Buscar

Matriz de densidade e sua aplicação em ressonância magnética nuclear

Prévia do material em texto

Matriz de Densidade e sua Aplicação 
em Ressonância Magnética Nuclear 
 
 
 
 
 
Bathista, A. L. B. S. 
 
Instituto de Física de São Carlo – USP, Av. Trabalhador São 
Carlense 400, São Carlos – SP CEP 13560-970, Caixa Postal 369. 
 
 
 
 
 
Neste trabalho podemos ver as propriedades da matriz de densidade e a sua utilidade 
prática na descrição de experimentos de RMN 
 
 
 
 
 
 
 
 
 
 
DeboraFernanda
Carimbo
1 Introdução ........................................................................................................................ 3 
2 Identificação de Estados. ................................................................................................. 3 
2.1 Estado Puro. .................................................................................................................. 3 
3 Operador de Densidade.................................................................................................... 4 
4 Matriz de Densidade ........................................................................................................ 6 
5 Matriz de Densidade Truncada ........................................................................................ 9 
6 Expansão da Matriz de Densidade................................................................................. 10 
7 Matriz de densidade e a RMN ....................................................................................... 11 
8 Aplicação da Matriz de densidade em RMN ................................................................. 13 
8.1 Pulso 90º-x ................................................................................................................... 13 
8.2 Seqüência Spin-Echo .................................................................................................. 17 
8.3 Echo Sólido................................................................................................................. 19 
11 Tratamento de Distortionless Enhanced Polarization Transfer – DEPT. .................... 24 
13 INADEQUATE-2D: Coerência de duplo quantum. .................................................... 28 
14 Polarização Cruzada e o Conceito de Temperatura de Spin ........................................ 30 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 Introdução 
 
Hoje, com as sofisticadas seqüências de pulsos da espectroscopia de Ressonância 
Magnética Nuclear (RMN) é necessário que se saiba em detalhes como um sistema de 
spin evolui no tempo. O que requer uma ferramenta adicional. A teoria da Matriz de 
Densidade e Operador de Densidade é bem comportada para o tratamento de muitas 
situações em RMN, é largamente utilizada nesta área, particularmente na descrição de 
efeitos dos pulsos de r.f. sobre sistema de spin, além de descrever cada passo dado da 
sequência de pulso (1), como também no tratamento de relaxação magnética nuclear (2). 
 
2 Identificação de Estados. 
2.1 Estado Puro. 
 
Quando nós temos um estado perfeitamente conhecido, como por exemplo seus 
números quânticos (n, l, j, ml), intensidade I ou freqüência v, este é conhecido como um 
estado puro, o qual pode ser estudado a sua evolução temporal e a predição dos 
resultados de várias medidas sobre este. Porém, na prática o estado de um sistema as 
vezes não é bem determinado (3). Um exemplo ilustrativo disto é o tratamento de um 
feixe de luz vindo de uma fornalha, o qual pode conter luz circularmente polarizada como 
linearmente polarizada (4). Neste caso, este é um sistema que tem o mínimo de 
informação ou informação incompleta, este é uma mistura de estado, o qual não pode ser 
confundido com uma superposição de estado. Podemos aplicar sobre este uma ferramenta 
matemática, a Matriz de Densidade, a qual facilita a aplicação simultânea dos postulados 
da Mecânica Quântica e os resultados do cálculo da probabilidade. Sendo que a matriz de 
densidade atua no espaço de estado do sistema dando a probabilidade deste. 
 
 
 
 
 
2.2 Mistura de Estados 
 
Quando não dispomos da informação completa sobre um sistema recorremos ao 
conceito de probabilidade. Por exemplo, um sistema em equilíbrio termodinâmico a uma 
temperatura T apresenta uma probabilidade proporcional a nE kTe− de se encontrar em um 
estado de energia nE . De uma forma mais geral, a informação incompleta de um sistema 
é descrita em mecânica quântica do seguinte modo: o estado deste sistema pode ser o 
estado 1Ψ com probabilidade 1p ou o estado 2Ψ com probabilidade 2p , etc... 
Obviamente: 
 
1 2 ... 1k
k
p p p+ + = =∑ (1) 
 
 Neste caso, dizemos que estamos lidando com uma mistura estatística de estados 
1 2, ,...Ψ Ψ com probabilidades 1 2, ,...p p É importante notar que um sistema descrito 
por uma mistura estatística de estados, com probabilidade kp de um vetor de estado ser 
kΨ , não deve ser confundido com um sistema cujo estado Ψ é uma superposição 
linear de estados: 
 
k k
k
cΨ = Ψ∑ 
 
onde se pode afirmar que o sistema tem probabilidade 2kc de se encontrar no estado 
kΨ . 
 
