Buscar

Epilepsia: uma janela para o cérebro.

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 11 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 11 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 11 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

: A Mente Humana # 3, outubro de 2004 
Epilepsia: uma janela para o cérebro. 
 
Alexandre Valotta da Silva, MD, PhD. 
Esper Abrão Cavalheiro, MD, PhD. 
Laboratório de Neurologia Experimental da Universidade Federal de São Paulo (UNIFESP-
EPM). 
 
 
 
 
 
 
 
 
Resumo 
 
A epilepsia é uma doença comum do cérebro, afetando aproximadamente 1% da população 
mundial. Clinicamente, as epilepsias são caracterizadas por crises espontâneas e 
recorrentes, convulsivas ou não-convulsivas, que são causadas por descargas parciais ou 
generalizadas no cérebro. Os modelos animais para crises e epilepsias têm assumido um 
papel fundamental na compreensão das mudanças comportamentais e psicológicas 
associadas à epilepsia humana. Eles nos permitem determinar a natureza das lesões que 
poderiam contribuir para o desenvolvimento da epilepsia ; , observar e interceder no 
processo da doença subsequente a uma lesão antecipando crises expontâneas ; , e, também, 
estudar o cérebro cronicamente epilético em detalhes, utilizando técnicas fisiológicas, 
farmacológicas, moleculares e anatômicas. No presente artigo, nós revisamos resumidamente 
como a pesquisa da epilepsia contribuiu para novas descobertas do funcionamento do 
cérebro e vice-versa. 
 
 
 
 
 
 
: A Mente Humana # 3, outubro de 2004 
 
Epilepsia: uma janela para o cérebro. 
 
 
 
“Mestre, eu te trouxe o meu filho, que está com um espírito que o impede de falar. Onde quer 
que o apanhe, joga-o no chão. Ele espuma pela boca, range os dentes e fica rígido...”. 
 
Todos sabemos o que está acontecendo com esse garoto. O que alguns talvez não 
saibam é que esse relato tem mais de dois mil anos (1). Naquela época, as idéias relacionadas 
às doenças geralmente vinculavam-se a fenômenos sobrenaturais, magia ou maldições. Hoje 
sabemos que aproximadamente 1% da população mundial (60 milhões de pessoas) é 
acometida por crises epilépticas recorrentes, resultantes de uma hiperatividade dos neurônios 
e circuitos cerebrais (2) (3) (4). A essa síndrome chamamos “epilepsia”, que na língua original 
significa “ser apanhado de surpresa”. 
 
As descrições mais remotas de epilepsia são atribuídas aos egípcios e sumérios, 
datando de aproximadamente 3.500 a.C. O principal documento que trata de neurologia no 
Egito Antigo, o Papiro de Smith, relata crises convulsivas nos trechos que descrevem 
indivíduos com ferimentos na cabeça, por volta de 1.700 a.C. Na Suméria (Mesopotâmia), 
nessa mesma época, vários textos em acadiano registram claramente o que hoje chamamos de 
crises epilépticas. Manuscritos mais recentes, como os textos bíblicos do primeiro século, 
também citam a ocorrência de manifestações muito semelhantes a crises convulsivas, 
geralmente associadas à possessão demoníaca. 
 
Por volta de 400 a.C., Hipócrates, o chamado “Pai da Medicina”, afirmou que a causa 
da epilepsia não estava em espíritos malignos, mas sim no cérebro, tentando desfazer mitos 
sobrenaturais. Os escritos da época foram os primeiros a atribuir causas físicas para as 
doenças neurológicas, identificando o cérebro como local-chave para o entendimento do 
comportamento humano. Desde então, esse novo olhar sobre o sistema nervoso tem 
impulsionado as pesquisas na área da neurologia. Médicos, anatomistas, escultores, pintores, 
filósofos, teólogos, físicos e uma infinidade de pesquisadores tem sido seduzidos pelo estudo 
da “sede da alma” (5). 
 
