Buscar

Geologia Estrutural

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 41 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 41 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 41 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

GEOLOGIA ESTRUTURAL — Prova 5 — 3/9/2012 — Maluhy&Co. — página (local 1, global #1)i
i
i
i
i
i
i
i
Geologia estrutural
Haakon Fossen
tradução | Fábio R. Dias
GEOLOGIA ESTRUTURAL — Prova 5 — 3/9/2012 — Maluhy&Co. — página (local 3, global #3)i
i
i
i
i
i
i
i
É com imenso prazer que a Statoil Brasil apresenta a 1ª edição em 
português do livro Geologia Estrutural. Publicado pela primeira vez em 
inglês em 2010 pela editora britânica Cambridge Press, o livro tem como 
objetivo apresentar ao estudante de geologia um material atualizado 
sobre o tema.
O autor Haakon Fossen é um renomado especialista norueguês nesta 
área e atualmente ministra cursos de campo de geologia estrutural, 
treinando tecnicos no âmbito da empresa. A Statoil percebeu que havia 
uma demanda no mercado para uma versão em português de um livro 
como este e decidiu subsidiar seus custos, sua tradução e produção.
A Statoil é uma empresa de energia internacional integrada e de base 
tecnológica, focada primariamente em atividades de exploração e 
produção de petróleo e gás. Nossa missão é atender a demanda mundial 
por energia de forma responsável. Com sede na Noruega, a companhia 
está presente em 37 países, onde emprega mais de 21 mil pessoas. 
A Statoil está ativamente presente no Brasil desde 2001. Atualmente 
emprega cerca de 280 funcionários em seu escritório no Rio de Janeiro, 
além de 600 contratados offshore. Possui um portfólio de exploração 
diversificado no Brasil e opera o campo de Peregrino, na Bacia de Campos, 
que entrou em produção no primeiro semestre de 2011. 
A Statoil deseja a você uma próspera carreira na área de geologia e 
esperamos que você aprecie e aproveite os ensinamentos do autor. 
Para conhecerem melhor a Statoil, visitem www.statoil.com.
Prezado 
estudante,
GEOLOGIA ESTRUTURAL — Prova 5 — 3/9/2012 — Maluhy&Co. — página (local 5, global #5)i
i
i
i
i
i
i
i
Sobre o Autor
Haakon Fossen
É professor de Geologia Estrutural na Universidade de Bergen, Noruega, ligado
ao Departamento de Ciências da Terra, às Coleções de História Natural e ao
Centro de Pesquisa Integrada de Petróleo (Centre for Integrated Petroleum Re-
search, CIPR). Sua experiência profissional inclui atividades em exploração e
produção na Statoil, além de mapeamento geológico e exploração mineral na
Noruega. Sua pesquisa abrange de rochas cristalinas a rochas sedimentares e
sedimentos, em tópicos como dobras, zonas de cisalhamento, formação e co-
lapso da Orogênese Caledoniana, modelagem numérica da deformação (trans-
pressão), evolução do rifte do Mar do Norte e estudos de arenitos deformados
do oeste dos Estados Unidos. O autor realizou longos trabalhos de campo em várias partes do mundo,
principalmente na Noruega, em Utah/Colorado (EUA) e no Sinai (Egito), englobando mapeamento geoló-
gico, petrografia, modelagem física e numérica, geocronologia e interpretação sísmica. O Professor Fossen
tem participado como editor de vários periódicos geológicos internacionais, publicou mais de 90 artigos
científicos, além de dois livros e vários capítulos de livros. O autor leciona Geologia Estrutural em cursos
de graduação há mais de dez anos, com ênfase no desenvolvimento de recursos didáticos eletrônicos para
auxiliar na visualização e compreensão das estruturas geológicas.
GEOLOGIA ESTRUTURAL — Prova 5 — 3/9/2012 — Maluhy&Co. — página (local 7, global #7)i
i
i
i
i
i
i
i
Como usar este livro
Cada capítulo começa com uma introdução, que apresenta o tópico específico no contexto da Geologia
Estrutural como um todo. As introduções fornecem um guia para o capítulo e ajudarão você a navegar pelo
livro.
O corpo do texto contém termos em destaque e expressões-chave que o leitor deve compreender e
buscar familiarizar-se com eles. Muitos desses termos constam do glossário ao final do livro. O glossário
permite que você encontre facilmente os termos e pode ser usado para a revisão de tópicos importantes e
conceitos-chave. Cada capítulo também traz uma série de afirmações destacadas para encorajar o leitor a
fazer uma pausa e rever sua compreensão do conteúdo lido.
A maioria dos capítulos contém um ou mais boxes com informações detalhadas sobre um assunto espe-
cífico, exemplos úteis ou informações básicas relevantes. Os pontos mais importantes são apresentados no
resumo ao final de cada capítulo. As questões de revisão podem ser usadas para testar sua compreensão
de um capítulo antes de seguir para o próximo. As respostas a essas questões são fornecidas em inglês no
site do livro na internet (http://folk.uib.no/nglhe/StructuralGeoBook.html).
