utilizando a tabela, temos que �
�
ff
�
�
�
�
�
�
�
�
.
Para as outras funções trigonométricas, o procedimento é análogo.
[2] Seja � ff ������� � � � � , onde � �� �
	 � �
�
� .
Fazendo � ff ����� � � � �
�
ff
�
�����
�
�
�
�#�
� , derivando como uma potência e usando o exercício
anterior, temos:
�
�
ff
�
�
�����
�
	
0
�
�
�
�
�
�
�
�
�
�
� ,
Para as outras funções trigonométricas, o procedimento é análogo.
[3] Seja � ff � �9� ����� ���
�#�
.
Fazendo ����� � ff ����� ��� � , temos �
�
���
�
ff �
�
�
���
� ; logo, temos que �
�
ff �
�
�
���
�
���
�
7
�
�����
���
�#� .
[4] Determine as retas tangentes ao gráfico de � ff ����� ���
�
que tenham o coeficiente angular
igual a 0
7
.
160 CAPÍTULO 4. DERIVADA
Sabemos que se ����� � ff ����� ��� � , então �
�
��� �
ff��
�
�
��� � ; logo, devemos resolver a equação �
�
��� �
ff
(
)
, ou seja, �
�
�
��� �
ff
0
7
, que tem soluções � ff �
�
+
 ) �
� , onde � �
�
. As equações são:
�
�
�
+ � 
 �
(
�
� �
��
+
�
+
ff �
 
se � ff
�
+
�) �
�
 � �
�
e
�
�
�
+ � 
 �
�
�
�
(
�
�
�+
�
+
ff �
 
se � ff
�
�
+
 ) �
�
 � �
�
,
-3 3
1
Figura 4.17: Desenho para � ff�� .
[5] Determine os pontos onde o gráfico da função � ff � 
 ) ����� ��� � possui reta tangente hori-
zontal.
Devemos resolver a equação �
�
ff � ou, equivalentamente, �
�
�
���
�
ff
�
(
)
; logo, os pontos tem
abscissas � ff �
)
�
+
�)
�
� , � �
�
.
Figura 4.18: Desenho para � ff�� .
4.6.5 Funções Trigonométricas Inversas
Seja � ff ��/ � ����� ��� � . A função arco seno, definida para � ���
�
(
 
(�� é a função inversa da função
�
���
�
ff
�����
���
�
, se
�
�
)
�
�
�
�
)
.
�
�
���
�
ff �
�
�
���
���
ff � se � � �
�
�
)
 
�
)
�
. Usando a fórmula do
teorema da função inversa, temos: se � ff
�
	
0
���
�
ff
��/
�
�����
���
� , ou seja, ����� � � � ff � , então:
�
�
	
0
�
�
���
�
ff
(
�
�
�
�
	
0
���
�#�
ff
(
�
�
�
����/
�
�����
���
�#�
ff
(
�
�
�
�
�
�
,
4.6. DERIVADAS DAS FUNÇÕES ELEMENTARES 161
Mas, �
�
�
�
�
�
ff
�
(
�
�����
7
�
�
�
, pois � �>�
�
�
)
 
�
)
�
. Então:
�
�
ff
(
�
(
�
�����
7
�
�
�
ff
(
�
(
�
�
7
 
se ���>�
�
(
 
(
� ,
Seja � ff ��/ � �
�
�
��� �
. Como � / �
�
�
��� �
ff
�
)
�
� /
�
�����
��� �
, temos: �
�
ff
�
����/
�
�����
��� �#�
�
; logo,
�
�
ff
�
(
�
(
�
�
7
 
se ���5�
�
(
 
(
� ,
Tabela
Sejam � ��� � , �9��� � funções diferenciáveis e � uma constante. Se:
[19] Se � ff � / � ����� ������� �#� , então �
�
ff
�
�
���
�
�
(
�
�
7
���
�
.
[20] Se � ff � / � �
�
�
�������
�#� , então �
�
ff
�
�
�
���
�
�
(
�
�
7
���
�
.
[21] Se � ff � / � � �9��� ���
�#�
, então �
�
ff
�
�
���
�
(
�
7
���
�
.
[22] Se � ff � / � �
�
� � ��� ���
�#�
, então �
�
ff
�
�
�
���
�
(
�
7
���
�
.
[23] Se � ff � / � ��� � ��� ��� �#� , então �
�
ff
�
�
���
�
�
� ���
�
�
�
�
7
���
�
�
(
 
�
�����
�
�
( .
[24] Se � ff � / � �
�
���
�
��� ���
�#�
, então �
�
ff
�
�
�
���
�
�
� ���
�
�
�
�
7
���
�
�
(
 
�
�����
�
�
( .
4.6.6 Funções Hiperbólicas
As derivadas das funções hiperbólicas são calculadas diretamente, pois todas elas envolvem
exponenciais. Por exemplo, seja � ff ����� � ���
�
ff
0
7
�
�
=
�
�
	
=
�
; derivando, temos: �
�
ff��
�
�
�4���
� ,
Tabela
Seja � ���
�
derivável. Usando a regra da cadeia, temos:
[25] Se � ff ����� �4�������
�#�
, então �
�
ff��
�
�
�4��� ���
�#�
�
�
���
�
.
[26] Se � ff��
�
�
� ��� ���
�#� , então �
�
ff
�����
�4��� ���
�#�
�
�
���
� .
[27] Se � ff � � �4�������
�#�
, então �
�
ff
���
�
�
7
��� ���
�#�
�
�
���
�
.
[28] Se � ff��
�
� � � ��� ���
�#� , então �
�
ff
�
�
�
���
�
�
7
��� ���
�#�
�
�
���
� .
162 CAPÍTULO 4. DERIVADA
[29] Se � ff ��� � �4��� ��� �#� , então �
�
ff
�
� � � ��� ��� �#�
���
�
� ��� ��� �#� �
�
��� � .
[30] Se � ff��
�
���
�
� ��� ��� �#� , então �
�
ff
�
�
�
� � � ��� ��� �#�
�
�
���
�
�4������� �#� �
�
��� � .
Exemplo 4.12.
Calcule as derivadas �
�
, sendo:
[1] � ff �
	
