Buscar

Tomografia computadorizada 01

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 37 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 37 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 37 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

AN02FREV001/REV 4.0 
 1 
 
PROGRAMA DE EDUCAÇÃO CONTINUADA A DISTÂNCIA 
Portal Educação 
 
 
 
 
 
 
CURSO DE 
TOMOGRAFIA COMPUTADORIZADA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Aluno: 
EaD - Educação a Distância Portal Educação 
 
 
 AN02FREV001/REV 4.0 
 2 
 
 
 
 
 
 
 
CURSO DE 
TOMOGRAFIA COMPUTADORIZADA 
 
 
 
 
 
 
MÓDULO I 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Atenção: O material deste módulo está disponível apenas como parâmetro de estudos para este 
Programa de Educação Continuada. É proibida qualquer forma de comercialização ou distribuição 
do mesmo sem a autorização expressa do Portal Educação. Os créditos do conteúdo aqui contido 
são dados aos seus respectivos autores descritos nas Referências Bibliográficas. 
 
 
 
 
 
 AN02FREV001/REV 4.0 
 3 
SUMÁRIO 
 
MÓDULO I 
1 A HISTÓRIA DA TOMOGRAFIA COMPUTADORIZADA – TC 
1.1 A TOMOGRAFIA E A SUA EVOLUÇÃO 
1.2 OS APARELHOS DE TOMOGRAFIA COMPUTADORIZADA 
1.2.1 Aparelhos de primeira geração 
1.2.2 Aparelhos de segunda geração 
1.2.3 Aparelhos de terceira geração 
1.2.4 Aparelhos de quarta geração 
1.2.5 Aparelhos helicoidais 
1.2.6 Aparelhos multislice 
 
MÓDULO II 
2 COMPONENTES DOS APARELHOS DE TC 
2.1 O GANTRY 
2.2 A MESA 
2.3 O GERADOR DE RAIOS X 
2.4 OS DETECTORES 
2.5 O SISTEMA COMPUTACIONAL 
2.6 O PAINEL DE COMANDO 
2.7 A IMAGEM FÍSICA 
 
MÓDULO III 
3 PARÂMETROS DE CONTROLE 
3.1 A COLIMAÇÃO DO FEIXE 
3.2 EIXOS DE CORTE; O FATOR MAS 
3.3 A ALTA-TENSÃO (KV) 
3.4 O TEMPO DE ROTAÇÃO DO TUBO 
3.5 ALGORITMOS DE RECONSTRUÇÃO 
3.6 A MATRIZ DE IMAGEM 
 
 
 
 
 AN02FREV001/REV 4.0 
 4 
MÓDULO IV 
4 ANATOMIA HUMANA EM TOMOGRAFIA 
4.1 CABEÇA, PESCOÇO 
4.2 TRONCO, MEMBROS SUPERIORES E MEMBROS INFERIORES 
 
MÓDULO V 
5 PROTOCOLO DE EXAMES E FOTOGRAFIA 
REFERÊNCIAS BIBLIOGRÁFICAS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 AN02FREV001/REV 4.0 
 5 
 
 
MÓDULO I 
 
 
1 A HISTÓRIA DA TOMOGRAFIA COMPUTADORIZADA – TC 
 
 
1.1 A TOMOGRAFIA E SUA EVOLUÇÃO 
 
 
Em 1895, o físico Wilhelm Conrad Roengten (1845 – 1923) (Figura 1) 
descobre o raio-x. 
A descoberta dos raios X, em 1895, pelo físico Wilhelm Conrad Roengten 
(1845 – 1923) (Figura 1), foi um marco na história da ciência médica. Não há relatos 
oficiais de como tenha ocorrido tal descoberta, apenas especulações feitas por 
jornalistas da época. 
 