As sugestões de leituras complementares trazem indicações de livros e artigos selecionados para os lei-
tores interessados em informações mais detalhadas ou mais avançadas. Além disso, ao final dos capítulos
há indicações para módulos de e-learning, altamente recomendados após a leitura do capítulo como revisão
e preparação para provas. Os módulos fornecem informações que complementam o texto principal.
Recursos na internet (em inglês)
Recursos especialmente preparados para este livro estão disponíveis na sua página na internet
(http://folk.uib.no/nglhe/StructuralGeoBook.html), que abrangem:
• módulos de e-learning em Adobe Flash, que combinam animações, textos, ilustrações e fotografias que
apresentam aspectos-chave de Geologia Estrutural em ambiente visual interativo;
• todas as figuras dos capítulos em formato digital (jpeg) para uso dos leitores;
• figuras complementares, que ilustram estruturas geológicas e exemplos adicionais de campo;
• respostas às questões de revisão apresentadas no final de cada capítulo;
• exercícios adicionais e soluções;
• um local para disponibilização de imagens, animações, vídeos, exercícios e outros recursos fornecidos
pelos leitores.
GEOLOGIA ESTRUTURAL — Prova 5 — 3/9/2012 — Maluhy&Co. — página (local 9, global #9)i
i
i
i
i
i
i
i
Nota do Tradutor
Deformation, strain, deformação
No Brasil, tem sido utilizada a palavra deformação como tradução tanto de deformation como de strain, o que
foi mantido nesta tradução.
Em português, não há uma tradução simples e direta para a palavra inglesa strain, que se refere a
mudanças na dimensão ou na forma de objetos – a palavra deformation é mais abrangente, referindo-se
também à translação e à rotação de objetos.
Como exemplos da tradução de strain em português, podemos citar “elipsoide de deformação” (strain
ellipsoid) e “análise da deformação” (strain analysis).
Nas passagens em que se discute o significado específico dos termos, é feita uma distinção, traduzindo-
se deformation por “deformação” e strain por “deformação interna”.
Ao longo do livro, o significado específico pode ser deduzido do contexto e o uso da tradução abrangente
“deformação” não compromete a compreensão do texto.
Fábio Ramos Dias de Andrade
GEOLOGIA ESTRUTURAL — Prova 5 — 3/9/2012 — Maluhy&Co. — página (local 19, global #19)i
i
i
i
i
i
i
i
Sumário
Capítulo 1 – Geologia Estrutural e análise estrutural, 27
1.1 – Primeira abordagem da Geologia Estrutural . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.2 – Geologia Estrutural e tectônica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.3 – Conjunto de dados estruturais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.4 – Dados de campo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 32
1.5 – Sensoriamento remoto e geodésia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.6 – DEM, GIS e Google Earth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.7 – Dados sísmicos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.8 – Dados experimentais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.9 – Modelagem numérica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.10 – Outras fontes de dados . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.11 – Organização de dados . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.12 – Análise estrutural . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
1.13 – Observações finais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
E-módulo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Leituras complementares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Capítulo 2 – Deformação, 51
2.1 – O que é deformação? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.2 – Componentes de deformação . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3 – Sistema de referência . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.4 – Deformação: desconectada da história . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.5 – Deformação homogênea e heterogênea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.6 – Descrição matemática da deformação . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.7 – Deformação interna (strain) unidimensional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.8 – Deformação interna (strain) em duas dimensões . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.9 – Deformação interna (strain) tridimensional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.10 – Elipsoide de deformação . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.11 – Mais sobre o elipsoide de deformação . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.12 – Variação de volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.13 – Deformação interna uniaxial (compactação) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
GEOLOGIA ESTRUTURAL — Prova 5 — 3/9/2012 — Maluhy&Co. — página (local 20, global #20)i
i
i
i
i
i
i
i
20 Geologia Estrutural
2.14 – Cisalhamento puro e deformações coaxiais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.15 – Cisalhamento simples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.16 – Cisalhamento subsimples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.17 – Deformação progressiva e parâmetros de fluxo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.18 – Campo de velocidade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.19 – Apófises de fluxo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.20 – Vorticidade e Wk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.21 – Deformação em estado constante . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.22 – Deformação incremental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.23 – Compatibilidade de deformação e condições de contorno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
2.24 – História da deformação a partir de rochas deformadas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
2.25 – Coaxialidade e cisalhamento simples progressivo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
2.26 – Cisalhamento puro progressivo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
2.27 – Cisalhamento subsimples progressivo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
2.28 – Cisalhamentos simples e puro e suas dependências da escala . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
2.29 – Deformação geral tridimensional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 86
2.30 – Esforço versus deformação . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
E-módulo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Leituras complementares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Capítulo 3 – Deformação em rochas, 93
3.1 – Por que realizar análises de deformação? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.2 – Deformação em uma dimensão . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.3 – Deformação em duas dimensões . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.4 – Deformação em três dimensões . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
E-módulo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Leituras complementares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Capítulo 4 – Esforço, 107
4.1 – Definições, magnitudes e unidades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.2 – Esforço em uma superfície . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.3 – Esforço em um ponto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.4 – Componentes de esforço . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.5 – O tensor de esforços (matriz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.6 – Esforço deviatórico e esforço médio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.7 – Círculo e diagrama de Mohr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
E-módulo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Leituras complementares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
GEOLOGIA ESTRUTURAL — Prova 5 — 3/9/2012 — Maluhy&Co. — página (local 21, global #21)i
i
i
i
i
i
i
i
Sumário 21
Capítulo 5 – Esforços na litosfera, 117