3 Operador de Densidade 
 
Existe em princípio, um operador para cada informação que se deseja sobre o 
sistema como, por exemplo, os operadores que fornecem a energia, chamados de 
operadores Hamiltonianos que são denotados pelo símbolo H. Mas também há 
operadores que nos informa a respeito da probabilidade de adquirir os resultados 
desejados extraídos do espaço de estado qualquer. 
Para o caso especial de um estado puro, onde a princípio toda informação 
necessária sobre este é completamente conhecida, o operador de densidade )(tρ é 
definido: 
)()()( ttt ΨΨ=ρ [1] 
 
e para os casos mais experimentais (reais), onde as circunstâncias de operacionalidade 
influenciam a forma do operador de densidade é: 
 
ii
i
iP ΨΨ=∑ρ [2] 
 
onde iΨ é um conjunto completo de um estado quântico ortonormal de algum estado, e 
nós temos uma distribuição estatística deste estado ortonormal governado pela 
probabilidade iP de achar iΨ num ensemble de estado. Sendo que a probabilidade é de 
0 a 1, e ∑ =
i
iP 1. Note que o operador de densidade atua sobre um membro do ensemble 
iΨ para produzir a probabilidade de achar o sistema em iΨ , 
 
∑ ΨΨΨ=Ψ
i
iiiii P �
�	�
1
ρ 
iii P Ψ=Ψρ [3] 
 
se todos os membros do ensemble estão no mesmo estado kΨ , dizemos então, o 
operador de densidade se reduz a 
 
kk ΨΨ=ρ [4] 
 
e o sistema é dito um estado puro com 1=kP . Esta é a forma irreduzível do operador de 
densidade, ou operador irredutível, ou seja, a forma mais compacta que o operador de 
densidade possa assumir. 
O operador de densidade também pode ser expandido na forma de uma 
superposição de estado. 
 
ββααρ pp += [5] 
 
4 Matriz de Densidade 
 
4.1 definição 
 
Freqüentemente temos de lidar com situações em que o vetor de estado do sistema não é 
conhecido, mas apenas um conjunto possível de vetores { }iΨ , que ocorrem com 
probabilidades { }ip . O conjunto { },i ip Ψ é chamado de ensemble estatístico. A 
ferramenta matemática adequada para tratar desses casos é a matriz de densidade, ρ , 
definida como: 
 
i i i
i
pρ ≡ Ψ Ψ∑ 
 
onde 0ip > e 1ii p =∑ . 
 
4.2 Operador densidade e Matriz de densidade 
 
O operador de densidade é representado na base { }nu por uma matriz chamada 
de Matriz de Densidade, cujo elementos são: 
 
)()()()( * tctcutut nmnmmn == ρρ [6] 
ou 
)()()( * tctcuut nmnmmn =ΨΨ=ρ 
 
onde )()(* tctc nm é uma média sobre todo o sistema. A média nos garante que os 
coeficientes são dependentes temporais. O que pode ser adquiridos muitas vezes, gerando 
uma média. E comoqualquer outro sistema físico, este evolui no tempo. Sendo que a 
evolução temporal do operador )(tρ pode ser deduzida a partir da equação de 
Schrödinger 
( )iidtdtdtd ΨΨ=)(ρ [7] 


 ΨΨ+Ψ

 Ψ= iiii dt
d
dt
dt
dt
d )(ρ 
)()()()()()(1)(
)()(
tHtttttH
i
t
dt
d
tt
��
��	���
��	�= ρρ
ρ ΨΨ−ΨΨ= 
( ))()()()(1)( tHtttH
i
t
dt
d ρρρ −= = 
[ ])(),(1)( ttH
i
t
dt
d ρρ == 
[ ])(),()( ttHt
dt
di ρρ == [8] 
 
Esta é a evolução temporal do operador de densidade, conhecida como equação de 
Liouville-Von Neumann. Se o Hamiltoniano não varia no tempo, a sua solução é 
 
)()( tUitU
dt
d
=
Η−= [9] 
∫∫ Η−= tU
U
dtitU
U
d
0
)(
0
= 
titU UU =
Η−=
0
|)(ln 
tieUtU )/(0)(
=Η−= [10] 
considerando 10 =U 
tietU )/()( =Η−= [11] 
 
este é o operador de evolução associado a matriz de densidade 
 
HtiHti eet )/()/( )0()( == +−= ρρ [12] 
ou da forma compacta 
)()0()()( 1 tUtUt HH
−= ρρ [13] 
 
Se agora temos um ket Ψ que é um autovetor de H. 
 
nnn EH Ψ=Ψ [14] 
0)( =t
dt
di ρ= [14] 
( ))()()( tt
dt
dt
dt
d
nm ΨΨ=ρ [15] 
)()()()()()(1)(
)()(
tHtttttH
i
t
dt
d
tt
nm �
�	��
�	�= ρρ
ρ ΨΨ−ΨΨ= 
( )nnmnmnnm EEitdt
d ρρρ −= =
1)( 
( ) nmmnnm EEitdt
d ρρ −= =
1)( 
( ) nmmnnm EEtdt
di ρρ −=)(= [16] 
 
 
 
4.3 Propriedades importantes de Matriz de densidade 
 
1. A matriz de densidade é um operador positivo, ou seja, possui autovalores reais não-
negativos. De fato, para qualquer ϕ , 
 
2
0i i i i i
i i
p pϕ ρ ϕ ϕ ϕ ϕ= Ψ Ψ = Ψ ≥∑ ∑ 
 
2. O traço de ρ é igual a 1: 
 
( )( ) 1i i i i
i i
Tr p Tr pρ = Ψ Ψ = =∑ ∑ 
3. O estado será puro se e somente se 2( ) 1Tr ρ = 
 
2
2
...
1
i j i i j j
i j
i j ij i j i
i j i
p p
p p p
ρ
δ
= Ψ Ψ Ψ Ψ =
= Ψ Ψ = ≤
∑∑
∑∑ ∑ 
 
 
a igualdade será satisfeita se somente se 0ip = , exceto para um índice 0i tal que 0 1ip = . 
 
