Logo Passei Direto
Buscar
Material
páginas com resultados encontrados.
páginas com resultados encontrados.
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Prévia do material em texto

Campus VIII – Varginha 
Curso Técnico de Mecatrônica 
 
 
 
 
 
Teoria e Laboratório - 2ª edição (experimental) 
 
Com Guias de Aulas Práticas, Problemas Resolvidos & Listas de Exercícios e Problemas 
 
 
 
 
 
 
 
 
 
 
ANDRÉ BARROS DE MELLO OLIVEIRA 
 
VARGINHA - 2012
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CEFET-MG – Campus VIII 
 
CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS 
Av. dos Imigrantes, 1000. Bairro Vargem. CEP: 37.022-560. Varginha – MG. 
Homepage: http://www.varginha.cefetmg.br
 
 
 
CEFET-MG - Acionamentos e Comandos Elétricos – Ensino Técnico – Curso Técnico de Mecatrônica. i 
Prefácio 
 
 
Este texto tem por objetivo principal oferecer um material básico de referência para a 
disciplina Acionamentos e Comandos Elétricos, do Curso Técnico de Mecatrônica. 
O texto conta com oito capítulos, numa seqüência que possibilita ao aluno consolidar os 
conceitos teóricos através da leitura dos tópicos, dos exemplos resolvidos e da resolução de problemas 
e exercícios, incluindo exercícios de simulação. Além disso, foram inseridos vários guias de aulas 
práticas (Apêndice III) que os (as) alunos (as) utilizarão nas aulas em laboratório (trabalhando em 
grupos de até cinco alunos). 
É importante que o leitor tenha como pontos de partida conceitos fundamentais da 
eletricidade, como o conhecimento do Sistema Internacional de Unidades (SI), da notação científica e 
de grandezas elétricas básicas. No primeiro capítulo são apresentados conceitos básicos de corrente 
alternada (CA), com ênfase no sistema trifásico. Para um aprofundamento neste assunto, o aluno já 
conta com uma disciplina no curso: Circuitos Elétricos. 
Vale salientar que o presente texto não deve substituir a literatura técnica da área de 
Acionamentos e Comandos Elétricos, pois as referências bibliográficas são, além de base desta obra, 
muito enriquecedoras em aspectos teóricos e práticos. O bom aluno deve sempre ler e pesquisar os 
assuntos referentes a esta disciplina do curso nos excelentes livros editados em português, além de 
apostilas e tutoriais disponíveis na Internet. 
Pede-se a compreensão dos alunos e professores pelos eventuais erros. Assim sendo, são 
imensamente bem-vindas as críticas, sugestões e correções, que certamente contribuirão para a 
melhoria deste material didático, que brevemente, poderá se transformar em livro. 
 
Varginha, fevereiro de 2012. 
 
Professor André Barros de Mello Oliveira. 
E-mail: mellogalo@gmail.com 
Espaço virtual: mellogalo.4shared.com 
 
CEFET-MG - Acionamentos e Comandos Elétricos – Ensino Técnico – Curso Técnico de Mecatrônica. ii 
 
 
CEFET-MG - Acionamentos e Comandos Elétricos – Ensino Técnico – Curso Técnico de Mecatrônica. iii 
Agradecimentos 
 
 Em primeiro lugar, agradeço a Deus pelo dom da vida e por ter me proporcionado saúde e 
vontade para realizar este trabalho. 
 Agradeço aos professores Márcio Silva Basílio, diretor geral do CEFET-MG, Fernando 
Teixeira Filho, diretor do Campus VIII -Varginha e Wanderley Xavier Pereira, coordenador do curso 
técnico de Mecatrônica, pelo constante incentivo para a produção de um material didático de 
qualidade. 
Aos professores Egidio Ieno Júnior e Daniel Soares de Alcântara, pela importante contribuição 
com idéias, discussões e ótimas referências bibliográficas, para a elaboração de guias de aulas práticas. 
 Agradeço também ao técnico de laboratório da área Eletro-Eletrônica, Antônio Carlos Borges, 
pelo constante apoio durante a elaboração de várias aulas práticas, desde 2009, juntamente com o prof. 
Daniel. 
 E, finalmente, aos alunos da disciplina Acionamentos e Comandos Elétricos, pelas dicas de 
melhoria das transparências e guias de aulas práticas, material de base para este texto e à Gráfica do 
CEFET-MG, localizada no Campus I, em Belo Horizonte, que sempre nos atendeu com ótimos 
serviços de impressão e encadernação, sempre dentro do prazo. 
 
 
André Barros. 
 
 
 
 
 
 
 
CEFET-MG - Acionamentos e Comandos Elétricos – Ensino Técnico – Curso Técnico de Mecatrônica. iv 
 
CEFET-MG - Acionamentos e Comandos Elétricos – Ensino Técnico – Curso Técnico de Mecatrônica. v 
BIOGRAFIA 
 
 
André Barros de Mello Oliveira nasceu em Belo Horizonte, Minas Gerais, em 17 de julho de 1969. 
Formou-se em Engenharia Industrial Elétrica pelo Centro Federal de Educação Tecnológica de Minas 
Gerais (CEFET-MG), em dezembro de 1992. Obteve o título de Mestre em Engenharia Elétrica pela 
Universidade Federal de Minas Gerais (UFMG), em dezembro de 1998, na área de Eletrônica de 
Potência. Atuou como professor em Escolas de formação técnica em Belo Horizonte, como o SENAI, 
a Utramig, o SESI e o CEFET-MG, até 2001. De 2001 a 2006 foi professor/pesquisador nos cursos de 
Engenharia de Telecomunicações e de Engenharia Elétrica do Centro Universitário de Belo Horizonte 
(Uni-BH). Desde outubro de 2006 é professor do CEFET-MG em Varginha (campus VIII), tendo 
atuado nos cursos técnicos de Informática Industrial e Mecatrônica, até 2009. Atualmente é professor 
no curso técnico de Mecatrônica, onde, além de ministrar aulas, orienta alunos de Iniciação Científica 
e no Estágio Supervisionado. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CEFET-MG - Acionamentos e Comandos Elétricos – Ensino Técnico – Curso Técnico de Mecatrônica. vi 
 
CEFET-MG - Acionamentos e Comandos Elétricos – Ensino Técnico – Curso Técnico de Mecatrônica. vii 
 
 
Acionamentos e Comandos Elétricos. Ensino Técnico – MECATRÔNICA. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
“Um país se constrói com Homens e Livros.” 
(Monteiro Lobato) 
 
 
“Há grandes homens que fazem 
com que todos se sintam pequenos. 
Mas o verdadeiro grande homem é aquele 
que faz com que todos se sintam grandes.” 
(Gilbert Keith Chesterton)
 
CEFET-MG - Acionamentos e Comandos Elétricos – Ensino Técnico – Curso Técnico de Mecatrônica. viii 
 
CEFET-MG - Acionamentos e Comandos Elétricos – Ensino Técnico – Curso Técnico de Mecatrônica. ix 
Lista de Abreviaturas 
 
 
ABNT – Associação Brasileira de Normas Técnicas - atua em todas as áreas técnicas do país. Os 
textos das normas são adotados pelos órgãos governamentais (federais, estaduais e municipais) e pelas 
firmas. Compõe-se de normas: NB, TB (terminologia), SB (simbologia), EB (especificação), MB 
(método de ensaio) e PB (padronização). 
AC – Alternating Current (corrente alternada). 
ANSI – American National Standards Institute, Instituto de normas dos Estados Unidos que publica 
recomendações e normas em praticamente todas as áreas técnicas. Na área dos dispositivos de 
comando de baixa tensão, tem adotado frequentemente especificações da UL e da NEMA. 
AT – Alta Tensão. 
BT – Baixa Tensão. 
CA – Corrente Alternada. 
CC – Corrente Contínua. 
CNC – Controle Numérico Computadorizado. 
CV – Cavalo-Vapor, unidade de potência mecânica, correspondente a 736 Watts. 
DC – Direct Current (corrente contínua). 
DIN – Deutshe Industrie Normen, Associação de normas industriais alemãs. Suas publicações são 
devidamente coordenadas com as da VDE. 
fem – força eletromotriz. 
FT – Relé de Sobrecarga. 
IEC – International Electrotechinical Comission. Comissão formada por representantes de todos os 
paises industrializados. As recomendações do IEC, publicadas por esta comissão, são normalmente 
adotadas na íntegra pelos diversos paises ou, em outros casos, está se processando uma aproximação 
das normasnacionais ao texto destas internacionais. 
HP – Horse-Power, unidade de potência mecânica, correspondente a 746 Watts. 
K – Contator. 
KT – Relé de Tempo. 
MI – Motor de Indução. 
MIM ou MM – Motor de Indução Monofásico. 
MIT – Motor de Indução Trifásico. 
NA – Normalmente Aberto (relativo ao tipo de contato de uma chave). 
NEMA – National Electrical Manufactures Association, Associação americana dos fabricantes de 
materiais elétricos. 
NF – Normalmente Fechado. 
 
CEFET-MG - Acionamentos e Comandos Elétricos – Ensino Técnico – Curso Técnico de Mecatrônica. x 
 - Rendimento. 
RPM (ou rpm) – Rotações por minuto. 
UL – Underwriters’ Laboratories Inc., entidade nacional de ensaio da área de proteção contra 
incêndio, nos Estados Unidos, que entre outras coisas, realiza ensaios de equipamentos elétricos e 
publica as suas prescrições. 
VCC – Tensão Contínua (o mesmo que VDC). 
VDE – Verband Deutscher Elektrotechniker, Associação de normas alemãs que publica normas e 
recomendações da área de eletricidade. 
VF – Tensão de Fase (tensão elétrica entre fase e neutro, VFN). 
VL – Tensão de linha (tensão elétrica entre duas fases, VFF). 
 
 
 
CEFET-MG - Acionamentos e Comandos Elétricos – Ensino Técnico – Curso Técnico de Mecatrônica. xi 
Sumário 
Capítulo 1 - Revisão de Conceitos e Aplicações de Corrente Alternada (CA) ...................................................... 17 
1.1 – Introdução ................................................................................................................................................ 17 
1.2 – Geração de Corrente Alternada ................................................................................................................ 23 
1.2.1 - Princípio de Funcionamento de um Gerador Elementar ................................................................... 25 
1.2.2 - Lei de Faraday – F.E.M. Induzida .................................................................................................... 25 
1.2.3 – Sinais CA – Principais Parâmetros .................................................................................................. 28 
1.2.4 – Sinais CA – Valores Característicos e Conceitos Importantes ......................................................... 30 
1.2.4.1 – Valor Médio, VCC ou VDC ..................................................................................................... 33 
1.2.4.2 – Valor Eficaz, Vef ou Vrms .......................................................................................................... 34 
1.3 – Relacionando Graus Elétricos e Tempo e Graus Elétricos e Mecânicos ................................................. 36 
1.4 – Representação Fasorial de uma Grandeza Elétrica Senoidal ................................................................... 38 
1.4.1 – Fasores ............................................................................................................................................. 38 
1.4.2 - Representação Matemática de um Fasor........................................................................................... 39 
1.6 - Sistema Trifásico ...................................................................................................................................... 54 
 
Capítulo 2 – Motores Elétricos. O Motor de Indução. ........................................................................................... 67 
2.1 – Introdução ................................................................................................................................................ 67 
2.2 – Aplicações de Motores CC e CA ............................................................................................................. 68 
2.2.1 – Motores de Corrente Contínua (ou motores CC) ............................................................................. 69 
2.2.2 – Motores de Corrente Alternada (ou motores CA) ............................................................................ 71 
2.3.1 – Motor de Indução ............................................................................................................................. 73 
2.3.1.1 - Motor de Indução com Rotor do Tipo Gaiola de Esquilo ......................................................... 73 
2.3.1.2 - Motor de Anéis ou com Rotor Bobinado .................................................................................. 74 
2.3.2 – Motor Trifásico de Múltiplas Velocidades ....................................................................................... 75 
2.3.2.1 – Motor Trifásico de Enrolamentos Separados ........................................................................... 76 
2.3.2.2 – Motor Dahlander ...................................................................................................................... 76 
2.4 – Partes Constituintes ................................................................................................................................. 77 
2.5 – Princípio de Funcionamento do Motor CA .............................................................................................. 78 
2.5.1 – Campo Girante de um Motor Trifásico ............................................................................................ 78 
2.5.2 – Velocidade Síncrona (ns) ................................................................................................................. 86 
2.5.3 - Escorregamento (s) ........................................................................................................................... 87 
2.5.3.1 – Tensões Induzidas no Rotor ..................................................................................................... 88 
2.5.4 – Conjugado ........................................................................................................................................ 90 
2.5.5 – Energia, Potência Elétrica e Potência Mecânica .............................................................................. 91 
2.5.6 – Potência Aparente, Ativa e Reativa ................................................................................................. 93 
2.5.7 – Fator de Potência .............................................................................................................................. 93 
2.5.8 – Rendimento ...................................................................................................................................... 95 
2.5.9 – Categorias de Conjugado ................................................................................................................. 96 
2.4 – Principais Características Nominais ...................................................................................................... 100 
2.5 – Ligações de Motores de Indução ........................................................................................................... 103 
2.5.1 – Ligações de motores de 6 (seis) terminais ..................................................................................... 104 
2.5.2 – Ligações de motores de 9 (nove) terminais .................................................................................... 106 
2.5.3 – Ligações de motores de 12 (doze) terminais .................................................................................. 108 
2.5.4 – Ligações de motores de duas velocidades (Dahlander) .................................................................. 111 
 
Capítulo 3 – Contator Magnético ........................................................................................................................ 115 
3.1 – Introdução .............................................................................................................................................. 115 
mellogalo
Typewriter
1o. Bim.nullnullMarçoenullnullabril
mellogalo
Typewriter
mellogalo
Typewriter
2o. Bim.nullnullMaio enullnullJunhonullnullnullnullCaps. 2,nullnull3, 4 e 5.nullnull
mellogalo
Typewriter
mellogalo
Typewriter
mellogalo
Highlight
mellogalo
Highlight
mellogalo
Highlight
mellogalo
Typewriter
 
CEFET-MG - Acionamentos e Comandos Elétricos – Ensino Técnico – Curso Técnico de Mecatrônica. xii 
3.2 – Contatores – Aspectos Construtivos, Classificação e Aplicações .......................................................... 118 
3.2.1 – Classificação dos Contatores ......................................................................................................... 118 
3.2.2 – Tipos de Contatores ....................................................................................................................... 118 
3.2.3 – Outras Considerações ..................................................................................................................... 119 
3.3 – Diagrama de Carga ................................................................................................................................ 123 
3.4 – Diagrama de Comando .......................................................................................................................... 126 
Exercício de Simulação 1 – ES1 – Uso de Aplicativos em FLASH e do CADE Simu .................................. 133 
 
Capítulo 4 – Dispositivos de Proteção e de Comando ......................................................................................... 141 
4.1 – Introdução .............................................................................................................................................. 141 
4.1.1 - Curto-circuito & Proteção............................................................................................................... 142 
4.2 – Fusíveis .................................................................................................................................................. 143 
4.2.1 - Operação do Fusível ....................................................................................................................... 143 
4.2.2 - Fusível – Definição Clássica .......................................................................................................... 144 
4.2.3 - Classificação ................................................................................................................................... 145 
4.2.4 - Principais Características ................................................................................................................ 146 
4.3 – Disjuntores ............................................................................................................................................. 155 
4.3.1 - Aspectos construtivos de um Disjuntor .......................................................................................... 156 
4.3.2 – Disjuntor – Curvas de Disparo ....................................................................................................... 157 
4.3.3 – Disjuntor Diferencial Residual ....................................................................................................... 158 
4.3.3.1 - Princípio de Proteção das Pessoas .......................................................................................... 160 
4.4 – Relés de Sobrecarga ............................................................................................................................... 163 
4.4.1 – Relé de Sobrecarga Bimetálico com Botão RESET e Tecla Multifunções .................................... 165 
4.4.2 – Relés Eletrônicos ........................................................................................................................... 167 
4.5 – Relé de Tempo ....................................................................................................................................... 170 
4.5.1 – Relés de Tempo Eletrônicos .......................................................................................................... 171 
 
Capítulo 5 – Dispositivos de Acionamento e de Sinalização .............................................................................. 181 
5.1 – Botão de Comando ................................................................................................................................ 181 
5.1.1 – Tipos de Contato ............................................................................................................................ 181 
5.2 – Chave de fim-de-curso ........................................................................................................................... 187 
5.3 – Sinalizadores .......................................................................................................................................... 188 
5.4 – Tomadas de Uso Industrial .................................................................................................................... 190 
 
Capítulo 6 – Comando de Motores Trifásicos com Contator .............................................................................. 199 
6.1 – Comando Local e à Distância ................................................................................................................ 199 
6.2 – Partida Direta ......................................................................................................................................... 200 
6.3 – Reversão de Rotação (manual e semi-automático) ................................................................................ 201 
6.3.1 – Chave Reversora de Comando Manual .......................................................................................... 202 
6.3.2 – Chave Reversora de Comando Semi-Automático .......................................................................... 204 
6.4 – Motor de duas Velocidades (Dahlander) ............................................................................................... 206 
6.5 – Comando Condicionado de Motores Elétricos ...................................................................................... 208 
 
Capítulo 7 – Sistemas de Partida de Motores Elétricos de Indução .................................................................... 223 
7.1 – Introdução .............................................................................................................................................. 223 
mellogalo
Highlight
mellogalo
Highlight
mellogalo
Highlight
mellogalo
Highlight
mellogalo
Typewriter
3o. Bim.nullnullAgosto enullnullSet.nullnullnullnullCap. 6 e 7
mellogalo
Typewriter
mellogalo
Typewriter
mellogalo
Typewriter
mellogalo
Typewriter
 
CEFET-MG - Acionamentos e Comandos Elétricos – Ensino Técnico – Curso Técnico de Mecatrônica. xiii 
7.2 – Chave Estrela-Triângulo Manual e Semi-Automática ........................................................................... 224 
7.2.1 - Vantagens e Desvantagens da Partida Y- ..................................................................................... 225 
7.2.2 – Diagrama da Chave de Partida Estrela-Triângulo no Modo Manual ............................................. 227 
7.2.3 – Diagrama da Chave de Partida Estrela-Triângulo no Modo Semi-Automático ............................. 228 
7.2.4 – Dimensionamento dos Contatores para a Chave de Partida Estrela-Triângulo .............................. 228 
7.3 – Chave Compensadora Semi-Automática ............................................................................................... 232 
7.3.2 – Correntes da Chave Compensadora ............................................................................................... 238 
7.3.2.1 – O Autotransformador .............................................................................................................238 
7.3.2.2 – Equacionamento das Correntes da Chave Compensadora: IK1, IK2 e IK3 ................................ 240 
7.4 – Chave para Motor de Indução com Rotor Bobinado (Resistência Rotórica) ......................................... 242 
7.4.1 – Chave de Partida para Motor de Indução com Rotor Bobinado ..................................................... 245 
 
Capítulo 8 – Motor Monofásico .......................................................................................................................... 251 
8.1 – Motor Monofásico - Princípio de Funcionamento e Componentes ....................................................... 251 
8.2 – Diagramas de Ligação em 127 V e em 220 V ....................................................................................... 256 
8.3 – Sistema de Reversão de Rotação no MM .............................................................................................. 258 
 
Apêndice I – Plano de Ensino da Disciplina de Acionamentos e Comandos Elétricos ....................................... 263 
Apêndice II – Normas e Símbolos utilizados em Comandos Elétricos ............................................................... 267 
Apêndice III - Aulas Práticas .............................................................................................................................. 269 
Aula Prática 1 - Acionamento de Lâmpadas e Medição de Corrente e Tensão Monofásicas .............................. 271 
Aula Prática 2 - Comandos de Acionamento por Chaves e Medição de Valores Trifásicos ............................... 275 
Aula Prática 3 – Controle de Carga utilizando Contator e Relé de Tempo ......................................................... 279 
Aula Prática 4 - Chave de Partida Direta - Motor de Indução Trifásico (MIT) de 6 Terminais .......................... 281 
Aula Prática 5 – Partida de um Motor Elétrico com Comando Direto e Intermitente ......................................... 285 
Aula Prática 6 – Partida Direta de um MIT com Reversão Temporizada ........................................................... 289 
Aula Prática 7 – Relé Eletrônico Temporizador aplicado na partida e na sinalização de um MIT ..................... 293 
Aula Prática 8 – Comando Condicionado de Cargas ........................................................................................... 299 
Aula Prática 9 – Montagem de Chave de Partida Manual e Automática para um Motor Dahlander .................. 303 
Aula Prática 10 – Montagem de Chave de Partida Estrela-Triângulo Semi-Automática .................................... 307 
Aula Prática 11 – Chave de Partida Compensadora ............................................................................................ 311 
Aula Prática 12 – Motor Monofásico – Acionamento Manual em 127 e em 220 V ............................................ 315 
Aula Prática 13 – Acionamento e Reversão Automática do Motor Monofásico ................................................. 319 
Aula Prática 14 – Chave de Partida para MIT com Enrolamentos Separados (2 velocidades) ........................... 323 
Aula Prática 15 – Frenagem de Motor de Indução .............................................................................................. 325 
Referências Bibliográficas ................................................................................................................................... 327 
mellogalo
Highlight
mellogalo
Typewriter
4o. Bim.nullnullOut. enullnullNov.nullnullCap. 8.nullnullProjeto.
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. xiv 
Alfabeto Grego 
 
 
 
 
"Escola de Atenas", Rafael Sanzio. Retrata filósofos gregos e personalidades da época do pintor. 
Fonte: http://www.drsa.com.br/wp-content/uploads/2010/10/escola_atenas_rafael.jpg 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. xv 
 
 
Usina Hidrelétrica de Estreito. Descida do maior rotor Kaplan do Brasil. Agosto de 2010. 
Fonte: http://www.uhe-estreito.com.br/ver_imgprincipal.php?noticia_id=129
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. xvi 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 17 
Capítulo 1 
 
 
 Revisão de Conceitos e Aplicações 
de Corrente Alternada (CA) 
 
Capítulo 1 - Revisão de Conceitos e Aplicações de Corrente Alternada (CA) 
 
1.1 – Introdução 
 
 
No Brasil, a energia elétrica que é fornecida às residências, indústria e comércio, em geral, é 
produzida nas usinas hidrelétricas, onde ocorre a conversão de energia mecânica em elétrica 
(produção de tensão alternada pela rotação do eixo de um gerador trifásico, através de uma turbina 
acionada pela força da água). 
Em uma usina hidrelétrica, a água represada possui energia potencial gravitacional que se 
converte em energia cinética. Essa energia cinética é transferida às turbinas, que movimentam o 
gerador. Este, por sua vez, converte essa energia cinética em energia elétrica a qual será enviada 
através de condutores ao seu destino, através das linhas de transmissão (da usina geradora até as 
subestações de distribuição) e das linhas de distribuição (das subestações aos consumidores). 
Outras formas de se obter energia elétrica estão ilustradas na Figura 1.1: energia eólica (força 
dos ventos para tocar o eixo do gerador), energia solar, energia nuclear etc. 
 
 
 
 
Figura 1.1 – Exemplos de fontes alternativas de Corrente Alternada (CA). 
Fonte: BOYLESTAD, R. L. Introductory Circuit Analysis. 10th Edition, 2002. 
 
 As Figuras 1.2a e 1.2b mostram as partes constituintes de uma usina hidrelétrica. Tente 
descrever o processo em poucas palavras. 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 18 
 
(a) 
 
 
 
(b) 
 
Figura 1.2 – (a) Aspecto de uma Usina Hidrelétrica – vista de perfil. 
(b) Esquema de barragem de Usina Hidrelétrica com destaque para a turbina. 
Fonte: http://pt.wikipedia.org/wiki/Ficheiro:Hydroelectric_dam_portuguese.PNG 
 
- Questão importante: qual é a função do canal na entrada do duto? Responda se possível, 
com suas palavras. 
A Figura 1.3 mostra um zoom sobre a operação da turbina. Note-se que o seu eixo é que 
aciona o gerador de energia elétrica. 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 19 
 
 
Figura 1.3 – Esquema de uma turbina que aciona um gerador de uma usina hidrelétrica. 
Fonte: http://www.eletrica.ufpr.br/~jean/Eletrotecnica/Material_Didatico/Aula03_Sistemas_Trifasicos.ppt 
 
 
A Figura 1.4 mostra a represa Grand Coulee que é atualmente a terceira usina hidroelétrica 
mais potente do mundo. A represa, localizada no Rio Columbia, possui cerca de 1,6 km de 
comprimento, e o dobro da altura das Cataratas do Niágara. A sua construção foi iniciada em 1933, 
tendo sido inaugurada a 22 de março de 1941, quando possuía a maior capacidade de geração de 
eletricidade do mundo – aproximadamente 21000 GWh/ano. 
 A instalação de uma turbina do tipo Francis é mostrada na Figura 1.5. Repare no diâmetro do 
rotor da turbina, onde os técnicos trabalham. Na Figura 1.6 vê-se o rotor de uma turbina de um 
gerador da usina de Itaipu. 
A Turbina Francis é uma turbina hidráulica que foi desenvolvida pelo engenheiro americano 
James B. Francis, em 1849, daí o seu nome. Turbinas Francis são adequadas para operar entre 
quedas de 40 m até 400 m. No Brasil, a usina hidrelétrica de Itaipu, assim como a usina hidrelétrica 
de Tucuruí, usina hidrelétrica de Furnas, usina hidrelétrica de Foz do Areia, AHE de Salto Pilão e 
outras funcionam com turbinas tipo Francis, com cerca de 100 m de queda de água. Fonte: 
http://pt.wikipedia.org/wiki/Turbina_Francis.CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 20 
 
Figura 1.4 - Represa Grand Coulee, no estado americano de Washington, EUA. 
 
 
 
Figura 1.5 - Uma das 6 novas turbinas Francis, que produzem 1 milhão de HP de potência 
(cerca de 745 MW), sendo instalada na unidade 3 da represa Grand Coulee. 
Fonte: http://www.adrenaline.com.br/forum/showthread.php?t=111453 
 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 21 
 
Figura 1.6 – Descida do rotor do gerador da Unidade Geradora 1 (turbina) da Usina Hidrelétrica Estreito. 
Fonte: http://www.pnegrao.com.br/2010/12/montagem-da-primeira-unidade-geradora.html. 
 
 A usina hidroelétrica de ITAIPU, nacional, é uma das que mais produz eletricidade (veja a 
matéria a seguir, dados de 2010). É um empreendimento binacional desenvolvido pelo Brasil e pelo 
Paraguai no Rio Paraná. A potência instalada da usina é de 12.600 MW (megawatts), com 18 
unidades geradoras de 700 MW cada. A Figura 1.7 mostra o seu aspecto de sua barragem. 
 