 
FIGURA 1. WILHELM CONRAD ROENTGEN (1845 – 1923) 
 
 
 
 
 AN02FREV001/REV 4.0 
 6 
FONTE: MARTINS (1997). 
De acordo com uma entrevista dada na época por Roentgen, a descoberta 
teria sido acidental e ele mesmo não sabia do que se tratava, denominando sua 
descoberta de “RAIOS X”, por não conhecer realmente a sua essência. Desde 
então, passou a investigar a fundo o que aqueles raios recém-descobertos faziam. 
Todo o estudo teve início com o interesse de Roentgen pela natureza dos 
raios catódicos. Dessa forma, resolveu repetir alguns experimentos da época. Em 
uma dessas tentativas experimentais, Roengten descobriu algo novo, algo capaz de 
produzir sombra em objetos (Figura 2). 
 
 
FIGURA 2. EXPERIMENTO DE ROENTGEN 
 
FONTE: Disponível em: <http://www.mundoeducacao.com.br>. Acesso em: 12 nov. 2012. 
 
 
Após esse episódio, começou a investigar as características daquele 
fenômeno fazendo comparações com tudo que já tinha sido descoberto até a época. 
Com seus estudos, descobriu propriedades dos novos raios, diferente de tudo já 
estudado. As propriedades dos novos raios foram descobertas e Roentgen foi 
 
 
 AN02FREV001/REV 4.0 
 7 
eliminando qualquer semelhança com qualquer fato já descoberto anteriormente. 
Realmente era algo novo! 
As principais propriedades dos novos raios descritas por Roentgen foram: 
 
 Apresentavam propagação em linha reta; 
 
 Geravam sombras regulares; 
 
 Apresentavam capacidade de penetração, até mesmo em grandes 
espessuras; 
 
 Eram capazes de emitir fluorescência; 
 
 Eram capazes de sensibilizar chapas fotográficas; 
 
 Não tinham capacidade de reflexão e nem de refração; 
 
 Não eram desviados por ímãs. 
 
 
Diante de todas essas propriedades, Roentgen caracterizou os novos raios 
X como possíveis ondas eletromagnéticas longitudinais. Após a divulgação de seu 
trabalho para a sociedade científica da época, Roentgen foi impedido de dar 
continuidade aos seus experimentos pela forte agitação que tomou conta do local 
onde residia, fazendo com que outros pesquisadores passassem a sua frente nas 
pesquisas. 
A divulgação do seu trabalho foi feita de maneira inusitada. Não apenas pela 
divulgação do artigo na revista científica da época, mas pelo envio de cópias 
pessoais a todos os pesquisadores, juntamente com radiografias tiradas por ele. 
Isso fez com que a repercussão fosse de forma rápida e eficaz. 
Na figura 3 está uma ilustração do primeiro aparelho de radiografia, feito por 
Roentgen e na figura 4 encontra-se a primeira radiografia tirada por ele, da mão de 
sua esposa. 
 
 
 AN02FREV001/REV 4.0 
 8 
 
 
FIGURA 3. APARELHO DE RADIOGRAFIA DE ROENTGEN 
 
FONTE: Disponível em: <http://www.cerebromente.org.br>. Acesso em: 12 nov. 2012. 
 
 
FIGURA 4. RADIOGRAFIA DA MÃO DA ESPOSA DE ROENTGEN 
 
FONTE: FONTE: Disponível em: <http://www.cerebromente.org.br>. Acesso em: 12 nov. 2012. 
 
 
 AN02FREV001/REV 4.0 
 9 
 
 
Após um tempo relativamente curto da divulgação, tão logo foram feitas as 
primeiras aplicações na Medicina, para a identificação de fraturas ósseas. Com o 
passar do tempo, a técnica revolucionária foi sendo aperfeiçoada, ganhando até 
mesmo uma área específica dentro da Medicina, a Radiologia. 
Abaixo daremos um rápido histórico da evolução dos raios X de Roentgen: 
 1896 
Invenção do Fluoroscópio portátil por Thomas Alva Edison (1847 – 1931) 
(Figura 5). Sua utilização estava voltada à observação interna do corpo em 
movimento. 
 