: A Mente Humana # 3, outubro de 2004 
 
 
Conhecendo o cérebro quebrado 
 
Muito do que sabemos hoje sobre o funcionamento do sistema nervoso é fruto da 
observação de indivíduos acometidos por doenças neurológicas. Assim, inferimos que o 
cerebelo participa da coordenação dos movimentos voluntários ao observar que indivíduos 
com lesões cerebelares tornam-se incapazes de executar movimentos adequadamente. Nesse 
sentido, o estudo da epilepsia oferece uma oportunidade ímpar para aprofundar o 
conhecimento a respeito do cérebro humano. Bastaria dizer que a epilepsia é a doença 
neurológica mais comum, mas isso não é tudo. O termo “epilepsia” encerra uma grande 
variedade de manifestações clínicas, desde as chamadas auras psíquicas até as crises tônico-
clônicas generalizadas, incluindo as epilepsias da infância, as epilepsias secundárias a outras 
doenças, as epilepsias de origem familiar e muitas outras (6) (7). Poderíamos dizer que os tipos 
de epilepsia são tão variados quanto as próprias funções cerebrais. Assim, o conhecimento da 
epilepsia se mistura ao conhecimento do próprio cérebro. 
 
Em pacientes com epilepsia, as causas das descargas epilépticas são muito variadas. 
Elas podem ocorrer em virtude de uma simples tendência a crises, determinada por fatores 
genéticos, ou em função de lesões bem definidas do sistema nervoso. Aproximadamente 70% 
dos pacientes com epilepsia controlam as crises usando os fármacos disponíveis. Mas uma 
porcentagem significativa (de 30% a 40%), em que predominam indivíduos com lesões 
focais, não consegue controlá-las com medicamentos. Nesses casos, o tratamento cirúrgico 
pode, após análise cuidadosa, ser uma alternativa eficaz. Atualmente, a avaliação desses 
pacientes inclui uma gama de exames bastante sofisticados como a ressonância magnética 
estrutural e funcional, a tomografia por emissão de pósitrons (Positron Emission Tomography 
- PET) e a tomografia por emissão de fóton único (Single Photon Emission Computed 
Tomography - SPECT). Esses exames nos permitem visualizar mudanças sutis na estrutura do 
tecido nervoso e no modo como as diferentes regiões cerebrais estão funcionando (2) (3) (4). 
 
Além dos estudos envolvendo pacientes com epilepsia, existe uma variedade de 
modelos em animais que têm contribuído sobremaneira para o conhecimento detalhado dos 
fenômenos envolvidos na origem e na manifestação das crises epilépticas. 
 
 
: A Mente Humana # 3, outubro de 2004 
 
Crises provocadas 
 
As preparações experimentais mais antigas não reproduziam de forma fidedigna a 
fenomenologia encontrada em seres humanos. Naqueles modelos, as crises eram induzidas 
principalmente de forma aguda, não sendo observada a ocorrência de crises espontâneas 
tardiamente. Vale recordar que, por definição, a epilepsia é caracterizada por crises 
espontâneas e recorrentes. Assim, indivíduos que apresentam crises isoladas, principalmente 
se forem provocadas, não são considerados portadores de epilepsia. Entretanto, os modelos de 
crises induzidas foram e ainda são muito úteis, particularmente no estudo das respostas 
cerebrais a determinados tipos de estimulação. Um exemplo disso é o modelo clássico do 
“abrasamento amigdaliano” (8). Nesse modelo, são aplicados estímulos elétricos repetidos 
através de um eletrodo intracerebral implantado nos núcleos da amígdala (Figura 1), 
culminando com uma crise do tipo tônico-clônica generalizada. A estimulação repetida 
produz uma modificação progressiva dos circuitos neuronais - “abrasamento” - que pode ser 
interpretada como um fenômeno de neuroplasticidade. Muito do que sabemos hoje sobre 
plasticidade cerebral - a capacidade dos circuitos neuronais de se modificarem como resposta 
aos estímulos do meio - é fruto de estudos que utilizaram esse e outros modelos de indução de 
crises (9) (10). 
 
 
 
: A Mente Humana # 3, outubro de 2004 
Crises espontâneas 
 
Nas últimas duas décadas, novos modelos foram desenvolvidos tendo como 
característica principal a ocorrência de crises espontâneas, geralmente subseqüentes a um 
insultocerebral. Dentre eles, destacam-se os modelos de epilepsia do lobo temporal (ELT), 
que é caracterizada por crises bastante peculiares denominadas “crises parciais complexas”. 
Dados epidemiológicos mostram que esse é o tipo mais freqüente de crise em seres humanos, 
ocorrendo em aproximadamente 40-50% de todos os pacientes com epilepsia (2) (3) (4). Os 
circuitos primariamente envolvidos na ELT incluem estruturas do sistema límbico, 
particularmente o hipocampo e a amígdala (Figura 2). Essas estruturas participam dos 
processos de memória e aprendizado e encontram-se seriamente afetadas na ELT. O achado 
mais característico da ELT é a atrofia hipocampal, decorrente da perda seletiva de neurônios e 
do processo de gliose que acompanha a perda celular. Em humanos essa alteração pode ser 
observada com a ressonância magnética e é denominada “esclerose mesial temporal” (Figura 
3). A ELT associada à esclerose do hipocampo é a principal causa de resistência ao 
tratamento medicamentoso (“refratariedade”) em pacientes adultos com epilepsia (2) (3) (4). A 
alta incidência de refratariedade na ELT em humanos, bem como seu impacto na vida do 
indivíduo e na sociedade, tem compelido pesquisadores no mundo todo a estudar sua 
fisiopatologia, o que torna os modelos experimentais particularmente relevantes. 
 