Itaipu fecha 2010 com geração de 85,9 milhões de MWh 
 
Itaipu produziu em 2010 um total de 85.970.318 megawatts-hora (85,97 milhões de MWh), o 
suficiente para suprir todo o consumo do Paraná durante três anos e sete meses. Ou então, os três estados da 
região Sul por um ano e dois meses. O mesmo volume ainda abasteceria a demanda de Portugal por energia 
elétrica durante um ano e oito meses. 
Como comparação, a usina de Três Gargantas, na China, que tem maior capacidade instalada (maior 
barragem e maior represa do mundo), fechou o ano anterior (2009) com 79,5 milhões MWh. A produção da 
megausina chinesa em 2010 ainda não foi divulgada. A terceira maior produtora do mundo, a usina de Guri, na 
Venezuela, produziu 53,4 milhões MWh em 2009. Quase a metade de Itaipu. 
Com um detalhe: Itaipu foi projetada para gerar até 75 milhões MWh. Um número que foi superado já 
em 1995, com a produção de 77,2 milhões MWh. Depois disso, Itaipu sempre gerou acima do teto. Na maioria 
dos anos, muito acima. Considerando a média dos últimos cinco anos, a geração chega a 91,1 milhões MWh, 
um desempenho sem igual no setor elétrico mundial. 
 
Fonte: www.itaipu.gov.br/sala-de-imprensa/noticia/itaipu-fecha-2010-com-geracao-de-859-milhoes-de-mwh 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 22 
A Tabela 1.1 mostra uma comparação de alguns aspectos técnicos entre as usinas de Itaipu e 
a de Três Gargantas (chinesa). 
 
Tabela 1.1 – Quadro comparativo das usinas de Itaipu e de Três Gargantas (dados de 2010). 
Fontes: http://www.itaipu.gov.br/energia/comparacoes e China Three Gorges Corporation. 
Usina Itaipu (Brasil) Três Gargantas (China) 
Turbinas 20 32 (6 subterrâneas) 
Potência nominal 700 MW 700 MW 
Potência instalada 14.000 MW 
22.400 MW (quando completa, em 
2011) 
Recorde de 
produção anual 
94,7 bilhões kWh/ano 
(2008) 
84,3 bilhões kWh/ano (2010) 
Produção anual 
85,9 bilhões kWh/ano 
(2010) 
84,3 bilhões kWh/ano (2010) 
Concreto utilizado 12,57 milhões m³ 27,94 milhões m³ 
Altura 196 metros 181 metros 
Comprimento da 
barragem 
7.744 metros 
(concreto, enroscamento e 
terra) 175 metros (dique de 
Hernandárias) 
4.149 metros (concreto 2.309 m e dique 
Maoping 1.840 m) 
Vertedouro - 
capacidade de 
vazão 
62.200 m³/s 120.600 m³/s 
Escavações 63,85 milhões m³ 134 milhões m³ 
Número de 
pessoas 
reassentadas 
40 mil 1,13 milhão 
 
 
Figura 1.7 – Aspecto da Barragem da Usina hidrelétrica de Itaipu. 
Fonte: http://www.adrenaline.com.br/forum/showthread.php?t=111453. 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 23 
1.2 – Geração de Corrente Alternada 
 
A Figura 1.8 apresenta o esquema de um gerador elementar de uma espira, submetida à ação 
de um fluxo magnético, interno à região entre os pólos norte e sul de um ímã. 
 Mas, o que é uma espira? Numa definição simples, uma espira constitui um tipo de circuito 
elétrico, com aplicações na produção de campo magnético e eletricidade. É um componente 
encontrado em geradores de energia elétrica, motores elétricos, transformadores e indutores, dentre 
outros. 
 
 
Figura 1.8 – Aspecto básico de um gerador CA com um alternador para geração de uma tensão senoidal. 
 
A Figura 1.9 mostra dois exemplos de bobinas, construídas a partir de um conjunto de 
espiras. A Figura 1.10 mostra a aplicação de uma bobina em um disjuntor (dispositivo de proteção, a 
ser estudado no capítulo 4). 
 
 
 (a) (b) 
Figura 1.9 – (a) Detalhe de uma bobina. (b) Indutor ou bobina de comprimento l formado por N espiras. 
 
 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 24 
 
Figura 1.10 - Aspecto de um Disjuntor 
(veja detalhe da bobina). Fonte: 
 http://www.abracopel.org.br 
O transformador é outro equipamento 
onde, a partir do projeto de suas bobinas 
(entrada: primário e saída: secundário), se pode 
elevar ou reduzir a amplitude de um sinal 
alternado aplicado nos terminais de entrada – 
veja a Figura 1.11a. 
Estas bobinas são enroladas em torno 
de um núcleo comum (em baixa freqüência o 
núcleo é feito de material magnético como o 
aço laminado e em alta freqüência é feito de 
materiais não magnéticos, como o ferrite). 
A Figura 1.11b mostra um 
transformador de potência (rede de distribuição 
de energia elétrica). 
 
 
 
 
(a) 
 
 (b) 
Figura 1.11 – (a) Esquema de um transformador monofásico. (b) Transformador trifásico, 
do tipo encontrado em postes nos sistemas de distribuição de energia elétrica. 
BOBINA 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 25 
1.2.1 - Princípio de Funcionamento de um Gerador Elementar 
 
O condutor (na prática uma bobina) é girado por uma turbina a vapor ou qualquer outra 
forma de energia mecânica. Esta rotação provoca uma alteração contínua no fluxo magnético em 
torno do condutor, o que faz surgir uma tensão induzida sob forma senoidal no mesmo. A Figura 
1.12a mostra uma espira inclinada em relação às linhas de campo magnético (pelo vetor 
B
 ). 
 
 
 (a) (b) 
Figura 1.12 – (a) Espira da Figura 1.8 inclinada por um ângulo alfa () em relação às linhas de campo 
magnético B. (b) A mesma espira girando na região de campo magnético, o que produz uma tensão senoidal 
nos seus terminais. Fonte: http://macao.communications.museum/images/exhibits/small/2_4_1_1_por.png 
 
1.2.2 - Lei de Faraday – F.E.M. Induzida 
 
 Está associado à quantidade de linhas de indução magnética que atravessa a superfície 
delimitada por uma espira. 
cosBA 
 (1.1) 
Onde: 
- B é dado em Tesla [T]; A é a área da espira, em m
2
 e  é o 
ângulo determinado entre a reta normal à superfície e a direção 
do vetor indução. 
A Lei de Faraday, também chamada de lei da Indução 
Eletromagnética, está relacionada com a força eletromotriz 
induzida em uma espira, quando há variação de fluxo magnético 
com o tempo. 
 “A f.e.m. em volts, induzida em um circuito é igual 
ao negativo da taxa de variação com que o fluxo magnético 
através do circuito está mudando no tempo”. (Michael 
Faraday, 1791-1867 – Figura 1.13). 
 
Figura 1.13 - Michael Faraday. 
 
CEFET-MG – Campus VIII – Varginha – Acionamentose Comandos Elétricos. 26 
Matematicamente a Lei de Faraday pode ser expressa pela Equação (1.2): 
 
N
t



 

 (1.2) 
 
A variável N, nesta equação, é o número de espiras e o sinal negativo indica a polarização da 
f.e.m. induzida (Lei de Lenz). 
Para uma variação infinitesimal (valores do delta, , tendendo para zero), utiliza-se a 
derivada, d/dt. Logo, para uma função cosenoidal - veja a Equação (1.1): 
 
cos sen
d
x x
dx
 
 (1.3) 
 
A função seno é a derivada do co-seno, daí: 
 
 
 
 
cos
cos
. sen
Nd BANd
dt dt
d
NBA k
dt



 
   
     
 
 
 . k sen  (1.4) 
 
Onde k = B.A.N é o valor máximo da tensão ou f.e.m. induzida. 
Logo, teremos 
 
max em  = 90 graus (sen 90
o
 = 1). 
min em  = 270 graus (sen 270
o
 = - 1). 
 
 A Figura 1.14 mostra a formação de uma senóide de acordo com o giro de uma espira. Pela 
Equação (1.4), determina-se o valor da f.e.m. induzida nos instantes 1, 2, 3, 4 e 5. 
Outra interpretação da formação da senóide da Figura 1.13 leva em conta que: 
- para os instantes 1, 3 e 5, onde a f.e.m. é nula, isto se justifica pelo fato de que não há 
variação de fluxo magnético. A variação máxima ocorre nos intervalos entre os instantes 1 e 2 
(variação max positiva), 2 e 3 (max negativa), 3 e 4 e 4 e 5. 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 27 
 
Figura 1.14 – Um ciclo completo da tensão CA com o giro de 360 graus de uma espira. 
 
Pela Figura 1.15, pode-se acompanhar o ciclo completo da senóide formada pelo giro de um 
fasor, indicado no diagrama indicando um ciclo de 0 a 360 graus. 
Para um gerador de 2 pólos (norte e sul), a rotação de uma bobina ao longo de 360º 
geométricos (ou graus mecânicos) gera sempre 1 ciclo de 360º elétricos de tensão (gerador de 2 
pólos). Observe que, por exemplo, para um ângulo  de 90 graus – veja a Equação (1.4), a tensão 
induzida na espira é máxima, já que 
0
max.sen .sen90 .k k    
 
 
 
Figura 1.15 – Dois ciclos de tensão alternada gerados pela rotação de uma espira. 
Fonte: B. Grob, Eletrônica Básica, 4a. Ed. New York: McGraw Hill, 1977. 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 28 
1.2.3 – Sinais CA – Principais Parâmetros 
 
• Período (T) - duração de um ciclo ou ainda o intervalo de tempo entre dois pontos da curva de 
mesma situação (picos positivos ou negativos, p. ex.). 
É medido em segundos (s). 
• Freqüência (f) – número de repetições de um movimento ou ainda a quantidade de ciclos que 
cabem em um segundo. 
É medida em Hertz (Hz). 
1
f
T
 
 Logo, 
1
T
f
 
. Daí, Hz = 1/s ou s
-1
. 
• A freqüência do sistema elétrico no Brasil é de 60 Hz; em outros países se usa 50 Hz. 
• Curiosidade 1: na área de telefonia celular, os padrões de freqüência de operação atuais estão na 
faixa de GHz (lembre-se de que 1 G = 1 x 10
9
). 
• Curiosidade 2: para ondas de rádio (sinais sonoros), temos os sinais em AM (amplitude 
modulada) e em FM (frequência modulada). O Rádio FM oferece maior qualidade sonora do que 
o AM, já que a sua banda de passagem é de 200 kHz por canal, bem maior que os 10 kHz do 
rádio AM. Fonte: http://www.willians.pro.br/frequencia/cap3_espectro.htm 
 
EF - Exercícios de Fixação 
Série 1 
EF1 – Para a forma de onda de corrente CA (e mA) da Figura 1.16, pede-se: 
a) Encontrar o seu período e a sua freqüência. 
b) Desenhar outro sinal de corrente com freqüência duas vezes maior. 
 
 
Figura 1.16. 
 
 
EF2 – Por que, na construção de uma bobina, utiliza-se o fio de cobre envernizado? 
EF3 – Explicar matematicamente (através de uma ou mais equações) por que em uma bobina com 
muitas espiras se consegue induzir mais tensão elétrica. 
EF4 – Seja o esquema da Figura 1.17. 
a) Por que a corrente é alternada no resistor R? 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 29 
b) Se um técnico projeta uma espira 3 x menor em relação à apresentada nesta figura, o que ocorre 
com o valor de pico da senóide produzida? Justifique. 
c) Se a espira fica parada, há indução de tensão nos terminais do resistor R? 
 
EF5 – Examinar a Figura 1.18 e explicar porque a corrente é contínua no circuito externo 
(representado pelo resistor R). 
 
 
 
Figura 1.17. 
 
 
 
Figura 1.18. 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 30 
1.2.4 – Sinais CA – Valores Característicos e Conceitos Importantes 
 
 A equação geral de um sinal de tensão senoidal (o mesmo vale para um sinal de corrente) é 
dada, de acordo com a Lei de Faraday, pela Equação (1.5): 
 
maxv(t) = V .sen (ωt+ )
 (1.5) 
Onde: 
 
1) v(t) é o valor instantâneo da tensão; 
2) Vmax é o máximo valor que a tensão pode atingir, também denominada de amplitude ou tensão de 
pico (ver a Figura 1.19); 
3) Valor de pico-a-pico, Vpp : é a distância entre os valores máximo e mínimo. Matematicamente, 
para um sinal simétrico como o da Figura 1.19, este parâmetro é: 
 
pp max max maxV =V -(-V )=2.V
 (1.6) 
 
 
Figura 1.19 – Representação de uma senóide. 
 
4) O ângulo  (phi, legra grega) é o ângulo de fase inicial, que indica a posição angular onde se 
inicia o semiciclo positivo da forma de onda senoidal. 
Pela Figura 1.20a vê-se que o semiciclo positivo começa antes do zero (0) no eixo t. A 
onda senoidal está ADIANTADA em relação ao instante 0 (zero). O ângulo de fase é considerado 
positivo ( > 0) na Equação (1.5). 
Já na Figura 1.20b o semiciclo positivo começa após o instante zero (0) no eixo  t. 
Portanto, a onda senoidal está ATRASADA em relação ao instante 0 (zero) e o ângulo de fase é 
considerado negativo ( < 0) na Equação (1.5). 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 31 
 
 (a) (b) 
Figura 1.20 – (a) Ângulo de fase  > 0 (onda senoidal ADIANTADA em relação a t = 0. 
(b) Ângulo de fase  < 0 (onda senoidal ATRASADA em relação a t = 0. 
 
Na Equação (1.5)  (letra grega teta) é um ângulo, em função da frequência angular  (rad/s) 
e do tempo (s). Graficamente é representada no eixo horizontal. 
 
 =t = (2/T).t [rad] (1.7) 
 
EExemplo 1.1 
 
A expressão
0( ) 5.sen (100 35 )v t t 
 mostra que este sinal está com um ângulo de fase  = 
35
0
, logo, encontra-se adiantada em relação ao instante 0 s (ou ao ângulo 0
0
). 
Teste: para t = 0, 
0( ) 5.sen (35 ) 2,87 V.v t  
 Veja a forma de onda deste sinal na Figura 1.21, 
bem como o valor instantâneo em t = 0, para um ângulo de fase  = 350. Nesta figura, o ângulo de 
fase está indicado com a letra grega , ao invés de . 
 
 
Figura 1.21. 
 
5)  (letra grega ômega) indica a velocidade de giro angular, dada por 
 
  = 2f ou  = 2 / T [rad/s] (1.8) 
onde f = freqüência e T = período. 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 32 
6) Identificação de grandezas elétricas variantes no tempo 
 
 As grandezas elétricas, quando variantes no tempo, são identificas pela letra MINÚSCULA. 
Por exemplo: v(t), tensão CA e i(t), corrente CA. 
 Quando se quer escrever/identificar os parâmetros destas grandezas, como valor máximo, 
valor de pico-a-pico, valor médio, valor eficaz etc.,faz-se o uso de letras MAIÚSCULAS. 
 Exemplo: 
pp max RMS DCV ,V ,V ,V
 etc. 
 
 
EF - Exercícios de Fixação 
Série 2 
 
EF6 – Sejam as formas de onda da Figura 1.22. Pede-se determinar as equações de i(t) e v(t). As 
duas formas de onda estão em fase? Justifique. 
 
Figura 1.22 – EF6 (BOYLESTAD, 2002). 
 
EF7 – Seja a tensão senoidal (Figura 1.23), cuja equação é v(t) = 20 sen (500..t -  /4). 
 
 
Figura 1.23 - EF7 (BOYLESTAD, 2002). 
 
a) Qual é o seu valor máximo, Am? Qual é a sua velocidade angular () em rad/s? 
b) Qual é o seu ângulo de defasagem inicial () em rad? Encontre este parâmetro em ms. 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 33 
c) Encontre para este sinal o período (T) em s e a freqüência (f) em Hz. 
EF8 – Para o sinal da Figura 1.24, pede-se encontrar, com base nas informações: 
Escala vertical: 2 V/div. e 1 A/div. Escala Horizontal: 0,2 ms / div. 
a) o período de i(t) e e(t), em ms e a amplitude de pico a pico do sinal e(t); 
b) o defasamento em graus e em ms entre os sinais e(t) e i(t). 
 
 
Figura 1.24 – Dois sinais defasados no tempo (BOYLESTAD, 2002). 
 
1.2.4.1 – Valor Médio, VCC ou VDC 
 
 O valor médio de uma função representa o resultado líquido da variação de uma grandeza 
física como deslocamento, temperatura, tensão, corrente, etc. (MUSSOI, 2006). 
 Para uma grandeza em função do tempo, por exemplo, o valor médio é dado pela soma das 
áreas positivas e negativas que são descritas periodicamente ao longo do tempo. 
Assim, para uma forma de onda, como mostra a Figura 1.25, o valor médio é determinado 
pela área total sob a curva, dividido pelo período da forma de onda: 
 
 
Comprimento da curva
med
A Areas sob a curva
V
T
 
  (1.9) 
 
 
Figura 1.25 - Conceituando graficamente o valor médio de uma forma de onda (MUSSOI, 2006). 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 34 
EExemplo 1.2 - Qual é o valor médio da forma de onda da Figura 1.26? 
 
 
 
 Figura 1.26 (BOYLESTAD, 2002) – ER1. 
Solução: 
 
 
 
EExemplo 1.3 
 
Determine o valor médio para a forma de onda da Figura 1.27. 
 
 
 
Figura 1.27 (MUSSOI, 2006). 
 
Solução:        4 2 2 2 3 2 1 2 8 4 6 2 12
1,5.
8 8 8
medioV
          
   
 
 
1.2.4.2 – Valor Eficaz, Vef ou Vrms 
 
 O valor eficaz de uma função representa a capacidade de produção de trabalho efetivo de 
uma grandeza variável no tempo entre as excursões positivas e negativas da mesma. 
 Para uma grandeza senoidal (Figura 1.28), cuja equação no domínio do tempo é dado por 
v(t) = Vmax sen t, o seu valor eficaz é dado pela Equação (1.10). 
 
max
2
ef
V
V 
 (1.10) 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 35 
 
Figura 1.28 – Valor eficaz de uma senóide (MUSSOI, 2006). 
 
 
 Para entender de modo simples o significado físico do valor eficaz (também conhecido como 
valor RMS, de root mean square, valor médio quadrático), faz-se a análise da potência elétrica 
fornecido a um mesmo resistor, primeiro com uma fonte de tensão contínua e depois com uma fonte 
CA senoidal, como mostra a Figura 1.29. 
No primeiro circuito, alimentado pelo sinal em CC: 
 
 
1 1 127 100 1,27 .I V R A  
 
Daí, P1 = V1I1 = 127 V  1,27 A = 161,29 W. 
 
 
Figura 1.29 - Circuitos para medição da potência RMS num resistor. Simulação no Software PSpice
®
. 
 
 O segundo circuito é alimentado por um sinal senoidal, que é ajustado para que um 
amperímetro indique uma corrente de 1,27 A (alternada), a fim de que seja dissipada a mesma 
potência que no primeiro circuito. 
 Logo, P2 RMS = 127 VRMS . 1,27RMS A = 161,29 WRMS. 
 O valor ajustado para a senóide equivale a uma tensão contínua a qual aplicada a um 
elemento resistivo, dissipa a mesma potência (em CA) que no primeiro circuito (em CC). O circuito 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 36 
da Figura 1.30 mostra um modo prático de se medir a energia térmica entregue por ambas as fontes 
ao resistor R. 
 
 
 
Figura 1.30 – Circuito para medição da energia dissipada pelo resistor alimentado por fontes 
CC e CA. Fonte: BOYLESTAD, R. L. Introductory Circuit Analysis. 10th Edition, 2002. 
 
Em resumo: o valor da tensão eficaz ou da corrente eficaz é o valor que produz numa resistência o 
mesmo efeito que uma tensão/corrente contínua constante desse mesmo valor. 
 
Observações: 
 
• Os instrumentos comuns de medição em corrente alternada (voltímetros, amperímetros e 
multímetros) fornecem valores eficazes somente para sinais senoidais; 
• Para medir o valor eficaz de uma forma de onda de tensão (ou de corrente) não perfeitamente 
senoidal deverá ser usado um voltímetro (ou amperímetro) mais sofisticado, conhecido como True 
RMS (Eficaz Verdadeiro) que é capaz de fazer a integração da forma de onda e fornecer o valor 
eficaz exato para qualquer forma de onda. 
• Para uma forma de onda contínua constante (de tensão ou corrente, por exemplo) o valor eficaz é 
igual ao valor médio. 
 
1.3 – Relacionando Graus Elétricos e Tempo e Graus Elétricos e Mecânicos 
 
 De acordo com a Figura 1.15, é muito simples relacionar graus elétricos (referentes a 
grandezas elétricas, obviamente) e o tempo em segundos. 
 Supondo que um ciclo da senóide desta figura (360 graus) ocorre em um tempo de 10 ms, 
para encontrar, por exemplo o instante onde ocorre o primeiro valor máximo positivo (vB), basta 
resolver a regra de três simples: 
 
 360 graus 10 ms 
 090 graus tB 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 37 
 Encontra-se para tB o instante 2,5 ms, correspondente a ¼ de ciclo. 
 Para relacionarmos graus elétricos e mecânicos, basta aplicar a seguinte definição: 
 
Numa máquina de p pólos (veja a Figura 1.31), uma rotação completa do rotor 
corresponderá a p/2 ciclos de tensão. A denominação da posição do rotor de graus mecânicos e do 
ângulo correspondente a cada valor do ciclo de tensão gerada de graus elétricos permite 
estabelecer a seguinte relação: 
 
2
elet mec
p
  
 (1.11) 
 
Onde elet = graus elétricos (em graus ou radianos); mec = graus mecânicos (físicos, em graus ou 
radianos) e p = número de pólos. 
 
 
 
(a) 
 
 
 
 
 
(b) 
 
Figura 1.31 – (a) Gerador elementar CA monofásico de 2 pólos. (b) Gerador elementar CA trifásico de 2 pólos. 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 38 
1.4 – Representação Fasorial de uma Grandeza Elétrica Senoidal 
 
1.4.1 – Fasores 
 
Uma grandeza senoidal pode ser representada por um vetor que gira com velocidade angular 
constante , em rad/s. Se este representa uma grandeza elétrica (tensão ou corrente), damos a ele o 
nome de FASOR (Figura 1.32). 
 
Figura 1.32 – (a) Representação fasorial de uma grandeza senoidal x(t), ilustrada em (b). 
 
 
Notas: 
 
1) o FASOR não é como o vetor, pois possui somente módulo e sentido (horário ou anti-horário); 
2)  = 2f  frequência angular (rads/s). 
Na Figura 1.33 a onda B está adiantada ou atrasada da onda A? Qual é o ângulo de fase? 
 
 
 
 (a) (b) 
 
Figura 1.33 – Ondas senoidais. (a) Formas de onda. (b) Diagrama de fasores. 
 
 
 
CEFET-MG– Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 39 
 Na Figura 1.34 vêem-se dois sinais, de tensão, v(t) e de corrente, i(t). No primeiro gráfico o 
defasamento é de 180 graus (sinais fora de fase). No segundo gráfico as grandezas estão em fase 
(ângulo de defasagem nulo entre ambas as formas de onda). 
 
 
Figura 1.34 – Sinais em contra fase e em fase. 
 
 O oscilograma da Figura 1.35 mostra três sinais de tensão. Qual deles está mais adiantado? 
Os três sinais possuem a mesma freqüência? Justifique. 
 
 
 Figura 1.35 – Três senóides defasadas entre si. 
 
 
 
 
 
 
 
 
 
1.4.2 - Representação Matemática de um Fasor 
 
 FASOR é um NÚMERO COMPLEXO que representa a amplitude (alguns autores utilizam 
o valor máximo; outros o valor eficaz) e a fase (ângulo de fase) de uma tensão ou corrente senoidal. 
Neste texto será adotado o valor eficaz como amplitude do fasor. 
 
DOMÍNIO DO TEMPO: 
 max( )x t X sen t  
 
FORMA POLAR: 
eficazX X 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 40 
EExemplo 1.4 
 
Seja um sinal de 
 0( ) 180. 377 45v t sen t 
 [V]. Qual é a sua forma polar? 
Solução: 
Na forma polar ele pode ser representado como: 
0180 45 V.
2
V 
 
Relembrando, o valor eficaz de um sinal senoidal é 
max
2
ef
V
V  
 
 
EExemplo 1.5 
 
Um fasor é representado como 
05 15 AI  
. Pede-se encontrar a expressão de i(t) e a queda de 
tensão em um resistor R de 10 ohms por onde circula esta corrente, escrita no domínio do tempo e na 
forma polar. 
Solução: 
a) i(t) será representado no domínio do tempo como: 
 0( ) 5 2. 15 .i t sen t 
 
b) Da Lei de Ohm, vR(t) = Ri(t). 
    0 0
0
( ) ( ) 10 5 2. 15 50 2. 15
 50 -15 .
R
R
v t R i t sen t sen t
Na forma polar V V
       
 
 
 
 
EF - Exercícios de Fixação 
Série 3 
 
EF9 - Escreva a função e desenhe a forma de onda de um sinal senoidal 1 com freqüência 50 Hz e 
valor de pico de 5 V. Adote este sinal como referência (angulo 0°). 
 
EF10 - Suponha um sinal senoidal 2 atrasado de 90° em relação ao sinal 1, com valor de pico de 2 V 
e mesma frequencia. Escreva a função e a forma de onda do sinal 2. 
 
EF11 - Desenhar o diagrama fasorial dos sinais 1 e 2. Qual o período destes sinais? 
 
EF12 - Desenhe um sinal senoidal com período 1 ms e valor eficaz (rms) de 8 V, adiantado de 45° 
em relação à referência. Escreva a função e o diagrama fasorial do sinal. 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 41 
EF13 - Uma certa tensão elétrica é descrita pela equação v = 120 sen 377t. 
 
a) Qual é a tensão instantânea quando t = 10 ms ? 
b) A onda co-seno (com o mesmo aspecto da onda senoidal) é deslocada da onda senoidal de 90 
graus (1/4 de período à frente). Escreva a equação da onda de tensão dada neste exercício na forma 
co-senoidal e desenhe a mesma no oscilograma da Figura 1.36. 
 
EF14 - Se uma tensão CA tiver um valor máximo de 155,6 V, qual será o ângulo de fase para o qual 
a tensão instantânea é de 110 V? 
 
 
Figura 1.36 – EF 14. 
 
EF15 – Encontre o defasamento entre as formas de onda de tensão e corrente nas duas situações da 
Figura 1.37 (formas de onda em (a) e em (b)). 
 