5.1 – Importância das medidas de esforços . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.2 – Medições de esforços . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.3 – Estados de esforços de referência . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.4 – O efeito térmico no esforço horizontal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.5 – Esforço residual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.6 – Esforço tectônico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.7 – Padrão global de esforços . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.8 – Esforço diferencial, esforço deviatórico e algumas implicações . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
E-módulo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Leituras complementares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Capítulo 6 – Reologia, 139
6.1 – Reologia e mecânica do contínuo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.2 – Condições idealizadas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.3 – Materiais elásticos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.4 – Plasticidade e fluxo: deformação permanente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.5 – Modelos combinados . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.6 – Experimentos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 154
6.7 – O papel da temperatura, da água etc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.8 – Definição de deformação plástica, dúctil e rúptil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.9 – Reologia da litosfera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
E-módulo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Leituras complementares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Capítulo 7 – Fratura e deformação rúptil, 165
7.1 – Mecanismos de deformação rúptil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
7.2 – Tipos de fraturas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
7.3 – Critérios de ruptura e fratura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
7.4 – Microdefeitos e ruptura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
7.5 – Terminação e interação de fraturas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
7.6 – Reativação e deslizamento friccional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
7.7 – Pressão de fluidos, esforço efetivo e poroelasticidade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
7.8 – Bandas de deformação e fraturas em rochas porosas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
E-módulo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Leituras complementares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
GEOLOGIA ESTRUTURAL — Prova 5 — 3/9/2012 — Maluhy&Co. — página (local 22, global #22)i
i
i
i
i
i
i
i
22 Geologia Estrutural
Capítulo 8 – Falhas, 203
8.1 – Terminologia de falhas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
8.2 – Anatomia de falha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
8.3 – Distribuição de rejeito . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
8.4 – Identificação de falhas em campos de petróleo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
8.5 – Nascimento e crescimento das falhas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
8.6 – Crescimento de populações de falhas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
8.7 – Propriedades selantes e de comunicação das falhas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
E-módulo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
Leituras complementares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Capítulo 9 – Cinemática e paleoesforços em regime rúptil, 247
9.1 – Critérios cinemáticos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
9.2 – Esforços de falhas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
9.3 – Uma abordagem cinemática para dados de rejeito de falha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
9.4 – Estruturas contracionais e extensionais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
E-módulo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Leituras complementares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Capítulo 10 – Deformação em microescala, 263
10.1 – Mecanismos de deformação e microestruturas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
10.2 – Mecanismos de deformação rúpteis versus plásticos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
10.3 – Mecanismos de deformação rúptil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
10.4 – Geminação mecânica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
10.5 – Defeitos cristalinos . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
10.6 – Da escala atômica às microestruturas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
E-módulo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
Leituras complementares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
Capítulo 11 – Dobras e dobramento, 283
11.1 – Descrição geométrica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
11.2 – Dobramento: mecanismos e processos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
11.3 – Padrões de interferência de dobras e dobras redobradas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
11.4 – Dobras em zonas de cisalhamento . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
11.5 – Dobramento em níveis crustais rasos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
E-módulo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
Leituras complementares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
GEOLOGIA ESTRUTURAL — Prova 5 — 3/9/2012 — Maluhy&Co. — página (local 23, global #23)i
i
i
i
i
i
i
i
Sumário 23
Capítulo 12 – Foliação e clivagem, 313
12.1 – Conceitos básicos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
12.2 – Terminologia de idades relativas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
12.3 – Desenvolvimento de clivagem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
12.4 – Clivagem, dobras e deformação . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
12.5 – Foliações em quartzitos, gnaisses e zonas miloníticas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
E-módulo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
Leituras complementares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
Capítulo 13 – Lineações, 333
13.1 – Terminologia básica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
13.2 – Lineações relacionadas à deformação plástica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
13.3 – Lineações no regime rúptil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
13.4 – Lineações e cinemática . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
E-módulo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
Leituras complementares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
Capítulo 14 – Boudinagem, 347
14.1 – Boudinagem e estruturas de estricção . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
14.2 – Geometria, viscosidade e deformação . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
14.3 – Boudinagem assimétrica e rotação . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
14.4 – Boudinagem de foliação . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
14.5 – Boudinagem e a elipse de deformação . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
14.6 – Boudinagem em larga escala . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
E-módulo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
Leituras complementares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
Capítulo 15 – Zonas de cisalhamento e milonitos, 363
15.1 – O que é uma zona de cisalhamento? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
15.2 – A zona de cisalhamento plástico ideal . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
15.3 – Adição de cisalhamento puro a uma zona de cisalhamento simples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
15.4 – Zonas de cisalhamento com deformação não plana . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
15.5 – Milonitos e indicadores cinemáticos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
15.6 – Crescimento de zonas de cisalhamento . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
E-módulo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
Leituras complementares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
GEOLOGIA ESTRUTURAL — Prova 5 — 3/9/2012 — Maluhy&Co. — página (local 24, global #24)i
i
i
i
i
i
i
i
24 Geologia Estrutural
Capítulo 16 – Regimes contracionais, 395