 
 
 
: A Mente Humana # 3, outubro de 2004 
 
 
Os principais modelos de ELT têm em comum a indução química de um estado de mal 
epiléptico (status epilepticus), situação na qual as crises perduram por várias horas (11). As 
crises prolongadas promovem um desequilíbrio metabólico acompanhado de uma liberação 
maciça de substâncias excitatórias, resultando na lesão de estruturas cerebrais sensíveis, como 
por exemplo, o hipocampo. Essa lesão é caracterizada pela morte celular, rearranjo das 
conexões sinápticas e alterações nas propriedades intrínsecas das células nervosas. Após um 
período variável de recuperação, chamado “fase latente”, as redes neuronais tornam-se 
epileptogênicas, isto é, capazes de gerar crises. Curiosamente, essa evolução (insulto inicial - 
fase latente - aparecimento das crises) também é observada na ELT humana. Muitos pacientes 
relatam um “evento inicial” - crises prolongadas ou traumatismo craniano - nos primeiros 
anos de vida, seguindo-se um período assintomático até a adolescência, quando as crises 
geralmente têm início. 
 
Graças ao estudo desses modelos experimentais “crônicos”, hoje conhecemos a 
sucessão de eventos celulares que culmina com o aparecimento das crises espontâneas. A 
cascata de reações inicia-se durante o insulto inicial (status epilepticus), quando ocorre a 
ativação de canais iônicos e receptores de membrana, resultando em acúmulo de glutamato e 
elevação dos níveis de cálcio intracelular. O cálcio intracelular age como um segundo 
mensageiro, promovendo a ativação de enzimas presentes no citoplasma (alterações “pós-
translacionais”) e modificando a expressão gênica e a síntese protéica (alterações 
“transcripcionais”). A partir de horas e estendendo-se por dias ou semanas, ocorre a morte 
 
: A Mente Humana # 3, outubro de 2004 
neuronal seletiva por necrose e apoptose, paralelamente à ativação de processo inflamatório, 
neurogênese e reorganização sináptica. Depois de um período latente variável, surgem as 
crises espontâneas e recorrentes que caracterizam a epilepsia crônica. 
 
Ao longo da história, os modelos experimentais permitiram um grande avanço no 
conhecimento dos mecanismos básicos das epilepsias e muitas drogas antiepilépticas foram 
desenvolvidas a partir de tais modelos. Atualmente qualquer nova droga deve ser 
obrigatoriamente testada em modelos animais antes de sua utilização em seres humanos. 
 
Penso, logo... faço uma crise! 
 
Curiosamente, parece existir uma íntima relação entre os mecanismos de 
epileptogênese e plasticidade neuronal: ambos dependem da ativação de receptores do tipo 
NMDA para sua indução, de receptores do tipo AMPA para sua manutenção e da síntese de 
proteínas específicas para a sua fixação a longo prazo. Considerando a superposição, ou 
correspondência, dos processos celulares que subjazem a ambos, alguns autores têm sugerido 
que o processo de epileptogênese talvez pudesse ser entendido como uma exacerbação 
anômala dos mecanismos fisiológicos de neuroplasticidade (9). Nesse sentido, a alta 
capacidade de processamento cerebral serviria como substrato para o desenvolvimento da 
epilepsia. Circuitos com uma plasticidade exuberante, como aqueles relacionados aos 
processos de memória e aprendizado, seriam os mais susceptíveis ao processo de 
epileptogênese. Mas poderia esse raciocínio ter fundamento? Aparentemente sim. De fato, as 
regiões que mais comumente originam descargas epilépticas em seres humanos são 
justamente o córtex cerebral e o hipocampo. São também essas estruturas que, em modelos 
animais, apresentam maior susceptibilidade a crises. Essas regiões possuem características 
importantes tanto para os processos de memória e aprendizado, quanto para o 
desenvolvimento de fenômenos epilépticos. Dentre essas características, destacam-se 
particularmente a organização laminar, isto é, a disposição das células em camadas, a 
presença de circuitos recorrentes e a abundância de receptores excitatórios (9). Mas isso não é 
tudo. As fases da vida marcadas por uma exuberância dos processos de plasticidade neuronal 
são também aquelas onde se observa uma maior incidência de crises epilépticas. Isso ocorre 
nitidamente durante o desenvolvimento cerebral. Geralmente se reconhece que os fenômenos 
plásticos observados no cérebro adulto são muito mais evidentes no cérebro imaturo, 
particularmente no que se refere à capacidade de aprendizagem, adaptação a novos estímulos 
 
