Buscar

Apontamentos de Geometria Descritiva I - José Alves Manuel

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 22 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 22 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 22 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

C.V.F-C.F.B. José Alves Manuel 2012 
 
 
Apontamentos de 
Geometria Descritiva I 
11º Ano – Cadeira Anual 
Área Ciências Físicas e Biológicas 
Ano Lectivo de 2007-2008 (Revisado) 
 
José Alves Manuel 
 
Email: josealvesmanuel60775@hotmail.com 
Url: www.profjosealvesmanuel.blogspot.com 
Url: www.sites.google.com/profjosealvesmanuel 
 
Telm: 924 172 422 
 
 
 
 
 
 
 
 
 C.V.F-C.F.B. José Alves Manuel 2012 
 
Índice 
 
1 Introdução à Geometria Descritiva 1 
1.1 Objectivos ……………………………………………………………………………………………. 1 
1.2 Sistemas de projecção ………………………………………………………………………....... 1 
1.3 Elementos Principais da geometria descritiva …………………………………………… 4 
2 Pontos e Rectas ………………………………………………………………………………………. 10 
2.1 Objectivos ………………………………………………………………………………………….... 10 
2.2 Estudo do Ponto ………………………………………………………………………………….. 10 
- Diedros 
- Convenções de Sinais 
- Coordenadas descritivas do ponto 
- Pontos situados no diedro ou quadrantes 
- Planos bissectores 
2.3 Estudo discritivo da recta …………..…………………………………………………………. 10 
2.3.1 Elementos Principais ……………………………………………………………………. 10 
2.4 Exercícios ………………………………………………………………………………………. 15 
Lista de desenvolvimentos 
1.1 Elementos principais do sistema de projecção ……………………………………………... 2 
1.2 Efeito da proximidade com o centro de projecção ……………………………………….. 2 
1.3 Centro de projecção no infinito ………………………………………………………………….. 3 
1.4 Sistema cilíndrico de projecção ………………………………………………………………….. 3 
1.5 Sistema cilíndrico ortogonal de projecção …………………………………………………… 4 
1.6 A perpendicularidade se mantém ………………………………………………………….... 5 
1.7 Sistema de Monge ……………………………………………………………………………………. 6 
1.8 Projecção de um ponto em dois planos perpendiculares entre si ………………….. 7 
1.9 Rotação das figuras contidas em π2 em torno da linha de terra (LT) ……………… 7 
1.10 Épura ………………………………………………………………………………………………... 8 
1.11 Divisão do espaço em quatro diedros ……………………………………………………. 8 
2.1 Cota, Afastamento e Abcissa de um ponto ………………………………………………… 11 
2.2 Projecções de uma recta na épura …………………………………………………………….. 12 
2.3 Traços de uma recta ……………………………………………………………………………….. 13 
 
 
 
 C.V.F-C.F.B. José Alves Manuel 2012 
 
 Capitulo I 
 
Introdução à geometria descritiva 
 
1.1 Objectivo 
 
O objectivo geral é apresentar aos caros alunos e docentes os fundamentos da 
geometria descritiva, que é uma ferramenta gráfica para soluções de problemas 
geométricos no espaço. 
A experiência que tenho no ramo indica que apesar de o tema ser de fácil leitura, é 
difícil aprender. Pois a melhor forma de o aprender é fazendo Exercícios. 
 
1.2 Sistemas de projecção 
 
Em geometria descritiva existem inúmeros sistemas de projecção, e depois que se 
atinge um certo nível de maturidade, pode-se formular problemas algébricos, resolver 
problemas de geodésicas 1ou até mesmo projectar elementos geométricos em 4D 
para sistemas de projecção em 2D. Mas vamos ficar por aqui e vamos ao mais 
importante. 
Apresentamos agora dois sistemas de projecção, o cilíndrico ortogonal e o cónico. 
Em ambos os sistemas, há três elementos principais: o objecto a ser projectado, o 
plano de projecção e o centro de projecção, como mostra a figura 1.1 
 
Um raio de luz ou mais tecnicamente 
conhecido como raio visual parte do 
centro de projecção O, passa por um 
ponto genérico (F) do objecto, e atinge o 
plano de projecção (π) em F. logo dizemos 
que o ponto F é projecção de (F) em π. 
 