16.1 – Falhas contracionais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
16.2 – Falhas de cavalgamento . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
16.3 – Rampas, cavalgamentos e dobras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
16.4 – Cunhas orogênicas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
E-módulo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
Leituras complementares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
Capítulo 17 – Regimes extensionais, 421
17.1 – Falhas extensionais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
17.2 – Sistemas de falhas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
17.3 – Falhas de baixo ângulo e complexos de núcleo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
17.4 – Geometria rampa-patamar-rampa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
17.5 – Colapso de lapa versus de capa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
17.6 – Rifteamento . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
17.7 – Hemigrabens e zonas de acumulação . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
17.8 – Modelos de cisalhamento puro e simples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
17.9 – Estimativas de estiramento, fractais e lei de potência . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
17.10 – Margens passivas e riftes oceânicos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
17.11 – Extensão e colapso orogênico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
17.12 – Extensão pós-orogênica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
E-módulo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
Leituras complementares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
Capítulo 18 – Falhas de rejeito direcional, transpressão e transtração, 447
18.1 – Falhas de rejeito direcional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
18.2 – Falhas de transferência . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
18.3 – Falhas transcorrentes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
18.4 – Desenvolvimento e anatomia de falhas de rejeito direcional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
18.5 – Transpressão e transtração . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
18.6 – Partição da deformação . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
E-módulo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464
Leituras complementares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 464
Capítulo 19 – Tectônicas do sal, 467
19.1 – Tectônica do sal e halocinese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
19.2 – Propriedades e reologia do sal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
GEOLOGIA ESTRUTURAL — Prova 5 — 3/9/2012 — Maluhy&Co. — página (local 25, global #25)i
i
i
i
i
i
i
i
Sumário 25
19.3 – Diapirismo, geometria e fluxo de sal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470
19.4 – Diápiros em ascensão: processos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
19.5 – Diapirismo de sal em regime extensional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
19.6 – Diapirismo em regime contracional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
19.7 – Diapirismo em contextos de rejeito direcional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
19.8 – Colapso de sal por carstificação . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
19.9 – Descolamentos de sal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
E-módulo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
Leituras complementares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
Capítulo 20 – Balanceamento e restauração, 495
20.1 – Conceitos básicos e definições . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
20.2 – Restauração de seções geológicas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
20.3 – Restauração da vista em mapa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
20.4 – Restauração em três dimensões . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
20.5 – Backstripping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
E-módulo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
Leituras complementares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
Capítulo 21 – Uma breve visão panorâmica, 511
21.1 – Síntese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512
21.2 – Fases de deformação . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512
21.3 – Deformação progressiva . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513
21.4 – Texturas metamórficas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
21.5 – Datações radiométricas e trajetórias P-T-t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
21.6 – Tectônica e sedimentação . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
Leituras complementares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
Apêndice A - Detalhes sobre a matriz de deformação, 523
A.1 – Matriz de deformação e elipsoide de deformação (strain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
A.2 – Variação em área ou volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
A.3 – Orientação do elipsoide de deformação . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
A.4 – Extensão e rotação de linhas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
A.5 – Rotação de planos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525
A.6 – ISA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525
A.7 – Apófises de fluxo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525
A.8 – Número de vorticidade cinemática (Wk) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525
A.9 – Decomposição polar de D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526
GEOLOGIA ESTRUTURAL — Prova 5 — 3/9/2012 — Maluhy&Co. — página (local 26, global #26)i
i
i
i
i
i
i
i
26 Geologia Estrutural
Apêndice B - Projeção estereográfica, 529
B.1 – Projeção estereográfica (equiangular). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
B.2 – Projeção de igual área . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530
B.3 – Representação de planos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530
B.4 – Representação de linhas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532
B.5 – Pitch (rake) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532
B.6 – Ajuste de um plano a linhas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
B.7 – Linha de intersecção . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
B.8 – Ângulo entre planos e linhas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
B.9 – Atitude a partir de mergulhos aparentes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
B.10 – Rotação de planos e linhas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
B.11 – Diagrama de roseta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
B.12 – Programas gráficos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
Leitura complementar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
Glossário, 537
Referências bibliográficas, 567
Legendas das figuras de abertura dos capítulos, 573
Índice Remissivo, 577
GEOLOGIA ESTRUTURAL — Prova 5 — 3/9/2012 — Maluhy&Co. — página (local 27, global #27)i
i
i
i
i
i
i
i
Geologia Estrutural e
análise estrutural 1
A Geologia Estrutural é o estudo de dobras, falhas e outras estruturas deforma-
cionais na litosfera, no que diz respeito à sua ocorrência e modos de formação.
As estruturas podem variar de centenas de quilômetros de extensão a detalhes
microscópicos, e ocorrem em contextos muito variados, registrando variações
instigantes nas condições de esforço e deformação – informações que podemos
desvendar se conhecermos seus códigos. A história contida nas estruturas das
rochas é bela, fascinante e interessante, e pode ser muito útil à sociedade. A
exploração, o mapeamento e o aproveitamento de recursos minerais, como ardósias
e xistos (pedras de revestimento), minérios metálicos, água subterrânea, petróleo e
gás dependem do trabalho de geólogos estruturalistas, que devem compreender o
que observam e apresentar interpretações e previsões razoáveis. Neste primeiro
capítulo, vamos estabelecer as bases para os capítulos seguintes por meio da
definição e da discussão de conceitos fundamentais e de diferentes conjuntos de
dados e métodos em que a Geologia Estrutural e a análise estrutural se baseiam.