 
(a) 
 
 
(b) 
Figura 1.37 – EF15. 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 42 
1.4.3 – Operações Matemáticas com Fasores 
 
 Na análise de circuitos elétricos, a representação trigonométrica (expressões trigonométricas, 
no domínio do tempo) permite realizar algumas operações matemáticas entre as grandezas tensão, 
corrente e potência elétricas, mas de modo trabalhoso. 
 A representação fasorial surge então como uma importante ferramenta, já que facilita as 
operações matemáticas, pois os sinais senoidais de tensão, de corrente e de potência podem ser 
representados através de fasores e estes, por sua vez, podem ser representados por números 
complexos. 
Os números complexos são operados por uma álgebra própria, bem mais simples que os 
cálculos envolvendo trigonometria. A Figura 1.38 explica isto de forma bastante visual. 
Assim, uma forma de onda senoidal dada por v(t) = 5 sen (30t + 45
0
) poderá ser 
representada na forma retangular ou polar na seguinte forma: 
05 45 V
2
ef vV V   
 
 
 
Figura 1.38 – Representação em diagrama de blocos da operação com fasores (MUSSOI, 2006). 
 
 
1.4.3.1 – Fasores representados por Números Complexos 
 
 Um fasor é um vetor radial girante, como já foi visto, e permite realizar com facilidade 
operações algébricas entre os sinais de um sistema elétrico. 
Basta, para isto, utilizar uma ferramenta matemática para a sua representação, a qual faz uso 
dos números complexos. 
Um número complexo pode ser representado na forma retangular (ou forma cartesiana), 
como mostra a Figura 1.39. É um número composto por uma parte real e uma parte imaginária: 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 43 
Z a jb 
 (1.12) 
 
onde j é um operador matemático que desloca um fasor real de  90 graus para o eixo imaginário 
(logo, o fasor b, deslocado de + 90 graus é representado por +jb e, deslocado de – 90 graus, é 
representado por - jb). Assim, j é considerado um operador rotacional. 
 
 
Figura 1.39 – Álgebra fasorial e números complexos. 
 
 O operador j, apresentado na Equação (1.12), é denominado operador complexo e definido: 
 
1j  
 (1.13) 
 
 Na matemática é utilizado o operador i é usado invés do j, mas em Eletricidade o fator i 
poderia ser confundido com o valor instantâneo da corrente, daí o uso preferencial do j. 
 Na Figura 1.38 o coeficiente a representa a projeção de Z no eixo real e b representa a 
projeção de Z sobre o eixo imaginário. 
O ângulo do fasor pode ser encontrado facilmente da Equação (1.14): 
 
 1tan b a 
 (1.14) 
 
 já que tan  = b/a, onde a = cateto adjacente e b = cateto oposto (ao ângulo teta, ), como 
ilustra melhor a Figura 1.40. 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 44 
 
Figura 1.40 – O fasor Z e seus componentes a e b. 
 
 Resumindo, as relações apresentadas anteriormente possibilitam transformações entre as 
notações RETANGULAR  POLAR e POLAR  RETANGULAR. 
 
EExemplo 1.6 
 
Um fasor representado forma POLAR como 
01 30 AI  
 será representado na forma 
RETANGULAR ou COMPLEXA como I = (1.cos 30
0
) + j (1.sen 30
0
)  I = 0,87 + 0,5 j. 
 
1.4.3.2 – Adição e Subtração entre Fasores 
 
 Para estas operações, utiliza-se a forma retangular para obter o fasor resultante. Sejam os 
fasores 
1 1 1Z a jb 
 e 
2 2 2Z a jb 
, sobre os quais se deseja obter: 
 
SOMA: 
1 2Z Z Z 
 
12( ) 1 1 2 2
12( ) 1 2 1 2
( ) ( )
( ) ( )
soma
soma
Z a jb a jb
Z a a j b b
   
   
 
SUBTRAÇÃO: 
1 2Z Z Z 
 
12( .) 1 1 2 2
12( .) 1 2 1 2
( ) ( )
( ) ( )
Subtr
Subtr
Z a jb a jb
Z a a j b b
   
   
 
 
Em resumo: 
1) na operação de soma e subtração entre dois fasores, trabalha-se na forma complexa e somam-se ou 
subtraem-se separadamente os coeficientes reais e os imaginários; 
2) soma e subtração algébrica de números complexos são feitas na forma retangular. 
 
EExemplo 1.7 
 
Determinar a resultante de 
1 2Z Z Z 
, onde: 
1 25 2 e 5 7. Z j Z j   
 
Solução: (5 5) (27)
10 5
Z j
Z j
   

 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 45 
EExemplo 1.8 
 
Qual é a resultante C12 dos fasores indicados na Figura 1.41? 
Solução: 
 
12 12(2 3) (4 1) 5 5C j C j      
 
O fasor resultante está desenhado na Figura 1.42. Conferir as suas coordenadas. 
 
 
Figura 1.41. 
 
Figura 1.42. 
 
 
1.4.3.3 – Multiplicação e Divisão entre Fasores 
 
a) Multiplicação 
 
 A multiplicação de números complexos deve ser feita na forma polar, não sendo 
recomendável a multiplicação na forma retangular, embora possa ser realizada (os cálculos ficam 
difíceis). Multiplicam-se os módulos e somam-se algebricamente os ângulos. 
 Sejam dois números complexos escritos na forma polar: 
1 1 1 2 2 2 C Z e C Z  
 
 A multiplicação destes entes será dada por: 
1 2 1 2 1 2 C C Z Z     
 
 
b) Divisão 
 
 A divisão de números complexos também deve ser feita na forma polar. O processo é 
análogo ao da multiplicação, porém, deve-se, ao dividir C1 por C2, dividir os seus respecitivos 
coeficientes e subtrair os seus respectivos ângulos. De modo resumido: dividem-se os módulos e 
subtraem-se algebricamente os ângulos. 
Matematicamente, pode-se escrever: 
1 1
1 2
2 2
 
C Z
C Z
  
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 46 
 A Tabela 1.2 mostra um resumo de alguns parâmetros e operadores de tensão e corrente 
elétricas. 
 
Tabela 1.2 – Representações matemáticas de sinais senoidais. 
 
 
 
1.5 - Comportamento de Circuitos Resistivos, Indutivos e Capacitivos em CA 
 
 Os componentes passivos - resistores (R), indutores (L), capacitores (C) – possuem 
comportamentos distintos quando conectados em uma fonte de CA. Todos estes tendem a fazer 
oposição à passagem da corrente, porém cada qual irá provocar ou não um defasamento entre os 
ângulos da tensão e o da corrente. 
 
1.5.1 – Circuito RESISTIVO - corrente e tensão em fase 
 
 Considerando a carga R puramente resistiva (Figura 1.43), a potência fornecida pelo gerador 
AC será totalmente absorvida por R. Isto ocorre porque a corrente (iR) e tensão (vR) presentes em R 
estão na mesma fase. 
 A oposição à passagem da corrente é dada pelo valor ôhmico de R, ou seja: 
max
max
 
 
 
R R
R
R
V sen tv v
i sen t
R R R
i I sen t



   

 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 47 
 
Figura 1.43 – Circuito CA com carga puramente resistiva. 
 
EExemplo 1.9 (BOYLESTAD, 2002) 
 
Dado um circuito puramente resistivo como o da Figura 1.43, onde, esboçar as suas formas 
de onda de v(t) e i(t) e o seu diagrama fasorial. São dados: R = 2 ohms e i(t) = 4 sen (t + 300) A. 
 
Solução: 
 O fasor de corrente será dato por: 
0 04 30 2,83 30 .
2
I A A 
 
 Logo, a tensão v(t) na forma polar será encontrada por: 
 
0 0 0 0 00 2,83 30 = 2 0 2,83 30 5,66 30 .V R I R V     
 
 
No domínio do tempo, encontra-se v(t) por: 
    
 
0
max
0
( ) . 5,66 2 30
( ) 8,0. 30
v t V sen t t sen t
v t sen t
   

    
 
 
 A Figura 1.44a mostra as formas de onda de v(t) e i(t). Os respectivos fasores estão 
desenhados na Figura 1.44b, em fase (0
0
 de deslocamento entre ambos). 
 
 
 (a) (b) 
Figura 1.44 – (a) Formas de onda do circuito do Exemplo 1.8. (b) Fasores de i(t) e v(t). 
 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 48 
1.5.2 – Circuito puramente INDUTIVO – tensão adiantada de 90 graus da corrente 
 
 Seja uma bobina alimentada por 
um sinal CA senoidal, como mostra a 
Figura 1.45. 
 Um indutor oferece uma 
oposição à variação de corrente i(t) 
devido à sua propriedade de auto-
indução de tensão. Esta oposição 
estabelecida por um indutor em um 
circuito AC senoidal pode ser 
encontrada aplicando a equação 
 
 
 
Figura 1.45 – Circuito puramente indutivo alimentado por 
uma fonte de tensão senoidal (MUSSOI, 2006). 
 
Efeito = Causa / Oposição  Oposição = Causa / Efeito 
 Do circuito da Figura 1.45: 
Oposição 
max
 max max
max max max
.2
2
L ef
L ef
V
V V L I
L
II I I
      
 Esta oposição à corrente iL é a reatância indutiva do indutor L – Equação (1.15). 
 
XL = L = 2π f L (1.15) 
 
onde: XL: reatância indutiva Ω; f: frequência em Hertz (Hz) e L: indutância em Henry (H). 
 A tensão induzida na bobina é fornecida pela Equação (1.16). 
. ( )Lv L di t dt
 (1.16) 
 
 
 (a) (b) 
Figura 1.46 – (a) Formas de onda do circuito indutivo puro (Figura 1.42). (b) Fasores. 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 49 
 Pela Figura 1.46a é fácil verificar que quando a derivada diL(t)/dt é máxima (instante A, 
igual em ângulo a 90 graus), a tensão induzida na bobina é máxima. Para o instante B, diL(t)/dt é nula 
e, pela Equação (1.16), vL(t) = 0. Na Figura 1.46b vê-se o fasor VL adiantado de 90
0
 do fasor IL. 
 Observando as formas de onda da Figura 1.47 - agora com a corrente iL(t) na referência, ou 
seja, com ângulo de fase nulo - se conclui que: 
nos terminais de um indutor num circuito CA, a tensão sempre estará adiantada de 90
0
 em 
relação à corrente. 
 
 
Figura 1.47 – Sinais de i(t) e vL(t) para o circuito da Figura 1.45 (BOYLESTAD, 2002). 
 
 
1.5.3 - Circuito puramente CAPACITIVO – corrente adiantada de 90 graus da tensão 
 
 A oposição à passagem da corrente iC(t) em um circuito capacitivo puro (Figura 1.48) é 
determinada pela reatância capacitiva do capacitor C, expressa por: 
 
 
1 1
 
2
CX
C fC 
  
 (1.17) 
 
 Onde:  = frequência angular, em rad/s; XC: reatância capacitiva em ohms (Ω); f: 
frequência do gerador em Hertz (Hz) e C: capacitância em Farad (F). 
 
 
Figura 1.48 – Circuito capacitivo puro, alimentado por uma fonte de tensão senoidal. 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 50 
 As formas de onda deste circuito são visualizadas na Figura 1.49. A corrente em um 
capacitor é encontrada pela Equação (1.18). 
 
( )
( ) CC
dv t
i t C
dt
 
 (1.18) 
 
 
 
 (a) (b) 
Figura 1.49 – (a) Ondas de corrente e tensão em um circuito capacitivo puro. (b) Fasores. 
 
 Analisando a Figura 1.49a, vê-se que o máximo da corrente ocorre quando a derivada da 
tensão no capacitor é máxima (inclinação da reta tangente na curva vc(t), em 90 graus), o que é fácil 
comprovar com a Equação (1.18). 
 Se conclui então que: nos terminais de um capacitor num circuito CA, a corrente sempre 
estará adiantada de 90
0
 em relação à tensão. 
 Na Figura 1.49b vê-se o fasor IC adiantado de 90
0
 do fasor VC. 
 
 
1.5.4 – Impedância de Circuito CA 
 
 A impedância Z, dada pela relação entre tensão e corrente num circuito misto, contendo 
elementos resistivos (R), capacitivos (C) e indutivos (L), representa a medida da oposição que este 
circuito oferece à passagem de uma correntealternada (MUSSOI, 2006). 
 Os elementos XL e XC (reatâncias indutiva e capacitiva, respectivamente), são fasores que 
são posicionados no eixo imaginário, enquanto que a resistência R fica posicionada no eixo real do 
plano complexo, também chamado de Plano de Argand-Gauss ou Diagrama de Argand. 
 As Figuras 1.50 e 1.51 mostram a disposição destes fasores no plano complexo. O fasor XL 
está posicionado para cima, com ângulo de + 90
0
 enquanto XC está posicionado para baixo, com 
ângulo de - 90
0
. Estes dois fasores são denominados de componentes reativas de um circuito, ou seja, 
armazenam energia. Já o resistor é um elemento passivo, pois somente dissipa a energia elétrica que 
recebe. 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 51 
 
(a) (b) (c) 
Figura 1.50 (MUSSOI, 2006) – Diagrama fasorial de impedância (Z). (a) Reatâncias indutiva e capacitiva 
(disposição no eixo imaginário do plano complexo). (b) Z resultante em um circuito RL (resistência + reatância 
indutiva). (c) Z resultante em um circuito RC (resistência + reatância capacitiva). 
 
 Do diagrama fasorial da Figura 1.51, a impedância COMPLEXA ou retangular é: 
 
 ( ) L CZ R j X X   
 (1.19) 
 
 Como encontrar o módulo da 
impedância Z? 
 O módulo de Z é encontrado 
aplicando-se o teorema de Pitágoras no 
triângulo formado pelos fasores R (cateto 
adjacente ao ângulo  ou T ou ainda ) e pela 
resultante X = XL – XC, a qual é o cateto oposto 
ao ângulo . 
 
Figura 1.51 – Diagrama fasorial de impedância (Z). 
 
 
22
L CZ R X X  
 (1.20) 
 O ângulo da impedância é calculado por: 
 1tanT L CX X R    
 
 Daí, na forma POLAR, a impedância Z é dada pela Equação (1.21). Os componentes de Z 
podem ser encontrados em função do ângulo T – Equações (1.22) e (1.23). 
 
 TZ Z  
 (1.21) 
cos TR Z  
 (1.22) 
 TX Z sen  
 (1.23) 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 52 
 Se são conhecidas as equações de v(t) e i(t) em um circuito – indicadas a seguir -, determina-
se a sua impedância Z (assunto do próximo item). 
Equações de tensão e corrente no domínio do tempo, onde Vp = Vmax: 
 
 
 
A Tabela 1.3 mostra de modo muito didático, as relações físicas e matemáticas entre tensão e 
corrente elétrica nos elementos passivos de um circuito RLC. 
Tabela 1.3 (MUSSOI, 2006). 
 
 
EExemplo 1.10 
 
Dado o diagrama fasorial da Figura 1.52, onde o ângulo da 
impedância é de 60 graus, pede-se calcular: 
a) o módulo da impedância Z; 
b) o valor de XL (reatância indutiva); 
c) a representação de Z na forma complexa; 
d) a representação de Z na forma polar. 
 
Figura 1.52. 
 Solução: 
a) Pela expressão (1.22), 
cos TR Z  
 
0 02 cos60 2 cos60 4 .Z Z     
 
b) 
0 4 60 3,46 .L TX Z sen sen      
c) 
4 (3,46 0) 4 3,46 .Z j j     
 
d) 
04 60 .Z  
 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 53 
1.5.4.1 – Lei de Ohm para a impedância Z em Corrente Alternada 
 
 Como já é sabido, a Lei de Ohm relaciona as grandezas tensão e corrente elétricas através de 
uma constante de proporcionalidade, expressa pela oposição entre a causa (tensão aplicada) e efeito 
(corrente). Para um circuito CA, a relação entre a tensão e a corrente é a impedância Z. No domínio 
fasorial, tem-se: 
 T V IZ V I  
 (1.25) 
 Onde, obviamente o ângulo da impedância é 
.T V I   
 
 
1.5.4.2 – Associação de Impedâncias 
 
 As impedâncias, da mesma forma que as resistências, podem ser associadas, em série e em 
paralelo. As Figuras 1.53 e 1.54 mostram os esquemas destas associações e as suas respectivas 
equações, para se encontrar a impedância equivalente. 
 
1
n
eq i
i
Z Z

 
Impedância equivalente de 
uma associação em série. 
 
Figura 1.53 – Associação em série de impedâncias e sua equação de Z equivalente. 
 
 
 
 
1
1n
eq
i i
Z
Z
 
  
 
 
Impedância equivalente de 
uma associação em paralelo. 
 
Figura 1.54 – Associação em paralelo de impedâncias e sua equação de Z equivalente. 
 
EExemplo 1.11 
 
Encontre a impedância equivalente para um circuito RLC série, onde os parâmetros são 
dados por: R = 10 , XL = 15  e XC = 5 . 
 
Solução: 
( ) 10 15 5
10 10 .
 
L CZ R jX jX j j
Z j
      

  
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 54 
EExemplo 1.12 
 
Mostrar que, para duas impedâncias conectadas em paralelo, a sua impedância equivalente é 
dada pela razão entre o produto e a soma entre elas. 
Solução: 
2 1 1 2
1 2 1 2 2 1
1 1 1 1 1
 eq
eq eq eq
Z Z Z Z
Z
Z Z Z Z Z Z Z Z Z
 
      
 
 
 
1.6 - Sistema Trifásico 
 
 O sistema trifásico consta de três ondas senoidais defasadas entre si de 120 graus. A Figura 
1.55a mostra um gerador trifásico e a Figura 1.55b as bobinas deste gerador. Se conectadas com o 
ponto neutro (N) em comum, tem-se a ligação em estrela (Y). 
 A Figura 1.56 mostra um gerador de dois pólos girando a uma velocidade n em RPM, 
produzindo um campo girante com velocidade  em rad/s. 
 
Figura 1.55 – (a) Gerador trifásico. (b) Bobinas do gerador, defasadas entre si de 120 graus. 
 
 
 
Figura 1.56 – (a) Modelo elementar de um gerador trifásico. Repare nas fases a, b e c 
e a conexão do neutro. (b) Formas de onda (defasamento de 120 graus entre as tensões). 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 55 
Definições importantes: 
 
- Tensão de fase (VF ou VFN): é a tensão de cada fase em relação ao condutor neutro. 
- Tensão de linha (VL ou VFF): é a tensão entre duas fases (por exemplo, vab na Figura 1.56a). 
- Em qualquer instante de tempo (veja a Figura 1.56b), a soma fasorial das três tensões de fase de um 
gerador trifásico é nula (BOYLESTAD, 2002). 
 A Figura 1.57 mostra as formas de onda de um sistema abc (tensões de fase e de linha). 
 
 
Figura 1.57 – Formas de onda de um sistema trifásico equilibrado (tensões de fase e de linha). 
Fonte: http://www.ee.pucrs.br/~fdosreis/ftp/Eletronica_de_Potencia/trifasico1.gif 
 
A representação fasorial das tensões trifásicas está ilustrada na Figura 1.58a. As três tensões 
de fase (VFN) são defasadas entre si de 120 graus e têm o mesmo módulo. Tomando como base esta 
figura, pode-se obter o fasor de uma tensão de linha (VFF), o qual será calculado posteriormente 
através da aplicação matemática da Lei dos Cossenos. 
 A tensão de linha vbc (entre as fases b e c), é encontrada pela Equação (1.26). Para se obter 
o fasor 
cn-V
bastou desenhar o mesmo com defasamento de 180 graus. 
b c bn cn bn cnV = V -V = V -V = V + (-V )bc
       (1.26) 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 56 
 
 
 (a) (b) 
Figura 1.58 – (a) Diagrama fasorial para um gerador trifásico – tensões de fase. (b) – Obtendo a tensão 
 de linha vbc, a partir das tensões nas fases b e c em relação ao neutro (regra do paralelogramo). 
 
Pela regra do paralelogramo, aplicada no diagrama fasorial da Figura 1.58b, se obtém o fasor 
resultante (diagonal Vbc ). 
 
 Relembrando... 
 
 A rede elétrica CA monofásica é formada por dois fios, um chamadofase e outro chamado neutro. O 
fio neutro possui potencial zero e o fio fase é por onde a tensão elétrica é transmitida. Como haverá diferença 
de potencial entre a fase e o neutro, haverá tensão elétrica. O terra contém um sinal com zero volt absoluto. Ele 
é usado para igualar o potencial elétrico entre equipamentos elétricos. Normalmente o condutor terra é ligado à 
carcaça metálica do equipamento. 
Fonte: Artigo: ATERRAMENTO. Gabriel Torres. Dezembro de 2002. Disponível em: 
 <http://www.clubedohardware.com.br/artigos/457>. Acesso em 22 dez 2010. 
 
 
1.6.1 – Tensão de fase e tensão de linha. O Fator 
3
 
 
 Sejam os fasores da Figura 1.59 - tensões de fase e de linha de um sistema trifásico 
equilibrado, na sequência abc, como o do gerador da Figura 1.55. Estão aí destacadas as tensões nas 
fases a e b (em relação ao neutro da conexão), para o cálculo do módulo da tensão de linha vab. 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 57 
 Para se obter o módulo de uma tensão de linha, basta encontrar o fasor resultante de duas 
tensões de fase. Por exemplo, foi escolhida na Figura 1.59, a tensão entre as fases a e b, ou seja, a 
tensão de linha Vab. 
 
 
Figura 1.59 – Composição vetorial das três tensões de linha, para um sistema trifásico equilibrado. 
 
 A resultante é: 
 
ab an bn an bnV = V -V V + -V .
     
  
 
 
 
 As tensões Van (lado superior do paralelogramo) e -Vbn formam um ângulo de 120 graus. 
Para se encontrar a tensão de linha Vab basta aplicar a Lei dos Cossenos. 
 
 
2 2 2
ab an bn an bn
2 2 2 0
ab F F F F
2 2 2
L F F F F
2 2 2 2 2
L F F F F
L F
V =V +(V ) - 2.V .(V ).cosα
V =V +(V ) - 2.V .(V ).cos120
V =V +V - 2.V .(V ).(-0,5)
V =V +V +V =3.V
V = 3.V
 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 58 
1.6.2 – Ligações em Estrela e em Triângulo 
 
 Em termos práticos, as alternativas mais comumente empregadas para a ligação de circuitos 
trifásicos, envolvendo o gerador e a carga, são: 
 
1. Gerador ligado em estrela (Y) e carga ligada em estrela (Y) – Figura 1.60a. 
2. Gerador ligado em estrela (Y) e carga ligada em triângulo () – Figura 1.60b. 
 
 
(a) 
 
(b) 
 
Figura 1.60 – (a) Conexão Y-Y entre gerador e carga de impedância Z, onde a corrente de linha e a de fase são as 
mesmas. (b). Conexão Y- entre gerador e carga. Neste caso, a tensão de fase na carga é igual à tensão de linha 
do gerador (BOYLESTAD, 2002). 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 59 
 Na Figura 1.61, temos dois tipos de carga ligadas a uma mesma rede trifásica. A primeira está 
ligada em estrela e a segunda em triângulo. 
 
Figura 1.61 – Conexões Y-Y (primeira sequência) e Y- (segunda sequência) entre gerador e carga. 
 
 
1.6.3 – Tensões e correntes nas ligações em Estrela e em Triângulo 
 
 A Figura 1.62 mostra as correntes de linha e de fase nas conexões triângulo e estrela (veja o 
esboço das ligações). 
 
 
Figura 1.62 – Relação entre as correntes de linha e de fase nas ligações triângulo e estrela. 
 
 Veja que na ligação em triângulo, a corrente de linha é maior que a de fase. E, na ligação em 
estrela, a tensão de linha é maior que a de fase. 
 Notas: 
1) na ligação em , a soma das correntes de fase é fasorial! Como estão defasadas de 120 
graus, não vale a relação 
L F FI = I I
 em qualquer vértice do triângulo; 
2) o mesmo vale para a ligação em estrela, onde não vale a relação 
L F FV = V +V
; 
3) a ligação em triângulo não possui o condutor de neutro; 
4) na conexão em Y, se o sistema for equilibrado, no condutor de neutro não circula 
corrente, ou seja, 
N a b cI = I I I 0.  
 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 60 
EExemplo 1.13 
 
Seja uma carga ligada em estrela (sistema trifásico equilibrado), onde a tensão de linha é dada 
por Vab = 220 /30
0
 VRMS. Desenhar esta tensão em um diagrama fasorial e calcular a sua tensão de fase. 
Solução: diagrama fasorial (abaixo). 
 
A tensão de fase é: 
 
 VF = VL /1,73 
 = 220 / 1,73 = 127 Volts. 
 
 
EF - Exercícios de Fixação 
Série 4 
 
EF16 – Seja uma carga equilibrada, alimentada em estrela por um gerador CA trifásico conectado 
também em estrela, como mostra a Figura 1.63. 
a) Encontre os ângulos 2 e 3 e o módulo das tensões de linha. 
b) Encontre as correntes de fase na carga e mostre que no neutro tem-se 
0.FI 
 
 
 
Figura 1.63 – Conexão Y-Y para uma carga indutiva (BOYLESTAD, 2002). 
 
EF17 – Um circuito série RLC é alimentado por uma fonte de tensão senoidal v1 (t), que, na forma 
polar, é dada por V1 = 100 /0
0
 V. Os parâmetros do circuito são: R = 6 , XL = 10  e XC = 20 . 
a) desenhar o triângulo de impedâncias e calcular o módulo da impedância; 
b) determinar o valor da corrente na forma polar. 
 
EF18 – Um circuito RL série é alimentado por uma fonte senoidal, v(t) = 10 sen t [V]. 
a) Sendo Z = 20 + j50 , calcular a corrente no mesmo para f = 10 Hz, 60 Hz e 200 Hz. 
b) Desenhar os diagramas de impedância de v(t) e i(t) para as freqüências citadas. 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 61 
LEP 1 
 
 
 Lista de Exercícios e Problemas 1 – 17 Questões 
 
 
1) O gráfico da Figura 1 mostra as formas de onda de tensão e corrente em um elemento de circuito. 
a) Escrever as suas equações, v(t) e i(t), indicando os valores aproximados de Vmax e Imax. 
b) Pode-se dizer que este elemento é um _________________ (resistor/capacitor/indutor). 
 
 
Figura 1 – Sinais v(t) e i(t) em um elemento de circuito. 
 
2) Mostre matematicamente que uma 
onda seno está defasada da onda 
cosseno de 90 graus. Veja a Figura 2. 
 
3) Uma carga Z é alimentada por um sinal 
de tensão 
0( ) 12 2 sen (377 15 )v t  
, a 
qual provoca uma corrente i(t) dada por 
0( ) 3 2 sen (377 45 )i t  
. 
 
 
Figura 2 (BOYLESTAD, 2002). 
a) Determine: o módulo de Z, o ângulo T e o teor do circuito (mais indutivo ou mais capacitivo); 
b) trace o triângulo de impedância e as formas de onda da tensão e da corrente na carga. 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 62 
4) Um resistor R de 25 ohms tem uma potência média de 400 W. Determinar o valor máximo da 
corrente iR(t), onde i(t) = Im.sen t. Nota: a potência média em um resistor é 
2
max 2 .DCP V R
 
Resp.: Im = 5,66 A. 
 