�
�
=
 .
Fazendo ����� � ff � �9��� � , temos � ff �
�
�
=
 ; usando a tabela: �
�
ff
�
�
��� �
�
�
�
=
 e �
�
ff
���
�
7
��� �
�
	
�
�
=
 .
[2] � ff
	 � � 	 � ��� �#� .
Fazendo ����� � ff�	 � ��� � , temos � ff
	 � ��� ��� �#� ; logo: �
�
ff
�
�
��� �
� ��� �
ff
(
�
	
�
��� �
.
[3] � ff � �
�
�
	
(
�
�
. Então �
�
ff��
�
�
	
(
�
�
�
	
�
�
�
	
(
�
� �
�
.
Fazendo ����� � ff
(
�
, temos que �
�
�
	
(
�
�
ff �
�
�
��� ���
�#� ; como 	 �
�
�
	
(
�
� � �
ff
(
�
7
�����
	
(
�
�
, temos �
�
ff
�
�
�
	
(
�
�
(
�
�����
	
(
�
�
.
[4] � ff��
�
�
�
�����
���
�#�
.
Fazendo �����
�
ff
�����
���
�
, temos � ff��
�
�
�������
�#�
; usando a tabela:
�
�
ff
�
�
�
���
�
�����
�������
�#�
ff
�
�
�
�
���
�
�����
�
�����
���
�#� ,
[5] � ff � / � �
�
� �9�
+
�
7
� .
Fazendo ����� � ff + � 7 , temos � ff � / � �
�
� � ��� ���
�#� ; usando a tabela:
�
�
ff
�
�
�
���
�
(
�
7
���
�
ff
�
�
�
(
	
�
�
,
[6] � ff � / � � �9� 0=
�
.
Fazendo �����
�
ff
0
= , temos � ff � / � � �9�������
�#�
; usando a tabela:
�
�
ff
�
�
���
�
(
�
7
���
�
ff
�
(
(
�
7
,
[7] � ff ����� � 	 � ���
�#�
.
Fazendo �����
�
ff�	
�
���
�
, temos � ff ����� ��� ���
�#�
; usando a tabela:
�
�
ff
�
�
���
�
�
�
�
�������
�#�
ff
�
�
�
�
	
�
���
�#�
�
,
[8] � ff
	 � � ����� 7 ���
�#�
.
Fazendo �����
�
ff
����� 7
���
�
, temos � ff
	 � ��� ���
�#�
; usando a tabela:
�
�
ff
�
�
���
�
� ���
�
ff
)
�
�
� �9���
� ,
4.6. DERIVADAS DAS FUNÇÕES ELEMENTARES 163
[9] � ff
	 � � �
�
�
�
�
�
(
�
�#� .
Fazendo ����� � ff �
�
�
�
=
	
0
=
� , temos � ff 	 � ��� ��� �#� ; usando a tabela:
�
�
ff
�
�
��� �
� ��� �
ff
�
(
�
7
� �9�
�
�
(
�
� ,
[10] � ff � / � ��� � � 	 � ��� �#� .
Fazendo ����� � ff�	 � ��� � , temos � ff � / � ��� � ��� ��� �#� ; usando a tabela:
�
�
ff
�
�
�
0
=
�
�
�
=
�
�
�
�
�
=
	
0
se ��
 �
�
0
=
�
�
�
=
�
�
�
�
�
=
	
0
se � ����� � 	 0 ,
[11] Calcule a área do triângulo determinado pelos eixos coordenados e pela reta tangente à
curva � ff
(
�
no ponto � ff ) .
A reta tangente à curva � ff
�
���
�
ff
�
	
0 no ponto � ff
)
é: �
�
(
)
ff
���
�
)1�
���
�
)1� . Como
�
�
�
)1�
ff
�
(
, a equação da reta tangente é: 
 �
�
�
 ff � . Se � ff � , então � ff ( ; se � ff � ,
então � ff 
 . A altura do triângulo é igual a ( e a base é igual a 
 . Logo, a área do triângulo é:
�
ff
)
�
,
�
,
1
1
Figura 4.19:
[12] Uma partícula move-se ao longo da curva � ff (
�
)
�
7 . Quando � ff
+
a partícula escapa
pela tangente à curva. Determine a equação da reta de escape.
A equação da reta tangente à curva no ponto de abscissa
+
é �
� �
�
+1�
ff
�
�
�
+1�
���
�
+1�
, onde
�
���
�
ff (
�
)
�
7 ; logo,
�
�
����
ff
�
� e
�
�
�
+1�
ff
�
(
) ; a equação é: � 
 ( ) �
�
(
	
ff��
,
164 CAPÍTULO 4. DERIVADA
3
Figura 4.20:
4.7 Derivação Implícita
Seja � ��� � � ff�� uma equação nas variáveis � e � .
Definição 4.5. A função � ff
�
���
� é definida implicitamente pela equação � ��� � � ff�� , quando
� ���
 
�
���
�#�
ff��
,
Em outras palavras, quando � ff
�
���
� satisfaz à equação � ��� � � ff�� .
Exemplo 4.13.
[1] Seja a equação � ���
 