Dependendo de seu conhecimento prévio de Geologia Estrutural, pode ser útil rever
este capítulo depois de percorrer os demais.
GEOLOGIA ESTRUTURAL — Prova 5 — 3/9/2012 — Maluhy&Co. — página (local 28, global #28)i
i
i
i
i
i
i
i
28 Geologia Estrutural
1.1 Primeira abordagem da Geologia
Estrutural
Para conhecermos a Geologia Estrutural, precisa-
mos observar as rochas deformadas e encontrar
uma explicação de como e por que elas adquiri-
ram essa forma. Nossos principais métodos são as
observações de campo, os experimentos de labora-
tório e as modelagens numéricas. Todos os méto-
dos apresentam vantagens e desafios. Os exemplos
de campo retratam os resultados finais dos proces-
sos de deformação, mas podem deixar de lado a
história real da deformação. Experimentos de labo-
ratório podem simular a deformação progressiva,
mas quão representativas são observações feitas ao
longo de horas ou semanas, quando comparadas
com histórias geológicas naturais que abrangem
milhares ou milhões de anos? Por sua vez, a mo-
delagem numérica da deformação, feita a partir de
equações matemáticas e computadores, é limitada
pelas simplificações necessárias para adequar os
processos às linguagens de computação e aos com-
putadores disponíveis. A combinação de diferentes
abordagens, porém, permite a obtenção de modelos
realistas da formação das estruturas e de seu signi-
ficado. Os estudos de campo serão sempre impor-
tantes, já que qualquer modelagem, seja numérica
ou física, deve basear-se direta ou indiretamente
em observações e descrições precisas de campo. A
objetividade em trabalhos de campo é fundamen-
tal e representa mais um desafio. De uma forma
ou de outra, eles são a razão principal pela qual
muitos geólogos optaram por se dedicar à pesquisa
científica.
1.2 Geologia Estrutural e tectônica
O termo estrutura deriva do latim struere, que signi-
fica construir. Podemos dizer que:
Uma estrutura geológica é uma configuração ge-
ométrica de rochas, e a Geologia Estrutural lida
com a geometria, a distribuição e a formação des-
sas estruturas.
É importante notar que a Geologia Estrutural
lida apenas com estruturas criadas pela deforma-
ção de rochas, e não com estruturas primárias, for-
madas por processos sedimentares ou magmáticos.
Entretanto, as estruturas de deformação podem se
desenvolver pela modificação de estruturas primá-
rias, como o dobramento de camadas de uma rocha
sedimentar.
O outro termo, tectônica, deriva da palavra grega
tektos, que significa construir ou construtor. A Geo-
logia Estrutural e a tectônica, portanto, lidam com
a formação da litosfera terrestre, em termos das es-
truturas resultantes, e estudam os movimentos que
esculpem a forma das porções mais superficiais de
nosso planeta. Podemos dizer que a tectônica está
mais relacionada com os processos subjacentes de
produção das estruturas:
A tectônica aborda processos “externos” e geral-
mente regionais que produzem um dado conjunto
característico de estruturas.
A palavra “externo”, nesse contexto, indica que
os processos são externos ao volume de rocha em
questão. Os processos ou causas externos podem
ser, por exemplo, movimentos de placas tectônicas,
intrusões forçadas de magma, diápiros de lama ou
sal em movimento gravitacional, fluxos de geleiras
e impactos de meteoritos. Cada uma dessas causas
externas pode criar estruturas características que
definem um estilo tectônico, e a tectônica relaci-
onada recebe nomes específicos em cada caso. A
tectônica de placas é aquela que ocorre em grande
escala e envolve o movimento e a interação de pla-
cas litosféricas. No âmbito da tectônica de placas,
expressões como tectônica de subducção, tectônica
de colisão e tectônica de rifte são aplicadas em ca-
sos específicos.
A glaciotectônicaé a deformação de sedimentos
e de seu embasamento (em geral, rochas sedimen-
tares) sob a parte frontal de uma geleira em movi-
mento. Nesse caso, a deformação é criada pelo mo-
GEOLOGIA ESTRUTURAL — Prova 5 — 3/9/2012 — Maluhy&Co. — página (local 51, global #51)i
i
i
i
i
i
i
i
Deformação 2
As rochas deformadas e suas tramas e estruturas podem ser analisadas e mapeadas.
No capítulo anterior, vimos brevemente alguns métodos e técnicas da Geologia
Estrutural. Cada estrutura reflete uma mudança na forma e, talvez, um transporte
dentro de um arcabouço de referência. Geralmente nos referimos a essas mudan-
ças como deformações. Ao observarmos rochas deformadas, automaticamente
imaginamos como elas devem ter sido antes da deformação e por quais processos
passaram. Para compreender as estruturas, é necessário entender os fundamentos
da deformação, incluindo algumas definições úteis e descrições matemáticas. Esse
é o tema deste capítulo.
