Buscar

204716361 Megson Solution Manual Aircraft Structures CH01

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 13 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 13 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 13 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Solution-1-H6739.tex 24/1/2007 9: 28 Page 3
Solutions Manual
Solutions to Chapter 1 Problems
S.1.1
The principal stresses are given directly by Eqs (1.11) and (1.12) in which
σx = 80N/mm2, σy = 0 (or vice versa) and τxy = 45N/mm2. Thus, from Eq. (1.11)
σI = 802 +
1
2
√
802 + 4 × 452
i.e.
σI = 100.2N/mm2
From Eq. (1.12)
σII = 802 −
1
2
√
802 + 4 × 452
i.e.
σII = −20.2N/mm2
The directions of the principal stresses are defined by the angle θ in Fig. 1.8(b) in
which θ is given by Eq. (1.10). Hence
tan 2θ = 2 × 45
80 − 0 = 1.125
which gives
θ = 24◦11′ and θ = 114◦11′
It is clear from the derivation of Eqs (1.11) and (1.12) that the first value of θ
corresponds to σI while the second value corresponds to σII.
Finally, the maximum shear stress is obtained from either of Eqs (1.14) or (1.15).
Hence from Eq. (1.15)
τmax = 100.2 − (−20.2)2 = 60.2N/mm
2
and will act on planes at 45◦ to the principal planes.
Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.
Solution-1-H6739.tex 24/1/2007 9: 28 Page 4
4 Solutions Manual
S.1.2
The principal stresses are given directly by Eqs (1.11) and (1.12) in which σx =
50N/mm2, σy =−35N/mm2 and τxy = 40N/mm2. Thus, from Eq. (1.11)
σI = 50 − 352 +
1
2
√
(50 + 35)2 + 4 × 402
i.e.
σI = 65.9N/mm2
and from Eq. (1.12)
σII = 50 − 352 −
1
2
√
(50 + 35)2 + 4 × 402
i.e.
σII = −50.9N/mm2
From Fig. 1.8(b) and Eq. (1.10)
tan 2θ = 2 × 40
50 + 35 = 0.941
which gives
θ = 21◦38′(σI) and θ = 111◦38′(σII)
The planes on which there is no direct stress may be found by considering the
triangular element of unit thickness shown in Fig. S.1.2 where the planeAC represents
the plane on which there is no direct stress. For equilibrium of the element in a direction
perpendicular to AC
0 = 50AB cosα − 35BC sin α + 40AB sin α + 40BC cosα (i)
A
B C
τ
α
35 N/mm2
40 N/mm2
50 N/mm2
Fig. S.1.2
Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.
Solution-1-H6739.tex 24/1/2007 9: 28 Page 5
Solutions to Chapter 1 Problems 5
Dividing through Eq. (i) by AB
0 = 50 cosα − 35 tan α sin α + 40 sin α + 40 tan α cosα
which, dividing through by cosα, simplifies to
0 = 50 − 35 tan2 α + 80 tan α
from which
tan α = 2.797 or −0.511
Hence
α = 70◦21′ or −27◦5′
S.1.3
The construction of Mohr’s circle for each stress combination follows the procedure
described in Section 1.8 and is shown in Figs S.1.3(a)–(d).
Fig. S.1.3(a)
Fig. S.1.3(b)
Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.
Solution-1-H6739.tex 24/1/2007 9: 28 Page 6
6 Solutions Manual
Fig. S.1.3(c)
Fig. S.1.3(d)
S.1.4
The principal stresses at the point are determined, as indicated in the question, by
transforming each state of stress into a σx, σy, τxy stress system. Clearly, in the
first case σx = 0, σy = 10N/mm2, τxy = 0 (Fig. S.1.4(a)). The two remaining cases
are transformed by considering the equilibrium of the triangular element ABC in
Figs S.1.4(b), (c), (e) and (f). Thus, using the method described in Section 1.6
and the principle of superposition (see Section 5.9), the second stress system of
Figs S.1.4(b) and (c) becomes the σx, σy, τxy system shown in Fig. S.1.4(d) while
Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.
Solution-1-H6739.tex 24/1/2007 9: 28 Page 7
Solutions to Chapter 1 Problems 7
10 N/mm2
Fig. S.1.4(a) Fig. S.1.4(b)
Fig. S.1.4(c)
Fig. S.1.4(d)
the third stress system of Figs S.1.4(e) and (f) transforms into the σx, σy, τxy system of
Fig. S.1.4(g).
Finally, the states of stress shown in Figs S.1.4(a), (d) and (g) are superimposed
to give the state of stress shown in Fig. S.1.4(h) from which it can be seen that
σI = σII = 15N/mm2 and that the x and y planes are principal planes.
Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.
Solution-1-H6739.tex 24/1/2007 9: 28 Page 8
8 Solutions Manual
Fig. S.1.4(e) Fig. S.1.4(f)
Fig. S.1.4(g)
Fig. S.1.4(h)
S.1.5
The geometry of Mohr’s circle of stress is shown in Fig. S.1.5 in which the circle is
constructed using the method described in Section 1.8.