 
5 Matriz de Densidade Truncada 
 
 
{ })exp( )exp()0( jiOpHTr OpH−−=ρ 
 
{ }1Tr
OpHi )1()0( +=ρ 
onde { } NITr )12( +=1 e a matriz de densidade para um único spin é 
 
N
i
I
OpH
)12(
)1()0( +
+=ρ 
já para dois ou mais spins 
∑ +
+= N
i
N
i
I
OpH
)12(
)1()0(ρ 
 
 
6 Expansão da Matriz de Densidade 
 
6.1 A evolução temporal 
 
Tanto a matriz de densidade quanto o Hamiltoniano estão relacionadas através da 
equação de von Neumann. Se ( )tΗ e ( )tρ comutam entre si [ ]( ), ( ) 0H t tρ = , a matriz de 
densidade não se altera ao longo do tempo. Caso eles não comutem entre si e Η seja 
independente do tempo ( 0t∂Η ∂ = ), a solução formal da equação de von Neumann é dada 
por: 
( ) ( )0i t i tt e eρ ρΗ − Η= 
onde o operador U(t) 
 
 ( ) iHtU t e−= 
 
Esta solução pode ser confirmada inserindo na equação de von Neumann (use a regra do 
produto para a derivada, sem mudar a ordem dos operadores) o qual “força” da matriz de 
densidade a evoluir no tempo de acordo com a equação, é denominado propagador. 
 No caso em que ocorrem evoluções sob Hamiltonianas distintas em intervalos de 
tempos diferentes, podemos calcular facilmente a evolução temporal do operador ( )tρ da 
seguinte forma: 
( ) ( )3 3 3 32 2 1 1 1 1 2 2
1
2
3
... 0 ...n n n ni t i t i t i ti t i t i t i t
evento
evento
evento
n e simo evento
t e e e e e e e eρ ρΗ Η − Η − ΗΗ Η − Η − Η
′−
          =             
���	��
������	�����
���������	��������
������������	����� 
������
 
 
7 Matriz de densidade e a RMN 
 
7.1 Matriz de Equilíbrio 
 
Considerando um sistema de spin ½ colocado em um campo magnético. A um 
tempo 0t o sistema está em equilíbrio e neste caso o operador de densidade é dado nas 
bases { }−+ , pela distribuição de Boltzmann(3-5). 
 


















=
−
+
e
e
KT
E
KT
E
eq
2
10
0
2
1
ρ [17] 
onde 
0BE Iγ=−=+ e 0BE Iγ==− 
 
sendo +E e −E a energia Zeeman do sistema de spin considerado. Substituindo em 
[17] temos, 














=
−
e
e
KT
B
KT
B
eq I
I
0
0
2
10
0
2
1
γ
γ
ρ =
=
 [18] 
 
à temperatura ambiente e a um forte campo magnético a energia 0BkT Iγ=>> e logo, 
 
kT
B
e IkT
BI
0
0
1
γγ == +≈ ; 
kT
B
e IkT
BI
0
0
1
γγ == −≈− 
 
por exemplo, a 298 kelvin (K) 21104 −≅ xkT joules (J) e a 100 MHz a energia de 
transição do spin para prótons é .106 260 JxBE I
−== γ= a razão E/kT é acima de 10-5. 
Usando a definição da função exponencial ...!2/1 2 +++= xxe x , cada termo 
exponencial kTBIe /0γ=− é bem aproximadamente de ( )kTBI /1 0γ=− . 
 










 −


 +
=
KT
B
KT
B
I
I
eq
0
0
1
2
10
01
2
1
γ
γ
ρ =
=
 
 
como podemos ver, a matriz de densidade é diagonal para o tempo 00 =t . 
A primeira descrição de um pulso de RMN nos mostra que a matriz de densidade 
inicia com um excesso de magnetização ao longo do eixo z em função do sistema de spin 
estar mergulhado num campo magnético 0B do espectrômetro. 
 