GEOLOGIA ESTRUTURAL — Prova 5 — 3/9/2012 — Maluhy&Co. — página (local 67, global #67)i
i
i
i
i
i
i
i
2 Deformação 67
Aumento anisotrópico de volume: XYZ 6= 1, onde
dois ou os três valores, dos valores X, Y e Z, são
diferentes entre si.
2.13 Deformação interna uniaxial
(compactação)
A deformação interna uniaxial (uniaxial strain) é a
contração ou extensão ao longo de um dos eixos
principais de deformação, sem variações no com-
primento dos outros eixos. Essa deformação requer
a reorganização, adição ou remoção de volume de
rocha. Se houver perda de volume, teremos contra-
ção uniaxial e redução de volume. Isso acontece por
reorganização de grãos durante a compactação fí-
sica de sedimentos porosos e tufos próximo à super-
fície, levando a um empacotamento mais denso dos
grãos. Somente a água, o óleo ou o gás dos poros
deixam o volume de rocha, mas não os minerais.
Em rochas calcárias ou sedimentares siliciclás-
ticas em grande profundidade, a deformação uni-
axial pode ser acomodada por dissolução (pres-
são), também conhecida como compactação quí-
mica. Nesse caso, os minerais são dissolvidos e
transportados por fluidos para fora do volume de
rocha. A remoção de minerais por difusão pode
também ocorrer sob condições metamórficas na
crosta média e inferior. Esse processo pode levar
à formação de clivagem ou à compactação através
de zonas de cisalhamento. A extensão uniaxial
implica expansão em uma direção. Esse processo
pode ocorrer devido à formação de fraturas tênseis
ou de veios, ou durante reações metamórficas.
Contração uniaxial: X = Y > Z, X = 1
Extensão uniaxial: X > Y = Z, Z = 1
A deformação uniaxial pode ocorrer isolada-
mente, como, por exemplo, na compactação de
sedimentos, ou em combinação com outros tipos
de deformação, como o cisalhamento simples. Mui-
tas zonas de cisalhamento podem ser conveniente-
mente consideradas como zonas de cisalhamento
simples, com encurtamento uniaxial adicional
transversal.
O encurtamento uniaxial ou compactação é uma
deformação importante e bastante comum, que re-
quer uma descrição mais detalhada. A matriz de
deformação da deformação uniaxial é
1 0 0
0 1 0
0 0 1 + Δ
 (2.10)
onde Δ é a elongação na direção vertical (negativa
para compactação) e 1 + Δ é o estiramento vertical
(Fig. 2.16). O fato de que apenas o terceiro elemento
diagonal é diferente de 1 implica elongação ou en-
curtamento somente em uma direção. A matriz for-
nece o elipsoide de deformação, que é oblato (forma
de panqueca) no caso de compactação. Ela também
pode ser usada para calcular o modo como feições
planas, como falhas e estratificações, são afetadas
pela compactação (Fig. 2.16).
Se for possível estimar a porosidade atual e a
inicial (0) de um sedimento compactado ou rocha
sedimentar, poderemos utilizar a equação:
 = 0e−CZ (2.11)
para encontrar (1 + Δ), onde Z é a profundidade
de soterramento e C é uma constante cujos valo-
res típicos são cerca de 0,29 para areia, 0,38 para
silte e 0,42 para folhelho; “e” é, nesse caso, a função
exponencial, e não o fator de extensão. A Eq. 2.11
nos mostra que a porosidade  varia em função da
profundidade Z em uma matriz com a forma:
1 0 0
0 1 0
0 0 1 + ƒ (Z)
 (2.12)
Pode ser demonstrado que Δ = (1 − 0)/(1 −
0 e−CZ), e a matriz de deformação, portanto, se
torna:
1 0 0
0 1 0
0 0 (1− 0) / €1− 0e−CZŠ
 (2.13)
GEOLOGIA ESTRUTURAL — Prova 5 — 3/9/2012 — Maluhy&Co. — página (local 93, global #93)i
i
i
i
i
i
i
i
Deformação em rochas 3
A deformação (strain) nas rochas pode ser analisada por meio de uma ampla gama
de métodos. Muita ênfase foi dada às análises da deformação uni, bi e tridimensio-
nal em rochas deformadas de modo dúctil, particularmente na segunda metade do
século XX, quando grande parte da comunidade ligada à Geologia Estrutural passou
a dedicar-se à deformação dúctil. Os dados de deformação foram coletados ou
calculados para uma melhor compreensão dos empurrões em cinturões orogênicos
e dos mecanismos relacionados aos dobramentos. O foco da Geologia Estrutural
mudou desde então, e o campo de estudos foi ampliado nas duas últimas décadas.
Hoje, a análise de deformação é aplicada com a mesma ênfase em áreas falhadas,
bacias de rifte e cinturões orogênicos. No Cap. 20 retornaremos à deformação em
regime rúptil. Neste, abordaremos como a deformação é medida e quantificada
em regime dúctil.