 
 
 
1
Linhas de menor comprimento 
 
 
 
 
 
 
 C.V.F-C.F.B. José Alves Manuel 2012 
 
1.3 Elementos principais do sistema de projecção 
 
A geometria Descritiva foi criada por Gaspar Monge (1746-1818), um matemático 
francês que serviu Napoleão em sua campanha pelo Egipto, foi seu Ministro da 
Marinha, e tinha vários interesses tanto na Matemática como na Física e Química. 
Foi amigo de Lavoisier e Fourier. Para termos uma ideia do avanço científico da 
época, que naturalmente envolvia problemas geométricos tridimensionais complexos. 
Após sua invenção, ela foi guardada como segredo militar por vários anos pelo 
próprio Napoleão. Certamente a geometria descritiva não era “óbvia”, como é hoje. 
E, afinal qual era o grande “segredo” de Gaspar Monge? Era o uso simultâneo de 
dois sistemas de projecção cilíndricos ortogonais entre si, como mostra a figura 1.2 
 
 
 figura 1.2 
 
Como você já deve ser capaz de intuir, que um ponto no espaço é representado 
no sistema mongeano como a figura 1.3. 
Falando um pouco mais formalmente, um ponto (A) no espaço tridimensional é 
localizado por três coordenadas, x, y e z. Através da projecção em dois planos π1 e π2, 
é possível se especificar as três coordenadas de (A), 
A recta resultante da intersecção dos planos π1 e π2 é denominada linha de terra 
representado pelas letras (LT). 
Tanto o plano π2 como as figuras nele representado são rotacional em torno da 
LT. de modo a ficarem coplanares com π1, assim aposição de um dado ponto (A) 
pode ser totalmente descrita por suas projecções em π1 e π2, disposto em um único 
plano (figura 1.4) denominado Épura. 
 
 
 Figura 1.3 
 C.V.F-C.F.B. José Alves Manuel 2012 
 
 
 Figura 1.4 
 
Na épura, logo acima e abaixo da linha de terra são escritas os algarismos 
correspondentes aos planos que dão origem a ela, o segmento que une as projecções 
do ponto A, A1 e A2, é denominado linha de chamada. Perceba que deve ser 
perpendicular à linha de terra. Vamos considerar neste material que o plano π1 e que 
contém os eixos x e y, de plano horizontal de projecção e o plano π2, que contém os 
eixos x e z, de plano vertical de projecção. A projecção de um ponto no plano 
horizontal de projecção é denominada projecção horizontal, e a projecção sobre o 
plano vertical, de projecção vertical. 
Em resumo, pode-se perceber que um ponto no espaço pode ser completamente 
especificado dadas as suas projecções ortogonais em dois planos perpendiculares 
(pois temos as três coordenadas x, y e z de cada ponto), designamos plano horizontal 
de projecção, e plano vertical de projecção. 
O plano vertical e horizontal de projecção, dividem em quatro diedros2 como é 
mostrado na figura 1.5 
 
 
 
 Figura 1.5 divisão do espaço em quatro diedros 
 
Para deixarmos mais claro vamos dizer que: pha=IQ, pvs=IIQ, php=IIIQ e pvi=IVQ 
 
 
 
 
 
2 Pode ser chamado também quadrantes 
 C.V.F-C.F.B. José Alves Manuel 2012 
 
Capítulo 2 
 
2 Pontos e Rectas 
 
2.1 Objectivos 
Os elementos principais para a resolução de qualquer problemaespacial são pontos 
e rectas. Neste capítulo, examinaremos esses itens, procurando no processo de 
aprendizado, fomentar o amadurecimento de ideias relacionadas ao espaço 
geométrico representado no sistema de Gaspar Monge. 
2.2 Estudo do Ponto 
 
A distância z de um ponto A ao plano horizontal de projecção é denominada cota, 
como na geometria cotada, na épura, a cota é a distância acima da linha de terra até a 
projecção vertical do ponto, como é mostrado na figura 1.6 
 