�
�	�
=
zI
I
eq kT
B




−+


=
10
01
10
01
2
1 0γρ [19] 
01
2
I
eq Z
B I
kT
γρ = +1 = [20] 
 
onde 1 é o operador unitário, representado pela matriz unitária, é invariante para qualquer 
transformação, somente o segundo termo da matriz de densidade é de interesse para a 
RMN. Logo temos 
 
Z
I
eq kT
B σγρ 0== [21] 
 
onde zσ é a matriz de Pauli, da mesma forma podemos associar os operadores xI e yI 
com os observáveis xσ e yσ . Os operadores xσ e yσ são representados na base 
{ }−+ , 



=
01
10
xσ e 


 −=
0
0
i
i
yσ 
 
 
8 Aplicação da Matriz de densidade em RMN 
 
 
8.1 Pulso 90º-x 
 
 
Neste caso passaremos a chamar a matriz de densidade )0(ρρ =eq ; e somente 
com o termo de interesse. Obtendo assim uma matriz de densidade parcial. E esta traduz 
o Hamiltoniano de efeito Zeeman 
 
Z
I
kT
B σγρ 0
2
1)0(
== [22] 
 
e para calcular o efeito do pulso de r.f., é necessário a introdução da matriz de rotação. 
Na descrição específica da RMN em que os pulsos são dados nos eixos x e y, temos as 
seguintes matrizes. 




−
−=
)2/cos()2/(
)2/()2/cos(
)2/( φφ
φφ
φ isen
isen
U x [23] 
 



 −=
)2/cos()2/(
)2/()2/cos(
)2/( φφ
φφ
φ sen
sen
U y [24] 
 
sendo estas Matrizes Hermitianas U-(φ/2)x = U†-(φ/2)x e U-(φ/2)y = U†-(φ/2)y. 
90ºx
ρ(0) ρ(1) ρ(2)
 
Figura#: ilustração do pulso de r.f. 
 
 
O Hamiltoniano que descreve o pulso de 90º é dado da seguinte forma 
 
)()()( )2()1()0(º90 tHHHtH x ++= φ [25] 
 
Explicitando o Hamiltoniano de cada termo 
 
)()()( ...º90 tHHHtH relaxfrZeemanx ++= φ 
 
Nos mostra que cada termo do hamiltoniano tem uma dependência sendo que H(0) é 
aproximadamente uma constante, H(1) depende espacialmente e H(2) temporalmente. 
Para o presente exemplo a matriz [23] é utilizada, 
 




−
−=
)2/cos()2/(
)2/()2/cos(
)2/( φφ
φφ
φ isen
isen
U x 
 
e o cálculo é realizado da seguinte maneira 
 
1
)2/()2/( )0()1(
−
−−= ππ ρρ UU x [26] 
 
substituindo o valor do pulso na matriz de rotação [23], temos 
 




−−−
−−−=− )4/cos()4/sen(
)4/sen()4/cos()2/( ππ
ππ
π i
i
U x 



= −− 1
1
2 2/1)2/( i
i
U xπ [27] 
U-1-(π/2)x = U†-(π/2)x [28] 
 
E aplicando na matriz inicial )0(ρ 
 




−
−




−


=
1
1
10
01
1
1
4
)1( 0
i
i
i
iBIγρ = 
y
II B
i
iB σγγρ
20
1
2
)1( 00
== =


 −= 
y
I B σγρ
2
)1( 0
== [29] 
 
y
I
kT
B σγρ 0
2
1)1(
== 
 
Determinamos a matriz depois do pulso de 90º )1(ρ e a sua evolução da matriz )2(ρ , 
utilizando do operador de evolução descrito pela equação [11], 
 
)()1()()2( 1 tUtU −= ρρ 
HtiHti ee )/()/( )1()2( == +−= ρρ 







 −



=
−
− 2/
2/
2/
2/
0
0
0
0
0
0
2
)2( ti
ti
ti
ti
e
e
i
i
e
ep
ω
ω
ω
ω
ρ 



=
−
0
0
2
)2( 2/
2/
ti
ti
e
ep
ω
ω
ρ [30] 
onde 
kT
B
p I 0
γ== . Como trabalhamos no sistema de referência (rotating frame) que está 
rodando sobre o eixo z a uma freqüência 1−⋅Ω srad , o qual é aproximadamente igual 
ao sinal de referencia de r.f., 1−⋅ sradω , logo podemos expressar )2(ρ nesta referencia 
e para fazermos isso precisamos da matriz de rotação )(tDΩ , 
 



= Ω
Ω−
Ω 2/)(
2/)(
0
0)( ti
ti
e
etD [31] 
 
então se deixarmos )(trρ representar ( ))()2( tρρ = nos eixo de coordenadas, logo temos 
 
)()()()( 1 tDttDtr −ΩΩ= ρρ 







 −



= Ω−
Ω
−Ω
Ω−
2/)(
2/)(
2/)(
2/)(
0
0
0
0
0
0
2
)( ti
ti
ti
ti
ti
ti
r
e
e
ie
ie
e
ept ω
ω
ρ 



 −= −Ω
−Ω−
0
0
2
)( )(
)(
ti
ti
r
ie
iept ω
ω
ρ [32] 
 
em resumo, a matriz de densidade dependente do tempo para um spin (I= ½) seguido de 
um pulso de 90º-x no eixo de coordenadas girante é dado por: 
 
)()0()()( 11 tDUUtDt HH
r −
Ω
−
Ω= ρρ 
 
tzIitzIitzIitzIir eeeet Ω−−Ω−= ωω ρρ )0()( 
 



 −= −Ω
−Ω−
0
0
2
)( )(
)(
ti
ti
r
ie
iept ω
ω
ρ [33] 
 
Tendo realizado todos os passos a partir da matriz de densidade, agora podemos 
escrever o Hamiltoniano deste experimento. 
 