�
�
ff�� , onde � ���
 
�
�
ff
�
:
�
�
( ; a função � ff
�
���
�
ff (
�
�
: é definida
implicitamente pela equação � ��� � � ff�� , pois � ��� 
�
���
�#�
ff
�
:
�
(
�
�
:
�
�
( ff�� .
[2] Seja a equação � ��� � � ff�� , onde � ��� � � ff � � 
 �
�
( ; a função � ff
�
���
�
ff
�
�
(
�
� é definida
implicitamente pela equação � ���
 
�
�
ff�� , pois � ���
 
�
���
�#�
ff
�
�
�
(
�
�
�
�
�
�
( ff � .
[3] Seja a equação � ��� � � ff�� , onde � ��� � � ff � 7 
 � 7
�
)
� ; esta equação define implicitamente
uma família de funções; por exemplo
�
���
�
ff
�
)
�
�
�
7 ,
�
���
�
ff
�
�
)
�
�
�
7 ; em geral,
�
ff
���
���
�
ff
�
�
�
��
�
)
�
�
�
7 se
�
�
�
�
�
�
�
�
)
�
�
�
7 se � ���
 �
 
para cada � �>�
�
�
 
�
� .
[4] Seja � ��� � � ff�� , onde � ��� � � ff � 7
�
+
�
�
�
� �
; então, as funções
�
���
�
ff
+
�
�
�
�+
�
)
são
definidas implicitamente pela equação � ��� � � ff�� , pois:
� ���
 
�
���
�#�
ff
� ���
 
+
�
�
�
�+
�
)
�
ff��
,
Observemos que nada garante que uma função definida implicitamente seja contínua, deri-
vável, etc. Na verdade, nem sempre uma equação � ���
 
�
�
ff
� define implicitamente alguma
função. Por exemplo, considere a seguinte equação:
�
:
�
�
�
:
� �9���
�
7
� 
	
�
���
�
� 
�����
���
�
ff �
,
4.7. DERIVAÇÃO IMPLÍCITA 165
4.7.1 Cálculo da Derivada de uma Função Implícita
Podemos calcular a derivada de uma função definida implicitamente sem necessidade de expli-
citá-la. Para isto usaremos novamente a regra da cadeia. Suponha que � ��� � � ff � define im-
plicitamente uma função derivável � ff
�
��� �
. Através de exemplos mostraremos que podemos
calcular �
�
sem conhecer � .
Exemplo 4.14.
Seja � ff
�
��� � uma função derivável definida implicitamente pela equação � 7 
 � 7 ff ( .
[1] Calcule �
�
.
[2] Verifique que a função
�
��� �
ff � (
�
�
7 é definida implicitamente por � 7 
 � 7 ff�( e calcule
�
�
.
Como � ff
�
���
�
, temos � 7 
 �#�
�
���
�#�
7
ff ( . Derivando em relação a � ambos os lados da igualdade
e usando a regra da cadeia, obtemos:
���
7
�
�
�#�#�
�
���
�#�
7
�
�
ff
�
(
�
�
ff��
)
�
�)
�
���
�
�
�
���
�
ff�� ff��
�
�
���
�
�
�
���
�
ff��
,
Então,
�
�
���
�
ff
�
�
�
���
�
ff
�
�
�
. Logo,
�
�
ff
�
�
�
,
É imediato que a função
�
���
�
ff � (
�
�
7 é definida implicitamente pela equação � 7 
 � 7 ff ( e
�
�
���
�
ff
�
�
� (
�
�
7
ff
�
�
�
.
Método de Cálculo
Dada uma equação que define � implicitamente como uma função derivável de � , calcula-se �
�
do seguinte modo:
Deriva-se ambos os lados da equação em relação a � , termo a termo. Ao fazê -lo, tenha em
mente que � é uma função de � e use a regra da cadeia, quando necessário, para derivar as
expressões nas quais figure � .
O resultado será uma equação onde figura não somente � e � , mas também �
�
. Expresse �
�
em
função de � e � . Tal processo é chamado explicitar �
�
.
Exemplo 4.15.
Calcule �
�
se � ff
�
���
�
é uma função derivável, definida implicitamente pelas equações dadas:
[1] � :
�
+
�
7
�
�
�
:
ff �
�
( .
Note que � :
�
+
�
7
�
�
�
:
ff �
�
( é igual a � :
�
+
�
7
�
�
���
�#�
�
�
�
���
�#�
:
ff �
�
( ; derivando
ambos os lados da equação, obtemos: ��� : �
�
�
�
+
�
7
�
�
���
�#�
�
�
�
�#�
�
���
�#�
:
�
�
ff
�
�
�
(
�
�
; então,
+
�
7
�
�
�8�
�
���
�#�
�
�
(
)
�
7
�
�
���
�
�
�
���
�#�
:
�+
�
�
���
�
�
�
���
�#�
7
ff �
,
Logo, + � 7
�
�
�
�
�
�
(
)
�
7
�
�
�
:
 +
�
�
�
7
ff � . Expressando �
�
em função de � e � :
166 CAPÍTULO 4. DERIVADA
�
�
ff
)
�
�
7
�) �
�
�
� 7
�
(
�
�
7 �
�
,
[2] � 7 
 � � 
 � ����� � � � ff � ����� ��� � . Derivando ambos os lados ) � 
 � 
 � �
�
�����
�
�
��
 �
�
�
�
�
�
�
�
�
ff
�
�
�����
��� � 
�
�
�
�
��� �
. Expressando �
�
em função de � e � :
�
�
ff
�
�
�
�
��� �
�
) �
�
�
�
�����
�
�
�
� 
 �
�
�
�
�
�
�
�
�����
��� �
,
[3] ����� ��� 
 � � ff � 7 �
�
�
��� �
. Derivando ambos os lados � (
�
�
�
�
�
�
��� 
�
�
ff
)
� �
�
�
�
�
��� �
�
�
7 �����
��� �
.
Expressando �
�
em função de � e � :
�
�
ff
�
7 �����
��� � 
�
�
�
��� 
�
�
)
�
�
�
�
���
�
�
�
�
�
���
�
�
,
O processo de derivar implicitamente pode ser usado somente se a função determinada pela
forma implícita é derivável. Mas, para os exemplos e exercícios, sempre consideraremos esta
exigência satisfeita.
[4] Determine a equação da reta tangente ao gráfico da função implícita definida por:
�
7
ff
�
7
���
 )1� 
no ponto 	
�
(
)
 