 
 Figura 1.6 Cota, afastamento e abcissa de um ponto 
Um ponto pertencente ao plano horizontal de projecção tem cota nula, e portanto, na épura, sua 
projecção vertical deve estar na linha de terra. A coordenada y de um ponto A é denominada 
afastamento. Na épura, o afastamento é a distância abaixo da linha de terra até a projecção horizontal 
do ponto. A coordenada x, fixada a partir de uma origem arbitrária, é denominada abcissas. 
 Um ponto pertencente ao plano vertical de projecção tem coordenadas y, nula, e portanto, sua 
projecção horizontal deve estar sobre a linha de terra. É importante notar que é possível a existência 
de cota e afastamentos negativos. Por exemplo um ponto do segundo diedro tem cota positiva mas 
afastamento negativo. 
Exemplo 1 O ponto (A) no espaço onde (A)=(1;3;2) ou (A)=(x;y;z) 
 
 
 C.V.F-C.F.B. José Alves Manuel 2012 
 
 
 Em épura, a abcissa x de um ponto é marcado sobre a linha de terra, a partir da 
origem pré fixada. A épura do ponto (A) é representada na épura da seguinte forma, 
 
 
Diedros 
Como já nos referimos no capítulo anterior os planos de projecção π1 e π2 dividem o 
espaço em quatro diedros e a linha de terra divide cada plano de projecção em dois 
semiplanos. 
SPHA – semiplano horizontal anterior 
SPHP – semiplano horizontal posterior 
SPVS – semiplano vertical superior 
SPVI – semiplano vertical inferior 
A região do espaço limitada pelos spha e spvs denomina-se primeiro diedro, a limitada 
pelas spvs e sphp segundo diedro, a limitada pelos sphp e spvi terceiro diedro e a limitada 
pelas spvi e spha quarto diedro. 
 
 
 C.V.F-C.F.B. José Alves Manuel 2012 
 
 
 Figura 1.7 representação dos semiplanos 
Devemos lembrar não se pode medir com régua e compasso as distancias A’ (A) e A (A) porque são 
desenhos que representam figuras no espaço e só podemos medir distância sobre o plano. Ao girarmos um 
plano sobre o outro, em torno da linha de terra, temos o semiplano horizontal posterior (sphp) coincidindo 
com o semiplano vertical superior (spvs). Teremos também a coincidência do semiplano horizontal 
anterior (spha) coincidindo com o semiplano vertical inferior (spvi) conforme a figura 1.8 
 
 Figura 1.8 
As projecções verticais e horizontais de um ponto qualquer determinam uma linha perpendicular à linha de 
terra que chamamos linha de chamada conforme figura 1.4 
Convenção de sinais 
Um ponto pode estar localizado em qualquer dos quatro diedros. Para sabermos 
exactamente em qual dos diedros, foram estabelecidas convenções de sinais para cota e 
afastamentos que permitem resolver esse problema, assim sendo, foi estabelecido que: 
· São positivas as cotas dos pontos localizados acima do plano vertical de projecção 
e negativas as cotas dos pontos localizados abaixo. 
· São positivos os afastamentos dos pontos anteriores ao plano vertical de projecção 
e negativos os afastamentos dos pontos posteriores. 
Resumindo temos: 
 
Figura 1.9 Convenções de sinais 
 C.V.F-C.F.B. José Alves Manuel 2012 
 
Coordenadas descritivas do ponto 
 
O conhecimento da cota e do afastamento de um ponto determinam com 
precisão as distâncias do ponto aos planos de projecção π1 e π2. 
Se, numa mesma épura, for necessário representar as projecções de vários 
pontos ou de pontos distintos que tenham afastamento e/ou cota iguais e com o 
mesmo sinal, torna-se importante conhecer a posição relativa entre eles no 
espaço. 
A posição de cada ponto fica facilmente determinada pela distância da 
linha de chamada de cada um dos pontos a um ponto fixo da linha de terra. 
Tal distância é chamada abcissa do ponto e pode ser positiva ou negativa 
conforme a linha de chamada esteja à direita ou à esquerda desse ponto fixo da 
linha de terra que é definido como origem das abcissas , designado por O0. 
Normalmente são usadas apenas abcissas positivas. 
Na figura 2 são mostrados as épuras dos pontos M, N, P e Q, utilizando 
uma mesma linha de terra. 
 