: A Mente Humana # 3, outubro de 2004 
e recuperação após um dano cerebral. O que confere essas características ao cérebro em 
desenvolvimento? Dentre os principais fatores destacamos o predomínio da atividade 
excitatória sobre a modulação inibitória e a abundância de fatores neurotróficos (9). Essas duas 
características possibilitam uma maior capacidade para formação de novas sinapses, 
construção de novos circuitos e armazenamento de uma imensa quantidade de informação 
nova. 
 
 
 
Erro de percurso? 
 
 O recente avanço da biologia molecular e da genética tem possibilitado identificar o 
substrato de muitas formas de epilepsia antes consideradas de causa desconhecida. Nesse 
grupo de pacientes, alterações sutis na expressão gênica, transmitidas de geração em geração, 
podem determinar a formação de componentes celulares, neurônios e, finalmente, circuitos 
mais propensos ao desenvolvimento de crises epilépticas. Dentre os muitos tipos de epilepsia 
causados por alterações desse tipo, destaca-se um grupo comumente associado à 
refratariedade medicamentosa; os distúrbios do desenvolvimento cortical (DDCs). Mais uma 
vez, o avanço do conhecimento desse tipo de epilepsia se mistura com o conhecimento do 
próprio cérebro. 
Os DDCs, antigamente chamados “distúrbios da migração neuronal”, são a principal 
causa de epilepsia refratária em crianças e decorrem de alterações no processo de formação do 
córtex cerebral (2) (3) (4) (12). Nos mamíferos, a formação do córtex cerebral é um processo 
temporal e espacialmente organizado, caracterizado pela formação de ondas sucessivas de 
proliferação, migração, diferenciação e morte celular (13). Nas fases iniciais da corticogênese 
ocorre uma intensa proliferação de neurônios ao redor dos ventrículos cerebrais (zona 
ventricular). As células que nascem na zona ventricular migram radialmente,usando células 
da glia (“glia radial”) como um andaime, e são destinadas a formar células piramidais. Já os 
interneurônios corticais são gerados na porção ventral do encéfalo embrionário e migram 
tangencialmente, seguindo feixes de axônios até o córtex. Uma vez no córtex cerebral, cada 
neurônio precisa “encontrar” a posição adequada e estabelecer conexões sinápticas 
funcionantes, caso contrário é eliminado através do processo de apoptose (13). Cada uma 
dessas fases requer a participação de diferentes elementos tais como fatores tróficos, 
neurotúbulos (constituintes do citoesqueleto), moléculas de sinalização e de adesão celular e 
 
: A Mente Humana # 3, outubro de 2004 
fatores de transcrição gênica. Falhas em qualquer um desses elementos podem potencialmente 
causar um DDC, resultando em lesões mais ou menos focais, dependendo da extensão e do 
tipo de defeito envolvido (12) (14) (15). Do ponto de vista histológico, as lesões são caracterizadas 
por perda da laminação cortical, alteração do posicionamento ou da orientação celular e 
neurônios dismórficos (Figura 4). 
 
 
 
Uma característica marcante dos DDCs é a sua capacidade de gerar descargas 
epilépticas e levar, muito freqüentemente, ao desenvolvimento de epilepsias refratárias ao 
tratamento medicamentoso. Por esse motivo, diversos modelos experimentais têm sido 
desenvolvidos com o objetivo de se estudar os possíveis mecanismos envolvidos na origem e 
na epileptogenicidade dos DDCs (12) (15). 
Há mais de 40 anos foi identificada, em ratos, uma mutação autossômica que causa 
desordens neurológicas associadas a uma distribuição anormal das camadas corticais. 
Verificou-se que essas alterações são decorrentes de um defeito na síntese de reelina (por 
isso, a denominação “reeler”), uma serino-protease da matriz extracelular que se liga a vários 
receptores de neurônios em fase de migração. Durante a corticogênese normal, a reelina 
separa o neurônio da glia radial, determinando sua posição nas diferentes camadas do córtex 
cerebral. Os ratos “reeler” apresentam um córtex “invertido” (as camadas profundas estão na 
superfície e vice-versa) associado a uma maior excitabilidade neuronal (15). 
Outro roedor mutante, o rato “TISH", tem sido usado para estudar um subtipo 
particular de DDC: a heterotopia subcortical em banda (HSB), também chamada “duplo 
 