5) Encontre o valor instantâneo de v(t) = 100.sen 500t em t = 1,0 ms. Resp.: v(1 ms)  100 V. 
Encontre também o período e a freqüência das seguintes formas de onda: 
a) v1(t) = 10 - 5.cos (800t + 30
0
) 
b) i2(t) = 5,5.sen 
2
 10t 
Resp.: (a) T = 2,5 ms e f = 400 Hz; (b) T = 314,16 ms e f = 3,18 Hz. 
 
6) Dada a forma de onda da Figura 3, encontre: 
a) a sua equação; 
b) o seu valor médio (VDC) em V; 
c) o seu período em ms se  = 300 rad/s. 
 Resp.: (b) VDC = 15 V ; (c) T  20,94 ms. 
 
Figura 3. 
 
7) Seja a forma de onda apresentada na Figura 4. 
 
 Calcule o seu valor médio, sendo que 
T
T período num )t(v de Total Área
VDC 
 
 Resp.: 6 V. 
 
Figura 4. 
 
8) Um resistor R de 50  tem uma queda de tensão sobre ele dada por vR(t) = 120.sen (377t + 45
0
) V. 
Calcule: 
(a) o valor máximo da corrente nesteresistor, i Rmax. 
(b) a potência média dissipada em R. Dado: 
2
max 2DCP V R
. 
 Resp.: (a) i R max = 2,4 A. (b) 
W 144PDC 
. 
 
9) Converta os seguintes números para a forma retangular. 
a) 
0
1 11,8 51 Z  
 
015,8 215 ACI 
 
013,7 142 VRV 
 
016,9 36 VTV 
 
 
Resp.: (a) 7,43 + j9,17; (b) –12,9 – j9,06; (c) –10,8 + j8,43; (d) 13,67 + j9,93. 
 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 63 
10) (a) Encontre a impedância total de dois componentes em paralelo que têm impedâncias dadas por: 
Z1 = 300 /30
o
  e Z2 = 400 /- 50
o
 . (b) Determinar os possíveis elementos do circuito e a corrente 
da fonte V, se V na forma polar é V = 127 /30
o
 V. 
 
11) Represente os fasores Z1, Z2 e Z3 na forma polar: 
 
a) 
 
b) 
 
c) z3 = (z4 + z5 + z6) / z7 , 
 onde: 
z4 = 40 + j 55  , 
 z5 = 100 - j 33  , 
 z6 = - 20 - j 60  e 
 z7 = - 65 + j 90 . 
Resp.: 
010 53,1 
 Resp.: 
010,77 68,2  
 Resp.: 
01,13 143,41  
 
 
12) Um circuito RLC série possui os seguintes componentes: 
050 30 VTV 
, 
6 ohmsR 
,
9 ohms eLX  17 ohms.CX 
 
a) Calcule a sua impedância total. 
b) Qual é a máxima corrente do circuito? 
c) Calcular a tensão na bobina, VL. 
d) Quando XL = XC , que fenômeno elétrico ocorre neste circuito? O que se pode dizer a respeito da 
corrente na fonte? 
 
13) Para o circuito paralelo da Figura 5, pede-se: 
a) calcule as correntes nos ramos e a corrente total ; 
b) traçar o diagrama fasorial de IT e de VT; 
c) encontrar Zeq através de VT / IT e comparar o 
cálculo com o resultado obtido através da 
expressão 
21
21
eq
ZZ
Z.Z
Z


. 
 
Figura 5. 
Resp.: (a) 
]A[ 82,5j46,13I ];A[ 12I ];A[ 82,5j46,1I T21 
. (b) 
].[ 32,3j49,7Zeq 
 
 
14) Dado o circuito RL paralelo CA da Figura 6, pede-se: 
a) mostrar que a impedância equivalente do circuito pode ser encontrada pela expressão: 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 64 
 
Figura 6. 
 2 2 0 190 taneq L L LZ RX R X X R
   
 
 
Sabendo-se que a freqüência da fonte CA é de 60 
Hz, calcule o valor de Zeq e represente-a na forma 
cartesiana. Resp.: Zeq = 16,34 + j 9,45 . 
b) calcule a corrente total do circuito, IT, e representa-a na forma complexa. Resp.: IT = 5,83 – j 3,37 [A]. 
 
15) O diagrama fasorial da Figura 7 representa as 
tensões e correntes de fase em uma carga trifásica 
equilibrada na configuração estrela. É correto afirmar: 
 
a. ( ) a corrente IC possui ângulo de (150
o
 - ) e o 
fator de potência é igual ao cos . 
b. ( ) a tensão VCA possui ângulo de + 150
o
 e a 
corrente fasorial IB possui ângulo de -120
o
. 
c. ( ) a tensão VBC possui ângulo de -90
o
 e a carga 
é resistiva. 
d. ( ) a tensão VAB possui ângulo de -90
o
 e o fator 
de potência é igual ao cos . 
e. ( ) a tensão VBC possui ângulo de -90
o
 e o fator 
de potência é igual ao cos . 
 
 
 
Figura 7 – Diagrama fasorial de tensões 
e correntes (sistema trifásico). 
 
16) Três resistências de 20  estão ligadas em Y a uma linha trifásica (3

) de 240 V funcionando 
com um fator de potência unitário (cos  = 1). 
a) Calcule a corrente através de cada resistência. 
b) Qual e a corrente de linha para esta conexão? 
c) Qual é a potência consumida pelas três resistências. 
Resp.: (a) 6,94 A. (b) idem. (c) 2890 W. 
 
17) Uma carga equilibrada indutiva, onde em cada fase a impedância é Z = 10 + j10 ohms (Figura 8) é 
alimentada por uma tensão de linha EL = 220 VRMS. 
 
a) Qual é o ângulo de fase T? 
b) Mostre que a potência ativa total da (carga em W) é dada por 
23 .T LP RI
 
c) Calcule a potência ativa utilizando a equação 
3 cosT L L TP V I 
 e compare o resultado 
com o obtido no item (b). 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 65 
 
Figura 8 – Carga equilibrada ligada em estrela. 
 
Principais Relações Trigonométricas 
 o90xcosxsen 
 (1.1) 
 o90xsenxcos 
 (1.2) 
xcos
xsen
x tg 
 (1.3) 
    xcosx-cos e xsenxsen 
 (1.4) 
ysencoxycosxsen)yxsen( 
 (1.5) 
ysensenycosxcos)yxcos(  
 (1.6) 
    yxcosyxcos
2
1
ysen.xsen 
 (1.7) 
    yxcosyxcos
2
1
y cos. x cos 
 (1.8) 
    yxsenyxsen
2
1
y cos. xsen 
 (1.9) 
o
o
sen sen( 360 ) e
cos cos( 360 ), para qualquer inteiro N.
x x N
x x N
  
  
 (1.10) 
 
Funções Circulares – Triângulo Retângulo 
 Dado um triângulo retângulo ABC, como o 
mostrado na Figura 5, pode-se escrever as equações 
(1.11), (1.12) e (1.13). 
 
Figura 9. 
 
a
b
hipotenusa
oposto cateto
sen 
 (1.11) 
a
c
hipotenusa
adjacente cateto
cos 
 (1.12) 
cateto oposto b
tan θ
cateto adjacente c
 
 (1.13) 
 
Sistema Trifásico – Potência Total em W: 
3.
3 3. cos
L L
L F
T F F F
V V
I I
P P V I 
 


  

 
 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 66 
 
 
Usina Hidrelétrica Mauá, no rio Tibagi, entre os municípios de Telêmaco Borba 
e Ortigueira, no Paraná. Vista interna da casa de força principal (em construção). 
Fonte: http://www.aen.pr.gov.br/modules/galeria/uploads/28697/normal_UH_Maua_05.JPG 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 67 
Capítulo 2 
 
 
 Motores Elétricos. O Motor de Indução. 
 
Capítulo 2 – Motores Elétricos. O Motor de Indução. 
 
2.1 – Introdução 
 
O motor elétrico pode se definido, de um modo simples e direto, como um equipamento que 
converte energia elétrica em energia mecânica (em geral energia cinética). A energia elétrica – fonte 
de alimentação - pode ser na forma contínua (no caso dos motores CC) ou alternada (motores CA de 
indução, síncronos etc.), e desenvolve em seu eixo um movimento de rotação e um conjugado 
(torque). 
Segundo informações da WEG Equipamentos Elétricos, o motor de indução é o mais usado de 
todos os tipos de motores (cerca de 80 % a 90 % dos motores elétricos em serviço no mundo), pois 
combina as vantagens da utilização de energia elétrica - baixo custo, facilidade de transporte, limpeza 
e simplicidade de comando - com sua construção simples, custo reduzido, grande versatilidade de 
adaptação às cargas dos mais diversos tipos e melhores rendimentos. 
A Figura 2.1 apresenta um motor de indução em vista explodida. A Figura 2.2 mostra, de modo 
bastante gráfico, os tipos de motores elétricos. 
 
Figura 2.1 – Aspecto do motor de indução, em vista explodida. Disponível em: 
http://www.weg.net/files/products/WEG-motores-eletricos-baixa-tensao-mercado-brasil-050-catalogo-portugues-br.pdf 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 68 
 
Figura 2.2 – Tipos de Motores Elétricos. Fonte: WEG Equipamentos Elétricos S.A. Disponível em: 
http://www.weg.net/files/products/WEG-motores-eletricos-baixa-tensao-mercado-brasil-050-catalogo-portugues-br.pdf 
 
 
2.2 – Aplicações de Motores CC e CA 
 
Como apresentado na Figura 2.2, os motores elétricos são divididos em duas categorias 
principais, em função da fonte de alimentação: motores de corrente contínua (CC ou DC) e motores de 
corrente alternada (CA ou AC) (FRANCHI, 2007). 
A seguirsão apresentadas algumas características básicas destes motores. 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 69 
2.2.1 – Motores de Corrente Contínua (ou motores CC) 
 
 O motor de CC foi o primeiro a ser utilizado na indústria, destacando-se pela simplicidade em 
se controlar a velocidade de rotação em RPM e também o torque. Veja o aspecto de um motor CC 
industrial na Figura 2.3. 
 
 
Figura 2.3 – Motor de CC. Fonte: http://www.ted-kyte.com/3D/Pictures/DC%20Motor%20Open.jpg 
 
 A Figura 2.4 mostra as partes principais do motor CC: a parte móvel (rotor ou armadura) e a 
parte fixa ou estática (estator ou campo). 
 
 
 (a) (b) 
Figura 2.4 – Partes principais do motor CC – Estator (a) e Rotor (b). 
 
 O Estator ou campo constitui a parte fixa do motor, possuindo sapatas polares formadas por 
pacotes de lâminas de aço silício justapostas. Em torno das sapatas polares são enrolados os fios 
condutores, que formam as bobinas. 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 70 
 O rotor ou armadura é a parte móvel, montado no eixo de transmissão ou de movimento do 
motor CC. Possui também um pacote de lâminas de aço silício com ranhuras, onde são inseridas as 
suas bobinas, cujos terminais são conectados eletricamente ao coletor. 
 
 Relembrando... 
 
 O motor de CC tem a sua operação baseada nas forças resultantes da interação entre o campo 
magnético e a corrente que circula no seu enrolamento de armadura. Tais forças tendem a mover o 
condutor num sentido perpendicular ao plano da corrente elétrica e do campo magnético (regra da mão 
esquerda ou Regra de Fleming) – Figura 2.5. A Figura 2.6 mostra a ação motora em uma espira. 
 
 
Figura 2.5 – Visualização do movimento de um condutor percorrido por corrente elétrica, no interior 
de uma região onde há fluxo de linhas de campo magnético – Regra da Mão Esquerda (Fleming). 
 
 
 
 
Figura 2.6 – Ação motora em uma espira: corrente produzindo movimento. 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 71 
Os motores CC têm aplicações onde se requer um controle preciso de velocidade, que é a sua 
principal característica. Devido à evolução da Eletrônica de Potência, hoje em dia estes motores são 
acionados por fontes estáticas de CC com tiristores, com grande confiabilidade, manutenção simples e 
baixo custo. Apesar do custo elevado, os motores CC ainda constituem uma alternativa em uma série 
de aplicações onde é necessário o ajuste fino de velocidade. 
Os acionamentos de corrente contínua, compostos por conversores CA/CC e motor CC 
possuem excelentes propriedades técnicas de comando e regulação e garantem: regulagem precisa de 
velocidade, aceleração constante e ampla sob qualquer condição de carga, aceleração e/ou 
desaceleração controlada e finalmente um conjugado constante sob ampla faixa de velocidade com 
controle através da armadura. 
O motor CC vem sendo substituído pelos motores CA acionados por inversores de freqüência. 
Porém, em alguns processos o seu emprego é vantajoso, como: 
- Máquinas de papel e de impressão; 
- Máquinas têxteis 
- Bobinadoras e desbobinadoras; 
- Laminadoras; 
- Extrusoras; 
- Prensas; 
- Máquinas de moagem (moinho de rolos) 
- Ferramentas de avanço; 
- Tornos; 
- Mandrilhadoras; 
- Indústria química e petroquímica; 
- Indústria de borracha; 
- Veículos de tração. 
 
 
As principais características da máquina CC são: 
- Altamente flexível e controlável; 
- Torques de partida, aceleração e desaceleração elevados; 
- É capaz de realizar inversões rápidas; 
- Vasta gama de controle de velocidade e torque (uma variação de velocidade de 4:1 é obtida 
facilmente com resistores, e de 40:1 com dispositivos eletrônicos); 
- Torque máximo: é limitado por comutação e não por aquecimento, como em outras 
máquinas. 
- Caras e frágeis devido ao comutador. 
 
 
2.2.2 – Motores de Corrente Alternada (ou motores CA) 
 
 
 Os motores CA (veja a Figura 2.7) constituem a maioria das aplicações industriais, 
principalmente porque a distribuição de energia elétrica é feita em CA. A sua configuração mais 
econômica é o uso de motores de indução de Gaiola de Esquilo (aproximadamente 90 % dos motores 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 72 
CA fabricados são deste tipo). A outra configuração é com rotor bobinado, composto de três bobinas 
em estrela, com as características de partida suave e velocidade ajustável. 
 
 
Figura 2.7 – Motores de indução. Fontes: http://en.wikipedia.org/wiki/File:Silniki_by_Zureks.jpg 
e http://www.onelectriccars.com/inside-the-tesla-roadster-sport/606/ 
 
O uso dos motores CA se justifica (e é predominante) quando não é necessário o ajuste e o 
controle de velocidade e para potência inferior a 500 CV. Para aplicações com variação de velocidade 
com motores CA, empregam-se inversores de freqüência. 
 
 Segundo FRANCHI, 
 
 O constante desenvolvimento da eletrônica de potência deve levar a um 
progressivo abandono dos motores de corrente contínua. Isso porque fontes de 
tensão e freqüência controladas, que alimentam motores de corrente alternada, 
principalmente os de indução de gaiola, já estão se transformando em opções mais 
atraentes quanto ao ajuste e ao controle de velocidade (FRANCHI, Claiton Moro. 
Acionamentos Elétricos. 2ª. Ed. São Paulo: Ed. Érica, 2007). 
 
 Serão estudados em maior profundidade neste capítulo apenas os motores CA, já que a imensa 
maioria dos motores elétricos utilizados nos processos industriais pertence a essa categoria. 
 Quanto à velocidade de rotação, classificam-se os motores CA: 
 
 - Motor SÍNCRONO: aquele que opera com freqüência fixa, igual àquela da rede de 
alimentação CA. Utilizado para faixas de grandes potências (devido ao custo alto para tamanhos 
menores). Neste motor, a velocidade do rotor é igual a do campo girante do estator (assunto que será 
estudado a seguir). 
 
 - Motor ASSÍNCRONO – opera com velocidade que varia ligeiramente com a carga mecânica 
aplicada ao eixo. A velocidade do rotor é diferente da velocidade do campo girante do estator. 
 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 73 
2.3 – O Motor CA Trifásico 
 
2.3.1 – Motor de Indução 
 
O motor assíncrono de indução (velocidade variável) tem atualmente uma aplicação muito 
grande tanto na indústria como em utilizações domésticas, dada a sua grande robustez, baixo preço e 
partida fácil (pode mesmo ser direta, em motores de baixa potência). É o motor mais utilizado nos 
processos industriais nos dias de hoje. 
Na sua configuração trifásica, o Motor de Indução Trifásico (MIT) apresenta, em relação aos 
motores monofásicos, uma superioridade: é mais econômico tanto na construção como na utilização. 
Geralmente é o mais utilizado para acionamento de compressores, bombas e ventiladores. O uso de 
MIT se justifica a partir de 2 kW. Para potências menores, indica-se o motor de indução monofásico, o 
qual será estudado no capítulo 8 (características construtivas e métodos de acionamento). Como 
vantagens em relação ao motor monofásico, o MIT apresenta vantagens como partida mais simples, 
ruído menor e menor custo (FRANCHI, 2007). 
O rotor de uma máquina de indução polifásica pode ser de dois tipos de tecnologia: 1) o rotor 
de gaiola de esquilo e 2) o rotor enrolado ou bobinado. 
 
2.3.1.1 - Motor de Indução com Rotor do Tipo Gaiola de Esquilo 
 
O motor de indução com rotor tipo gaiola de esquiloé também conhecido como motor de 
indução com rotor em curto-circuito. O rotor é constituído por um núcleo de chapas ferromagnéticas 
de aço silício, isoladas entre si, sobre o qual são colocadas barras de alumínio (condutores), dispostas 
paralelamente entre si e unidas nas suas extremidades por dois anéis condutores (também de 
alumínio), os quais provocam um curto-circuito nos condutores, como mostram as Figuras 2.8 e 2.9. 
 
 
 (a) (b) 
Figura 2.8 – Rotor do tipo gaiola de esquilo: (a) estrutura e (b) localização interna ao estator. 
 
A vantagem deste rotor, em comparação ao do rotor bobinado, é a construção do induzido 
mais prática, mais barata e mais rápida. Trata-se de um motor de simples fabricação, robusto, de 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 74 
manutenção reduzida, de rápida ligação à rede, não sendo necessário o uso de anéis coletores 
(componente sensível e caro), possibilitando melhor adaptabilidade aos ambientes mais agressivos. 
 Obviamente não possui coletor (orgão delicado e caro), não produz faíscas e tem, portanto 
uma manutenção muito mais reduzida do que qualquer outro motor. 
 
 
 (a) (b) (c) 
Figura 2.9 – (a) Pacote de lâminas (material ferromagnético). (b) Gaiola (barras). (c) Rotor bobinado (pacote + 
gaiola). Fonte: Laboratório Integrado II MTI Funcionamento, Construção e Ligações – Prof. Norberto Augusto 
Júnior (Notas de Aulas). 
 
 A Figura 2.10 mostra um motor de indução (vista em corte) com rotor em gaiola de esquilo. 
 
 
 
Figura 2.10 – Motor de Indução Trifásico – vista em corte. 
Fonte: WEG Equipamentos Elétricos S.A. Disponível em: www.weg.net 
 
2.3.1.2 - Motor de Anéis ou com Rotor Bobinado 
 
É utilizado em geral para partir cargas de alta inércia ou que exijam conjugados de partida 
elevados, ou ainda, quando o sistema de acionamento requer partidas suaves. O rotor bobinado, com 
estrutura semelhante ao enrolamento do estator, é constituído por um núcleo de chapas de aço silício 
(isoladas entre si) sobre o qual são alojadas as espiras que constituem o enrolamento (Figura 2.11). 
Os terminais livres de cada uma das bobinas do enrolamento são ligados a anéis coletores e 
estes são ligados a um reostato constituído por resistências variáveis cuja função é a de reduzir as 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 75 
correntes de arranque elevadas, no caso de motores de elevada potência, conseguindo uma partida 
mais suave (Figura 2.12). 
 
 
 
Figura 2.11 – Rotor bobinado – aspecto construtivo. 
 
 
 
 
 
Figura 2.12 - Chave para Motor de indução com rotor bobinado (resistência rotórica). 
 
 
2.3.2 – Motor Trifásico de Múltiplas Velocidades 
 
Neste tipo de motor podem ser obtidas velocidades distintas num mesmo eixo. Estes motores, 
em sua maioria, operam com apenas uma tensão, pois as conexões/religações disponíveis geralmente 
permitem a alteração apenas da velocidade. Para cada rotação, a potência e a corrente são diferentes. 
Basicamente são encontrados dois tipos de motores trifásicos de velocidade múltipla: o motor de 
enrolamentos separados e o motor Dahlander 
. 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 76 
2.3.2.1 – Motor Trifásico de Enrolamentos Separados 
 
Este tipo de motor – veja a Figura 2.13 – é baseado em que a rotação de um motor elétrico 
(rotor gaiola) depende do número de pólos magnéticos formados internamente em seu estator. 
Possui na mesma carcaça dois enrolamentos independentes e bobinados com números de pólos 
diferentes. Ao alimentar um enrolamento ou outro, obtém-se duas rotações, uma chamada baixa e 
outra, alta. 
 
 
 (a) (b) 
Figura 2.13 (BASOTTI, 2001) – (a) Numeração dos enrolamentos do motor de 
enrolamentos separados. (b) Montagem do transformador semelhante à do motor. 
 
As rotações dependerão dos dados construtivos do motor, não havendo relação obrigatória 
entre baixa e alta velocidade. Exemplos: 6/4 pólos (1200 /1800 rpm); 12/4 pólos (600/1800 rpm), etc. 
Deve-se ficar atento para o fato de que, ao alimentar uma das rotações (por exemplo a 
BAIXA), deve-se ter o cuidado de manter as conexões do lado da outra rotação (no caso a ALTA) 
desligadas, isoladas e com o circuito aberto, já que, obviamente, não é possível o motor girar em duas 
rotações simultaneamente. 
 
2.3.2.2 – Motor Dahlander 
 
O motor Dahlander é aquele que possui um enrolamento especial, o qual recebe dois tipos de 
conexões, o que possibilita alterar a quantidade de pólos. Daí é possível se obter duas velocidades 
distintas, sempre com relação 1:2, já que a velocidade depende, além da freqüência da fonte de 
alimentação CA, também do número de pólos – Equação (2.1). 
 
 
120
 
f
n rpm
p

 (2.1) 
 
Exemplos: 4/2 pólos (1800/3600 rpm); 8/4 pólos (900/1800 rpm). 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 77 
Os diagramas de ligação para os motores acima citados, bem como o seu acionamento, serão 
apresentados a partir do capítulo 6 e também nos Guias de Aulas Práticas, disponíveis no Apêndice III. 
 
2.4 – Partes Constituintes 
 
 As partes constituintes do motor elétrico são localizadas em dois setores do mesmo: o estator 
(parte fixa) e o rotor (parte girante). O espaço entre o estator e o rotor é chamado de entreferro. A 
Figura 2.14 ilustra o motor elétrico e na sequência são apresentados os componentes e sua descrição. 
Estator 
 Carcaça (1) - é a estrutura suporte do conjunto; de construção robusta em ferro fundido, aço ou 
alumínio injetado, resistente à corrosão e com aletas. 
 Núcleo de chapas (2) - as chapas são de aço magnético, tratadas termicamente para reduzir ao 
mínimo as perdas no ferro. 
 Enrolamento trifásico (8) - três conjuntos iguais de bobinas, uma para cada fase, formando um 
sistema trifásico ligado à rede trifásica de alimentação. 
 
 
Figura 2.14 – Motor de indução – partes do estator e do rotor. Fonte: Disponível em: 
http://www.weg.net/files/products/WEG-motores-eletricos-baixa-tensao-mercado-brasil-050-catalogo-portugues-br.pdf 
 
Rotor 
 Eixo (7) - transmite a potência mecânica desenvolvida pelo motor. É tratado termicamente para 
evitar problemas como empenamento e fadiga. 
 Núcleo de chapas (3) - as chapas possuem as mesmas características das chapas do estator. 
 Barras e anéis de curto-circuito (12) - são de alumínio injetado sob pressão numa única peça. 
Outras partes do motor de indução trifásico: tampa (4), ventilador (5), tampa defletora (6), caixa 
de ligação (9), terminais (10) e rolamentos (11). 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 78 
2.5 – Princípio de Funcionamento do Motor CA 
 
2.5.1 – Campo Girante de um Motor Trifásico 
 
Nesta seção serão estudados os campos girantes, assunto de extrema importância para o 
entendimento do princípio de funcionamento das máquinas elétricas trifásicas. Antes disso, será 
apresentado o campo magnético de uma máquina CA monofásica, que é pulsante. 
O estator do motor de indução corresponde ao núcleo ferromagnético estacionário, como 
mostra a Figura 2.15. Nas ranhuras do estator são alojadas as espiras de fio condutor que constituem 
os enrolamentos ou bobinas do estator. Dependendodo número de ranhuras e da maneira como serão 
dispostas as espiras dos enrolamentos, poderemos ter 2, 4, 6 ou 8 pólos magnéticos. 
 
 
 
Figura 2.15 – Construção do estator e rotor de uma máquina elétrica. 
Ranhuras para disposição dos enrolamentos. 
 
Como já é sábio, em uma bobina na qual circula uma corrente elétrica, é criado um campo 
magnético dirigido conforme o eixo da bobina. O valor deste campo é proporcional à corrente. As 
Figuras 2.16a e 2.16b mostram, respectivamente, um enrolamento monofásico e um enrolamento 
trifásico, ambos atravessados por corrente(s) i(t) e o campo magnético H
1
 criado em ambas as 
situações. 
O enrolamento monofásico – Figura 2.16a – é formado por um par de pólos (um pólo NORTE 
e um pólo SUL), cujos efeitos são somados para estabelecer o campo magnético h(t), o qual atravessa 
o rotor entre os dois pólos, se fechando através do núcleo do estator. Se a corrente i(t) é alternada, o 
campo magnético H também o será (veja a Figura 2.17, campo magnético pulsante). 
 
 
1
 O campo magnético H (dado em A/m) e a densidade de campo magnético B (em Wb/m
2
 ou Tesla) se 
relacionam pela expressão B = H, onde  é a permeabilidade magnética do meio, dada por  = r 0, com 
 -70μ = 4π × 10 Wb A.m
(permeabilidade magnética do vácuo) e r é a permeabilidade relativa, ou do meio. 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 79 
 
 (a) (b) 
Figura 2.16 – (a) Enrolamento monofásico atravessado por uma corrente alternada i(t) e a consequente formação 
de um campo magnético pulsante. (b) Formação de um campo magnético girante em um enrolamento trifásico, a 
partir de tensões alternadas defasadas de 120 graus elétricos, que geram, em dada fase, uma corrente i(t). 
 