GEOLOGIA ESTRUTURAL — Prova 5 — 3/9/2012 — Maluhy&Co. — página (local 107, global #107)i
i
i
i
i
i
i
i
Esforço 4
No capítulo anterior, abordamos o modo como a deformação pode ser observada
e medida em rochas deformadas. O conceito de esforço (stress) está diretamente
relacionado à deformação, mas é mais abstrato porque não pode ser visto direta-
mente. É necessário observarmos as feições de deformação (preferencialmente,
deformação de pequena intensidade) para podermos fazer interpretações sobre o
esforço. Ou seja, as estruturas visíveis de deformação podem nos fornecer algumas
informações sobre o campo de esforços ao qual a rocha foi submetida. Entretanto,
essa relação não é direta, e nem mesmo a mais detalhada reconstituição do campo
de esforços permite prever quais serão as estruturas deformadas resultantes,
a menos que tenhamos informações adicionais sobre as propriedades físicas e
mecânicas das rochas, a temperatura, a pressão e as demais condições físicas de
contorno. Neste capítulo, são apresentados os conceitos mais básicos sobre esforços.
Nos dois seguintes, abordaremos os esforços na litosfera e as relações entre esforço,
deformação e propriedades físicas.
GEOLOGIA ESTRUTURAL — Prova 5 — 3/9/2012 — Maluhy&Co. — página (local 117, global #117)i
i
i
i
i
i
i
i
Esforços na litosfera 5
Após abordarmos a natureza dos esforços, veremos, neste capítulo, como obter
informações sobre os esforços na crosta e como interpretá-las. Um grande número
de medidas de esforços tem sido feito nas últimas décadas em todo o mundo. Elas
indicam que as condições de esforços na crosta são complexas, em parte devido às
heterogeneidades geológicas (falhas, zonas de fraturas, contrastes composicionais),
em parte porque diversas áreas foram expostas a múltiplas fases de deformação,
cada qual associada a um campo de esforços diferente. Esta última situação é rele-
vante, uma vez que a crosta tem a capacidade de “congelar” um estado de esforços
e preservá-lo na forma reliquiar ao longo do tempo geológico. O conhecimento dos
campos de esforços locais e regionais possui diversas aplicações práticas, incluindo
levantamentos para a construção de túneis, sondagens e perfurações para água e
petróleo. Além disso, o conhecimento dos estados de esforçosatuais e passados
fornece informações importantes sobre processos tectônicos recentes e antigos.
GEOLOGIA ESTRUTURAL — Prova 5 — 3/9/2012 — Maluhy&Co. — página (local 128, global #128)i
i
i
i
i
i
i
i
128 Geologia Estrutural
Fig. 5.9 Arenito permiano com alta densidade de juntas do Platô do Colorado, erodido pelo Rio Colorado. As juntas não
ocorrerão em um reservatório de arenito, a menos que ele seja soerguido e substancialmente arrefecido
Isso pode ser relevante para geólogos que traba-
lham na exploração de reservatórios de petróleo em
áreas soerguidas, onde as fraturas tensionais verti-
cais que podem causar vazamentos nas armadilhas
de petróleo são mais comuns. Isso significa, ainda,
que uma sobrepressão menor seria suficiente para
produzir fraturas em um arenito, em comparação
com um argilito (Fig. 5.11), e é por esse motivo que
o hidrofraturamento tende a ser confinado a cama-
das de arenito em vez de afetar as camadas adja-
centes de argilitos e folhelhos.
5.5 Esforço residual
Um esforço pode ser aprisionado e preservado após
a força ou o campo de esforços externos ter sido re-
movido ou alterado; esse tipo de esforço é denomi-
nado esforço residual. Em princípio, qualquer tipo
de esforço pode ser aprisionado em uma rocha se,
por algum motivo, uma deformação elástica for pre-
servada após a remoção do campo de esforços ex-
ternos. As origens dos esforços externos podem ser
sobrecarga, esforços tectônicos ou efeitos térmicos.
Veremos como um esforço residual pode formar-
-se em arenitos durante compactação, cimentação
e soerguimento. Durante o soterramento, os esfor-
ços se concentram nas áreas de contato entre os
grãos. Considere que ocorra uma cimentação an-
tes da remoção do campo de esforços externos cau-
sado pelo soterramento. Posteriormente, se o so-
erguimento e a erosão expuserem o arenito à su-
perfície e, consequentemente, causarem uma redu-
ção dos esforços, a deformação elástica dos grãos
causada pela remoção da sobrecarga começará a
relaxar. O relaxamento, entretanto, é parcialmente
bloqueado pelo cimento. Assim, parte do esforço é
transferida para o cimento, e o restante permanece
GEOLOGIA ESTRUTURAL — Prova 5 — 3/9/2012 — Maluhy&Co. — página (local 139, global #139)i
i
i
i
i
i
i
i
Reologia 6
Os esforços e a deformação estão relacionados entre si, mas essa relação depende
das propriedades da rocha submetida a deformação. Estas, por sua vez, dependem
de condições físicas tais como estado de esforços, temperatura e taxa de deformação.