From Fig. S.1.5
σx = OP1 = OB − BC + CP1 (i)
Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.
Solution-1-H6739.tex 24/1/2007 9: 28 Page 9
Solutions to Chapter 1 Problems 9
O C
τ
σ
τmax
τmax
P1
P2
Q1 (σx, τxy)
Q2 (sy,�τxy)
B (σI)
Fig. S.1.5
In Eq. (i) OB= σI, BC is the radius of the circle which is equal to τmax and
CP1 =
√
CQ21 − Q1P21 =
√
τ2max − τ2xy. Hence
σx = σI − τmax +
√
τ2max − τ2xy
Similarly
σy = OP2 = OB − BC − CP2 in which CP2 = CP1
Thus
σy = σI − τmax −
√
τ2max − τ2xy
S.1.6
From bending theory the direct stress due to bending on the upper surface of the shaft
at a point in the vertical plane of symmetry is given by
σx = MyI =
25 × 106 × 75
π × 1504/64 = 75N/mm
2
From the theory of the torsion of circular section shafts the shear stress at the same
point is
τxy = TrJ =
50 × 106 × 75
π × 1504/32 = 75N/mm
2
Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.
Solution-1-H6739.tex 24/1/2007 9: 28 Page 10
10 Solutions Manual
Substituting these values in Eqs (1.11) and (1.12) in turn and noting that σy = 0
σI = 752 +
1
2
√
752 + 4 × 752
i.e.
σI = 121.4N/mm2
σII = 752 −
1
2
√
752 + 4 × 752
i.e.
σII = −46.4N/mm2
The corresponding directions as defined by θ in Fig. 1.8(b) are given by Eq. (1.10)
i.e.
tan 2θ = 2 × 75
75 − 0 = 2
Hence
θ = 31◦43′(σI)
and
θ = 121◦43′(σII)
S.1.7
The direct strains are expressed in terms of the stresses using Eqs (1.42), i.e.
εx = 1E [σx − ν(σy + σz)] (i)
εy = 1E [σy − ν(σx + σz)] (ii)
εz = 1E [σz − ν(σx + σy)] (iii)
Then
e = εx + εy + εz = 1E [σx + σy + σz − 2ν(σx + σy + σz)]
i.e.
e = (1 − 2ν)
E
(σx + σy + σz)
whence
σy + σz = Ee(1 − 2ν) − σx
Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.
Solution-1-H6739.tex 24/1/2007 9: 28 Page 11
Solutions to Chapter 1 Problems 11
Substituting in Eq. (i)
εx = 1E
[
σx − ν
(
Ee
1 − 2ν − σx
)]
so that
Eεx = σx(1 + ν) − νEe1 − 2ν
Thus
σx = νEe(1 − 2ν)(1 + ν) +
E
(1 + ν)εx
or, since G=E/2(1+ ν) (see Section 1.15)
σx = λe + 2Gεx
Similarly
σy = λe + 2Gεy
and
σz = λe + 2Gεz
S.1.8
The implication in this problem is that the condition of plane strain also describes the
condition of plane stress. Hence, from Eqs (1.52)
εx = 1E (σx − νσy) (i)
εy = 1E (σy − νσx) (ii)
γxy = τxyG =
2(1 + ν)
E
τxy (see Section 1.15) (iii)
The compatibility condition for plane strain is
∂2γxy
∂x ∂y
= ∂
2εy
∂x2
+ ∂
2εx
∂y2
(see Section 1.11) (iv)
Substituting in Eq. (iv) for εx, εy and γxy from Eqs (i)–(iii), respectively, gives
2(1 + ν)∂
2τxy
∂x ∂y
= ∂
2
∂x2
(σy − νσx) + ∂
2
∂y2
(σx − νσy) (v)
Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.
Solution-1-H6739.tex 24/1/2007 9: 28 Page 12
12 Solutions Manual
Also, from Eqs (1.6) and assuming that the body forces X and Y are zero
∂σx
∂x
+ ∂τzy
∂y
= 0 (vi)
∂σy
∂y
+ ∂τxy
∂x
= 0 (vii)
Differentiating Eq. (vi) with respect to x and Eq. (vii) with respect to y and adding gives
∂2σx
∂x2
+ ∂
2τxy
∂y ∂x
+ ∂
2σy
∂y2
+ ∂
2τxy
∂x ∂y
= 0
or
2
∂2τxy
∂x ∂y
= −
(
∂2σx
∂x2
+ ∂
2σy
∂y2
)
Substituting in Eq. (v)
−(1 + ν)
(
∂2σx
∂x2
+ ∂
2σy
∂y2
)
= ∂
2
∂x2
(σy − νσx) + ∂
2
∂y2
(σx − νσy)
so that
−(1 + ν)
(
∂2σx
∂x2
+ ∂
2σy
∂y2
)
= ∂
2σy
∂x2
+ ∂
2σx
∂y2
− ν
(
∂2σx
∂x2
+ ∂
2σy
∂y2)
which simplifies to
∂2σy
∂x2
+ ∂
2σx
∂y2
+ ∂
2σx
∂x2
+ ∂
2σy
∂y2
= 0
or
(
∂2
∂x2
+ ∂
2
∂y2
)
(σx + σy) = 0
S.1.9
Suppose that the load in the steel bar is Pst and that in the aluminium bar is Pal. Then,
from equilibrium
Pst + Pal = P (i)
From Eq. (1.40)
εst = PstAstEst εal =
Pal
AalEal
Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.