(
)
�
+
)
�
.
Derivando a equação implicitamente:
)
� �
�
ff
� �
+
�
� ,
Expressando �
�
em função de � e � : �
�
ff
+
�
7
�
)
�
; lembrando que � ff
�
0
7
, �
�
ff
�
�
���
� e
(
)
�
+
)
ff
�
	
�
(
)
�
ff
� , temos que
�
�
	
�
(
)
�
ff
�
�
)
�
�
é o coeficiente angular da reta tangente no
ponto 	
�
(
)
 
(
)
�
+
)
�
e a equação desta reta é 
 � � �
( �
�
�
( ff�� .
-2 1
-1
1
Figura 4.21:
4.7. DERIVAÇÃO IMPLÍCITA 167
[5] Determine a equação da reta tangente e a equação da reta normal ao gráfico da função
implícita definida por: ��� 7 
 � 7 � � � 7 
 � ��� 
 ( �#� ff�
 � � 7 no ponto 	
(
)
 
(
)
�
.
Derivando a equação implicitamente
)
�
�
�
� )
�
7
 ) �
7
�
+ � �
ff
�
�
�
�
7
�
:
�+ �
7
�
+
�
7
� ,
Lembrando que � ff
(
)
, �
�
ff
�
�
��� � e � ff
(
)
,temos que
� �
�
(
)
�
ff
) é o coeficiente angular da reta
tangente no ponto 	
(
)
 
(
)
�
e a equação desta reta é ) �
�
�( ff�� . A equação da reta normal é
�
�) �
�
+
ff�� .
-1 1
-1
1
Figura 4.22:
[6] Determine a equação da reta tangente e a equação da reta normal ao gráfico da função
implícita definida por:
�
7
�
7
�
7
�
7
ff (
 
em qualquer ponto; ( � e
�
constantes não nulas).
Derivando a equação implicitamente:
)
�
�
7
)
� �
�
�
7
ff �
,
Expressando �
�
em função de � e � : �
�
ff
�
�
7
�
�
7 �
; lembrando que � ff �
, �
�
ff
�
�
���
�
e �
ff
�
���
<�
,
se �
 �
ff�� , temos:
�
�
���
6�
ff
�
�
7
�
�
7 �
, que é o coeficiente angular da reta tangente no ponto ���
! 
�
"�
e a equação desta reta é: �
�
�
ff
�
	
�
7
�
�
7
�
�
���
�
�
6� . Ou, equivalentemente,
	
�
�
7
�
�
	
�
�
7
�
�
ff (
168 CAPÍTULO 4. DERIVADA
A equação da reta normal é:
�
�
�
ff 	
�
7
�
�
7
� 
�
���
�
� 
"�
se � 
 �ff�� .
Estas são as equações da reta tangente e da reta normal num ponto qualquer ��� 
 � 
 � da elipse.
Em particular se � ff
�
ff
/ , temos todas as retas tangentes e normais num ponto qualquer
����
 
�
 �
de um círculo de raio / .
Figura 4.23: A elipse e suas tangentes.
[7] Determine a equação da reta tangente e a equação da reta normal ao gráfico da função
implícita definida por:
�
7
�
7
�
�
7
�
7
ff (
 
em qualquer ponto; ( � e
�
são constantes não nulas).
Derivando a equação implicitamente:
)
�
�
7
�
)
� �
�
�
7
ff��
,
Explicitando �
�
: �
�
ff
�
7
�
�
7 �
e lembrando que � ff � 
 , �
�
ff
�
�
���
�
e � 
 ff
�
����
�
, se � 
�
ff � , te-
mos
�
�
���
6�
ff
�
7
�9
�
7 �
, que é o coeficiente angular da reta tangente ao gráfico da função no ponto
���
! 
�
6� e a equação desta reta é:
	
�
�
7
�
�
�
	
�
�
7
�
�
ff
�
(
A equação da reta normal é:
�
�
�
ff
�
	
�
7
�
�
7
�
�
���
�
�9
�
4.7. DERIVAÇÃO IMPLÍCITA 169
se � 
 �ff � . Estas são as equações da reta tangente e da reta normal a uma hipérbole num ponto
��� 
! 
�
"�
arbitrário.
Figura 4.24: A hipérbole e suas tangentes.
[8] Ache a equação da reta tangente ao gráfico das funções implícitas definidas por:
i) � :
�
:
ff �
�
� , no ponto �
+* +1�
. (Folium de Descartes).
ii)
)
���
7
�
7
�
7
ff
)
�
���
7
�
�
7
� , no ponto � +* ( � . (Lemniscata de Bernoulli).
i) Derivando a equação implicitamente:
�
�
ff
)
�
�
�
7
�*7
�
)
�
,
No ponto �
+* +1�
, �
�
ff
�
( e a equação da reta tangente é �
�
ff � .
ii) Derivando a equação implicitamente:
�
�
ff
�
�8�
�
)
�
�
7
�
7
�
�
�
)
�
�
7
�
7
�
,
No ponto � +* ( � , �
�
ff
�
	