 −++= −Ω
−Ω−
0
0
2
1
2
1
2
1)( )(
)(
000
º90 ti
ti
I
y
II
x e
ie
kT
B
kT
B
kT
BtH ω
ωγσγγ === 









 −++= −Ω
−Ω−
0
01
2
1)( )(
)(
0
º90 ti
ti
y
I
x e
ie
kT
BtH ω
ω
σγ= 









 −++= −Ω
−Ω−
0
0
2
1)( )(
)(
10º90 ti
ti
y
I
x e
ieBB
kT
tH ω
ω
σγ= 
Ψ








 −++=Ψ −Ω
−Ω−
0
0
2
1)( )(
)(
10º90 ti
ti
y
I
x e
ieBB
kT
tH ω
ω
σγ= [34] 
e o seu valor esperado é 
ρxx TrHH º90º90 =ΨΨ [35] 
 
 
8.2 Seqüência Spin-Echo 
 
90ºx
ρ(0) ρ(1) ρ(3)ρ(2)
180ºy
τ
ρ(4)
 
 
y
pip σρ
201
10
2
)1( =


 −= , onde 
kT
B
p I 0
γ== 
 



 −= −Ω
−Ω−
0
0
2
)2( )(
)(
ti
ti
r
ie
iep
ω
ωρ 
mas como )3(ρ envolve um pulso de 180ºy temos que sanduichar )3(ρ 
 
†
º180º180
)2()3(
xx
UU ρρ = 
 



 −








−= −Ω−
−Ω−
01
10
0
0
01
10
2
1)3( )(
)(
ti
ti
e
ep
ω
ωρ 
 



 −= −Ω−
−Ω−
0
0
2
)3( )(
)(
ti
ti
ie
iep
ω
ωρ 
 
†
H)3()4( UU H ρρ = 
 







 −



= −Ω−
−Ω
−Ω−
−Ω
−Ω
−Ω−
ti
ti
ti
ti
ti
ti
e
e
ie
ie
e
ep
)(
2/)(
)(
)(
)(
2/)(
0
0
0
0
0
0
2
)4( ω
ω
ω
ω
ω
ωρ 
 
y
pip σρ
201
10
2
)4( =


 −= 
 
(4) (1)
2 y
pρ σ ρ= = 
 





 +


 −++= −Ω
−Ω−
− yyti
ti
yx
I
echospin B
e
ieBB
kT
tH σσγ ω
ω
1)(
)(
10
0
0
2
1)(
=
 
 
8.3 Echo Sólido 
 
Temos agora um acoplamento dipolar entre spins e perguntamos como estes 
evoluem no tempo, particularmente a resposta está de acordo com o pulso aplicado. 
Utilizaremos aqui a representação de matriz de densidade para esta resposta. 
 Considere um estado triplete de dois spins homunecleares, a representação 
matricial do Hamiltoniano é, 0
t
z DH B I Hγ= − += , onde “t ” indica “truncado” 
 
/ 4 0 0
0 / 2 0
0 0 / 4
K
H K
K
ω
ω
− +  = −  + + 
= =
=
= =
 
 
 onde 2(1 3cos )DK ω θ= −= e 3I SD r
γ γω = = , o operador unitário de evolução é 
 
exp( ( / 4) ) 0 0
0 exp( ( / 2) ) 0
0 0 exp( ( / 4) )
H
i K kT
U i K kT
i K kT
ω
ω
−  =   − + 
 
 
a matriz de densidade no t=0 neste caso será 
 
exp(( / 4) ) 0 0
1(0) 0 exp(( / 2) ) 0
3
0 0 exp( ( / 4) )
K kT
K kT
i K kT
ω
ρ
ω
−  =   − − 
= =
=
= =
 
 
desde ( / 4)K kTω − <<= = , nós podemos expandir a exponencial e aproximar: 
 
1 (( / 4) ) 0 0
1(0) 0 1 (( / 2) ) 0
3
0 0 1 (( / 4) )
K kT
K kT
K kT
ω
ρ
ω
+ −  ≈ +  − − 
= =
=
= =
 
 
1 0 0
1(0) 0 2 0
3 3 2
0 0 1
z
KI
kT kT
ωρ
−  = + + +  − 
= = 
 
o primeiro termo é independente do tempo, ou seja, é uma constante. O terceiro termo 
pode se relacionar com o segundo da forma que 
 
1 0 0
(0) 0 0 0
3 3
0 0 1
z
P I
kT
ωρ
  = =  − 
= 
 
onde /p kTω= = . O operador para o pulso / 2π sobre os eixos –x e +y são 
 
( / 2)
1 2 1
1 2 0 2
2
1 2 1
x
i
U i i
i
π−
 + − = + +   − + 
 
e 
 
( / 2)
1 2 1
1 2 0 2
2
1 2 1
yU π
  = −   − 
 
 
agora evoluindo (0) (1)ρ ρ→ , seguimos como mostra a Figura #. 
 