Este campo magnético criado devido a uma só fase é denominado pulsante porque tem sempre 
a mesma direção e não permite a indução de correntes significativas nos enrolamentos rotóricos. Logo, 
não se consegue a formação do campo magnético girante (explica-se então a dificuldade existente na 
partida dos motores monofásicos, assunto a ser estudado no capítulo 8). 
 
 
 
Figura 2.17 – Campo magnético pulsante B gerado por alimentação monofásica. Fonte: 
http://minerva.ufpel.edu.br/~egcneves/disciplinas/mte/caderno_mte/motor_mono.pdf 
 
 Para as máquinas elétricas trifásicas, como é criado o campo magnético rotativo ou girante? 
Como é que se dá origem ao movimento de rotação de seu eixo? 
Inicialmente considere três bobinas independentes no estator, as quais são montadas com uma 
defasagem angular de 120˚ entre si – Figura 2.18. 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 80 
 
Figura 2.18 - Produção do Campo Girante por meio do Sistema Trifásico. 
 
Estas bobinas, se forem alimentadas por tensões trifásicas va(t), vb(t) e vc(t) defasadas 
geometricamente de 120
0 – veja a Figura 2.19 -, dão origem às correntes ia(t), ib(t) e ic(t) - Equações 
(2.2), (2.3) e (2.4). 
 
 
max
max
max
( ) (2.2)
( ) 120 (2.3)
( ) 120 
a
o
b
o
c
i t I sen t
i t I sen t
i t I sen t




 
  (2.4)
 
 
Os campos magnéticos resultantes são indicados pelas Equações (2.5), (2.6) e (2.7). 
 
 
 
max
max
max
( ) (2.5)
( ) 120 (2.6)
( ) 120 
a
o
b
o
c
h t H sen t
h t H sen t
h t H sen t




 
  (2.7)
 
 
 
 
Figura 2.19 – Tensões trifásicas aplicadas aos enrolamentos do estator de um MIT. 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 81 
Observando a Figura 2.19, ao redor dos enrolamentos do motor, o campo magnético 
em cada bobina irá circular de acordo com a forma de onda trifásica aplicada. Note-se que o 
campo magnético individual de cada bobina é pulsante e não girante - só será girante o campo 
magnético resultante, como será calculado a seguir (REZEK, 2010). 
Assim, em  = 90º na fase a (ou R) o campo magnético é mais intenso, enquanto que 
nas fases b e c (ou S e T) é menos intenso e com polaridade oposta, já que a tensão na fase a 
(ou fase R) está no valor máximo positivo e nas fases b e c (ou S e T), está na metade do valor 
máximo negativo. 
Em  = 210º, tem-se o campo intenso e máximo na fase b (ou fase S) e os campos nas fases a 
e c (ou fases R e T) com metade do valor máximo e com polaridades negativas. 
Fazendo a análise para outros ângulos na Figura 2.19, pode-se encontrar o módulo do campo 
resultante e observar que o mesmo procede a um movimento girante. 
 
EExemplo 2.1 – Encontre a resultante da composição vetorial dos campos magnéticos das fases a, b e c 
do enrolamento trifásico mostrado na Figura 2.19, para os seguintes ângulos: 
 
a) t = 00. 
b) t = 900. 
c) t = 1200. 
Campos magnéticos das 3 fases: 
 
 
max
max
max
( ) 
( ) 120 
( ) 120 
a
o
b
o
c
h t H sen t
h t H sen t
h t H sen t




 
 
 
 
Solução: 
 
a) Para t = 00, na fase a: 
0
max( ) 0 = 0.ah t H sen
Nas fases b e c: 
   
   
0 o o
b max max max
0 o o
c max max max
h (t) = H sen 0 - 120 = H sen (-120 ) = - 3 2 H
h (t) = H sen 0 +120 = H sen 120 = 3 2 H
 
 
Os fasores de hb e hc estão desenhados na Figura 2.20. Observe que se o sinal de h(t) é 
negativo para o ângulo considerado, deve ser desenhado segundo a orientação mostrada para cada 
bobina (lembrando que em cada fase o campo é pulsante), como indicado na Figura 2.18. O mesmo 
procedimento vale para um valor instantâneo positivo, com sinal (+). 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 82 
 
Figura 2.20 – Composição dos fasores de hb(t) e hc(t) para Para t = 0
0
. 
 
 A Figura 2.21 mostra o fasor resultante 
,rh
 dos fasores 
bh
 e 
.ch
 Na Figura 2.22 vê-se o 
triângulo ABC formado por estes fasores. Aplica-se a Equação (2.8) - Lei dos Cossenos -, para o 
cálculo do módulo de 
.rh
 
Através da Lei dos Cossenos, calcula-se um dos lados do triângulo, dados os outros dois lados 
e o ângulo entre eles. 
 
 
Figura 2.21 – Determinação do campo magnético resultante entre as fases b e c. 
 
 
Figura 2.22 – Triângulo ABC formado pelos fasores 
,rh

bh
 e 
.ch
 Pela 
Lei dos cossenos determina-se o módulo da resultante, 
.rh

 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 83 
Cálculo de 
rh

: Equação (2.8). 
2 2 2 2 cosr b c b ch h h h h   
 (2.8) 
 Os valores de hb(t) e hc(t) para t = 0
0
 já foram calculados: 
 
b max c max
3 3
h (t) = - H e h (t) = H .
2 2
 
 O ângulo  entre os fasores 
bh
 e 
ch
 é de 120 graus (Figura 2.20). Substituindo-se os valores 
em módulo na Equação (2.8), obtém-se: 
 
           
2 2 2 0
2 2
max max max max
2. . cos120
 = 3 2 3 2 2 3 2 3 2 0,5
r b c b ch h h h h
H H H H
   
     
 
2
max max
9 3
.
4 2
rh H H 
 
 
b) Para t = 900, os cálculos são: 
 
   
 
0
max max
0 0 0
max max max
0 0 0
max maxmax
( ) 90 = 
( ) 90 120 = 30 = 0,5 . 
( ) 90 120 = 210 = 0,5 . 
a
b
c
h t H sen H
h t H sen H sen H
h t H sen H sen H

   
  
 
 A Figura 2.23 mostra a disposição dos fasores 
,ah
 
bh
 e 
ch
 para um ângulo t = 900. 
 
 
 
Figura 2.23 – Composição dos fasores de hb(t) e hc(t) para Para t = 0
0
. 
 
Primeiramente, efetua-se o cálculo da resultante dos fasores 
bh
 e 
.ch
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 84 
 Pela composição destes fasores, como mostrado na Figura 2.23, pode-se aplicar a Lei dos 
cossenos, no triângulo MNO, mostrado na Figura 2.24. O ângulo entre os fasores 
bh
 e 
ch
 é de 60
0
. 
 
 
Figura 2.24 – Triângulo MNO formado pelos fasores 
,bch

bh
 e 
.ch
 
 
         
2 2 2 0
2 2
max max max max
2 2 2 2
max max max max
2
max max
2. . cos60
 = 0,5 0,5 2 0,5 0,5 0,5
 = 0,25 0,25 0,25 0,25
0,25 0,5 .
bc b c b c
bc
h h h h h
H H H H
H H H H
h H H
   
    
  
 
 
 Como os fasores 
ah
 e 
bch
 têm a mesma direção (orientação para cima, em 90 graus), o vetor 
resultante 
rh
 é encontrado por: 
r a bc max max max
1 3
h = h + h = .
2 2
H H H 
 
 
c) Finalmente, para t = 1200: 
 
 
 
0
max max
0 0 0
max max
0 0 0
max max max
3
( ) 120 = . 
2
( ) 120 120 = 0 = 0. 
3
( ) 120 120 = 240 = . 
2
a
b
c
h t H sen H
h t H sen H sen
h t H sen H sen H

 
  
 
 
Pelos cálculos anteriores, o campo magnético resultante é devido somente ao campo de duas 
fases. A Figura 2.25 mostra o diagrama fasorial dos campos magnéticos das fases a e c para t = 1200. 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 85 
 
Figura 2.25 – Composição dos fasores de ha(t) e hc(t) para Para t = 120
0
. 
 
 A resultante dos fasores de ha(t) e hc(t) para Para t = 120
0
 é mostrada na Figura 2.26a. Daí se 
obtém o triângulo PQR, o qual será utilizado para o cálculo de hr, pela Lei dos Cossenos. 
 
 
 (a) (b) 
 
Figura 2.26 – (a) Resultante da composição dos fasores de ha(t) e hc(t) para Para t = 120
0
. 
(b) Triângulo PQR para o cálculo da resultante pela Lei dos Cossenos. 
 
Cálculo do campo magnético resultante: 
 
2 2 2 0
2 2
max max max max
2 2 2 2
max max max max
2. . cos120
3 3 3 3 1
 = 2
2 2 2 2 2
 
3 3 3 9
 =
4 4 4 4
r a c a ch h h h h
H H H H
H H H H
   
         
                              
  
 
 
2
max max
9 3
.
4 2
rh H H 
 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 86 
2.5.2 – Velocidade Síncrona (ns) 
 
A velocidade síncrona do motor trifásico é definida pela velocidade de rotação do 
campo girante, a qual depende do número de pólos (P) do motor e da freqüência (f) da rede 
elétrica, em Hz. 
 Notar que o campo girante possui o mesmo módulo para qualquer ângulo (t), igual a 
(3/2)Hmax, girando com velocidade síncrona, s em rad/s. 
 A velocidade do motor em rpm é dada pela Equação (2.9): 
 
120
s
f
n
P

 (2.9) 
onde: 
ns = velocidade síncrona do motor, em rpm (rotações por minuto); 
f = freqüência aplicada ao motor, em Hz; 
P = número de pólos do motor, ou seja, são os “P” pólos girantes ao longo do entreferro. 
A Tabela 2.1 mostra uma relação de velocidades síncronas em função do número de pólos (P) 
de um Motor Trifásico. 
 
Tabela 2.1 – Velocidades síncronas de acordo como número de pólos de 
um motor trifásico, nas freqüências de 50 e 60 Hz. 
Número 
de pólos 
Rotação síncrona por minuto 
(RPM) 
60 Hz 50 Hz 
2 3600 3000 
4 1800 1500 
6 1200 1000 
8 900 750 
10 720 600 
 
 
Os enrolamentos podem ser construídos com um ou mais pares de pólos, que se distribuem 
alternadamente (um “norte” e um “sul”) ao longo da periferia do núcleo magnético. 
O campo girante percorre um par de pólos (p) a cada ciclo. Assim, como o enrolamento tem P 
pólos ou p pares de pólos, podemos escrever: 
 
120 60
[ ]s
f f
n rpm
P p
 
 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 87 
EExemplo 2.2 – Qual é a rotação de um motor de 6 pólos, em 50 Hz? 
 
 
120.50
[ ] 1000 rpm.
6
sn rpm  
 
 Resolvendo para 3 pares de pólos, ou seja, p = 3, tem-se:
60.50
1000 rpm.
3
sn  
 
 
EExemplo 2.3 – Um motor síncrono alimentado por uma tensão de 60 Hz tem a rotação de seu eixo 
dada por ns = 600 rpm. Calcule o número de pólos do motor. 
 
Da Equação (2.9), 
 
120 120.60
12
[ ] 600s
f
P
n rpm
  
 pólos. 
 
2.5.3 – Escorregamento (s) 
 
 Se o motor elétrico gira a uma velocidade diferente da velocidade síncrona (caso dos motores 
de indução), isto é, se a velocidade do eixo difere da velocidade do campo girante, então o motor corta 
as linhas de força magnética do campo magnético do estator. Daí, pelas leis do eletromagnetismo, 
circulam no rotor correntes induzidas (FRANCHI, 2007). 
O escorregamento (s) é a diferença entre a velocidade real do eixo do motor, dependente da 
carga a ele aplicada, e a velocidade síncrona do campo girante (ns). Em geral, é expresso como um 
percentual da velocidade síncrona. Percentualmente, o escorregamento é definido pela Equação (2.10). 
 
s
s
n n
s
n


 [adimensional] 
100 [%]s
s
n n
s
n

 
 (2.10) 
 
O escorregamento varia com a carga aplicada ao motor: com o motor trabalhando em vazio, o 
escorregamento é próximo de zero. À medida que a carga aumenta no eixo, o escorregamento também 
aumenta. Isto é óbvio, pois, quando maior a carga, maior será o conjugado ou torque necessário para 
acioná-la. Para se obter o torque, a diferença de velocidade terá que ser maior a fim de que as correntes 
induzidas e os campos magnéticos produzidos sejam maiores. Logo, à medida que a carga aumenta, 
diminui a rotação do motor. 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 88 
2.5.3.1 – Tensões Induzidas no Rotor 
 
Em função do escorregamento, existe um movimento relativo entre o fluxo do estator e os 
condutores do rotor, o que induz tensões no mesmo de freqüência fr, onde 
 
fr = s.fe (2.11) 
 
Esta freqüência é denominada de freqüência de escorregamento no rotor (FITZGERALD, 
2006). Logo, pode-se concluir que o comportamento elétrico das máquinas de indução é análogo ao de 
um transformador, mas apresentando adicionalmente a característica de transformação de freqüência 
produzida pelo movimento relativo entre os campos magnéticos dos enrolamentos do estator e do 
rotor. 
A velocidade do rotor (n ou nr) é, em função da Equação (2.10): 
 
(1 )r sn s n 
 (2.12) 
 
 
EExemplo 2.4 – Um MIT como o da Figura 2.27, de 4 
pólos, é alimentado com tensão de 220 V, 60 Hz, girando 
a 1720 rpm. 
 
a) Calcular o seu escorregamento em rpm. 
b) Encontre o escorregamento percentual. 
 
Solução: 
 
Figura 2.27 – Exemplo 2.4. 
 
a) A velocidade síncrona é dada por: 
 
 
120.60
[ ] 1800 rpm.
4
sn rpm  
 
 Logo, s = 1800 – 1720 = 80 rpm. 
 
b) 
%
1800 1720
100 4,44 %.
1800
s

  
 
 
 
CEFET-MG – Campus VIII– Varginha – Acionamentos e Comandos Elétricos. 89 
EF - Exercícios de Fixação 
Série 5 
 
EF19 – Qual é o sentido de rotação do campo girante desenvolvido no Exemplo 2.1? 
 
EF20 – Invertendo duas das três fases do MIT da Figura 2.18, pede-se: 
 
a) Desenhar as formas de onda de va(t), vb(t) e vc(t). 
b) Encontre os módulos e o sentido de giro do campo magnético girante resultante para os seguintes 
valores de t: 300, 600 e 2700. 
 
EF21 – Explicar porque o campo magnético h(t) por fase é denominado pulsante e não girante. 
 
EF22 – A força eletromagnética F é proporcional ao campo eletromagnético H em uma bobina. Para 
os diagramas da Figura 2.28, identifique o ângulo t e escreva as equações senoidais de h(t) para as 
fases a, b e c. 
 
 
 
Figura 2.28 – Exercício de Fixação 22. 
 
 
EF23 – Sejam as formas de onda trifásicas da Figura 2.29 e os fasores, para os instantes de (1) até (6), 
indicando a composição fasorial dos campos magnéticos das fases R, S e T. 
Determinar, nos diagramas fasoriais dos instantes (3), (4), (5) e (6) a sequência dos campos 
magnéticos das fases. Seguir a sequência da composição fasorial da Figura 2.18, abc = RST, bem 
como as polaridades dos campos magnéticos pulsantes de cada fase. 
 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 90 
 
Campo magnético resultante, hr (t) 
Figura 2.29. 
 
2.5.4 – Conjugado 
 
O conjugado, também conhecido como torque, é a medida do esforço efetuado para girar um 
eixo. Veja a Figura 2.30. Por experiência prática, para levantar um material contido em um balde, a 
força F aplicada à manivela depende do comprimento d da manivela. Para uma manivela maior, menor 
será a força F necessária. 
 
 
Figura 2.30 – Definição de Conjugado. 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 91 
 Para medir o “esforço” necessário para girar o eixo não basta somente definir a força 
empregada: é preciso também dizer a que distância do eixo a força é aplicada. 
O “esforço” é medido pelo conjugado (ou torque), que é o produto da força F pela distância d 
de sua aplicação ao eixo de rotação – veja a Equação (2.13), para uma força aplicada 
perpendicularmente ao eixo de rotação. 
 
.T F d
 (2.13) 
 
Dobrando o tamanho d da manivela, a força F necessária será diminuída à metade. No 
exemplo da Figura 2.9, sendo o peso do balde de 20 N e o diâmetro do tambor de 0,20 m, a corda 
transmitirá uma força de 20 N na superfície do tambor, isto é, a 0,10 m do centro do eixo. 
Para contrabalançar esta força (condição de equilíbrio, ou seja, manter o balde suspenso e 
parado), é necessário aplicar uma força de 10 N na manivela, se o comprimento d for de 0,20m. Se d 
for o dobro, isto é, 0,40m, a força F será a metade, ou seja, 5N. 
No exemplo citado, para os valores citados, o conjugado é igual a 
 
T = 20 N x 0,10 m = 10 N x 0,20 m = 5 N x 0,40 m = 2,0 Nm. 
 
 
2.5.5 – Energia, Potência Elétrica e Potência Mecânica 
 
A potência é a grandeza que mede a “velocidade” com que a energia é aplicada ou consumida. 
No exemplo da seção anterior, para um poço com 24,5 metros de profundidade, a energia 
gasta, ou trabalho realizado para trazer o balde do fundo até a boca do poço é sempre a mesma, de 
acordo com a Equação (2.14). 
 
W = F . d [N.m] (2.14) 
 
T = 20 N x 24,5 m = 490 Nm ou 490 J (joules, unidade de energia mecânica). 
 
A unidade de medida de energia mecânica, Nm, é a mesma que usamos para o conjugado - 
trata-se, no entanto, de grandezas de naturezas diferentes, que não devem ser confundidas (WEG, 
Motores Elétricos de Baixa Tensão – catálogo em Português disponível em www.weg.net . 
Em termos de potência elétrica, no caso, a potência requerida a um motor elétrico para 
suspender o balde do exemplo, a sua unidade é o Watt, que é derivada de uma taxa relacionando o 
trabalho realizado em um determinado intervalo de tempo, como mostra a Equação (2.15). 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 92 
  
T Joules T J
P W
t Segundo t s
   
    
  
 (2.15) 
 
Fazendo uso da Equação (2.13), se for utilizado um motor elétrico capaz de erguer o balde de 
água em um tempo de 2,0 segundos, a potência elétrica desenvolvida por este motor será: 
 
 1
490 
 = 245 W.
2,0 s
motor
J
P 
 
 
Se outro motor elétrico consegue erguer o balde em metade do tempo, tem-se: 
 
 2
490 
 = 490 W.
1,0 s
motor
J
P 
 
 
Potência Mecânica em CAVALO-VAPOR (CV) e em HORSE-POWER (HP) 
 
Em termos de potência mecânica (no caso de um motor elétrico, disponível em seu eixo), a sua 
unidade mais usual é o CV (cavalo-vapor), equivalente a 736 W. Este termo se deve ao engenheiro 
escocês James Watt (1736-1819), inventor da primeira máquina a vapor. Nesta máquina, a energia 
mecânica era obtida através do uso de cavalos, rodas hidráulicas e moinhos de vento. 
Há também o HP (horse-power, unidade de origem inglesa), com uma pequena diferença: 
equivalente a 746 W. As Equações (2.16) e (2.17) mostram as duas unidades em função do W (watt). 
 
1000
1 
736
kW
CV


 (2.16) 
 
1000
1 
746
kW
HP


 (2.17) 
 
Assim, a potência mecânica dos dois motores elétricos acima citados é: 
 
 1
0,245 1000
P 0,33 .
736
kW
CV CV

 
 
 
 2
0,490 1000
P 0,66 .
736
kW
CV CV

 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 93 
2.5.6 – Potência Aparente, Ativa e Reativa 
 
 Um motor elétrico, como se sabe, absorve energia elétrica da rede de energia (monofásica ou 
trifásica) e a transforma em energia mecânica disponível no eixo. 
 A potência elétrica é dividida em três componentes: 
1) Potência Aparente (S), em kVA – é a potência entregue pela concessionária aos consumidores. 
Matematicamente, para cargas trifásicas, é descrita pela Equação (2.18), sendo igual ao produto entre 
os valores RMS da tensão e da corrente de linha, sem levar em conta o tipo de carga (resistiva, 
indutiva ou capacitiva). 
3 3 L LS V I 
 (2.18) 
 
2) Potência Ativa (P), em kW - é a parcela da potência aparente que realiza trabalho, ou seja, que é 
transformada em energia. Veja a Equação (2.19), potência ativa trifásica. 
 
3 3 cosL LP V I  
 (2.19) 
 
 O ângulo , nesta equação, é a defasagem entre a corrente e a tensão. 
3) Potência Reativa (Q), em kVAr – é a parcela da potência aparente que “não” realiza trabalho. 
Apenas é transferida e armazenada nos elementos passivos (capacitores e indutores) do circuito. A 
Equação (2.20) descreve matematicamente este tipo de potência elétrica (em sistemas trifásicos). 
 
3 3 L LQ V I sen  
 (2.20) 
 
 Conhecendo as três parcelas da potência elétrica, o próximo passo para descrevê-la 
graficamente é construir o “triângulo de potências”. Este é facilmente obtido do “triângulo de 
impedâncias”, assunto já estudado no capítulo 1, item 1.5.4, “Impedância de Circuito CA”. Na Figura 
2.31a, é apresentada o diagrama fasorial de impedância. Ao multiplicar cada lado do triângulo pela 
corrente ao quadrado, obtêm-se os lados do triângulo de potências, mostrado na Figura 2.31b. 
 
2.5.7 – Fator de Potência 
 
 O Fator de Potência de um circuito é a razão entre a potência média (ou ativa) e a potência 
aparente. Matematicamente é definido como – Equação (2.21): 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 94 
Fator de Potência(FP) cos (adimensional) 
P
S
 
 (2.21) 
 
 
 
Figura 2.31 – (a) Triângulo de Impedância - circuito série RLC. (b) Triângulo de potência. 
Resultado da multiplicação de cada fasor da Figura 2.30a por I
2
, para um circuito série RLC. 
 
 Para uma carga puramente resistiva (R): cos  = cos 00 = 1. Daí o FP é unitário. 
 Um motor é uma carga essencialmente indutiva. Logo o FP de um motor é sempre menor do a 
unidade (carga RL, onde a indutância L predomina). 
 Para uma carga trifásica, a Equação (2.22) é melhor escrita como: 
 
 3 3
3
1000
cos
3 L L
P P kW
S V I
 

  
 (2.22) 
 
As principais causas do baixo FP são: 
1) Motores elétricos superdimensionados ou com carga abaixo da nominal; 
2) Lâmpadas de descarga: fluorescentes, vapor de sódio, vapor de mercúrio e outras (com 
reatores de baixo FP, inclusive os eletrônicos); 
3) Instalações de ar-condicionado; 
4) Máquinas de solda; 
5) Equipamentos eletrônicos (conhecidos como “cargas não-lineares”) como TVs, 
computadores etc.; 
6) Transformadores superdimensionados. 
 
Considerações finais sobre o FP: 
 
- o FP de um circuito determina que parcela da potência aparente é potência real, podendo 
variar entre 1 e 0 (zero), quando  = 900; 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 95 
- um baixo FP causa problemas à instalação elétrica, como sobrecarga nos cabos e 
transformadores, aumento das quedas de tensão, distorções de corrente e tensão (harmônicos) etc.; 
- o fator de potência de uma carga é um dos indicadores que afetam a eficiência 
da transmissão e geração de energia elétrica; 
- é possível corrigir o fator de potência para um valor próximo ao unitário. Tal procedimento é 
conhecido como correção do fator de potência. A maneira mais simples é a conexão de bancos 
de indutores ou capacitores, com uma potência reativa Q contrário ao da carga, tentando ao máximo 
anular essa componente. Por exemplo, o efeito indutivo de motores pode ser anulado com a conexão 
em paralelo de um capacitor (ou banco) junto ao equipamento. 
- No Brasil, a Agência Nacional de Energia Elétrica – ANEEL - estabelece que o FP nas 
unidades consumidoras deve ser superior a 0,92 capacitivo durante 6 horas da madrugada e 0,92 
indutivo durante as outras 18 horas do dia. Esse limite é determinado pelo Artigo nº 64 da Resolução 
ANEEL nº 456 de 29 de novembro de 2000. Para o consumidor que descumpre tal limite, aplica-se 
uma espécie de multa que leva em conta o fator de potência medido e a energia consumida ao longo de 
um mês. A mesma resolução estabelece que a exigência de medição do fator de potência pelas 
concessionárias é obrigatória para unidades consumidoras de alta tensão (supridas com mais de 1 kV) 
e facultativa para unidades consumidoras de baixa tensão (abaixo de 1 kV, como residências em 
geral). A cobrança em baixa tensão, na prática, raramente ocorre, pois o fator de potência deste tipo de 
unidade consumidora geralmente está acima de 0,92. Tal cobrança não compensa, pois demanda a 
instalação de medidores de energia reativa. No Brasil, ainda não existe legislação para regulamentar os 
limites das distorções harmônicas nas instalações elétricas. 
 
 
2.5.8 – Rendimento 
 
O motor elétrico absorve energia elétrica da rede de alimentação e transforma esta energia em 
energia mecânica, disponível no eixo, para a realização de trabalho (erguer um peso, movimento de 
um braço de robô etc.). O rendimento é o parâmetro que define o quão é eficiente esta transformação. 
Conhecendo a potência útil, Pu ou potência de saída (Po) disponível no eixo (dada em CV ou 
HP, já que é potência mecânica), e a potência elétrica de entrada (potência absorvida da rede CA), Pa 
ou Pi, o rendimento será a relação entre as duas – Equação (2.23). 
 
736 ( ) 1000 ( )
3 cos 3 cos
Saida o
Entrada i L L L L
P P P CV P kW
P P V I V I
  
 
   
  
 (2.23) 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 96 
Em termos percentuais: 
% 100.
o
i
P
P
  
 
 
 À medida que se aplica carga ao eixo do motor, o rendimento aumenta (veja que a potência 
mecânica desenvolvida no eixo aumenta). O rendimento pode atingir valores em torno de 95 % em 
máquinas elétricas de grande potência. 
Para a análise correta do rendimento de um motor elétrico, devem-se levar em consideração 
duas curvas, que serão estudadas futuramente na disciplina Máquinas Elétricas: 
 
1) curva rendimento x potência nominal; 
2) curva rendimento x potência do eixo. 
 