Figura 2a Representação dos pontos na linha de terra 
 
 
Figura 2b Indicações das representações dos pontos 
 
 
 
 
 
 
 C.V.F-C.F.B. José Alves Manuel 2012 
 
Pontos situados nos diedros ou quadrantes 
 
Ponto do I quadrante 
Um ponto do I quadrante, pelas suas projecções, tem a cota positiva e o 
afastamento positivo. Nos planos de projecção, a cota situa-se nos SPVS, dada pela 
projectante frontal, enquanto o afastamento situa-se no SPHA, recorrendo a sua 
projectante frontal. 
Ainda no I quadrante, um ponto poderá situar-se no primeiro octante onde se 
verifica um maior valor do afastamento do que a da cota ou estar situado no segundo 
octante onde a cota tem um valor maior do que o do afastamento, pode ainda, estar no 
bissector impar caso a cota seja igual ao afastamento3. 
Podemos então dizer que este é o quadrante mais simples de se representar…!? 
Ponto do II quadrante 
Quando um ponto P está situado no II segundo quadrante, sua projecção horizontal P 
esta sobre o plano horizontal posterior SPHP e a projecção vertical, P´ sobre o plano 
vertical superior SPVS. 
Quando o plano π1 gira em torno da linha de terra no sentido horário até coincidir com 
π2 percebe-se que, tanto a projectante horizontal P, quanto a projectante vertical P´, 
situam-se acima da linha de terra ver figura 2.1 
 
Figura 2.1 Representação dos pontos do II quadrante 
As projecções dos pontos localizados na porção de espaço correspondentes a este 
diedro, como se pode perceber, situam-se, em épura, todas acima da linha de terra. 
Figuras complexas, como polígonos, poliedros e superfícies em geral poderão ficar com 
as projecções horizontais e verticais de seus elementos juntos de tal forma que será 
extremamente difícil o seu entendimento. Por esta razão as projecções neste quadrante 
devem ser evitadas. 
 
3 O valor do afastamento e da cota devem ser contrário ou seja cota positiva e afastamento negativo 
 C.V.F-C.F.B. José Alves Manuel 2012 
 
Também neste mesmo quadrante um ponto pode situar-se no terceiro octante com o 
valor absoluto da cota maior que o afastamento, pertencer ao bissector par em que, 
apesar de terem sinais4 diferentes, os valores para o afastamento e a cota são iguais ou 
ainda situar-se no quarto quadrante onde o valor do afastamento é maior que a cota. 
Ponto do III quadrante 
Quando um ponto P esta situado no terceiro quadrante, sua projecção horizontal P está 
sobre o plano horizontal posterior SPHP e a sua projecção vertical, sobre o plano vertical 
inferior SPVI.Quando o plano π1 gira em torno da linha de terra no sentido horário até coincidir com 
π2, a projecção horizontal P fica acima da linha de terra, enquanto a projecção vertical, 
P´, fica abaixo dela. Ver figura 2.2 
 
Figura 2.2 Representação dos pontos do III quadrante 
Uma vez que o ponto se situa no terceiro quadrante, pode ocupar uma das seguintes 
posições: estar no quinto octante5 onde o valor do afastamento será maior que a cota, 
pertencer ao bissector impar com o valor do afastamento e da cota serem iguais ou ainda 
situar-se no sexto octante onde o valor da cota é maior que a do afastamento. 
 Ponto do IV quadrante 
Quando um ponto P está situado no quarto quadrante6, sua projecção horizontal P está 
sobre o plano horizontal anterior SPHA e a projecção vertical, P´, sobre o plano vertical 
inferior SPVI. 
Quando o plano π1 gira em torno da linha de terra no sentido horário até coincidir com 
π2,percebe-se que, tanto as projecções horizontais P, quanto a projecção vertical P´, 
situam-se abaixo da linha de terra ver figura 2.3 
 
 
4 Lembre-se que os sinais só identificam os quadrantes e não interferem nos octantes pois eles são valores modulares 
5 Octante pode também ser escrito como 1º oct, 2º oct etc. 
6 Quadrante pode ser denotado também como IQ, IIQ 
 C.V.F-C.F.B. José Alves Manuel 2012 
 
 Pontos em posições especiais 
Pontos no plano π1 
Quando um ponto pertence ao plano π1 em qualquer circunstância, sua cota é nula, uma 
vez que a distância de P ao plano π1, que mede a sua cota, é nula. Se o ponto esta no 
semi-pano anterior a π2, seu afastamento é positivo. 
Para melhor compressão observe a figura 2.4 
 