(
+
e a equação da reta tangente é ( + � 
	
�
�
 � ff � . Desenhos do
Folium de Descartes e da Lemniscata de Bernoulli, repectivamente:
-2 2 4 6
-2
2
4
6
-2 2 4
-1
1
2
Figura 4.25: Folium de Descartes e Lemniscata de Bernoulli, respectivamente.
170 CAPÍTULO 4. DERIVADA
4.8 Famílias de Curvas Ortogonais
As famílias de curvas ortogonais são muito utilizadas em diferentes áreas. Na Física, por exem-
plo, as linhas de força de um campo eletrostático são ortogonais às linhas de potencial constante
e as curvas isotérmicas (de igual temperatura) são ortogonais ao fluxo do calor.
Definição 4.6. Duas curvas são ditas ortogonais num ponto de interseção se suas retas tangentes nesse
ponto são perpendiculares. Uma família de curvas é ortogonal a outra família de curvas se cada curva de
uma família é ortogonal a todas as curvas da outra família.
Exemplo 4.16.
[1] A família de parábolas � 7 ff�
 � � é ortogonal à família de elipses ) � 7 
 � 7 ff
�
7 .
Derivamos as equações implicitamente e comparamos os coeficientes angulares. Sejam 3 0 os
coeficientes angulares correspondentes à família de parábolas e 3 7 os coeficientes angulares
correspondentes à família de elipses. Logo,
3
0
ff
)
�
�
ff
�
)
�
e 3 7 ff
�
)
�
�
e 3 0�� 3 7 ff
�
( .
Figura 4.26:
[2] A família de círculos � 7 
 � 7 ff � � é ortogonal à família de círculos � 7 
 � 7 ff
�
� .
Derivamos as equações implicitamente e comparamos os coeficientes angulares. Sejam 3 0 os
coeficientes angulares correspondentes à família � 7
�
7
ff
� � e 3 7 os coeficientes angulares
correspondentes à família � 7 
 � 7 ff
�
� . Logo,
3
0
ff
�
�
)
�
)
�
ff
�
7
�
�
7
)
�
�
e 3 7 ff
)
�
�
�
)
�
ff
)
�
�
�
7
�
�
7
e 3 0�� 3 7 ff
�
( .
4.9. DERIVADAS DE ORDEM SUPERIOR 171
Figura 4.27:
4.9 Derivadas de Ordem Superior
Definição 4.7. Seja
�
uma função derivável. Se a derivada
�
�
é uma função derivável, então sua deri-
vada é chamada derivada segunda de
�
e é denotada por �
�
�
�
�
ff
�
� �
. Se
�
� �
é uma função derivável, então
sua derivada é chamada derivada terceira de
�
e é denotada por �
�
� �
�
�
ff
�
� � �
. Em geral, se a derivada de
ordem � �
�
(
�
de
�
é uma função derivável, sua derivada é chamada derivada � -ésima de
�
e é denotada
por �
�
�
�
	
0�
�
�
ff
�
�
�
 .
Notações:
�
�
ff
�
,
�
�
ff
�
�
0�
 ,
�
� �
ff
�
�
7 
 ,
�
� � �
ff
�
�
:
 , etc.
Exemplo 4.17.
[1] Sendo
�
���
�
ff
�
�
�)
�
:
�
�
( , calcule
�
�
�
 .
�
�
���
�
ff�
�
:
�
�
7
(
�
�
7 
���
�
ff (
)
�
7
(
)
�
�
�
:
���
�
ff
)
�
(
)
�
�
�
���
�
ff
)
�
�
�
���
�
ff �
,
Logo,
�
�
�
���
�
ff�� , se � � � .
24
Figura 4.28: Gráficos de � ff
�
���
�
(verde) e suas derivadas.
Em geral, se
�
é uma função polinomial de grau � , então,
�
�
�
���
�
ff
���
�
�
e
�
� �
���
�
ff � para
�
� .
172 CAPÍTULO 4. DERIVADA
[2] Sendo
�
��� �
ff
(
�
, calcule
�
�
�
 .
�
�
��� �
ff
�
� 	
7
�
�
7 
��� �
ff
) � 	
:
�
�
: 
��� �
ff
�
�
� 	��
�
�
�
��� �
ff
)
� 	
�
�
�
�
��� �
ff
�
(
)
�
� 	��
�
�
�
��� �
ff
�
)
�
� 	�� .
Logo,
�
�
�
��� �
ff
�
�
(
�
�
�
�
=
�
�
� , para todo � � � .
[3] Sendo
�
��� �
ff
�
�
� , calcule
�
�
�
 .
�
�
��� �
ff �
�
�
7
�
�
7 
��� �
ff �
�
�
�
�
�
: 
��� �
ff �
�
�
	
�
�
�
��� �
ff �
�
�
0
�
�
�
�
��� �
ff �
�
�
: 7
�
�
�
��� �
ff �
�
�
� �
Logo,
�
�
�
���
�
ff
�
�
�
)
�
, para todo � � � .
[4] Sendo
�
���
�
ff
�����
���
� , calcule�
�
�
 .
�
�
���
�
ff �
�
�
���
�
ff
�����
���
�
7
�
�
�
7 
���
�
ff
�
�����
���
�
ff
�����
���
7
�
7
�
�
�
:
���
�
ff
�
�
�
�
���
�
ff
�����
���
:
�
7
�
�
�
�
���
�
ff
�����
���
�
ff
�����
���
�
�
7
�
�
�
�
���
�
ff��
�
�
���
�
ff
�����
���
�
�
7
�
�
�
�
���
�
ff
�
�����
���
�
ff
�����
���
�
�
7
� ,
Logo,
�
�
�
���
�
ff
�����
	