 
EF - Exercícios de Fixação 
Série 6 
 
EF24 – O que é potência reativa? Que equipamentos trabalham com este tipo de potência? 
Exemplifique. 
EF25 – Um MIT onde a potência é de 20 CV e o rendimento é de 85 % opera com um FP de 0,86. 
Encontre a potência aparente e a potência reativa. 
EF26 – Seja uma instalação elétrica, com dois motores de indução de 10 CV, FP de 0,8. 
a) Calcular a potência ativa deste grupo de motores, em kW? 
b) Qual é a potência aparente entregue pela concessionária a estes motores? 
EF27 – Quais são as vantagens da correção do FP? Quais são os benefícios desta técnica para a 
concessionária de energia elétrica? 
Referência: FRANCHI, Claiton Moro. Acionamentos Elétricos. 2ª. Ed. São Paulo: Ed. Érica, 2007. 
 
 
2.5.9 – Categorias de Conjugado 
 
Segundo o catálogo WEG de Motores Elétricos de Corrente Alternada, “o motor de indução, 
trabalhando na velocidade síncrona, tem conjugado igual a zero. Como já foi citado anteriormente, à 
medida que a carga vai aumentando, a rotação do motor vai caindo gradativamente, até um ponto em 
que o conjugado atinge o valor máximo que o motor é capaz de desenvolver em rotação normal. 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 97 
Se o conjugado da carga aumentar mais, a rotação do motor cai bruscamente, podendo chegar 
a travar o rotor. Representando graficamente a variação do conjugado com a velocidade para um 
motor normal, obtém-se uma curva com aspecto representado na Figura 2.32. 
 
 
Parâmetros da curva Conjugado x Rotação: 
 
Cn: Conjugado nominal ou de plena carga - é o conjugado desenvolvido pelo motor à potência 
nominal, sob tensão e frequência nominais – veja a Figura 2.33a. 
 
Cp: Conjugado com rotor bloqueado ou conjugado de partida ou, ainda, conjugado de arranque - é o 
conjugado mínimo desenvolvido pelo motor bloqueado, para todas as posições angulares do rotor, sob 
tensão e freqüência nominais. 
 
 
 
 (a) (b) 
 
Figura 2.32 – (a) Curva Conjugado x Rotação. (b) Variação da velocidade em função 
do conjugado da carga. Fonte: WEG Equipamentos Elétricos S.A. 
 
 
Este conjugado pode ser expresso em Nm ou, mais comumente, em porcentagem do 
conjugado nominal, conforme a Equação (2.24). 
 
(%) 100
p
p
n
C
C
C
 
 (2.24) 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 98 
 
Figura 2.33 – Curva C x n. Conjugado Motor e conjugado da carga. Fonte: 
http://www.mecatronicaatual.com.br/files/image/Inversores_03.jpg 
 
Na prática, o conjugado de rotor bloqueado deve ser o mais alto possível, a fim de que o rotor 
possa vencer a inércia inicial da carga (conjugado resistente, Cn ou Cr) e possa acelerá-la rapidamente, 
principalmente quando a partida é com tensão reduzida.Cmin: Conjugado mínimo - é o menor conjugado desenvolvido pelo motor ao acelerar desde a 
velocidade zero até a velocidade correspondente ao conjugado máximo. Na prática, este valor não 
deve ser muito baixo, isto é, a curva não deve apresentar uma depressão acentuada na aceleração, para 
que a partida não seja muito demorada, sobreaquecendo o motor, especialmente nos casos de alta 
inércia ou partida com tensão reduzida. 
Cmáx: Conjugado máximo - é o maior conjugado desenvolvido pelo motor, sob tensão e freqüência 
nominal, sem queda brusca de velocidade. Na prática, o conjugado máximo deve ser o mais alto 
possível, por duas razões principais: 
1) O motor deve ser capaz de vencer, sem grandes dificuldades, eventuais picos de carga como pode 
acontecer em certas aplicações, como em britadores, calandras, misturadores e outras. 
2) O motor não deve arriar, isto é, perder bruscamente a velocidade, quando ocorrerem quedas de 
tensão, momentaneamente, excessivas. 
Conforme as suas características de conjugado em relação à velocidade e corrente de partida, 
os motores de indução trifásicos com rotor de gaiola, são classificados em categorias, cada uma 
adequada a um tipo de carga. Estas categorias são definidas em norma (NBR 7094), e são as seguintes: 
 
Categoria N - Conjugado de partida normal, corrente de partida normal; baixo escorregamento. 
Constituem a maioria dos motores encontrados no mercado e prestam-se ao acionamento de cargas 
normais, com baixo conjugado de partida, como bombas, máquinas operatrizes, ventiladores etc. 
 
Categoria H - Conjugado de partida alto, corrente de partida normal e baixo escorregamento. Usados 
para cargas que exigem maior conjugado na partida, como peneiras, transportadores carregadores, 
cargas de alta inércia, britadores, moinhos etc. 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 99 
Categoria D - Conjugado de partida alto, corrente de partida normal e alto escorregamento (s > 5%). 
Usados em prensas excêntricas e máquinas semelhantes, onde a carga apresenta picos periódicos. 
Usados também em elevadores e cargas que necessitam de conjugados de partida muito altos e 
corrente de partida limitada. As curvas conjugado x velocidade das diferentes categorias podem ser 
vistas na Figura 2.34. 
 
Categoria NY - Esta categoria inclui os motores semelhantes aos de categoria N, porém, previstos 
para partida estrela-triângulo. Para estes motores na ligação estrela, os valores mínimos do conjugado 
com rotor bloqueado e do conjugado mínimo de partida são iguais a 25% dos valores indicados para 
os motores categoria N. 
Categoria HY - Esta categoria inclui os motores semelhantes aos de categoria H, porém. previstos 
para partida estrela-triângulo. Para estes motores na ligação estrela, os valores mínimos do conjugado 
com rotor bloqueado e do conjugado mínimo de partida são iguais a 25% dos valores indicados para 
os motores de categoria H. Os valores mínimos de conjugado exigidos para motores das categorias N e 
H (4, 6 e 8 pólos), especificados pela norma NBR 7094, são mostrados nas tabelas 3.1 e 3.2. Para 
motores da categoria D, de 4, 6 e 8 pólos e potência nominal igual ou inferior a 150cv, tem-se, 
segundo a NBR 7094, que: a razão do conjugado com rotor bloqueado (Cp) para conjugado nominal 
(Cn) não deve ser inferior a 2,75. A norma não especifica os valores de Cmín e Cmáx. A NBR 7094 não 
especifica os valores mínimos de conjugados exigidos para motores 2 pólos, categorias H e D” (WEG 
Equipamentos Elétricos S.A. – Motores Elétricos de CA, 2009, p. D-18). 
 
C
o
n
ju
g
a
d
o
 e
m
 p
e
rc
e
n
ta
g
e
m
 d
o
 
c
o
n
ju
g
a
d
o
 d
e
 p
le
n
a
 c
a
rg
a
 
 
 Velocidade 
Figura 2.34 - Curvas Conjugado x Velocidade, das diferentes categorias de conjugado em relação à velocidade e 
corrente de partida, conforme a Norma NBR 7094. Fonte: Manual de Motores Elétricos de CA. WEG 
Equipamentos Elétricos S.A. 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 100 
2.4 – Principais Características Nominais 
 
A Figura 2.35 mostra dois exemplos de placas de motores de indução trifásicos (dados 
nominais). Os parâmetros mais importantes (comentados com dados da primeira placa) são: 
 
- Potência mecânica do motor (5 CV): para estimar se esse motor é capaz de executar o trabalho desejado. 
 
- Tensão nominal múltipla: é a tensão de alimentação que o motor exige (220 ou 380 V). A grande 
maioria dos motores elétricos é fornecida com terminais das bobinas religáveis, de modo que possam ser 
conectados em redes de pelo menos duas tensões diferentes. 
 
 
Figura 2.35 – Exemplos de placas com dados nominais de um MIT. Fonte: WEG Equipamentos Elétricos S.A. 
 
- Freqüência exigida da tensão alimentadora (60 Hz). 
 
- Rendimento () = 87,5 %, que, para este motor, indica que há 13 % de perdas. 
 
- Categoria do conjugado: N, indicando conjugado de partida e corrente de partida normais, e baixo 
escorregamento. Aplicação em bombas, máquinas operatrizes etc. 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 101 
- Corrente nominal que o motor consumirá (13 ou 7,53 A, dependendo da tensão alimentadora), para 
dimensionar os condutores de alimentação e os dispositivos de proteção. 
- Corrente de Partida: é uma corrente que é um múltiplo da corrente nominal do motor, na faixa de 
seis a oito vezes. Na placa do motor tem-se a indicação Ip/In que indica quantas vezes a corrente de 
partida é maior que a nominal. Para a placa da Figura 2.35: 
9.p nI I 
 Para o MIT ligado em 220 V, 
In = 13 A. Daí, a corrente de partida será In = 9 x In = 9 x 13 = 117 A. 
 
- Regime de Serviço: S1. É definido como a regularidade de carga a que o motor é submetido. A 
norma NBR 7094 estabelece dez padrões para regime de serviço de motores elétricos. No caso do 
regime S1, este é considerado um regime contínuo, isto é, a carga é constante por um tempo 
indefinido, igual à potência nominal do motor. 
 
- Rotação Nominal: é a rotação do eixo do motor sob carga nominal, em rpm (3500 RPM). 
 
- Esquema de ligação que mostra como os terminais devem ser ligados entre si e com a rede de 
alimentação (triângulo - tensões de linha em 220 V e estrela - tensões de linha atingindo até 380 V). 
 
- Classe de Isolamento: B, indicando que o limite máximo de temperatura que o isolamento do motor 
suporta continuamente sem redução de sua vida útil (segundo a norma NBR 7034) é de 130
0
 C. 
 
- Fator de serviço, FS (no caso do motor da Figura 2.35 é de 1,15), que indica a sobrecarga 
permissível que pode ser aplicada continuamente ao motor sobre condições específicas. Este 
parâmetro indica uma capacidade de sobrecarga contínua, ou seja, uma reserva de potência que dá ao 
motor elétrico condições de funcionamento em condições adversas. Exemplo: FS = 1,15 indica que o 
motor suporta continuamente 15% de sobrecarga acima de sua potência nominal. 
 
- Grau de Proteção, IP (Intrinsec Protection) do motor. IP = 55. Os invólucros dos equipamentos 
elétricos, conforme as características do local em que serão instalados e de sua acessibilidade devem 
oferecer um determinado grau de proteção. Por exemplo, um equipamento a ser instalado num local 
sujeito a jatos de água deve possuir um invólucro capaz de suportar tais jatos sob determinados valores 
de pressão e ângulo de inclinação sem que haja penetração de água. 
 No caso dos motores elétricos, a carcaça tem a função de invólucro de proteção do motor, 
mais precisamente do conjunto estator-motor. O nível do grau de ProteçãoIntrínseca (Intrinsic 
Protection, ou proteção própria do equipamento) depende diretamente do ambiente no qual o motor 
está instalado. 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 102 
 Segundo FRANCHI (FRANCHI, 2007), um motor instalado em um local desprotegido de sol 
e chuva, exige um grau de IP mais severo do que o de um motor instalado em um local limpo e seco. 
Para um motor elétrico, ambientes considerados agressivos são aqueles onde há presença de pó, 
poeira, fibras, particulados etc. Os ambientes molhados ou sujeitos a jatos d’água também são 
considerados agressivos. 
 As normas IEC e ABNT – NBR 6146 definem os graus de proteção dos equipamentos 
elétricos por meio das letras características IP seguidas por dois algarismos. As Tabelas 2.2 e 2.3, 
com base na norma NBR IEC 60529 - "Graus de proteção para invólucros de equipamentos elétricos 
(códigos IP)” indica os graus de proteção através de dois dígitos e a sua descrição. O primeiro dígito 
indica proteção contra corpos sólidos, enquanto o segundo dígito indica proteção contra água. 
 
Tabela 2.2 - Graus de proteção contra a penetração de objetos sólidos estranhos indicados 
pelo primeiro numeral característico. 
Numeral Descrição sucinta do grau de proteção. 
0 Não protegido 
1 Protegido contra objetos sólidos de Ø (diâmetro) 50 mm e maior 
2 Protegido contra objetos sólidos de Ø 12 mm e maior 
3 Protegido contra objetos sólidos de Ø 2,5 mm e maior 
4 Protegido contra objetos sólidos de Ø 1,0 mm e maior 
5 Protegido contra poeira 
6 Totalmente protegido contra poeira 
 
 
Tabela 2.3 - Graus de proteção contra a penetração de água indicados pelo segundo numeral 
característico. 
Numeral Descrição sucinta do grau de proteção 
0 Não protegido 
1 Protegido contra gotas d'água caindo verticalmente 
2 
Protegido contra queda de gotas d'água caindo verticalmente com invólucro 
inclinado até 15° 
3 Protegido contra aspersão d'água 
4 Protegido contra projeção d'água 
5 Protegido contra jatos d'água 
6 Protegido contra jatos potentes d'água 
7 Protegido contra efeitos de imersão temporária em água 
8 Protegido contra efeitos de imersão contínua em água 
Fonte: Revista Eletricidade Moderna (EM), julho, 2005. 
 
 O que indica para um MIT o grau de proteção IP 55? 
 
 Para finalizar este item, a Tabela 2.4 mostra uma comparação entre os parâmetros dos motores 
de indução de gaiola de esquilo e os de anéis. 
 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 103 
Tabela 2.4 - Comparação entre diferentes tipos de máquinas de indução. 
 
 Fonte: Manual de Motores Elétricos de CA. WEG Equipamentos Elétricos S.A. 
 
 
 
2.5 – Ligações de Motores de Indução 
 
Serão abordados neste item os seguintes tipos de ligações em motores de indução: 
– Ligações de motores de seis terminais em estrela e em triângulo 
– Ligações de motores de nove terminais em estrela e em triângulo 
– Ligações de motores de doze terminais em estrela e em triângulo 
– Ligações de motores de duas velocidades (Dahlander) 
 Os motores elétricos possuem enrolamentos (ou bobinas), construídos com fios de cobre 
esmaltados, onde ocorre a produção de campo e de torque eletromagnético. 
 Estes enrolamentos são dimensionados segundo parâmetros próprios de cada motor, podendo 
variar: a espessura do fio, o número de espiras, o comprimento das bobinas, etc. 
Através das conexões que podem ser feitas entre as bobinas do motor elétrico, pode-se alterar 
o seu comportamento, com influência nos seguintes parâmetros: 
1) reversão no sentido de rotação (horário ou anti-horário) e 
2) variação na velocidade em rpm. 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 104 
Um motor trifásico trabalha em qualquer sentido de rotação, dependendo da conexão com a 
fonte elétrica. Para inverter o sentido de rotação, inverte-se qualquer par de conexões entre motor e 
fonte elétrica. A maioria dos motores trifásicos assíncronos possui ventilador bidirecional, 
proporcionando sua operação em qualquer sentido de rotação, sem prejudicar a ventilação do motor. 
A Figura 2.36 mostra de modo gráfico o modo de se inverter o sentido de rotação de um motor 
CA (muda-se o sentido do campo girante, como já foi visto e calculado). 
 
 
 
Figura 2.36 – Mudança no sentido de rotação de um Motor CA (inversão na ligação de duas das três fases). 
 
Tensão Nominal Múltipla 
 
A grande maioria dos motores elétricos é fornecida com terminais do enrolamento religáveis, 
de modo a funcionar em redes de pelo menos duas tensões diferentes. Os motores trifásicos são 
disponíveis com 6, 9 e 12 terminais. 
 
2.5.1 – Ligações de motores de 6 (seis) terminais 
 
Os motores trifásicos com seis terminais só têm possibilidades de ligação em dois níveis de 
tensão: 127/220 V ou 220/380 V ou 440/760 V. Esses motores são ligados em triângulo na menor 
tensão e em estrela, na maior tensão. A Figura 2.37 mostra uma placa de ligação ou painel de ligações 
desse tipo de motor. 
 
 
 
Figura 2.37 – Bobinas e painel de ligações do motor de 6 terminais (ligações em  e em Y). 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 105 
A Figura 2.38 apresenta a conexão triângulo (), onde a tensão de fase é igual à de linha. 
 
 
Figura 2.38 - Motor Trifásico de 6 terminais – conexão em triângulo (em 220 V). 
 
 A corrente de linha é maior que a de fase, numa relação dada por: 
 
L ( ) FI = 3.I
 
 
A Figura 2.39 apresenta a conexão estrela (Y), com dois níveis de tensão (380 V, tensão de 
fase e 440 V, tensão de linha), onde as correntes de linha e de fase são iguais. Já a tensão de linha é 
maior do que a de fase, segundo a relação: 
 
L (Y) FV = 3.V
 
 
 
 
Figura 2.39 - Motor Trifásico de 6 terminais – conexão em estrela (380/440 V). 
 
 Nas ligações da Figura 2.40, as bobinas estão alimentadas em 220 V. A primeira mostra uma 
conexão estrela, onde a tensão de linha é 
220 3
 V = 380 V. Na segunda conexão, as tensões de 
fase e de linha são iguais a 220 V. 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 106 
 
 
Figura 2.40 - Motor Trifásico de 6 terminais com 220 V por fase – conexão em estrela e em triângulo. 
 
 
2.5.2 – Ligações de motores de 9 (nove) terminais 
 
Os motores elétricos trifásicos de 9 terminais apresentam o enrolamento de cada fase dividido 
em duas partes (lembrar que o número de pólos é sempre par, de modo que este tipo de ligação é 
sempre possível). Ligando as duas metades em série, cada metade ficará com a metade da tensão de 
fase nominal do motor. 
Nos motores elétricos com nove terminais são possíveis as ligações nas seguintes 
tensões: 220 V, 380 V e 440 V. 
Nestes tipos de motores existem bobinas (com extremidades numeradas com 7, 8 e 9) que não 
são acessíveis externamente. Estas são conectadas em estrela internamente ao motor. 
O primeiro tipo desta conexão é apresentado na Figura 2.41. Notar que o terminal 1 é 
conectado ao terminal não acessível da bobina de terminal 9. 
 
 
Figura 2.41 - motor de nove terminais (triângulo/duplo-triângulo). 
 
 
O mesmo vale para os terminais 2 e 3, que são conectados aos extremos das bobinas de 
terminal 7 e 8, respectivamente. Obviamente, outros terminais podem ser conectados aos extremos das 
bobinas de terminais 7, 8 e 9. 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 107 
 
Deste tipo de conexão são derivadas as conexões triângulo (em 440 V, sendo 220 V por 
bobina) e em duplo triângulo (220 V por bobina, com ligaçãoem paralelo), mostradas na Figura 2.42. 
 
 
(a) (b) 
 
Figura 2.42 – (a) Ligação  série. (b) Ligação Duplo  paralelo. 
 
 
 Com os extremos das bobinas de terminais 7, 8 e 9 ligados em comum, são possíveis duas 
conexões: 1) a ligação dupla-estrela (Figura 2.43 e 2.44) e 2) a ligação estrela série (Figura 2.45). 
 
 
 (a) (b) 
Figura 2.43 - Motor Trifásico de 9 terminais com 220 V por fase. (a) Conexões acessíveis 
externamente no painel do motor. (b) Conexões em YY, como efetuadas em (a). 
 
 
A Figura 2.43 mostra uma conexão em YY, onde cada bobina está com a mesma tensão. Na 
Figura 2.44a as bobinas estão ligadas em 127 V (a tensão de linha é de 220 V). 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 108 
 
 (a) (b) 
Figura 2.44 – (a) Motor Trifásico de 9 terminais com 127 V por fase, na ligação YY. 
(b) Ligação Y série (motor de 9 terminais). 
 
 
 Na ligação estrela série, Figura 2.44b, é possível obter uma tensão de linha maior para a 
alimentação do motor. No esquema da figura, cada bobina está com 127 V; com duas em série tem-se 
254 V. A tensão de linha é 
254 3
 V = 440 V. 
 
 
2.5.3 – Ligações de motores de 12 (doze) terminais 
 
O motor de 12 pontas é uma combinação dos casos anteriores: o enrolamento de cada fase é 
dividido em duas metades para ligação série-paralelo. Além disso, todos os terminais são acessíveis 
para ligação das três fases em estrela ou triângulo (o motor não possui ligações internas entre bobinas). 
É possível então efetuar quatro tipos de conexões para a alimentação do motor. As possíveis são em 
220, 380, 440 e 760*V (*somente para partida). 
A Figura 2.45 mostra conexões para obter tensões de 220, 380, 440 e 760 V (esta última com 
ligação em estrela, com os terminais 10, 11 e 12 ligados em comum). 
 
 
Figura 2.45 – Conexões de um motor CA de 12 pontas para 4 níveis de tensão. 
 
A Figura 2.46 mostra o painel de ligações de um motor de 12 terminais ou 12 pontas. 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 109 
 
Figura 2.46 – Painel de um motor CA de 12 pontas. 
 
 
EF - Exercícios de Fixação 
Série 7 
EF28 – redesenhar o circuito da Figura 2.47, representando as ligações no formato de triângulo. Se a 
tensão de linha é 220 Vef,, qual é a tensão em cada bobina da conexão? Se a corrente de fase é de 5 A, 
qual será a corrente de linha? 
 
 
 
 Figura 2.47. Figura 2.48. 
 
EF29 – Redesenhar o circuito da Figura 2.48, representando a ligação no formato de um triângulo. Se 
a tensão de linha for de 440 V, qual será a tensão em cada bobina? Para uma corrente de linha de 10 A, 
qual será a corrente de fase? 
 
EF30 – Para um motor de indução trifásico de 12 terminais, representados na Figura 2.49, desenhar 
nesta os fios (conexões) para formar uma ligação triângulo série, onde cada bobina opera em 220 V. 
Qual seria a tensão de linha deste motor? 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 110 
 
 
 
(a) (b) 
Figura 2.49 – (a) Painel de ligações de um sistema trifásico com neutro e painel de ligações de MIT de 12 
terminais. (b) Desenho da ligação  série de acordo com as conexões em (a). Conexões: 4 e 7; 9 e 6; 5 e 8; Fase 
R: 1 e 11; Fase S: 2 e 12; Fase T: 3 e 10. 
 
 
EF31 – Seja o motor de 12 terminais, 15 CV, FP = 0,85, conectado em dupla estrela (Figura 2.50). 
 
a) Qual é a tensão fase-neutro em cada bobina do motor? 
b) Se a corrente lida na fase é de 20 A, qual é a corrente de linha? 
c) Qual é a potência elétrica consumida pelo motor? 
 
 
Figura 2.50. 
 
Referência: FRANCHI, Claiton Moro. Acionamentos Elétricos. 2ª. Ed. São Paulo: Ed. Érica, 2007. 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 111 
2.5.4 – Ligações de motores de duas velocidades (Dahlander) 
 
O motor trifásico Dahlander pode ser aplicado em talhas, elevadores, correias transportadoras, 
máquinas e equipamentos em geral ou outras aplicações que requeiram motores assíncronos de 
indução trifásicos com duas velocidades. 
Possui apenas um enrolamento, uma única tensão de alimentação e duas velocidades (sendo 
uma o dobro da outra). Na Figura 2.51 é apresentado o seu diagrama, onde os bornes estão disponíveis 
em duas séries nos enrolamentos. 
 
 
 
Figura 2.51 - Motor Dahlander (duas velocidades). Medições de interesse: VL , VF, IL, IF e n (rpm). 
 
Para operação em baixa velocidade deve-se alimentar os bornes U1, V1 e W1 ou 1U, 1V e 1W, 
como escrito nos painéis de fabricantes diferentes. 
Em alta velocidade: alimentar os terminais U2 , V2 e W2 (ou 2U, 2V e 2W) e ligar em curto-
circuito os terminais 1U, 1V e 1W. 
A ligação Dahlander permite uma relação de pólos de 1:2, o que corresponde à mesma relação 
de velocidade. 
Quando a quantidade de pólos é maior a velocidade é mais baixa; quando é menor a 
velocidade é mais alta. Isso decorre da Equação (2.25). 
 
 
120
1
f
n s
p

  
 (2.25) 
onde: 
n = velocidade , p é o número de pólos, s = escorregamento e f = freqüência. 
Em resumo: os motores Dahlander são motores de duas velocidades com enrolamento por 
comutação de pólos. A “ligação Dahlander” consiste numa relação de pólos de 1:2 com consequente 
relação de rotação de 2:1. 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 112 
LEP 2 
 
 
 Lista de Exercícios e Problemas 2 – 21 questões 
 
 
1) Em que aplicações é mais indicado utilizar o motor de CC? 
2) Quais são as principais características do motor CC? 
3) Como se classificam os motores de CA, quanto à velocidade de rotação? 
4) Como podem ser utilizados os MI em aplicações com variações de velocidade? 
5) Qual é a vantagem do MI com rotor de gaiola de esquilo para o MI com rotor bobinado? 
6) A Figura 1 mostra um MI em corte. Identifique o rotor com uma seta. Que tipo de rotor é este? 
 
 
 Figura 1 Figura 2. 
 
7) O rotor indicado na Figura 2 é de gaiola ou bobinado? Identificar os seus componentes, indicados 
pelas setas. 
8) Quais são os MI de múltiplas velocidades? 
9) Identifique as partes constituintes (2), (3), (7), (8) e (10) de um MI, como mostra Figura 3. 
 
 
Figura 3 – Partes constituintes de um MIT. 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 113 
10) Por que o campo magnético por fase em um motor CA trifásico é pulsante e não girante? Faça o 
esboço de um campo magnético pulsante (forma de onda e fasor). 
11) De acordo com a Figura 4, para  = 150 graus, qual é o campo magnético mais intenso? Calcule hr 
(resultante) para 45
0
, 110
0
 e 150
0
. 
 
 
Figura 4. 
 
 
12) Um MIT de 2 pólos, é alimentado com tensão de 220 V, 60 Hz. 
 
a) Qual é a sua velocidade síncrona, ns? 
b) Para um escorregamento de 5 %, encontrar a rotação do rotor. 
 
13) Definir potência aparente, ativa e reativa.Desenhar o triângulo de potências. 
 
14) Qual é a definição de fator de potência? Como calcular o FP de uma carga trifásica? 
 
15) Seja um motor de indução de 6 terminais, cujos dados de placa são mostrados na Figura 5.Figura 5 – Questão 15. 
 
 
CEFET-MG – Campus VIII – Varginha – Acionamentos e Comandos Elétricos. 114 
a) Qual é o número de pólos deste motor? 
b) Qual é o seu escorregamento percentual? 
c) Qual é a potência do motor em kW? Obs.: 1 CV (cavalo-vapor) = 736 W. 
d) Qual é a sua tensão de fase? 
e) Calcular o seu rendimento percentual, se o seu fator de potência (cos ) = 0,6. 
 
16) O que é rendimento de um motor elétrico? Qual é a equação que o define? 
17) Definir conjugado nominal e conjugado de partida. 
18) Como definimos a corrente de partida de um motor elétrico? 
19) Defina classe de serviço de um motor elétrico. 
20) Compare o MI de gaiola com o MI de rotor bobinado, com relação aos seguintes itens: corrente de 
partida; conjugado de partida; rendimento; manutenção e custo. 
21) Sejam os painéis de um MIT de 12 terminais com as conexões efetuadas - Figura 6, painel (1) ao 
(4). Identificar a ligação de cada painel. Nota: as opções podem ser , Y,  e YY. 
 