Solution-1-H6739.tex 24/1/2007 9: 28 Page 13
Solutions to Chapter 1 Problems 13
Since the bars contract by the same amount
Pst
AstEst
= Pal
AalEal
(ii)
Solving Eqs (i) and (ii)
Pst = AstEstAstEst + AalEalP Pal =
AalEal
AstEst + AalEalP
from which the stresses are
σst = EstAstEst + AalEalP σal =
Eal
AstEst + AalEalP (iii)
The areas of cross-section are
Ast = π × 75
2
4
= 4417.9mm2 Aal = π(100
2 − 752)
4
= 3436.1mm2
Substituting in Eq. (iii) we have
σst = 10
6 × 200 000
(4417.9 × 200 000 + 3436.1 × 80 000) = 172.6N/mm
2 (compression)
σal = 10
6 × 80 000
(4417.9 × 200 000 + 3436.1 × 80 000) = 69.1N/mm
2 (compression)
Due to the decrease in temperature in which no change in length is allowed the strain
in the steel is αstT and that in the aluminium is αalT . Therefore due to the decrease in
temperature
σst = EstαstT = 200 000 × 0.000012 × 150 = 360.0N/mm2 (tension)
σal = EalαalT = 80 000 × 0.000005 × 150 = 60.0N/mm2 (tension)
The final stresses in the steel and aluminium are then
σst(total) = 360.0 − 172.6 = 187.4N/mm2 (tension)
σal(total) = 60.0 − 69.1 = −9.1N/mm2 (compression).
S.1.10
The principal strains are given directly by Eqs (1.69) and (1.70). Thus
εI = 12(−0.002 + 0.002) +
1√
2
√
(−0.002 + 0.002)2 + (+0.002 + 0.002)2
Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.
Solution-1-H6739.tex 24/1/2007 9: 28 Page 14
14 Solutions Manual
i.e.
εI = +0.00283
Similarly
εII = −0.00283
The principal directions are given by Eq. (1.71), i.e.
tan 2θ = 2(−0.002) + 0.002 − 0.002
0.002 + 0.002 = −1
Hence
2θ = −45◦ or +135◦
and
θ = −22.5◦ or +67.5◦
S.1.11
The principal strains at the point P are determined using Eqs (1.69) and (1.70). Thus
εI =
[
1
2
(−222 + 45) + 1√
2
√
(−222 + 213)2 + (−213 − 45)2
]
× 10−6
i.e.
εI = 94.0 × 10−6
Similarly
εII = −217.0 × 10−6
The principal stresses follow from Eqs (1.67) and (1.68). Hence
σI = 31 0001 − (0.2)2 (94.0 − 0.2 × 271.0) × 10
−6
i.e.
σI = 1.29N/mm2
Similarly
σII = −8.14N/mm2
Since P lies on the neutral axis of the beam the direct stress due to bending is zero.
Therefore, at P, σx = 7N/mm2 and σy = 0. Now subtracting Eq. (1.12) from (1.11)
σI − σII =
√
σ2x + 4τ2xy
Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.
Solution-1-H6739.tex 24/1/2007 9: 28 Page 15
Solutions to Chapter 2 Problems 15
i.e.
1.29 + 8.14 =
√
72 + 4τ2xy
from which τxy = 3.17N/mm2.
The shear force at P is equal to Q so that the shear stress at P is given by
τxy = 3.17 = 3Q2 × 150 × 300
from which
Q = 95 100N = 95.1 kN.
Solutions to Chapter 2 Problems
S.2.1
The stress system applied to the plate is shown in Fig. S.2.1. The origin, O, of the axes
may be chosen at any point in the plate; let P be the point whose coordinates are (2, 3).
2p
2p
3p3p
4p
4p
4p
4p
y
xO
P (2,3)
Fig. S.2.1
From Eqs (1.42) in which σz = 0
εx = −3pE − ν
2p
E
= −3.5p
E
(i)
εy = 2pE + ν
3p
E
= 2.75p
E
(ii)
Hence, from Eqs (1.27)
∂u
∂x
= −3.5p
E
so that u = −3.5p
E
x + f1(y) (iii)
Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.
	Solutions Manual
	Solutions to Chapter 1 Problems
	Solutions to Chapter 2 Problems

Continue navegando