�
�
�
)
�
, para todo � � � .
[5] Seja � ff �
�
�
�
7
�
�
7
	
�
���
�
, �
 
�
 
�
�
	
. Verifique que � : �
�
:
�
�
7
�
� �
�
�
�
ff
� .
Derivando: �
�
ff��
�
�)
�
�
	
�
���
� 
 )
�
�
( , �
� �
ff
)
�
�+
�
 )
� 	
�
���
�
e �
�
:
ff
)
�
�
; então:
�
:
)
�
�
�
�
7
�
)
�
�+
�
 )
� 	
�
���
�#� 
� �
�
�
�)
�
�
	
�
���
� 
 )
�
�
(
�
ff
�
,
[6] Se � ff �
=
� ���
�
�
satisfaz à equação
+
�
�
:
�
�
�
� �
�
)
�
�
�
ff
�
�
=
, determine o valor das
constantes � e
�
.
Calculando as derivadas:
�
�
ff
�
=
� ���
�
�
� 
�
� �
ff
�
=
� ���
�)
�
�
�
e �
�
:
ff
�
=
� ���
 +
�
�
�
�
logo a equação fica:
�
�
=
� � �
�
�
�
�
ff
�
�
=
da qual obtemos � ff
�
( e
�
ff � .
[7] Calcule
�
�
:
�
	
� , se
�
���
�
ff
� �9�
�
�
� , �
�
�
+1�
ff � , �
� �
�
+1�
ff ( e �
�
:
�
+1�
ff
) .
�
�
���
�
ff
�9�
�
�
� 
�
�
)
�
�
�
�
�
� 
�
� �
���
�
ff
(
�
�
�
+
�
�
�
�
�
� 
�
� �
� �
�
�
�
�#�
�
�
:
���
�
ff
(
�
�
�
:
�
�
+
�
�
�
�
�
� 
�+
�
� �
� �
�
�
�
� 
� �
�
:
�
�
�
�#�
�
4.10. APROXIMAÇÃO LINEAR 173
logo,
�
�
: 
�
	
�
ff
(
)
.
Em geral, nada garante que quando calculamos sucessivamente as derivadas de uma função,
estas sejam funções deriváveis.
[7] Seja
�
��� �
ff
�
7
�
�
� . Então,
�
�
��� �
ff �
+ �
7 se � � �
�
+ �
7 se � � �
,
Logo
�
�
��� �
ff
+ �
�
�
� , para todo � �
	
; analogamente temos que
�
� �
��� �
ff � �
�
� para todo � �
	
;
mas
�
� �
não é derivável no ponto � 
 ff � . Verifique.
4.10 Aproximação Linear
É intuitivo pensar que uma função derivável restrita a um pequeno intervalo contido em seu
domínio "comporta-se"como uma função polinomial do primeiro grau.
Por exemplo, consideremos � ff
�
���
�
ff
�
7 . Estudando
�
num pequeno intervalo contendo
�
ff ( , por exemplo � ff � �
,
	 	
 
(
,
� (�� , obtemos:
�
�
���
�
�
,
	 	
�
,
	 �
� (
�
,
	 	 	
�
,
	 	 �
� � (
( (
(
,
� � ( (
,
� � �
)
� � (
(
,
� ( (
,
�
)
� (
A reta tangente ao gráfico de
�
no ponto � ff ( é dada por � ff
)
�
�
( ; seu coeficiente angular
é ) . Determinemos os coeficientes angulares das retas passando pelos pontos � � ,
	 	 	
 
�
�
�
,
	 	 	
�#� ,
�
(
 
�
�
(
�#�
e � (
,
� � (
 
�
�
(
,
� � (
�#�
, � (
 
�
�
(
�#�
, respectivamente:
3
0
ff
�
�
(
�
�>�
�
�
,
	 	 	
�
(
�
�
,
	 	 	
ff (
,
	 	 	
� e 3 7 ff
�
�
(
,
� � (
�
�>�
�
(
�
(
,
� � (
�
(
ff
)*,
� � ( �
,
1
1
Figura 4.29:
174 CAPÍTULO 4. DERIVADA
3
0 e 3 7 são valores bastante próximos de ) . Observe que se � �
�
( �
�
� ( � perto de ( ), então
�
��� �
ff
�
7 fica próxima de � ff
) �
�
( . De fato:
�����
=��
0
�
�
��� �
�
�
�1ff
�����
=��
0
�
�
7
�
) � 
( �1ff��
,
Isto nos leva a estabelecer a seguinte definição:
Definição 4.8. Seja � ff
�
��� �
uma função derivável em � 
 . A aproximação linear de
�
em torno de � 
é denotada por 	 ��� � e definida por:
	
��� �
ff
�
��� 
6� 
�
�
��� 
"� ���
�
� 
"�
se � �>��� 
���
 � 
 
�
� ,
�
� pequeno.
A função 	 ��� � também é chamada linearização de
�
ao redor do ponto � 
 . A proximidade
de
�
���
�
e 	 ���
�
nos permitirá fazer algumas aplicações. A notação para
�
���
�
próxima a 	 ���
�
é
�
���
���
	