 
Figura que representa o SPHA Figura que representa o SPHP 
Podemos notar que para um ponto pertencer ao SPHA ela deve possuir uma cota nula e 
um afastamento positivo. Analogamente o inverso para o SPHP se verifica com 
afastamento negativo. 
Pontos no plano π2 
Quando um ponto pertence ao plano π2, em qualquer circunstância, seu afastamento é 
nulo, uma vez que a distância de P ao plano π2, que mede o seu afastamento, é nula. 
Se o ponto está no semi-plano superior a π1, sua cota é positiva ver figura 2.5 
 
Figura que representa o SPVS Figura que representa o SPVI 
Podemos notar mas uma vez que para um ponto pertencer ao SPVS ela deve possuir 
uma cota positiva e um afastamento nulo ou coincidente com a linha de terra. 
Analogamente o inverso para o SPVI se verifica com a cota negativa. 
Ponto da linha de terra 
Quando um ponto pertence à linha de terra, tanto sua cota quanto o seu afastamento são 
nulos. 
 
 Figura 2.5 
 C.V.F-C.F.B. José Alves Manuel 2012 
 
Planos bissectores 
Além dos planos de projecção que anteriormente estudamos, fazem parte da organização 
do espaço mais dois planos: são os planos bissectores. Um plano bissector divide um 
diedro em duas partes iguais e passa em dois quadrantes, interceptando o eixo x ou linha 
de terra. 
· Β2/4 – é o plano bissector que a travessa os quadrantes pares, II e IV quadrantes 
· Β1/3 – é o plano bissector que a travessa os quadrantes impares, I e III quadrantes. 
Agora sim temos o estudo do espaço completo representados na figura 2.6 abaixo 
 
Figura 2.6 Representação de todos os planos 
 
 
 
 
 
 
 
 
 
 
 
 
 C.V.F-C.F.B. José Alves Manuel 2012 
 
2.3 Estudo descritivo da recta 
Dois pontos distintos determinam uma recta. A recta é representada por uma letra 
minúscula entre parênteses (r). E r´ representa a projecção de uma recta (r) no plano π1 e 
r representa a projecção de uma recta (r) no plano π. 
 
Figura 2.7 Representação da recta 
Tipos de rectas 
Recta horizontal é toda recta paralela ao plano horizontal. Quando a recta é paralela ao 
plano horizontal sua projecção vertical é paralela à linha de terra. 
 
 
Figura 2.8 Recta horizontal 
Recta frontal é toda recta paralela ao plano vertical. Quando a recta é paralela ao plano 
vertical sua projecção horizontal é paralela à linha de terra. 
 
Figura 2.9 Recta frontal 
 C.V.F-C.F.B. José Alves Manuel 2012 
 
Recta paralela à linha de terra é toda recta paralela à linha de terra e paralelo ao plano 
vertical e ao plano horizontal suas projecções são paralela à linha de terra. 
 
 
Figura 3 Recta paralela à linha de terra 
 
Recta vertical é toda recta perpendicular ao plano horizontal. A sua projecção horizontal é um ponto e sua 
projecção vertical é uma recta vertical r´. 
 
Figura 3.1 Recta vertical 
 
Recta de topo é toda recta perpendicular ao plano vertical. A sua projecção horizontal é uma recta vertical e 
sua projecção vertical é um ponto. 
 
 
Figura 3.2 Recta de topo 
 
 
 C.V.F-C.F.B. José Alves Manuel 2012 
 
Traço de uma recta 
Traços de uma recta são os pontos onde a recta atravessa os planos de projecção. 
 
( V) – Traço vertical Figura 3.3 Traços de uma recta 
Para encontrarmos o traço vertical de uma recta (Tv), se deve prolongar a sua projecção r até a linha de 
terra. Na intersecção da linha de terra com a projecção r levanta-se uma linha de chamada com a projecção 
r´ temos o traço vertical (Tv). 
 
 
(H) – Traço horizontal Figura 3.4 Traços de uma recta 
Para encontrar o traço horizontal (Th), de uma recta, se prolonga sua projecção r´ ate a linha de terra. Na 
intersecção da linha de terra com a projecção r´ levanta-se uma linha de chamada até encontrar a projecção 
r teremos então o traço horizontal (Th). 
 
 
 
 C.V.F-C.F.B. José Alves Manuel 2012 
 
Representação do plano 
Um plano pode ser determinado por uma das quatro possibilidades: 
1. Três pontos não colineares7 
2. Uma recta e um ponto exterior 
3. Duas rectas concorrentes 
4. Duas rectas paralelas 
 
Representação do plano 
Estas figuras abaixo representam os quatros pontos referidos acima. 
 