 
 
Figura 6 – Diferentes ligações para um motor de 12 terminais. 
 
Acionamentos e Comandos Elétricos – Curso Técnico de Mecatrônica 
 
115 
Capítulo 3 
 
 
 
 Contator Magnético 
 
Capítulo 3 – Contator Magnético 
3.1 – Introdução 
 
Os motores elétricos são comandados através de “chaves” ou sistemas de partida, sendo que as 
mais empregadas são: 
1) Partida Direta/ Reversora, para acionamento de pequenos motores; 
2) Partida Estrela Triângulo, para acionamento de grandes motores sem carga; 
3) Partida Compensadora, para acionamento de grandes motores com carga; 
4) Partida com Soft-Starter, para acionamento de grandes motores com carga; 
5) Partida com Inversor de Freqüência, para acionamento de pequenos e grandes motores elétricos. 
A Figura 3.1 mostra um painel completo para comando de motores elétricos (que deve conter os 
circuitos de partida, comando e proteção). 
 
Figura 3.1 – Quadro de comando para um grupo de motores 
elétricos. Fonte: www.usedmachines.com.br/fotos/13.jpg 
 
Todas as chaves de partida mencionadas anteriormente possuem um circuito principal e um 
circuito de comando. O circuito principal ou de força é o responsável pela alimentação do motor, ou 
seja, pela conexão dos terminais/fios do motor à rede elétrica. O circuito de comando (que será 
 
Acionamentos e Comandos Elétricos – Curso Técnico de Mecatrônica 
 
116 
extensivamente estudado neste curso) é responsável por comandar o circuito de força, determinando 
quando o motor será ligado ou desligado. 
As chaves de partida são compostas pelos dispositivos: 
- dispositivos de proteção: fusível, relé térmico, disjuntor; 
- dispositivos de comando: botoeira (existem vários tipos), contator, temporizador; 
- dispositivos de sinalização e medição: sinaleiro, voltímetro, amperímetro. 
A Figura 3.2a mostra uma botoeira e a Figura 3.2b apresenta um fusível, do tipo rosca. 
 
 
(a) (b) 
Figura 3.2. (a) Botoeira com comandos liga/desliga. (b) Fusível do tipo rosca. 
 
 O fusível, que será estudado no capítulo 4, é um componente que protege as linhas de 
alimentação e os circuitos de comando e de carga contra o curto-circuito. O fusível, ao ser atuado, 
deve ser substituído. 
 As Figuras 3.3 e 3.4 mostram, respectivamente, grupos de botoeiras e fusíveis, disponíveis 
comercialmente. A Figura 3.5 mostra a posição destes dispositivos em um circuito de acionamento de 
um motor elétrico trifásico. 
 
 
Figura 3.3 – Grupo de Botoeiras e 
dispositivos de manobra e sinalização 
Figura 3.4 – Grupo de Fusíveis, dos tipos D, Diazed 
 (2 a 100 A) e NH – 2 a 630 A (catálogo WEG). 
 
 
Acionamentos e Comandos Elétricos – Curso Técnico de Mecatrônica 
 
117 
 
Figura 3.5 – Circuitos de Comando e de Potência (acionamento de Motor). 
 
A Figura 3.6 mostra um diagrama completo de acionamento (dividido em diagramas de carga e 
de comando). 
 
 
Figura 3.6 – Exemplo de um sistema de acionamento de um motor trifásico, 
mostrando os diagramas de força ou potência e de comando. 
 
 
Acionamentos e Comandos Elétricos – Curso Técnico de Mecatrônica 
 
118 
3.2 – Contatores – Aspectos Construtivos, Classificação e Aplicações 
 
Numa definição simples, contatores são dispositivos de manobra eletromecânica, construídos 
para uma elevada freqüência de operação. São comandados a distância, com uma única posição de 
repouso estável (aberto ou fechado). Os contatores podem estabelecer, interromper e suportar 
correntes normais da instalação (nominais) e ocasionalmente as de curto-circuito. 
De acordo com a potência (carga), o contator é um dispositivo de comando de motor e pode ser 
utilizado individualmente, acoplado a relés de sobrecarga, na proteção de sobrecorrente. Basicamente, 
existem contatores para motores e contatores auxiliares. 
 
3.2.1 – Classificação dos Contatores 
 
Os contatores podem ser classificados como: 
- Principais (siglas CW e CWM) e Auxiliares (CAW). 
Os contatores auxiliares operam com corrente máxima de 10 A e possuem de 4 a 8 contatos, 
podendo chegar até 12 contatos. 
Os contatores principais trabalham com corrente máxima de até 600 A. De uma maneira geral 
possuem três contatos principais do tipo NA, para manobra de cargas trifásicas a três fios. 
A IEC classificou os contatores segundo a sua capacidade de suportar os esforços decorrentes 
da interrupção de correntes superiores à sua corrente nominal e também à sua durabilidade frente às 
inúmeras manobras de abertura e fechamento repetidas. 
Tal classificação leva em conta: 
1) a freqüência de operações de ligar/desligar; 
2) valor da sobrecarga; 
3) fator de potência da carga e 
4) tipo de operação dos motores elétricos: na partida, na frenagem, na reversão de rotação etc.
 
3.2.2 – Tipos de Contatores 
 
 Eletromagnéticos – a força necessária para fechar o circuito provém de um eletroímã; 
 Pneumáticos – a força para efetuar a ligação provém do ar comprimido; 
 Eletropneumáticos – similares aos pneumáticos, mas com o circuito de comando governado 
por eletroválvulas. 
 
 
 
Acionamentos e Comandos Elétricos – Curso Técnico de Mecatrônica 
 
119 
3.2.3 – Outras Considerações 
 
 
O CONTATOR controla elevadas correntes através de um circuito de baixa corrente. É 
construído de uma bobina – veja a Figura 3.7 -, que, quando alimentada por corrente, cria um campo 
eletromagnético no núcleo fixo o qual atrai o núcleo móvel, fechando o circuito. 
Ao cessar a alimentação da bobina, o campo eletromagnético é interrompido e aí o mecanismo 
volta à posição anterior (chave aberta). 
 
 
 
Figura 3.7 – Esquema de um contator magnético. 
 
 Um dos critérios para selecionar um contato é o tipo de tensão de trabalho de suas bobinas. A 
bobina constitui o terminal de entrada para o movimento da peça móvel do contator (armadura). A 
tensão de alimentação da bobina pode ser do tipo contínuo (CC) ou alternado (CA), dependendo da 
tecnologia do fabricante. Há uma grande variedade de bobinas com diversos níveis de tensão (de 24 
até 600 V), tanto para CC quanto para CA. 
 Na Figura 3.8 é apresentado o esquema de um contator trifásico de dois terminais, onde são 
utilizados contatos NA e NF. 
 
Mas o que são contatos NA e NF? 
 
Acionamentos e Comandos Elétricos – Curso Técnico de Mecatrônica 
 
120 
 
Para fins de classificação, os contatos são designados de acordo com o seu estado de 
repouso. Como os contatos “normalmente” se encontram nas situações de repouso, os contatos são 
classificados de duas formas: 
1) Normalmente Aberto (NA): indica contato aberto na posição de repouso; 
2) Normalmente Fechado(NF): indica contato fechado na posição de repouso. 
 
 
Figura 3.8 – Diagrama esquemático de um 
contator de 2 terminais, A1 e A2. 
 
Assim como na classificação, os contatos são representados graficamente (no desenho) na 
posição de repouso, ou seja, um contato NA será uma chave aberta e um contato NF uma chave 
fechada conforme se vê a seguir: 
 
 
 
Como é feito o comando da bobina? 
 
É efetuado por meio de uma botoeira ou chave-bóia, por exemplo, com duas posições, cujos 
elementos de comando estão ligados em série com a bobina. A velocidade de fechamento dos 
contatores é resultado da força proveniente da bobina (força eletromagnética) e da força mecânica das 
molas de separação que atuam em sentido contrário. 
 
Acionamentos e Comandos Elétricos – Curso Técnico de Mecatrônica 
 
121 
As molas são responsáveis pela velocidade de abertura do contator, o que ocorre quando a 
bobina magnética não estiver sendo alimentada ou quando o valor da força magnética for inferior à 
força das molas. 
 
Vantagens do Emprego de Contatores 
 
- Comando à distância; 
- Elevado número de manobras; 
- Grande vida útil mecânica; 
- Pequeno espaço para montagem; 
- Garantia de contato imediato; 
- Tensão de operação de 85 a 110 % da tensão nominal prevista para contator. 
 
Características Principais 
 
- Ligação rápida e segura do motor; 
- Controle de alta corrente por meio de baixa corrente; 
- Comando local ou à distância; 
- Possibilidade de se construir vários tipos de chaves de partida; 
- Proporciona proteção efetiva do operador; 
- Garantia de desligamento do motor em caso de sobrecarga; 
- Possibilidade de simplificação do sistema de operação e supervisão de uma instalação. 
 
Defeitos mais freqüentes dos Contatores 
 
- Sobrecarga da bobina magnética; 
- Isolação deficiente; 
- Desgaste excessivo dos contatos; 
- Sobreaquecimento dos contatos; 
- Defeitos mecânicos. 
 
 Franchi (2007) afirma que se pode relacionar a vida útil do contator diretamente com a vida 
elétrica dos seus contatos, que por sua vez depende do nível da corrente e é determinado pelo número 
de manobras. 
 
 
Acionamentos e Comandos Elétricos – Curso Técnico de Mecatrônica 
 
122 
 A vida útil do comando pode ser estimada de em função de aspectos mecânicos e elétricos. 
Com relação à vida útil mecânica, esta possui um valor fixo, definido pelo projeto do contator e pelo 
desgaste dos materiais utilizados. Numericamente falando, se pode citar um valor entre 10 x 10
6
 a 15 x 
10
6
 manobras (contatores de pequeno porte). Este parâmetro vem indicado no catálogo dos fabricantes. 
 
Montagem dos Contatores 
 
Os contatores devem ser montados de preferência verticalmente, em local que não esteja sujeito 
a trepidação (Figura 3.9). Em geral, é permitida uma inclinação máxima do plano de montagem de 
22,5
o
 em relação à vertical, o que permite a instalação em navios. 
 
 
Figura 3.9 - Aspecto da montagem vertical de um contator. 
 
Contatores e Aplicações em Diagramas de Comandos Elétricos 
 
 O que são Comandos Elétricos? Constituem toda forma de interferência, através de dispositivos, 
no sentido de ligar ou desligar qualquer circuito elétrico. 
 No caso de motores elétricos, o comando elétrico ou acionamento é a forma de ligar ou 
desligar os seus circuitos através de dispositivos como relés, contatores magnéticos, sensores etc. 
 
A representação destes circuitos é feita pelo método de diagramas, onde são desenhados os 
componentes através de símbolos gráficos e literais seguindo as normas técnicas de cada país ou 
comunidade, como, por exemplo: ABNT (Associação Brasileira de Normas Técnicas), DIN, IEC etc. 
Os diagramas, apresentados nos itens a seguir, são: 1. Circuito ou diagrama de Carga ou de 
força ou de potência (principal) e 2. Circuito ou diagrama de Comando (secundário). 
 
Acionamentos e Comandos Elétricos – Curso Técnico de Mecatrônica 
 
123 
3.3 – Diagrama de Carga 
 
O diagrama de carga de um acionamento é compreendido como o conjunto de todas as ligações 
referentes à carga acionada, a qual poderá ser uma lâmpada, um motor elétrico, um elemento 
aquecedor etc. Neste diagrama estão localizadas as chaves principais, as quais são mais robustas e 
destinam-se a comandar altos valores de corrente típicos de motores e outras cargas. São sempre do 
tipo NA. Sua identificação se faz com números unitários de 1 a 6 (Figura 3.10a). Na Figura 3.10b está 
representado um exemplo de um diagrama de carga. 
 
 
Figura 3.10a – Numeração das chaves 
principais de um contator. 
Figura 3.10b – Diagrama de carga (exemplo). 
 
O circuito de carga não funciona sem o de comando e este último não tem nenhuma aplicação 
se não houver o primeiro. Assim, o circuito de carga determina o que se quer do comando e este 
determina a maneira como se deve funcionar a carga. 
Um contator possui, além das chaves principais, utilizadas em diagramas de carga, as chaves 
auxiliares, que são menos robustas, se prestando a comandar as baixas correntes de funcionamento dos 
eletroímãs (bobinas) de outras chaves magnéticas, lâmpadas de sinalização ou alarmes sonoros. As 
chaves auxiliares podem ser do tipo NA ou NF. 
 A Figura 3.11 mostra o esquema completo de um contator, com as suas partes constituintes: 
bobina, chaves principais (identificadas por números de um dígito) e chaves auxiliares (identificadas 
por números de dois dígitos). 
 
 
Acionamentos e Comandos Elétricos – Curso Técnico de Mecatrônica 
 
124 
 
 
 
Figura 3.11 – Simbologia de um contator: bobina e chaves NA e NF. Contator tripolar com contatos auxiliares 
integrados. Fonte: http://www.weg.net/files/products/WEG-contatores-e-reles-de-sobrecarga-catalogo-completo-
50026112-catalogo-portugues-br.pdf 
 
Normas de identificação dos contatos dos contatores 
 
A normalização nas identificações de terminais dos contatos e demais dispositivos de manobra 
de baixa tensão é o meio utilizado para tornar mais uniforme a execução de projetos de comandos e 
facilitar a localização e função desses elementos na instalação. 
A identificação é feita por letras maiúsculas nas bobinas com apenas um enrolamento (veja os 
exemplos nas Figuras 3.12 e 3.13). 
 
 
Figura 3.12 – Identificação das bobinas de um contator. 
 
 
Acionamentos e Comandos Elétricos – Curso Técnico de Mecatrônica 
 
125 
 
Figura 3.13 – Exemplo de um contator: bobina comandando chaves principais e auxiliares. 
 
Para a identificação dos terminais principais e auxiliares de um contator, observa-se que a 
identificação é feita por 2 dígitos, onde: 
 
1º dígito: posição ocupada pelo contato a partir da esquerda 
2º dígito: função do contato – 1 para NF (abridor) e 3 para NA (fechador). 
A identificação numérica apresentada nas Figuras 3.14 e 3.15 aplica-se aos contatos abridores e 
fechadores (NF e NA). No exemplo da Figura 3.14, a chave numerada com 13 e 14 indica a primeira 
chave (primeiro dígito, 1) e que é do tipo NA (normalmente aberta, segundo dígito: 3 e 4). Da mesma 
forma, a chave numerada com 41 e 42 indica a quarta chave na sequência, sendo do tipo NF 
(normalmente fechada, segundo dígito com finais 1 e 2). 
 
 
Figura 3.14 – Identificação de dois dígitos nos contatos. 
 
 
 
Acionamentos e Comandos Elétricos – Curso Técnico de Mecatrônica 
 
126 
3.4 – Diagrama de Comando 
 
O diagrama de comando, como o próprio nome já diz, é o cérebro de um sistema de 
acionamento elétrico. 
Consiste de dispositivos montados em uma sequência onde a lógica implementada define o tipo 
e as operações no acionamento da carga. Parauma lâmpada, o seu acionamento (liga/desliga), tempo 
em que vai ficar acesa (iluminação, luz de emergência, luz de sinalização). Para um motor elétrico, as 
operações de: partida, temporização, intertravamento, reversão de rotação, parada, desligamento etc. 
Os dispositivos do diagrama de comando são responsáveis pelo comando, proteção, regulação e 
sinalização do sistema. 
 
 
 
(a) 
 
 
(b) 
 
 
(c) 
 
Figura 3.15 – Contator com chaves de contatos múltiplos, NA e NF. 
Exemplo de numeração de seus terminais – (a), (b) e (c). 
 
 
 
Acionamentos e Comandos Elétricos – Curso Técnico de Mecatrônica 
 
127 
Exemplo 3.1 – Expressão lógica com contatores 
 
 O circuito da Figura 3.16 mostra um “circuito lógico” com os contatores X e Y. Encontrar a 
expressão lógica resultante que explique os estados das chaves A, B, C, X e Y. 
Solução: 
A expressão booleana resultante é: 
__ __
L = CX +Y (3.1) 
 Onde A significa chave A atuando (comando com nível lógico 1) e __
A,
chave A sem comando 
ou sem atuar (nível lógico 0). O mesmo vale para as outras chaves. 
 
 
Figura 3.16. 
 A variável __Y indica que o contator Y não atuou. Assim, esta chave permanece fechada. 
 Do contator X: __X = A+B 
Do contator Y: __Y = A B 
 
 Assim, substituindo as variáveis X e Y na Equação (3.1): 
 ________ _______ __ __ __
L = C(A+B)+A B L = A BC + A + B 
 Através da propriedade 
 _x + x y = x + y 
__ __ __
__ __
 L = A +A BC + B A + BC + B
 = A + B + BC = A + B + C
  
 Logo, a lâmpada pode ser acionada pela chave A, ou pela chave __B ou pela chave C. 
 
 
Acionamentos e Comandos Elétricos – Curso Técnico de Mecatrônica 
 
128 
Exemplo 3.2 – Intertravamento Elétrico dos Contatores 
 
O intertravamento é um sistema elétrico ou mecânico destinado a evitar que dois ou mais 
contatores se fechem acidentalmente, ao mesmo tempo provocando curto-circuito ou mudança de 
sequência de funcionamento de um determinado circuito. 
A Figura 3.17 mostra um diagrama de comando onde as chaves S1 e S2 são intertravadas, ou 
seja: quando S1 NA se fechar, no ramo de K1, S1 NF se abre no ramo de K2. O mesmo se aplica à 
chave S2 (NA no ramo de K2 e NF no ramo de K1). 
Isto impede que os ramos dos contatores K1 e K2 sejam acionados simultaneamente. 
- Descreva a atuação dos elementos do diagrama de comando da Figura 3.17, primeiro 
acionando S1. Suponha que K1 acione uma lâmpada no diagrama de carga, ligada em 220 VRMS. 
- O que deve ser feito para acionar a lâmpada via chave S2? 
 
 
 
 
 
 
Figura 3.17. 
 
 
 
Acionamentos e Comandos Elétricos – Curso Técnico de Mecatrônica 
 
129 
Exemplo 3.3 – Multiplicação de contatos 
 
 Na Figura 3.18, vê-se que com uma única chave pode-se acionar o contator K1, o qual conta 
com várias chaves que ligarão (NA) ou desligarão (NF) os circuitos ligados através dessas chaves. Isto 
permite que com uma única chave (S1), seja possível operar vários circuitos simultaneamente. 
 
 
Figura 3.18. 
 
 
Exemplo 3.4 – Circuito Teste de Lâmpadas 
 
Este circuito (Figura 3.19) é utilizado para testar as lâmpadas de sinalização de alarmes 
verificando se existe alguma lâmpada queimada, para sua devida substituição. 
Funcionamento: ao pressionarmos a botoeira bo a corrente circula através dos diodos, fazendo com que 
as lâmpadas acendam independentemente do fechamento dos contatos c1, c2 ou c3. 
 
 
Figura 3.19 – O botão NA bo aciona as lâmpadas momentaneamente, 
o que permite verificar se há alguma danificada (teste). 
 
 
 
Acionamentos e Comandos Elétricos – Curso Técnico de Mecatrônica 
 
130 
Exemplo 3.5 – Circuito de Selo 
 
Este circuito, mostrado na Figura 3.20b, é o princípio lógico das maiorias de todos os circuitos 
de comandos elétricos. Os botões B0 (NF) e B1 em série, comandam o contator K1, o qual tem um 
contato NA, em paralelo com B1 (NA). 
 Pressionando B1, a bobina de K1 é energizada. Liberando B1, K1 se mantém energizado, pois 
o seu contato NA foi fechado pela ação de sua bobina. Para desligar, basta apertar o botão B0, o que 
desarma a bobina do contator K1. 
 
 
 (a) (b) 
Figura 3.20 – (a) Circuito de comando de uma lâmpada incandescente. (b) Circuito de 
comando, constituído de uma chave em paralelo com a botoeira (selo ou retenção). 
 
Exemplo 3.6 – Memorização de Acionamento (outro exemplo de selo) 
 
 Através de uma das chaves (então chamada chave ou contato de selo ou de auto-retenção) 
pode-se manter o contator acionado após um acionamento momentâneo da chave que o acionou. 
 No circuito da Figura 3.21, após acionar S1, as cargas ficarão acionadas como se a mesma se 
mantivesse acionada, pois o contato 13-14 manterá o contator acionado (mesmo com S1 aberta). Para 
DESLIGAR K1, basta abrir o contato NF S2, inserido em série com o eletroímã. 
 
 
Figura 3.21 - O botão S1 aciona o contator que se mantém por selo. O botão S2 desliga o contator. 
 
Acionamentos e Comandos Elétricos – Curso Técnico de Mecatrônica 
 
131 
Exemplo 3.7 – Partida Estrela-Triângulo de um Motor CA 
 
Durante a partida e aceleração de um motor elétrico, até a sua rotação nominal, este solicita 
uma sobrecorrente em torno de 6 a 8 vezes a corrente nominal, o que pode provocar a queda de tensão 
na rede de alimentação e interferência no acionamento de outras cargas (lâmpadas, PCs etc.). 
Adota-se então o uso de uma chave de partida ESTRELA-TRIÂNGULO, que é um diagrama 
de comando onde, através de uma lógica de operação das chaves dos contatores, controla-se a corrente 
do motor no período de transitório de partida. 
Uma observação importante: através desta manobra o motor realizará uma partida mais suave, 
reduzindo sua corrente de partida em aproximadamente 1/3 da que seria se acionado em partida direta. 
A partida Y-Δ é utilizada quase que exclusivamente para partidas sem carga. A Figura 3.22 ilustra este 
método de acionamento. 
 
 
Figura 3.22 – Chave de Partida Estrela-Triângulo. Diagramas de Carga e de Comando. 
 
Questões: 
1) Observando os diagramas da Figura 3.22, qual dos contatores assegura a partida do MIT em 
triângulo? 
2) A chave S2 intertravada está ligada de modo correto? Justifique. 
3) Qual é a função do selo do contator K3? 
 
 
Acionamentos e Comandos Elétricos – Curso Técnico de Mecatrônica 
 
132 
Exemplo 3.8 – Exemplos comerciais de contatores 
 
 A Figura 3.23 mostra um exemplo comercial de contator, da GE – modelo CL, onde são mostradas 
todas as suas partes constituintes. 
 Este tipo de contator opera com corrente alternada e com corrente contínua, na faixa de 9 a 140 A. 
 Conta, dentre outros dispositivos, com um relé de sobrecarga e com um temporizador eletrônico. A 
Figura 3.24 mostra uma combinação de contatores e de seus dispositivos. 
 
 
Figura 3.23. 
 
Figura 3.24 - Contatores e combinações de contatores. Fabricante: SIEMENS (Modelo SIRIUS). 
 
 
 
Acionamentos e Comandos Elétricos – Curso Técnico de Mecatrônica 
 
133 
Exercício de Simulação 1 – ES1 – Uso de Aplicativos em FLASH e do CADE Simu 
 
 A Figura 3.25 mostra um aplicativo em FLASH para simulação de uma chave de partida 
direta. Tente fazer o download do arquivo e simular a operação de partida (modo automático). 
 Para efetuar a simulação, clicar com o mouse no ícone PLAY, e em seguida, na botoeira b1, 
várias vezes, até ver preenchida a linha de alimentaçãodo motor (com o selo C1 fechado). O motor 
então parte começando a girar no sentido horário. 
 
 
Figura 3.25 – Simulação em Flash da chave de partida direta de um motor trifásico. 
Fonte: http://www.4shared.com/file/1keOw6RD/91_PARTIDA_ELTRICA.html 
 
 
Software CADE SIMU 
 
Aproveitando o último exercício, tratando de simulação, há um ótimo software, CADe Simu, 
um software de CAD elétrico eletrônico que permite inserir diversos símbolos organizados em 
bibliotecas e desenhar um diagrama de fiação de um modo rápido e fácil para posteriormente 
implementar a simulação. CAD interage com o usuário e o desenho do diagrama e feita de forma 
rápida e fácil. 
Atualmente possui as bibliotecas de simulação que se segue: alimentação CC e CA, fusíveis e 
disjuntores, relés térmicos, contatores, motores elétricos, contatos auxiliares e contatos de 
temporizadores, bobinas, interruptores etc. 
 
Acionamentos e Comandos Elétricos – Curso Técnico de Mecatrônica 
 
134 
O download do programa, com exemplos prontos, pode ser efetuado na seguinte homepage: 
http://www.4shared.com/file/pCMnTFF3/CADe_SIMU_-_Instalacao_e_Exemp.html. 
Nas Figuras 3.26a e 3.26b são apresentados, respectivamente, o ambiente para construção do 
circuito (na primeira foi montado um diagrama para partida direta de um MIT) e o resultado da 
simulação do MIT do item (a). 
 
(a) 
 
(b) 
Figura 3.26 – Simulação de Partida Direta de um MIT no software CADE Simu. 
 
Acionamentos e Comandos Elétricos – Curso Técnico de Mecatrônica 
 
135 
EF - Exercícios de Fixação 
Série 8 
 
EF32 – Descrever outros exemplos (três, no mínimo) de aplicações dos contatos de um contator. 
EF33 – Conceituar diagramas unifilares e multifilares. Dar um exemplo com desenho. 
EF34 – O valor de corrente a ser comandada em um sistema de acionamento elétrico também 
influencia na pressão de contato entre as partes móveis do contato: maiores correntes exigem 
maiores pressões de contato. Justifique a expressão em negrito. 
EF35 – O esquema da Figura 3.27a representa uma ligação muito conhecida em instalações elétricas 
residenciais (diagrama multifilar). 
a) Desenhar o seu diagrama unifilar (pesquisar). 
b) Dimensionar a corrente da lâmpada, se a mesma é de 60 W, 127 V. 
 
 
(a) 
 
 
(b) 
Figura 3.27 – Acionamento de lâmpadas. (a) Acionamento por interruptores. Acionamento por contatores. 
 
 
Acionamentos e Comandos Elétricos – Curso Técnico de Mecatrônica 
 
136 
EF36 – Explicar o acionamento das lâmpadas L1 e L2 para o esquema da Figura 3.27b. 
EF37 – Numerar os terminais das chaves dos contatores da Figura 3.28. 
 
 
Figura 3.28 – Contatores – numeração dos contatos. 
 
EF38 – A respeito do diagrama apresentado na Figura 3.29 (diagrama de carga e diagrama unifilar), 
pede-se desenhar o diagrama de comando e conceituar cada componente, bem como do diagrama de 
carga. 
 
Figura 3.29. 
 