 
FIGURA 5. THOMAS ALVA EDISON (1847 – 1931) COM O SEU FLUOROSCÓPIO 
PORTÁTIL 
 
 
FONTE: Disponível em: <http://www.cerebromente.org.br>. Acesso em: 12 nov. 2012. 
 
 
 
 
 
 
 AN02FREV001/REV 4.0 
 10 
 
 
FIGURA 6. APLICAÇÃO DO FLUOROSCÓPIO 
 
FONTE: Disponível em: <http://www.cerebromente.org.br>. Acesso em: 12 nov. 2012. 
 
 
 1900 
 
 
Criação do equipamento portátil de radiografia, baseados no fluoroscópio de 
Thomas Edison (Figura 7). 
 
 
 
 
 
 
 
 
 
 
 AN02FREV001/REV 4.0 
 11 
 
 
FIGURA 7. APARELHO DE RADIOGRAFIA PORTÁTIL 
 
FONTE: Disponível em: <http://www.cerebromente.org.br>. Acesso em: 12 nov. 2012. 
 
 
 1904 
 
 
Criação do aparelho de radiografia móvel, transportado por ambulâncias 
(Figura 8). 
 
 
 
 
 
 
 
 
 
 
 AN02FREV001/REV 4.0 
 12 
 
 
FIGURA 8. RADIOGRAFIA EM AMBULÂNCIA 
 
FONTE: Disponível em: <http://www.cerebromente.org.br>. Acesso em: 12 nov. 2012. 
 
 
 1918 
 
 
Origem da Ventriculografia por Walter Dandy (1866 -1946) (Figura 9). Como 
as radiografias tradicionais não permitiam bons resultados aos estudos neurológicos, 
Dendy percebeu que as fotografias ficavam melhores se os ventrículos cerebrais 
recebessem por meio de injeção, ar em suas estruturas. 
 
 
 
 
 
 
 
 
 
 AN02FREV001/REV 4.0 
 13 
 
 
FIGURA 9. WALTER DANDY (1886 – 1946) 
 
FONTE: Disponível em: <http://www.cerebromente.org.br>. Acesso em: 12 nov. 2012. 
 
 
 1927 
 
 
Origem da Arteriografia por Antônio Egas Moniz (1847 – 1955) (Figura 10). 
Moniz percebeu que a injeção de iodetode sódio nas artérias caróticas permitia uma 
maior evidência das artérias na fotografia, facilitando diagnósticos como: 
aneurismas, derrames, etc. 
 
 
 
 
 
 
 
 
 
 
 AN02FREV001/REV 4.0 
 14 
 
 
FIGURA 10. ANTÔNIO EGAS MONIZ (1847 – 1955). 
 
FONTE: Disponível em: <http://www.cerebromente.org.br>. Acesso em: 12 nov. 2012. 
 
 
 1930 
 
Como instrumento para facilitar os estudos neurológicos, surge a TomografiaLinear, em 1930, por Ziedses des Plantes (1902 – 1993) (Figura 11). Anteriormente 
chamada de Planigrafia, é baseada em movimentos lineares entre o filme o tubo de 
raios X, permitindo a produção de várias imagens em diferentes planos. 
 
 
 
 
 
 
 
 
 
 
 
 AN02FREV001/REV 4.0 
 15 
 
 
FIGURA 11. ZIEDSES DES PLANTES (1902 – 1993) 
 
FONTE: Disponível em: <http://www.cerebromente.org.br>. Acesso em: 12 nov. 2012. 
 
 
 1931 
 
Surge a Tomografia Axial, por Alessandro Vallebona (1899 -1987) (Figura 
12). Sua técnica consistia em um equipamento capaz de girar em torno do paciente. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 AN02FREV001/REV 4.0 
 16 
 
 
FIGURA 12. ALESSANDRO VALLEBONA (1899 – 1987) 
 
FONTE: Disponível em: <http://www.cerebromente.org.br>. Acesso em: 12 nov. 2012. 
 