���
�
.
O erro da aproximação é
�
���
�
ff
�
���
�
�
	
���
� e satisfaz à seguinte condição:
�����
=���=
?
�
�
�
���
�
�
�
�
�
�
ff
�����
=���=
?
�
�
�
���
�
�>�
���
6�
�
�
�
�>�
�
���9
�
�
�
ff��
,
Exemplo 4.18.
[1] Suponha que não dispomos de calculadora ou de outro instrumento de cálculo e precisamos
resolver os seguintes problemas:
i) Se
�
���
�
ff
(
�
(
�)
�
�
�
representa a temperatura num arame, calcule a temperatura
�
�
�
,
� (
�
.
ii) Se
�
� �
�
ff
�
�� :
	
representa o crescimento de uma população de bactérias, calcule a população
de bactérias para � ff
)
�
,
� (
)
.
iii) Calcule, aproximadamente � (
,
� � (
�
�
�
)
�
�
�
(
,
� � (
�
�
 +
.
i) Vamos determinar 	 ���
�
ff
�
�
�
� 
�
�
�
�
�
� . Derivando:
� �
���
�
ff
�
�
�
(
 )
�
� �
; então:
(
�
(
�)
�
�
�
�
	
���
�
ff (
� �
�
 
no intervalo �
���
 
�
� 
tal que
�
� (pequeno). Como �
,
� (
�5�
���
 
�
�
, temos,
�
�
�
,
� (
�	�
	
�
�
,
� (
�
ff �
,
	
)
graus.
ii) Vamos determinar 	 ���
�
ff
�
�
)
�
� 
�
�
�
)
�
�
���
�
)
�
�
, com
�
�
)
�
�
�
 �
+*,
)
. Derivando, obtemos:
�
�
� �
�
ff��
, +
�
�� :
	
; então:
�
�� :
	
�
 �
+*,
) 
(
)
(
,
�
)
� �
�
)
�
� 
no intervalo �
)
�
���
 )
�
�
� 
tal que
�
� (pequeno). Como
)
�
,
� (
)
�>�
)
�
���
 )
�
�
�
, se � ff
)
�
,
� (
)
, então,
�
�� :
�
7
�� 
0 7
�
 �
+*,
) 
(
)
(
,
�
)��
�
,
� (
)
ff 
 � 
,
� �
,
4.10. APROXIMAÇÃO LINEAR 175
iii) Considere a função
�
��� �
ff
� �
�
)
�
�
�
�
 + e � ff ( , � � ( . Então, para � 
 ff ( , temos
�
�
(
�
ff
) ,
�
�
��� �
ff
�
� �
�
	
:
�
�
� e
�
�
�
(
�
ff
0 :
:
; logo,
	
��� �
ff
�
�
(
� 
�
�
�
(
����
�
(
�
ff
(
+
�
(
+ �
�
�
� 
para todo � próximo de ( . Em particular, para � ff (
,
� � ( ,
�
(
,
� � (
�
�
�
)
�
�
�
(
,
� � (
�
�
 + �
(
+
�
(
+ � �
(
,
� � (
�
���
� �fl)*,
� � 
+ +*,
1
20 1
Figura 4.30: Gráficos de i), ii) e iii), respectivamente:
[2] Considere a função logística
�
� �
�
ff
�
(
�
�
	
�
	 . Determine sua aproximação linear no ponto
�
:
Derivando:
� �
� �
�
ff
�
���
�
	
�
	
�
(
�
�
	
�
	
�
7
; logo,
	
� �
�
ff��
� � 
�
	
�
�
�
	
?
���
� �
�
� 
�
�
 
onde, � � �
"�
ff
�
�
	
�
	
?
�
(
�
�
	
�
	
?
�
7
.
-2 -1 1 2 3
0.2
0.4
0.6
0.8
1.0
Figura 4.31: Desenhos para �
ff�� e �
ff ( , respectivamente.
[3] Calcule o valor aproximado do volume de uma esfera, construida de uma folha de aço de
�
,
� � �
3 de espessura sendo seu raio interno igual a ) � 3 .
O volume de uma esfera é � ��/ � ff
+
�
/
: . Seja / 
 ff ) ; então, a linearização do volume é:
� ��/
���
(��
+
�
�
+
/
�
�
�
,
176 CAPÍTULO 4. DERIVADA
Logo, � � )*, � � � � ( ( , 
 � � � 3 : . O verdadeiro volume da esfera é � ff ( ( , 
�
�
�
3
: . Note que o
erro cometido é:
�
� )*,
� �
�
ff
�
�
	
� )*,
� �
�
ff �
,
� �
+ +
� � 
+
�
3
: .
4.11 Velocidade e Aceleração
Da Física elementar sabemos que a velocidade percorrida por um móvel em linha reta é dada
pelo quociente da distância percorrida pelo tempo transcorrido. Usaremos a definição de deri-
vada para determinar a velocidade instantânea de um móvel que se move ao longo de qualquer
trajetória derivável.
Suponha que uma partícula move-se ao longo do gráfico da função � ff � � � � . Se � � 
�
� é um
pequeno intervalo contido no domínio de � , a velocidade média da partícula no intervalo � � 
�
�
é:
�
���
ff
distância
tempo
ff
� �
�
�
�
� ���
�
�
�
�
,
a b c
v
ab v
ac
Figura 4.32:
�
��� é o coeficiente angular da reta passando por ��� 
�
���
�#� e �
�
 
�
�
�
�#� . � ��� não dá informação
sobre a velocidade da partícula no tempo � ff �
. Se estamos interessados na velocidade ins-
tantânea em � ff �
, consideremos o intervalo � �
! 
�
 