: A Mente Humana # 3, outubro de 2004 
córtex”. Em seres humanos, a HSB é caracterizada por uma coleção de neurônios 
heterotópicos localizada abaixo do córtex cerebral, que mantém um aspecto aparentemente 
normal. Os ratos “TISHs” (Telencephalic Internal Structural Heterotopia) apresentam 
alterações semelhantes ao “duplo córtex” humano, tipicamente acompanhadas de crises 
parciais, que podem progredir para generalização secundária (15). 
Esses e vários outros modelos experimentais têm ajudado a compreender os 
mecanismos de hiperexcitabilidade intrínseca dos DDCs, além de serem amplamente 
utilizados como ferramentas para o estudo da própria formação do córtex cerebral. Muito do 
que sabemos hoje sobre o processo fisiológico da corticogênese é fruto de estudos sobre os 
DDCs. 
 
 
Perspectivas 
 
 Estimulação elétrica intracerebral, indução farmacológica de crises prolongadas, 
animais com diferentes tipos de malformação cerebral; essas e muitas outras ferramentas para 
o estudo da epilepsia têm ampliado nosso conhecimento sobre o sistema nervoso. Novas 
tecnologias estão constantemente sendo criadas, gerando informações cada vez mais refinadas 
a respeito do funcionamento cerebral. Certamente, o interesse pela melhor compreensão dos 
distúrbios neurológicos, particularmente a epilepsia, continuará impulsionando esse 
desenvolvimento e, como vimos, esse desafio é do tamanho da própria complexidade cerebral. 
 
 
Referências 
 
1. Sociedade Bíblica Internacional, Bíblia Sagrada: nova versão internacional. (Editora 
Vida, São Paulo, 2001). 
2. J.C. Costa, A. Palmini, E.M.T. Yacubian, E.A. Cavalheiro, Ed, Fundamentos 
neurobiológicos das epilepsias (Lemos Editorial, São Paulo, 1998). 
3. C.A.M. Guerreiro, M.M. Guerreiro, F. Cendes, I. Lopescendes, Ed, Epilepsia (Lemos 
Editorial, São Paulo, 2000). 
4. E.M.T. Yacubian, Ed, Tratamento medicamentoso das epilepsias (Lemos Editorial, 
São Paulo, 2004). 
 
: A Mente Humana # 3, outubro de 2004 
5. M.M. Gomes, Marcos históricos da neurologia (Editora Científica Nacional, Rio de 
Janeiro, 1997). 
6. Commission no Classification and Terminology of the International League Against 
Epilepsy, Epilepsia, 22, 489 (1981). 
7. J.Jr. Engel, Epilepsia, 42, (6), 796 (2001). 
8. G.V. Goddard, D. McIntyre, C. Leech, Exp Neurol, 25, 295 (1969). 
9. J.Jr. Engel, P.A. Schwartzkroin, S.L. Moshé, D.H. Lowenstein, Ed, Brain Plasticity 
and Epilepsy (Academic Press, San Diego, 2001). 
10. W. Loscher, Epilepsy Res., 50, 105 (2002). 
11. J.P. Leite, N. Garcia-Cairasco, E.A. Cavalheiro, Epilepsy Res., 50, 93 (2002). 
12. R. Spreafico, G. Avanzini, F. Andermann, Ed, Abnormal cortical development and 
epilepsy (John Libbey & Company Ltd, London, 1999). 
13. M. Bentivoglio, L. Tassi, E. Pech, C. Costa, P.F. Fabene, R. Spreafico, Epileptic 
Disord., 5, Suppl 2, S27 (2003). 
14. A. Palmini, I. Najm, G. Avanzini, T. Babb, R. Guerrini, N. Foldvary-Schaefer, G. 
Jackson, H.O. Lüders, R. Prayson, R. Spreafico, H.V. Vinters, Neurology, 62, Suppl 3, 
S2 (2004). 
15. N. Chevassus-au-Louis, S.C. Baraban, J-L. Gaïarsa, Y. Ben-Ari, Epilepsia, 40, (7), 
811 (1999).

Outros materiais