 
Com a necessidade de um sistema computacional para o processamento de 
todas as imagens obtidas, surge a Tomografia Axial Computadorizada, em 1972. 
Há uma grande diferença entre a Radiografia Tradicional e a Tomografia 
Computadorizada quanto às imagens formadas. Na Radiografia Tradicional as 
imagens são geradas pela sobreposição de estruturas da área do corpo avaliada 
(Figura 13). 
 
 
 
 
 
 
 
 
 
 
 
 AN02FREV001/REV 4.0 
 17 
 
 
FIGURA 13. IMAGEM DE UMA RADIOGRAFIA TRADICIONAL 
 
FONTE: Disponível em: <http://www.acbo.org.br>. Acesso em: 11 nov. 2012. 
 
 
Já na Tomografia a formação das imagens ocorre pelo corte seccional 
consecutivo e paralelo da área do corpo a ser avaliada em diversos planos (Figura 
14). Porém ambos utilizam os raios X na formação de suas imagens. Mas, na 
Tomografia, o tubo se encontra em movimento no momento da geração do feixe. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 AN02FREV001/REV 4.0 
 18 
 
 
FIGURA 14. IMAGEM DE UMA TOMOGRAFIA COMPUTADORIZADA 
 
FONTE: Disponível em: <http://www.acbo.org.br>. Acesso em: 11 nov. 2012. 
 
 
Houve uma evolução com relação aos aparelhos utilizados na Tomografia 
Computadorizada. Esses aparelhos foram separados por gerações de acordo com 
as características específicas de cada um. A seguir, estudaremos cada geração de 
tomógrafos a fundo, com todas as suas características peculiares. 
Na atualidade, há dois tipos de tomografia computadorizada: a Tomografia 
Computadorizada Médica (por feixes em leque) e a Tomografia Computadorizada 
Odontológica (por feixes cônicos). 
 
 
1.2 OS APARELHOS DE TOMOGRAFIA COMPUTADORIZADA 
 
 
1.2.1 Aparelhos de primeira geração 
 
 
O primeiro aparelho de Tomografia Computadorizada foi criado em 1972, por 
Godfrey Newbold Hounsfield (Figura 15). Foi denominado de EMI (Figura 16), em 
homenagem a empresa Eletric and Musical Industries LTDA, em que trabalhava. 
 
 
 AN02FREV001/REV 4.0 
 19 
 
 
FIGURA 15. GODFREY NEWBOLD HOUNSFIELD 
 
FONTE: Disponível em: <http://www.cerebromente.org.br>. Acesso em: 12 nov. 2012. 
 
 
FIGURA 16. PROTÓTIPO DO TOMÓGRAFO EMI 
 
 
 
 AN02FREV001/REV 4.0 
 20 
 
FONTE: Disponível em: <http://www.cerebromente.org.br>. Acesso em: 12 nov. 2012. 
 
 
Utilizados apenas para exames craniais, os tomógrafos da Primeira Geração 
(Figura 17) apresentavam as seguintes características: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 AN02FREV001/REV 4.0 
 21 
 
 
FIGURA 17. FUNCIONAMENTO DE UM TOMÓGRAFO DA PRIMEIRA GERAÇÃO 
 
 
 
 
 
 
Detectores 
 
t 
Fonte 
 
t 
 
 
 AN02FREV001/REV 4.0 
 22 
 
FONTE: CARVALHO (2009). 
 
 
 Presença de apenas um tubo de raios X; 
 
 
 Anódio fixo; 
 
 
 Presença de 1 a 3 detectores opostos ao tubo de raios X, constituídos 
de cristais de iodeto de sódio (NaI); 
 
 
 Feixe em formato linear, em formato de pincel (pencil beam); 
 
 
 
 
 AN02FREV001/REV 4.0 
 23 
 
 
 Capacidade de varredura: 180º em torno do paciente; 
 
 
 Tempo de varredura: aproximadamente 5,5 minutos para a obtenção 
de cada corte individual. 
 