Uma rocha que se fratura a baixa temperatura pode fluir como um líquido viscoso
quando em alta temperatura, e uma rocha que se fratura sob o impacto de um
martelo pode fluir suavemente sob baixa taxa de deformação. Quando discutimos
o comportamento das rochas, é útil recorrermos à ciência dos materiais, que
define o comportamento dos materiais ideais (elástico, newtoniano e perfeitamente
plástico). Esses materiais de referência são normalmente usados na modelagem da
deformação natural. É essa abordagem que faremos neste capítulo, enfocando as
deformações experimentais feitas em laboratório, que trazem informações bastante
úteis sobre a deformação de rochas. As experiências com diferentes materiais
aumentaram consideravelmente nosso conhecimento sobre a deformação e a
reologia das rochas.
GEOLOGIA ESTRUTURAL — Prova 5 — 3/9/2012 — Maluhy&Co. — página (local 165, global #165)i
i
i
i
i
i
i
i
Fratura e deformação rúptil 7
Estruturas rúpteis como juntas e falhas são encontradas em quase toda a superfície
da Terra sólida. A deformação rúptil é a marca registrada da deformação na crosta
superior, ocorrendo em áreas onde os esforços se acumulam em níveis que excedem
o limite local de resistência à ruptura da crosta. As estruturas rúpteis podem
formar-se de modo suave, por exumação e resfriamento das rochas, ou de modo
violento, durante os terremotos. Em ambos os casos, a deformação rúptil causada
pelo fraturamento implica um rompimento instantâneo das estruturas cristalinas
em escala atômica, e esse tipo de deformação tende a ser não apenas mais rápido,
mas também mais localizado que a deformação plástica. As estruturas rúpteis
podem ser estudadas com relativa facilidade em laboratório, e a união de dados
experimentais com observações de campo e de lâminas petrográficas constitui
a base do nosso conhecimento atual sobre a deformação rúptil. Neste capítulo,
vamos abordar a formação de várias estruturas rúpteis em pequena escala e as
suas condições de formação.
GEOLOGIA ESTRUTURAL — Prova 5 — 3/9/2012 — Maluhy&Co. — página (local 203, global #203)i
i
i
i
i
i
i
i
Falhas 8
As falhas afetam as camadas de rochas e introduzem “defeitos” no arcabouço
estratigráfico primário. Elas são estruturas geológicas extremamente intrigantes e
fascinantes para os que trabalham com Geologia Estrutural, ainda que em alguns
casos possam frustrar estratígrafos e mineradores por dificultarem o mapeamento
geológico e a interpretação de dados sísmicos. Hoje sabemos mais sobre as falhas
do que há poucas décadas, em razão principalmente dos avanços da indústria do
petróleo. Elas também representam desafios para a disposição de resíduos e para a
construção de túneis. As falhas ativas têm uma relação próxima com terremotos
e desastres sísmicos. Neste capítulo, abordaremos a geometria, a anatomia e a
evolução de falhas e de conjuntos de falhas, com exemplos e aplicações relevantes
para a indústria do petróleo.
GEOLOGIA ESTRUTURAL — PROVA 5 — 3/9/2012 — Maluhy&Co. — PÁGINA (LOCAL 213, GLOBAL #213)i
i
i
i
i
i
i
i
8 Falhas 213
Boxe 8.1 ROCHAS DE FALHA (cont.)
Injeção de veios de pseudotaquilito em gnaisse protomilonítico (Heimefrontfjella, Antártica).
Milonitos não são exatamente rochas de falhas, ainda que tenham sido assim consideradas por Sibson.
Os milonitos são subdivididos com base na proporção dos grãos originais, de tamanho grande, e da matriz
recristalizada. Os milonitos são foliados e comumente apresentam lineações e abundantes evidências de
processos de deformação plástica, em vez de deslizamento friccional e moagem de grãos. Os milonitos
formam-se a profundidades e temperaturas maiores que os cataclasitos e as demais rochas de falha; e acima
de 300°C para rochas ricas em quartzo. O membro extremo da série dos milonitos, o blastomilonito, é um
milonito que se recristalizou após o término da deformação (recristalização pós-cinemática). Dessa forma, o
blastomilonito apresenta grãos sem deformação e aproximadamente equidimensionais ao microscópio, com
a foliação milonítica ainda visível em amostra de mão. A deformação plástica e os milonitos serão tratados
nos Caps. 10 e 15.
Essa relação situa-se entre as linhas retas D = 1.000
CT e D = 10 CT, o que significa que a espessura
do núcleo da falha é estatisticamente em torno de
1/100 do rejeito da falha, para falhas com rejeito de
até 100 m.
As camadas encontram-se, em geral, flexiona-
das (dobradas) em torno de falhas, particularmente
em rochas sedimentares. O termo clássico para
esse comportamento é arrasto, que deve ser usado
como um termo geométrico puramente descritivo.
A zona de arrasto pode ser mais larga ou mais
estreita que a zona de dano, ou pode até estar
ausente. A distinção entre a zona de dano e a zona
de arrasto se faz pelo caráter de deformação dúctil
desta, enquanto a zona de dano é, por definição,
restrita à deformação rúptil. Ambas as zonas são
partes da zona de deformação associada às falhas.
De modo geral, as rochas moles desenvolvem zonas
de arrasto mais pronunciadas que as rochas rígidas.
8.3 Distribuição de rejeito
Em alguns casos, é possível mapear variações no
rejeito ao longo de

Outros materiais