 
 
 
 
 
 
Figura #: seqüência de pulso eco sólido. 
 
 
1 2 1 1 2 11 0 0
(1) 2 0 2 0 0 0 2 0 2
12
0 0 11 2 1 1 2 1
i i
p i i i i
i i
ρ
   + − − −     = + + − −        −   − + − −    
 
 
que se reduz a 
 
0 1 0
2(1) 1 0 1
12 3
1 1 0
y
p pi Iρ
−  = + − = +  − + 
 
 
(1)
3 y
p Iρ = + 
 
agora nós retornamos ao operador evolução nas coordenadas girantes a uma freqüência 
ω , nós temos. 
 
/ 4
/ 2 1
/ 4
0 0
0 0
0 0
iKt
iKt
H H
iKt
e
U e U
e
−
−
−
  = =   
 
 
 
a matriz de densidade a um tempo t depois do primeiro pulso, 
 
/ 4
/ 2 1
/ 4
0 0
0 0
0 0
iKt
iKt
H H
iKt
e
U e U
e
−
−
−
  = =   
 
 
/ 4 / 4
/ 2 / 2
/ 4 / 4
0 0 0 1 0 0 0
2(2) 0 0 1 0 1 0 0
6
0 0 0 1 0 0 0
iKt iKt
iKt iKt
iKt iKt
e e
ip e e
e e
ρ
−
−
−
   −     = −            
 
 
o qual se reduz a 
 
3 / 4
3 / 4 3 / 4
3 / 4
0 0
2(2) 0
6
0 0
i Kt
i Kt i Kt
i Kt
e
ip e e
e
ρ
−
−
 − = −   
 
 
a transformação de (2) (3)ρ ρ→ deve ser feita por um segundo pulso de / 2π , mas 
agora com fase em y, e a sua evolução é 
 
3 / 4
3 / 4 3 / 4
3 / 4
1 2 1 1 2 10 0
2(3) 2 0 2 0 2 0 2
24
0 01 2 1 1 2 1
i Kt
i Kt i Kt
i Kt
e
ip e e
e
ρ
−
−
   − −    = − − −           −     
 
 
3 / 4
3 / 4 3 / 4
3 / 4
0 4 0
2(3) 4 0 4
24
0 4 0
i Kt
i Kt i Kt
i Kt
e
ip e e
e
ρ
−
−
 − = −   
 
 
agora depois da evolução da seqüência de pulsopodemos ver a matriz de densidade do 
Eco (4)ρ : 
 
/ 4 3 / 4 / 4
/ 2 3 / 4 3 / 4 / 2
/ 4 3 / 4 / 4
0 0 0 0 0 0
2(4) 0 0 0 0 0
6
0 0 0 0 0 0
iKt i Kt iKt
iKt i Kt i Kt iKt
iKt i Kt iKt
e e e
ip e e e e
e e e
ρ
− −
−
− −
   −   = −         
 
3 / 4
0 1 0
2(4) 0 1 (1)
6 3
0 1 0
i Kt
y
ip pe Iρ ρ
−  = − = + =   
 
 
(4) (1)ρ ρ= 
 
então nós temo um eco, como podemos ver que (4) (1)ρ ρ= são iguais e isso significa 
que ao final da seqüência pulso conseguimos o mesmo estado inicial (1)ρ . Note que se o 
segundo pulso tem sido yπ , como para um spin eco de Hahn, nós temos 
1
( ) ( )
0 0 1
0 1 0
1 0 0
y yU Uπ π
−
  = =   
 
tendo que 
 
3 / 4
3 / 4 3 / 4
3 / 4
0 0 1 0 0 0 0 1
2(3) 0 1 0 0 0 1 0
6
1 0 0 0 0 1 0 0
i Kt
i Kt i Kt
i Kt
e
ip e e
e
ρ
−
−
 −       = −            
 
 
 
3 / 4
3 / 4 3 / 4
3 / 4
0 0
2(3) 0 (2)
6
0 0
i Kt
i Kt i Kt
i Kt
e
ip e e
e
ρ ρ
−
−
  = − = −  − 
 
 
tal pulso de yπ inverte o sinal de ρ , mas não altera a sua evolução, isso não produz um 
eco. Isto porque o pulso (não-seletivo) de yπ inverte as fases (como um eco de Hahn) e 
inverte o campo local casado por eles. Nós temos um inversão tôo may,que não é um eco 
neste caso, somente para um pulso de / 2π . Um para heteronuclear não terá este 
problema se somente um spin é invertido(2). 
 