 
1.2.2 Aparelhos de segunda geração 
 
 
O primeiro tomógrafo da Segunda Geração foi criado em 1974, por Robert S. 
Ledley (Figura 18). 
 
 
FIGURA 18. ROBERT S. LEDLEY 
 
FONTE: Disponível em: <http://www.cerebromente.org.br>. Acesso em: 12 nov. 2012. 
 
 
 
 
 AN02FREV001/REV 4.0 
 24 
 
Os tomógrafos da Segunda Geração (Figura 19) apresentavam as seguintes 
características: 
 
 
FIGURA 19. FUNCIONAMENTO DE UM TOMÓGRAFO DA SEGUNDA GERAÇÃO 
 
 
 
 
 
 
Fonte 
Detectores 
 
 
 AN02FREV001/REV 4.0 
 25 
 
 
FONTE: CARVALHO (2009). 
 
 
 Presença de apenas um tubo de raios X; 
 
 
 Anódio Giratório; 
 
 
 Presença de 30 detectores opostos ao tubo de raios X; 
 
 
 Feixes em forma de leque com abertura de 10º (norrowfan beam); 
 
 
 
 
 AN02FREV001/REV 4.0 
 26 
 
 
 Capacidade de varredura: 180º em torno do paciente; 
 
 
 Tempo de varredura: cerca de 20 segundos a 3,5 minutos para cada 
corte. 
 
 
1.2.3 Aparelhos de terceira geração 
 
 
O primeiro tomógrafo da terceira geração surgiu em 1975 e o seu 
funcionamento pode ser visualizado na figura 20. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 AN02FREV001/REV 4.0 
 27 
 
 
FIGURA 20. FUNCIONAMENTO DE UM TOMÓGRAFO DA TERCEIRA GERAÇÃO 
 
 
Fonte 
Detectores 
 
 
 AN02FREV001/REV 4.0 
 28 
 
FONTE: CARVALHO (2009). 
 
 
Um tomógrafo da Terceira Geração apresenta as seguintes características: 
 
 Presença de apenas um tubo de raios X; 
 Anódio giratório; 
 Presença de até 960 detectores opostos ao tubo de raios X; 
 Feixe em forma de leque rotativo; 
 Capacidade de varredura: 360º em torno do paciente; 
 Tempo de varredura: 2 a 10 segundos cada corte. 
 
 
 
 
 
 
 
 AN02FREV001/REV 4.0 
 29 
 
 
1.2.4 Aparelhos de quarta geração 
 
 
O primeiro tomógrafo da Quarta Geração foi desenvolvido em 1980 e seu 
funcionamento pode ser visualizado na figura 21. 
 
 
 
 
FIGURA 21. FUNCIONAMENTO DE UM TOMÓGRAFO DA QUARTA GERAÇÃO 
 
 
 
 
 
 
 
 
 
 AN02FREV001/REV 4.0 
 30 
 
 
FONTE: CARVALHO (2009). 
 
 
 
 
Um tomógrafo da Quarta Geração apresenta as seguintes características: 
 
 
 Presença de apenas um tubo de raios X; 
 Anódio rotatório; 
 Presença de 4.800 detectores fixos no gantry; 
 Feixes em forma de leque; 
 Capacidade de varredura: 360º em torno do paciente; 
 Tempo de varredura: máximo de 5 segundos. 
 
 
 
 
 AN02FREV001/REV 4.0 
 31 
 
 
1.2.5 Aparelhos helicoidais 
 
 
Os aparelhos helicoidais/espirais são também chamados de aparelhos de 
Quinta Geração ou Tomógrafos por Volume. Foram desenvolvidos em 1990 e foram 
um marco na História da Tomografia Computadorizada. Seu funcionamento pode ser 
visualizado na figura 22. 
 