Figura 3.5 Regras 1e 2 sobre planos 
 
Figura 3.6 Regras 3 e 4 sobre planos 
 
7 Pontos que não estão alinhados ou não estão situados em Lina recta 
 C.V.F-C.F.B. José Alves Manuel 2012 
 
Traços de um plano 
A recta de intersecção de um dado plano α com o plano horizontal designa-se por traço 
horizontal. Trata-se de uma recta de nível de cota nula. E a recta de intersecção de um 
dado plano α com o plano frontal designa-se por traço frontal. Trata-se de uma recta de 
frente de afastamento nulo. 
 
Figura 3.7 Traços de um plano 
Plano de topo 
O plano de topo é um plano em posições particulares 
· É um plano perpendicular ao plano F8; 
· As projecções frontais das suas rectas são coincidentes com o seu traço frontal; 
· As projecções frontais dos seus pontos pertencem ao seu traço frontal. 
 
Figura3.8 Plano de topo 
 
 
8 F significa frontal e H horizontal 
 C.V.F-C.F.B. José Alves Manuel 2012 
 
Plano vertical 
· Plano perpendicular ao plano H 
· As projecções horizontais das suas rectas são coincidentes com o seu traço 
horizontal 
· As projecções horizontais dos seus pontos pertencem ao seu traço horizontal. 
 
 
Figura 3.9 Plano vertical 
 
Plano de Nível 
· Plano paralelo ao plano H 
· Só tem traço frontal e todas as projecções frontais dos seus elementos 
pontos e rectas estão sobre essa linha, paralela à linha de terra. 
 
Figura 4 Plano de Nível 
 Plano de frente 
· Plano paralelo ao plano F 
· Só tem traço horizontal e todas as projecções horizontais dos seus elementos 
pontos e rectas estão sobre essa linha paralela à linha de terra. 
 
Figura 4.1 Plano de frente 
 C.V.F-C.F.B. José Alves Manuel 2012 
 
Plano de perfil 
· Plano perpendicular à linha de terra, ao plano H e ao plano F; 
· São de perfil todas as rectas pertencentes a um plano de perfil incluindo as verticais e as de topo. 
 
 
Figura 4.2 Plano de perfil 
Plano passante 
· Os seus traços são coincidentes com a linha de terra 
· Pode ser representado pela linha de terra (traços) e um dos seus pontos 
 
 
Figura 4.3 Plano passante 
Plano rampa 
 
· Paralelo à linha de terra mas oblíquo aos dois planos de projecção, F e H 
· Os seus traços são rectas paralelas à linha de terra. 
 
 
Figura 4.4 Plano de Rampa 
 C.V.F-C.F.B. José Alves Manuel 2012 
 
 
Plano Oblíquo 
 
· Oblíquo em relação aos dois planos de projecção e à linha de terra. 
 
 
Figura 4.5 Plano Oblíquo 
 
 
 
 
 
 
 C.V.F-C.F.B. José Alves Manuel 2012 
 
Referencias Bibliográficas 
· Rangel, Alcyr Pinheiro – Poliedros, Livros Técnicos e Científicos Editora, 1985 
· Almeida, Célio Pinto – Geometria Descritiva, vols. 7 Apostila para cursos de vestibulares, editor 
desconhecido 
· Rodrigues, Álvaro José – Geometria descritiva, livro Técnico, Rio de Janeiro, 1960 
· Machado, Adervan, Geometria Descritiva, Editora McGraw-Hill do Brasil LTDA, 1974 
· Stamato, José, Cadernos do MEC, Introdução ao Desenho Técnico, 1972 
· Príncipe, JR, Geometria Descritiva, V.1 e 2 
· Neilzel, E, Desenho Tecnico para a construção Civil, São Paulo, Editora USP 
· Leonardo, Barros, Geometria Descritiva, Luanda, Textos Editores, 2007 
· http://www.mat.uel.br/marie 
· www.google.com.br 
· www.wikipedia.com 
· www.google.com.ao 
· www.google.com.pt 
OBS: 
Todos os nomes registados, e marcas registadas e direito de uso citado neste trabalho pertencem aos seus 
respectivos autores.

Continue navegando