 
11 Tratamento de Distortionless Enhanced Polarization 
Transfer – DEPT. 
 
Nesta representação temos: 
 
 
 
 
 
/ 2 0 0 0
0 / 2 0 0
0 0 _ / 2 02
0 0 0 / 2
A X
A X
A X
A X
f f J
f f JhH
f f J
f f J
− − +  − + − =  + −  + + + 
 
 
se nós escrevermos 
 
4A Xf f= 
 
que é um fato empírico aproximado 
 
/ 4Xp hf kT= 
 
então 
 
5 0 0 0
0 3 0 0
(0)
0 0 3 0
0 0 0 5
ρ
   ≈  −  − 
 
 
[ ] [ ]exp ( / ) exp (2 )( / )HU i Ht i H h tπ= == 
isto deixa 
 
2 / 4
2 / 4
2 / 4
2 / 4
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
iJt i
iJt i
H iJt i
iJt i
e e
e e
U
e e
e e
π θ
π θ
π θ
π θ
− −
+ +
+ +
− −
         = =            
 
 
onde podemos escrever 
2 / 4Jtθ π= (B) 
 
a população inicial pode ser achada usando 
0
1
2z z
A σ σ= ⊗ 
 
0 (0) 8zA Tr A pρ= 0 (0) 2zX Tr X pρ= = 
 
deixe-nos agora o sistema AX a uma seqüência de pulso que será deixada DEPT. a 
seqüência na freqüência de ressonância de ambos A e X aparecem como na Figura #. O 
valor de θ é definido na equação (B). Usando a Tabela 1 
 
5 0 0 0
0 3 0 0
(0)
0 0 3 0
0 0 0 5
pρ
   =  −  − 
 
 
08zA p A= = 02zX p X= = 
0A X+ += = 
 
1 0 4 0
0 1 0 4
(1)
4 0 1 0
0 4 0 1
i
i
p
i
i
ρ
−  − − =    − 
 
 
0zA = 0zX X= 
0A iA+ = 0X + = 
 
1 0 4 0
0 1 0 4
(2)
4 0 1 0
0 4 0 1
pρ
−  − − =    − 
 
 
0zA = 0zX X= 
0A+ = 0X + = 
 
0 0 4
0 1 4 0
(3)
0 4 1
4 4 0
i i
i
p
i i
i i
ρ
− −  − − =  − −  − 
 
 
0z zA X= = 
0A+ = 0X iX+ × 
 
0 1 0 4
1 0 4 0
(4)
0 4 0 1
4 0 1 0
i
i
p
i
i
ρ
−  − − =    − 
 
 
0z zA X= = 
0A X+ += = 
 
0 4 0 1
4 0 1 0
(5)
0 1 0 4
1 0 4 0
i
i
p
i
i
ρ
−  − − =  − −  − 
 
0z zA X= = 
0A X+ += = 
 
0 4 0 1
4 0 1 0
(6)
0 1 0 4
1 0 4 0
pρ
−  − =  − −  − 
 
 
0z zA X= = 
0A+ = 08X p A+ = = 
 
indicando uma transferência de polarização do sistema A para o sistema X. 
 
 
13 INADEQUATE-2D: Coerência de duplo quantum. 
 
Nesta seção analisaremos o comportamento de um sistema AX homonuclear de spins 
acoplados em equilíbrio térmico sob a ação da seqüência de pulsos INADEQUATE-2D. 
Esta seqüência de pulso pode ser vista no livro do Victor Gil página 714. 
 
 
 
 
Figura JJ 
 
 
 
1
( / 2)
1 1
1 11
1 12
1 1
x
i i
i i
R
i i
i i
π
−
− − −  − − − =  − − −  − − − 
 e ( / 2)
1 1
1 11
1 12
1 1
x
i i
i i
R
i i
i i
π
−  − =  −  − 
 
 
1
( ) ( )
0 0 0 1
0 0 1 01
0 1 0 02
1 0 0 0
y yR Rπ π
−
  − = =  −   
 
 
 
1
( / 2)
1 1 1 1
1 1 1 11
1 1 1 12
1 1 1 1
yR π
−
  − − =  − −  − − 
 e ( / 2)
1 1 1 1
1 1 11
1 1 1 12
1 1 1 1
y
i
R π
− −  − =  − − −   
 
 
A matriz de densidade no equilíbrio térmico é 
 
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 01 1(0) ( / 4)
0 0 1 0 0 0 1 04 4
0 0 0 1 0 0 0 1
p
p
p
ρ
+         = = +         − −   
1 
 
sendo / 2Ap h kTω= , Aω é a freqüência de larmor do spin A, e / 1A Xω ω � . Uma vez que 
todos os operadores de rotação comutam com o operador unidade 1, esta parte da matriz 
de densidade não se altera durante o experimento, podendo ser omitida. Verifica-se que: 
 
1
( / 2) ( / 2)
1 0 0 0
0 1 0 0
(1) (0) ( / 8 )
0 0 1 0 4
0 0 0 1
x x y
PR R p i Fπ πρ ρ−
   = = = ⋅   − 
 
 
1312
21 24
31 34
4342
0 0
0 0
(2) ( / 8 )
0 0
0 0
ii
i i
i i
ii
e e
e ep i
e e
e e
ω τω τ
ω τ ω τ
ω τ ω τ
ω τω τ
ρ
  − =  −  − − − 
 