 
FIGURA 22. FUNCIONAMENTO DE UM TOMÓGRAFO DA QUINTA GERAÇÃO 
 
 
 
 
Movimento 
de 
Rotação do tubo 
Volume 
imaginado 
Movimento 
contínuo da 
mesa 
 
 
 AN02FREV001/REV 4.0 
 32 
 
FONTE: Disponível em: <http://www.radioinmama.com.br>. Acesso em: 12 nov. 2012. 
 
 
Nessa geração, nos tomógrafos ocorrem dois tipos de movimentos, que 
ocorrem de maneira simultânea, o que os diferencia dos outros tomógrafos de outras 
gerações. O primeiro movimento é o movimento do paciente de forma contínua e 
longitudinal pela abertura do gantry. Já o segundo movimento é o movimento de 
360º do tubo de raios X juntamente com os detectores, localizados no anel do 
gantry. 
Ambos os movimentos ocorrem continuamente até o término do exame. 
Essa movimentação contínua só foi possível pela tecnologia de anéis de 
deslizamento como substituição aos cabos de raios X de alta tensão. Como pode ser 
visto na figura 22, a imagem nessa geração de tomógrafos é adquirida em forma de 
espiral. 
Os tomógrafos da Quinta Geração apresentam algumas vantagens em 
relação aos outros tomógrafos como: 
 
 Redução do tempo de exposição do paciente à radiação; 
 
 Aumento na capacidade de detectarpequenas lesões; 
 
 
 AN02FREV001/REV 4.0 
 33 
 
 Diminuição de artefatos nas imagens; 
 
 Aumento na velocidade de escaneamento; 
 
 Rapidez na obtenção das imagens. 
 
 
Na figura 23 podemos visualizar tomógrafos representantes da Quinta 
Geração. 
 
 
FIGURA 23. EXEMPLOS DE TOMÓGRAFOS DA QUINTA GERAÇÃO 
 
 
FONTE: Disponível em: <http://www.mundoeducacao.com.br>. Acesso em: 12 nov. 2012. 
 
 
 
 
 
 
 AN02FREV001/REV 4.0 
 34 
 
 
1.2.6 Aparelhos multislice 
 
 
Os aparelhos multislice são também denominados de aparelhos de Sexta 
Geração. Foram desenvolvidos no final de 1998, permitindo cortes múltiplos em 
apenas uma rotação do conjunto tubo/detectores. O número de cortes está 
relacionado ao número de canais dos tomógrafos, ou seja, o número de fileiras de 
detectores. Quanto maior o número desses canais, maior a resolução das imagens. 
Na figura 24, podemos observar o que acontece com o aumento do número 
de fileiras de detectores. Fica evidente que com o seu aumento, há o aumento da 
aquisição de informações. Porém, o custo do aparelho também aumenta com o 
aumento do número de canais. 
 
 
FIGURA 24. DEMONSTRAÇÃO DO AUMENTO DA AQUISIÇÃO DE INFORMAÇÃO 
COM O AUMENTO DO NÚMERO DE CANAIS DOS TOMÓGRAFOS 
 
 
 
 AN02FREV001/REV 4.0 
 35 
 
 
 
 
 AN02FREV001/REV 4.0 
 36 
 
 
FONTE: Disponível em: <http://www.abco.org.br>. Acesso em: 13 nov. 2012. 
 
 
 
 
 
 AN02FREV001/REV 4.0 
 37 
 
Atualmente, o tomógrafo multislice mais moderno apresenta 64 canais. 
Porém, no Japão está sendo desenvolvido um tomógrafo multislice contendo 256 
canais. 
Na figura 25 temos um exemplo de um tomógrafo multislice. 
 
 
FIGURA 25. TOMÓGRAFO MULTISLICE 
 
FONTE: Disponível em: <http://www.abco.org.br>. Acesso em: 13 nov. 2012. 
 
 
 
FIM DO MÓDULO I

Outros materiais