�
�
 
� 
� ; então, ��� ff
��� �
 
�
�
�
��� �
6�
�
.
Analogamente para � � � .
Definição 4.9. A velocidade instantânea de uma partícula que se move ao longo do gráfico da função
derivável � ff � � �
�
em � ff �
, é:
� � � 
�
ff
�
�
� �
�
�
�
	�� 	
?
De forma análoga definimos a aceleração média: � ��� ff
�9�
�
�
�
�9���
�
�
�
�
.
4.11. VELOCIDADE E ACELERAÇÃO 177
Definição 4.10. A aceleração instantânea de uma partícula que se move ao longo do gráfico da função
duas vezes derivável � ff � � � � em � ff � 
 , é:
� � � 
"�
ff
�
�
� � �
�
�
	�� 	
?
ff
�
� �
� � �
�
�
	�� 	
?
O movimento harmônico simples � ff � � � � é caracterizado por � � � � ff
�
�
�
� � �
( �	
 � ) e o
movimento harmônico amortecido por �9� � � ff � � � � � 
 � � � � � ( � � �
	
).
Exemplo 4.19.
[1] Uma partícula move-se ao longo da curva ��� � � ff � :
�
�
�
7
�
�
�
+ . Calcule a aceleração no
instante em que a velocidade é zero.
Se � � �
�
ff
�
:
�
�
�
7
�
�
�
+
, então � � �
�
ff
+
�
7
�
( �
�
�
; se � � �
�
ff�� temos que � ff
�
+
ou � ff ( . A
aceleração no instante � é � � � � ff � �
�
( � ; logo � �
�
+
�
ff�
 ou � � (
�
ff
�
 .
[2] Uma sonda é lançada para cima verticalmente, sendo a distância acima do solo no instante
� dada por � � � � ff � � ( � � �
�
�
� .
i) Determine em que instante e com que velocidade a sonda atinge o solo.
ii) Qual é a altura máxima que a sonda atinge?
i) A sonda atinge o solo quando � � � � ff � � ( � � �
�
�
�
ff�� ou seja quando � ff�� ou � ff ( � � � ; a sonda
atinge o solo após ( � � � ��� � e a velocidade é � � �
�
ff
�
�
� �
�
ff ( � � �
�
)
� e �9� ( � � �
�
ff
�
( � � �
3��
���
� .
O sinal negativo é porque a sonda está caindo.
ii) Se � � � � ff�� , então � ff � � � e � � � � � � ff ) � � � � � 3 .
[3] Um ponto move-se ao longo do gráfico de � ff � 7 
 ( de tal modo que sua abscissa �
varia com uma velocidade constante de
+
�
3��
���
� . Qual é a velocidade da ordenada � quando
�
ff�
��
3 ?
Sejam � ff � � � � e � ff � � � � a abscissa e a ordenada no instante � , respectivamente. Seja � 
 o
instante tal que ��� �
6�
ff 
 . Queremos calcular a velocidade de � no instante �
; em outras
palavras, queremos calcular
�
�
para � ff �
. Usando a regra da cadeia:
�
�
ff
�
�
�
�
ff
)
�
�
�
,
O ponto tem velocidade constante igual a + ; logo,
�
�
ff
+ e
�
�
ff �
� . Para � � � 
"� ff 
 temos que
�
�
ff
)
��
3��
���
� .
[4] Um homem de ( ,
�
�
3 de altura afasta-se de um farol situado a 
 , � 3 do solo, com uma
velocidade de (
,
�
3��
���
� . Quando ele estiver a � 3 do farol, com que velocidade sua sombra
estará crescendo neste ponto e qual o comprimento da sombra?
178 CAPÍTULO 4. DERIVADA
4.5
1.80
x y
Figura 4.33:
Seja � o comprimento da sombra e � a distância entre o homem e o ponto do solo acima do qual
está o farol. Pela semelhança de triângulos:
,
�
�
�
ff
(
,
�
�
; logo, � ff
(
,
�
�
)*,
� ; então:
�
�
ff
)
+
e
�
�
ff
�
�
�
�
,
Como
�
�
ff (
,
� , temos:
�
�
ff (
3��
���
� e o comprimento da sombra é � ff�
 3 .
4.12 A Derivada como Taxa de Variação
A velocidade de uma partícula que se move ao longo do gráfico da função derivável � ff � � �
�
no tempo � é �9� � � ff �
�
� �
� e representa a razão do deslocamento por unidade de variação de
tempo. �
�
� �
�
expressa a taxa de variação de � � �
�
por unidade de tempo:
�
�
� �
�
ff
�����
�
�
� � �
�
�
�
� � �
�
�
,
Se � ff
�
���
�
é função derivável, então
�
�
���
�
é a taxa de variação de � em relação a � .
A interpretação da derivada como taxa de variação se aplica em diversas áreas da ciência. Por
exemplo, se � ff
�
� �
�
mede a concentração de glóbulos vermelhos no sangue no instante � ,
�
�
	
�
�
	
�
�
	
� mede a taxa de variação média da concentração de glóbulos vermelhos durante o
intervalo de tempo � � � 
 � � e
�
�
���
� mede a taxa de variação instantânea de glóbulos vermelhos
no instante � ff � .
Exemplo 4.20.
[1] Uma partícula move-se ao longo do gráfico de � ff � :
( , de modo que quando � ff � a
abscissa cresce a uma velocidade de
)
�
3��
���
� . Qual é a velocidade de crescimento da ordenada
nesse instante?
Seja � ff ��� �
�
a abscissa no instante � e � ff � :
( ; devemos calcular:
�
�
ff
�
�
�
�
,
4.12. A DERIVADA COMO TAXA DE VARIAÇÃO 179
Temos:
�
�
ff
+ �
7 e

Outros materiais