 
12 X Jω ω π= − , 21 X Jω ω π= − + como mostrado na Figura JJ 
 
 
14 Polarização Cruzada e o Conceito de Temperatura de 
Spin 
 
Em 1973 Pines, Gibby e Waugh divulgaram um trabalho no Journal of Chemical Physics 
59, o qual tratava em relatar o ganho de sensibilidade de um dado núcleo raro S através 
da transferência de polarização de um núcleo abundante I [24]. A técnica Polarização 
Cruzada - CP, consiste em otimizar os problemas relacionados com baixa abundância 
natural de núcleos raros. O efeito do CP é provocar um aumento da magnetização de 
núcleos raros do tipo 13C em favor de núcleos abundantes, 1H, facilitando (diminuindo) 
a relaxação spin-rede (T1) e melhorando (aumentando) a relação sinal/ruído num fator 
/ 4H Cγ γ ≈ [1, 2, 16, 23, 33, 35-37]. Neste caso os núcleos abundantes I aproximam-se 
de um reservatório térmico, e a sua transferência de polarização para o núcleo raro S se 
dá por processo favorável, de natureza termodinâmica. Favorecendo um sistema de alta 
magnetização alinhada a um baixo campo magnético B0 [1, 16]. Este contato térmico é 
estabelecido no chamado sistema girante de coordenadas, quando a condição de 
Hartmann-Hahn, CCHH BB 11 γγ = é satisfeita através da aplicação de campos de r.f. para 
o núcleo I e S simultaneamente [38]. A Figura 15 apresenta uma demonstração hipotética 
deste reservatório térmico. 
 
 
 
Figura 15: Representação de um reservatório térmico nuclear 
de prótons 
 
Quando ambos os sistemas de spins apresentarem as mesmas freqüências 
angulares ω1 (= γB1), obtidas através do ajuste da intensidade B1 no sistema de 
coordenadas girantes, a condição de Hartmann-Hahn é satisfeita, e a transferência de 
polarização é permitida[38]. O sistema girante de coordenadas é um sistema que gira com 
a freqüência de ressonância de cada núcleo em particular em torno de 
G
B0 . Em tal sistema, 
a freqüência de precessão de Larmor γB0 é eliminada, o que significa o desaparecimento 
de 
G
B0 . O único campo magnético que age sobre cada spin é o campo de RF estático, 
neste referencial, e tem o mesmo papel de 
G
B0 no sistema de referência do laboratório. 
Neste caso,pode-se observar que a condição de Hartmann-Hahn significa que os dois 
núcleos terão a mesma freqüência de Larmor em seus respectivos sistemas girantes de 
coordenadas, ω ω1 1H C= . Veja a ilustração da seqüência de pulso do processo na Figura 
16. 
 
 
 
Figura 16: Sequência de pulso Polarização cruzada estabelecimento da 
condição de Hartmann-Hahn ω ω1 1H C= . Tc é o tempo de contato térmico, Ta 
é o tempo de aquisição. 
 
 
Z
L
Z
I p
kT
B σσγρ
22
1)0( 0 == = 
onde 
L
I
L kT
B
p 0
γ== e 
S
II
S kT
B
p 1
γ== 
 
S
I
L TB
B
T
11
0
1 ⋅= [1] 
 
substituindo [1] em pL temos 
 
S
S
I
L
I
L pTB
B
kT
B
p =⋅⋅= 1
0
10γ= 
IIS
S
II
S BkT
B
p 1
1 ωβγ == = 
IISS Bp 1ωβ= 
y
SS pip σρ
201
10
2
)1( =


 −= 
y
Sp σρ
2
)1( = 
o termo )1(ρ relembra que a técnica Cross Polarization depende exclusivamente das 
propriedades do núcleo I. 
e para determinar )2(ρ 
 
1)1()2( −= HH UU ρρ 
 
e mostrando que )2(ρ no referencial girante )(trρ representa ))()(2( tρρ = 
 
111)0()( −Ω−−Ω= DUUUUDt HHr φφ ρρ 
 



 −= −Ω
−Ω−
0
0
2
)( )(
)(
ti
ti
Sr
ie
iept ω
ωρ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Referências: 
 
(1) Cerf, C. Concepts in Magnetic Resonance, Vol. 9 (1) 17-41 (1997) 
(2) Stejskal, E. O., Memory, J. D. High Resolution NMR in the Solid State. 1994, Osford 
Press 
(3) Cohen-Tannouidji C, Diu B, Lalöe F. Quantum Mechanics, Vol. I. New York: John 
Wiley and Sons; 1977. P 898. 
(4) Fano, U. Phys. Rev. Vol. 29, 74-93 (1957) 
(5) Farrar, T. C., Concepts in Magnetic Resonace, Vol. 2, 1-12 (1992) 
(6) Farrar, T. C., Concepts in Magnetic Resonace, Vol. 2, 55-61 (1992) 
(7) Blum, K. Density Matrix Theory and Applications. Plenum Press, New York, 1981. 
(8) Weiner, J., Ho, P. T. Light-Matter Interaction: Fundamentals and Applications, 2002. 
(9) McWeeny, R. Reviews of Modern Physics, Vol. 32, 335-369 (1960) 
(10) Mehring, M. High Resolution NMR in Solids. Springer-Verlag, New York, 1983.

Continue navegando