EF39 – No diagrama de comando elaborado no EF38, numerar todos os bornes dos dispositivos 
utilizados. 
 
EF 40 – Empregar o circuito de sinalização da Figura 3.19, com as devidas adaptações, para indicar a 
partida de um MIT, a ocorrência de uma anomalia (curto-circuito, p. ex.) e a sua parada. 
 
Acionamentos e Comandos Elétricos – Curso Técnico de Mecatrônica 
 
137 
LEP 3 
 
 
 Lista de Exercícios e Problemas 3 – 10 Questões 
 
 
1) Explique o funcionamento do circuito da Figura 1. Desenhar no quadro da Figura 2 um diagrama de 
carga, onde a carga é comandada pelo diagrama da Figura 1 (podem ser utilizadas como carga, por 
exemplo, um motor elétrico, uma lâmpada, um forno etc.). 
 
 
 
Figura 1 – Questão 1 (diagrama de comando). Figura 2(diagrama de carga). 
 
2) Desenhe um circuito de comando e o respectivo de carga para acionar um motor de indução 
trifásico, ligado em 220 V (estrela), de forma que o operador, por motivos de segurança, tenha que 
utilizar as duas mãos para realizar o acionamento. 
3) Seja o diagrama de carga da Figura 3. Projetar um diagrama de comando para o seu acionamento, 
onde um contator comanda a sua partida e o seu desligamento após 2 minutos (utilize um relé de 
tempo). 
 
Figura 3 – Motor 3Ø acionado por um diagrama de comando (diagrama de carga). 
 
 
Acionamentos e Comandos Elétricos – Curso Técnico de Mecatrônica 
 
138 
4) Seja o diagrama de comando da Figura 4, onde KM1, KM2 e KM3 são contatores que comandam 
os motores M1, M2 e M3. Desenhar o diagrama de carga correspondente e explicar o seu 
funcionamento. 
 
 
Figura 4 – Questão 4. 
 
5) Quais são os defeitos mais freqüentes nos contatores? Classifique as suas chaves, dando um 
exemplo em um circuito de acionamento. 
6) Quais são as principais características dos contatores? 
7) Qual é o procedimento para se eliminar o efeito de “bloco parasita” na bobina de um contator? 
8) Quais são os critérios de dimensionamento de um contator? 
9) Como são formados o circuito principal e o auxiliar de um contator magnético? Explicar a função 
de cada um. 
 
 
Acionamentos e Comandos Elétricos – Curso Técnico de Mecatrônica 
 
139 
10) O Diagrama de comando da Figura 5 diz respeito ao acionamento de dois motores de indução 
trifásicos. 
 
a) Completar as ligações e numerar/identificar os contatos de todos os dispositivos (botoeiras e 
contatores). 
b) Como ocorre o comando dos motores M1 e M2? 
 
 
Figura 5 – Questão 10. 
 
 
Referência Bibliográfica 
 
[1] FRANCHI, Claiton Moro. Acionamentos Elétricos. 2ª. Ed. São Paulo: Ed. Érica, 2007.
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
140 
 EXERCÍCIO Extra: completar as ligações pendentes nos diagramas abaixo. 
 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
141 
Capítulo 4 
 
 
 Dispositivos de 
 Proteção e de Comando 
 
Capítulo 4 – Dispositivos de Proteção e de Comando 
 
4.1 – Introdução 
 
 
 Um curto-circuito pode ser definido como uma ligação 
acidental de condutores sob tensão. 
 A impedância desta ligação é praticamente desprezível, 
com a corrente atingindo um valor muito maior que a corrente 
de operação. 
 Tanto o equipamento quanto a instalação elétrica 
poderão sofrer esforços térmicos e eletrodinâmicos excessivos. 
 A forma mais segura de se proteger uma instalação 
contra um curto-circuito é dimensionar disjuntores ou fusíveis 
por onde a corrente elétrica passa (Figura 4.1). 
 
Figura 4.1. 
 Desta forma, se ocorrer um aumento na intensidade da corrente, o fusível queima e o disjuntor 
desliga a chave, abrindo o circuito e não permitindo que a corrente passe pelos outros componentes do 
mesmo. 
 Um curto-circuito pode ser caracterizado de várias formas: 
 
1) Duração do curto-circuito 
- Auto-extinguível: como é o caso de um curto-circuito criado pela umidade. A temperatura 
desenvolvida nesse ponto pode provocar a secagem e assim eliminar o defeito. 
- Transitório: a falha de isolamento pode introduzir uma impedância relativamente elevada que 
tende a manter-se originando uma intensidade de corrente superior ao valor da corrente de 
serviço, mas que, na maior parte dos casos, rapidamente evolui para a corrente de curto 
circuito. 
- Estacionário: mantém-se se não existir a atuação de um dispositivo de proteção. 
 
2) Origem do curto-circuito 
- mecânica: quebra ou corte de um condutor, contato acidental entre condutores. 
- sobre-tensões internas ou de origem atmosférica. 
- falha de isolamento: devido à temperatura, umidade ou acorrosão. 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
142 
- localização: no interior ou exterior de equipamentos (máquinas ou dispositivos). 
 Um curto-circuito pode ser do tipo: 
- fase-neutro; 
- fase-terra: verifica-se este tipo de defeito em cerca de 80 % dos casos; 
- fase-fase: cerca de 15 % dos defeitos verificando-se que normalmente degeneram num curto-
circuito trifásico; 
- trifásico: apenas 5% dos casos reportados de situações de defeito são resultantes de um 
curto-circuito que envolve as três fases. 
 
Na Figura 4.2 representam-se estas diferentes situações de curto-circuito. 
 
 
 
Figura 4.2 - Diferentes tipos de curto-circuito e as respectivas correntes. 
NOTA: A direção da corrente é arbitrária. 
 
 
4.1.1 - Curto-circuito & Proteção 
 
 A norma NBR 5410/97 prescreve que todo circuito, incluindo circuito terminal de motor, deve 
ser protegido por dispositivos que interrompam a corrente, quando pelo menos um dos condutores for 
percorrido por uma corrente de curto-circuito. 
 A interrupção deve ocorrer num tempo suficiente curto para evitar a deterioração dos 
condutores. Esta interrupção deve-se dar por dispositivo de seccionamento automático. A norma aceita 
a utilização de fusíveis ou disjuntores para proteção específica contra curto-circuitos. 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
143 
4.2 – Fusíveis 
 
 O princípio de funcionamento do fusível baseia-se na fusão do filamento e conseqüente 
abertura do mesmo, quando por este passa uma corrente elétrica superior ao valor de sua 
especificação. Para entender esta operação, veja a Figura 4.3 (FRANCHI, 2007). 
 
 
 
Figura 4.3 - Fusível – constituição. 
 
 O elemento fusível é um fio ou uma lâmina de metal, alocado no interior do fusível, um corpo 
geralmente de porcelana e hermeticamente fechado. A maioria dos fusíveis possui um elemento 
indicador (indicado por 3, na Figura 4.3) que indica a integridade do dispositivo. Este elemento é um 
fio ligado em paralelo com o elemento fusível e que libera uma mola após a sua operação, o que 
provoca o aparecimento do sinalizador na carcaça do fusível. 
 O meio extintor do fusível é um material granulado, geralmente areia de quartzo. 
 O elemento fusível assume diversas formas, de acordo com a sua corrente nominal, podendo 
ser composto por um ou mais fios de lâminas ligados em paralelo, com trechos de seção reduzida. No 
fusível existe um ponto de solda em que a temperatura de fusão é menor que a do elemento fusível. 
 
4.2.1 - Operação do Fusível 
 
 Quando o elemento fusível opera em regime permanente (onde a corrente que circula na carga 
em série é estável), o condutor e o elemento fusível, obviamente, têm a mesma corrente elétrica, a qual 
produz aquecimento em ambos (Figura 4.4). 
A temperatura do condutor atinge então a temperatura 1. Já o elemento fusível, que possui 
uma resistência elétrica mais alta, fica com uma temperatura superior, 2 (o aquecimento é maior, pelo 
efeito Joule). Esta temperatura mais elevada ocorre no ponto médio do elemento fusível, como se vê 
na curva da Figura 4.4. 
A temperatura se comporta da seguinte forma: descresce do ponto médio até as extremidades 
do elemento fusível. Nota-se que os pontos de conexão e o ponto médio não têm a mesma 
temperatura, mas possuem uma temperatura maior que a dos condutores. A corrente que percorre o 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
144 
fusível sem ultrapassar este valor é a corrente nominal do mesmo. Um valor acima da corrente 
nominal provoca o rompimento do elemento fusível (de acordo com a sua curva de atuação), e aí o 
circuito se abre. 
 
 
Figura 4.4 – Característica da temperatura no interior de um fusível (FRANCHI, 2007). 
 
 
 Para o caso onde a corrente do fusível é muito superior à nominal, por exemplo na faixa de 10 
vezes, ocorre a fusão do trecho da seção reduzida do elo fusível antes do ponto de solda, em razão da 
alta corrente que naquele circula. 
 Na fusão do elo fusível, este está rompido mecanicamente, mas a corrente não é interrompida 
plenamente, pois é mantida por um arco elétrico. A fusão e o arco elétrico provocam então a 
evaporação do material metálico do elo. O arco é envolvido pelo elemento extintor, o qual vaporiza. 
Então o vapor do metal é empurrado contra a areia, onde grande parte do arco elétrico se extingue, já 
que a areia penetra o arco e retira a energia térmica do mesmo (FRANCHI, 2007). 
 
 
4.2.2 - Fusível – Definição Clássica 
 
 Adotando uma definição clássica, o fusível consiste de um filamento (veja a Figura 4.5) ou 
lâmina de um metal ou liga metálica de baixo ponto de fusão que se intercala em um ponto 
determinado de uma instalação elétrica para que se funda, por efeito Joule, quando a intensidade 
de corrente elétrica supere, devido a um curto-circuito ou sobrecarga, um determinado valor que 
poderia danificar a integridade dos condutores com o risco de incêndio ou destruição de outros 
elementos do circuito. 
 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
145 
 Os FUSÍVEIS são dispositivos de segurança 
e proteção que são inseridos nos circuitos elétricos, 
para interrompê-los quando alguma anomalia 
acontece (situações anormais de corrente, como 
curto-circuito ou sobrecargas de longa duração). 
 
 4.2.3 - Classificação 
 
 De um modo geral, os fusíveis são 
classificados segundo a tensão de alimentação em 
alta ou baixa tensão, e, também segundo as 
características de desligamento em efeito RÁPIDO 
ou RETARDADO. 
 
 
Figura 4.5 – Constituição de um fusível. 
 
Fusíveis de Efeito Rápido - os fusíveis de efeito rápido são empregados em circuitos em que não há 
variação considerável de corrente entre a fase de partida e a de regime normal de funcionamento. 
Esses fusíveis são ideais para a proteção de circuitos resistivos (lâmpada, fornos, etc.) 
 
Fusíveis de Efeito Retardado - os fusíveis de efeito retardado são apropriados para uso em circuitos 
cuja corrente de partida atinge valores muitas vezes superiores ao valor da corrente nominal e em 
circuitos que estejam sujeitos a sobrecarga de curta duração. Como exemplos podem ser citados 
motores elétricos e cargas capacitivas em geral. 
 As formas construtivas mais comuns dos fusíveis aplicados nos circuitos de motores elétricos 
são os tipos D (Diazed, diametral) e NH, de maior capacidade de corrente (Figura 4.6). 
 
 
 (a) (b) 
Figura 4.6 – (a) Fusível DIAZED. (b) Fusível NH. 
 
 A Figura 4.7a mostra um grupo de fusíveis do tipo e NH e a Figura 4.7b mostra a simbologia 
adotada para o fusível. 
 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
146 
 
 (a) (b) 
 
Figura 4.7 – (a) Fusível do tipo NH, projetado para ambientes industriais e similares. Atendem as Normas IEC 
269 e NBR 11841 e possuem marca de conformidade do INMETRO até 160 A. Fonte: http://img-
europe.electrocomponents.com/largeimages/R421621-91.jpg. (b) Simbologia para o fusível. Normas IEC 
(Comissão Eletrotécnica Internacional) e IEEE/ANSI (americana e canadense). 
 
 
4.2.4 - Principais Características 
 
 Os fusíveis D e NH, também conhecidos como fusíveis de força, atuam como dispositivos de 
proteção em circuitos de motores elétricos principalmente, protegendo-oscontra correntes de curto-
circuito, de forma seletiva (em combinação com relés) contra sobrecargas de longa duração. Suas 
principais características são: 
- corrente nominal - corrente máxima que o fusível suporta continuamente sem interromper o 
funcionamento do circuito. Esse valor é marcado no corpo de porcelana do fusível. 
- corrente de curto circuito - corrente máxima que deve circular no circuito e que deve ser 
interrompida instantaneamente. 
- capacidade de ruptura (KA) - valor de corrente que o fusível é capaz de interromper com segurança. 
Não depende da tensão nominal da instalação. 
- tensão nominal - tensão para a qual o fusível foi construído. Os fusíveis normais para baixa tensão 
são indicados para tensões de serviço de até 500 V em CA e 600 V em CC. 
- resistência elétrica (ou resistência ôhmica) - grandeza elétrica que depende do material e da pressão 
exercida. A resistência de contato entre a base e o fusível é responsável por eventuais aquecimentos 
que podem provocar a queima do fusível. 
 O fusível tipo D é recomendado para o uso residencial e industrial, uma vez que possui 
proteção contra contatos acidentais, podendo ser manuseado por pessoal não qualificado. Faixa de 
corrente: de 2 a 63 A, capacidade de ruptura de 50 kA e tensão máxima de 500 V. 
 
 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
147 
Fusíveis DIAZED 
 
 Os fusíveis Diazed podem ser de ação rápida ou retardada. 
 Os de ação rápida são usados em circuitos resistivos, ou seja, sem picos de corrente. Os de 
ação retardada são usados em circuitos com motores e capacitores, sujeitos a picos de corrente. 
 Esses fusíveis são construídos para valores de, no máximo 100 A e capacidade de ruptura é de 
70 kA com uma tensão de 500 V. Na Figura 4.8a é apresentado um fusível Diazed montado em base 
tipo rosca e na Figura 4.8b o seu aspecto construtivo. 
 
 
(a) 
 
 
 
(b) 
 
Figura 4.8 – (a) Fusível Diazed montado em plataforma Tipo rosca. (b) Construção do fusível diametral 
(tipo D) – partes constituintes. Fonte: http://www.siemens.com.br/upfiles/446.pdf. 
 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
148 
Fusíveis Tipo D Ultra-Rápidos (Silized) 
 
 Os fusíveis ultra-rápidos SILIZED (Figura 4.9) são 
utilizados na proteção de curto-circuito de semicondutores, 
tiristores, GTO's e diodos. 
 Estão adaptados às curvas de carga dos tiristores e diodos 
de potência, permitindo, quando da sua instalação, seu manuseio 
sem riscos de toque acidental. 
 
Figura 4.9 – Aspecto do 
fusível SILIZED. 
 Possuem categoria de utilização gR, em três tamanhos, e atendem às correntes nominais na 
faixa de 16 a 100 A. 
 
Fusíveis NEOZED (Tipo D0) 
 
 Os fusíveis NEOZED (Figura 4.10) possuem tamanho reduzido e são aplicados na proteção de 
curto-circuito em instalações típicas residenciais, comerciais e industriais. 
 Possuem categoria de utilização gL/gG, atendendo as correntes nominais de 2 a 63 ampères. 
 Categoria de utilização: gG (para aplicação geral e com capacidade de interrupção em toda 
zona tempo-corrente). 
 Tensão nominal: 400 VCA / 250 VCC. 
 Capacidade de interrupção nominal: 50 kA até 400 VCA e 8 kA até 250 VCC. 
 Atendem às Normas: NBR IEC 60 269 e VDE 0636. 
 
 
Figura 4.10 - Fusíveis Neozed e a base de montagem. 
Fonte: http://de.academic.ru/dic.nsf/dewiki/994016 
 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
149 
Fusíveis tipo NH 
 
 Os fusíveis tipo NH (ver o primeiro grupo na Figura 4.11, comparação com os fusíveis tipo 
D, no segundo grupo) devem ser manuseados por pessoas qualificadas, sendo recomendados para 
ambientes industriais e similares. Faixas: de 4 a 630 A, capacidade de ruptura de 120 kA e tensão 
máxima de 500 V. 
 
 
Figura 4.11 – Fusíveis NH e fusíveis tipo D (diazed). 
 
NOTA: na prática, por questões econômicas, utilizam-se fusíveis do tipo D quando se opera com 
correntes até 63 A. Acima deste valor adotam-se os fusíveis do tipo NH (Fonte: WEG – 
Transformando Energia em Soluções – Manual de Treinamento. Módulo I – Comando e Proteção). 
 
NH são as iniciais de “Niederspannungs Hochleitungs”, que em língua alemã significa "Baixa 
Tensão e Alta Capacidade de Interrupção“. 
 Os fusíveis NH são aplicados na proteção de sobrecorrentes de curto-circuito e sobrecarga em 
instalações elétricas industriais. Atendem às normas IEC 60269-2-1, VDE 0636 (alemã) e NBR11841 
(ABNT, brasileira). 
 Possuem categoria de utilização gL/gG, atendendo as correntes nominais de 6 a 1250 A. 
Categoria de utilização gG: para aplicação geral e com capacidade de interrupção em toda zona tempo-
corrente. 
Tensão nominal: 500 VCA e 690 VCA; 250 VCC. 
Capacidade de interrupção nominal: 120 kA até 500 VCA e 690 VCA. 100 kA até 250 VCC. 
 Os fusíveis NH são constituídos por 2 partes: base e fusível – veja a Figura 4.12. 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
150 
A base é fabricada de material isolante como a esteatita, plástico ou termo fixo. Nela são 
fixados os contatos em forma de garras, às quais estão acopladas molas que aumentam a pressão de 
contato. 
 
 
Figura 4.12 - Componentes de um fusível – tipos NH e D. Fabricante: WEG. 
 
 O fusível possui corpo de porcelana de seção retangular. Dentro desse corpo, estão o elo 
porcelana existem duas facas de metal que se encaixam perfeitamente nas garras da base. O elo fusível 
é feito de cobre em forma de lâminas vazadas em determinados pontos para reduzir a seção condutora. 
O elo fusível pode ainda ser fabricado em prata. 
 Os fusíveis NH suportam elevações de tensão durante certo tempo sem que ocorra fusão. Eles 
são empregados em circuitos sujeitos a picos de corrente e onde existam cargas indutivas e 
capacitivas. 
 Em resumo, sua construção permite valores padronizados de corrente que variam de 6 a 1200 
A. Sua capacidade de ruptura é sempre superior a 70 kA com uma tensão máxima de 500 V. 
 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
151 
Classificação dos Fusíveis segundo a faixa de interrupção (ou classe de função) 
 
 Representação pelas letras minúsculas g e a (a categoria de utilização é representada por letras 
maiúsculas, como será indicado a seguir). 
Fusíveis tipo g - Fusíveis de capacidade de interrupção em toda a faixa (faixa completa), ou seja, 
suportam a corrente nominal por tempo indeterminado e são capazes de operar a partir do menor valor 
de sobrecorrente até a corrente nominal de desligamento (atuam na menor intensidade de 
sobrecorrente). 
 
Fusíveis tipo a - Fusíveis de capacidade de interrupção em faixa parcial (reagem a partir de um valor 
elevado de sobrecorrente). 
 As classes de objetos protegidos são: 
L-G: cabos e linhas – proteção geral 
M: equipamentos eletromecânicos 
R: semicondutores 
B: instalações em condições pesadas (minas, por exemplo). 
 Classes de Serviço dos FUSÍVEIS: 
gL: proteção total de cabos e linhas 
aM: proteção parcial de equipamentos eletromecânicos 
aR: proteção parcial de equipamentos eletrônicos 
gR: proteção total de equipamentos eletrônicos 
gB: proteção total de equipamentos em minas 
 Os fusíveis classe aR, de acordo com a norma IEC 60269 têm como característica baixos 
valores de I²t e se aplicam a proteção contra curto-circuito de circuitos com semicondutores, não 
devendo ser aplicados em situações de pequenas sobrecargas pois, nestas condições, pode ocorrer 
sobrecarga térmica sobre o fusível causando a sua atuação indevida e redução da sua capacidade de 
interrupção.Fonte: www.weg.net/files/products/WEG-fusiveis-ar-e-gl-gg-50009817-catalogo-portugues-br.pdf 
 
Curva Característica de um Fusível (dimensionamento) 
 
 Os fusíveis apresentam curvas características do tempo máximo de atuação, t(seg), em função 
da corrente, com a forma ilustrada na Figura 4.13. 
 No dimensionamento de fusíveis de efeito retardado (para motores elétricos e cargas 
capacitivas em geral), devem-se levar em consideração os seguintes aspectos (FRANCHI, 2007): 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
152 
1) o tempo de fusão virtual (exemplo 
para um motor: tempo e corrente de 
partida) – neste caso, os fusíveis utilizados 
devem suportar o pico da corrente de 
partida (Ip) sem fundir, durante o tempo 
(transitório) de partida do motor, Tp. Tendo 
em mãos os valores de Tp e Ip é fácil 
dimensionar o fusível a ser empregado em 
cada fase do mesmo; 
 
Figura 4.13 - Curva característica para 
fusíveis gG e gM. 
 
2) a seguinte equação deve ser utilizada: 
 
Fusivel NominalI = 1,2 I
 (4.1) 
 
Para assegurar a vida útil da instalação do motor elétrico, deve-se dimensionar uma corrente 
no mínimo 20 % superior à sua corrente nominal; 
 
3) quanto aos outros dispositivos no circuito de alimentação, como contatores e relés de sobrecarga, 
deve-se observar o seguinte critério: 
Fusivel F max I I
 
 ou seja, os fusíveis deverão proteger estes elementos. Esta verificação é feita com base em 
cálculos e em consultas em tabelas de contatores e de relés de sobrecarga. 
 
 
Exemplo 4.1 – Cálculo para Dimensionamento de Fusíveis de um Motor Elétrico 
 
 Efetuar os cálculos para dimensionar os fusíveis para a instalação de um motor elétrico de 5 
CV, 220 V/ 60 Hz, 4 pólos, supondo um tempo de partida direta de 5 s. 
 
Solução - consultando o catálogo do motor, tem-se: 
 
 
p n n pI I = 8,2 Com I 13,8 A. I 8,2 13,8 113,6 A.    
 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
153 
 Seguindo as curvas características do fusível, com base nos valores de Ip e Tp: 113,6 A 
(corrente de partida) e Tp = 5 segundos, respectivamente, encontra-se a região de corrente igual a 16 A 
(Figura 4.14, gráfico tempo x corrente). 
 
 
Figura 4.14 - Curva tempo x corrente (fusível NH SIEMENS). 
 
 Com o ponto de interseção obtido, o fusível deverá ser de 16 A (o ponto está dentro da área 
cuja corrente é de 16 A). 
 Adotando o segundo critério, 
 
Fusivel NominalI = 1,2 I
 1,2 13,8 16,56 A.

  
 
 
 Logo, pelo segundo critério, continua valendo, graficamente, a escolha para um fusível de 
corrente 16 A. 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
154 
LEP 4 
 
 
 Lista de Exercícios e Problemas 4 – 10 Questões 
 
 
Tema: Dispositivos de Proteção e de Comando – Parte 1 – FUSÍVEIS 
 
 
1. Quais são os valores comerciais dos fusíveis, em função de sua corrente nominal? 
2. Por que os fusíveis são associados a chaves, nos circuitos de acionamentos elétricos? 
3. A característica tempo-corrente para os fusíveis é ajustável? Justifique. 
4. Os fusíveis são mais rápidos do que os disjuntores? Explicar. 
5. Como se dimensiona a corrente de um fusível? 
6. Onde são empregados os fusíveis de efeito rápido? 
7. Onde se emprega os fusíveis de efeito retardado? 
8. Os fusíveis devem também proteger os contatores e relés de sobrecarga? Justifique. 
9. Com relação aos fusíveis NEOZED, responder: 
a) Onde são aplicados? 
b) Qual é a sua categoria de utilização? 
10. Onde são utilizados os fusíveis SILIZED (ultra-rápidos)? 
 
 
 
Figura 1 – Fusíveis NH (Catálogo SIEMENS). 
 
Referência: livro-texto Acionamentos Elétricos (C. M. Franchi, 3ª. edição), pp 126-127. 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
155 
4.3 – Disjuntores 
 
 
 O Disjuntor é um dispositivo eletromecânico que permite proteger uma determinada instalação 
elétrica contra curto-circuito e/ou sobrecargas – veja a Figura 4.16. 
 Sua principal característica é a capacidade de poder ser rearmado manualmente quando estes 
tipos de defeitos ocorrem, diferindo do fusível, que tem a mesma função, mas que fica inutilizado 
depois de proteger a instalação. 
 
 
Figura 4.16 – Grupo de disjuntores em um quadro de distribuição. 
 
 Assim, o disjuntor interrompe a corrente em uma instalação elétrica antes que os efeitos 
térmicos e mecânicos desta corrente possam se tornar perigosos às próprias instalações. 
 Por esse motivo, ele serve tanto como dispositivo de manobra como de proteção de circuitos 
elétricos. 
 Um disjuntor é constituído pelo relé, com um órgão de disparo (disparador) e um órgão de 
corte (o interruptor) e dotado também de convenientes meios de extinção do arco elétrico (câmaras de 
extinção do arco elétrico). 
 O disjuntor mais simples é o disjuntor termomagnético, que possui um relé eletromagnético 
que protege contra curto – circuitos e um relé térmico, constituído por uma lâmina bimetálica, que 
protege contra sobrecargas. 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
156 
4.3.1 - Aspectos construtivos de um Disjuntor 
 
 As Figuras 4.16 e 4.17 mostram os elementos construtivos de um disjuntor e suas 
respectivas funções. 
1. Atuador - chave para desligar ou resetar 
manualmente o disjuntor. Também indica o 
estado do disjuntor (Ligado/Desligado ou 
desarmado). A maioria dos disjuntores é 
projetada de forma que o disjuntor desarme 
mesmo que o atuador seja segurado ou travado 
na posição "liga". 
2. Mecanismo atuador- une os contatos juntos 
ou independentes. 
3. Contatos - Permitem que a corrente flua 
quando o disjuntor está ligado e seja 
interrompida quando desligado. 
4. Terminais. 
5. Trip bimetálico 
6. Parafuso calibrador - permite que o 
fabricante ajuste precisamente a corrente de 
trip do dispositivo após montagem. 
7. Solenóide. 
8. Extintor de arco 
 
Figura 4.15 – Elementos de um minidisjuntor de 10 A. 
Fonte: http://upload.wikimedia.org/wikipedia/commons/ 
c/c1/Circuitbreaker.jpg 
 
 
 
Figura 4.17 – Visão interna de um disjuntor e funções integradas. 
 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
157 
 A Figura 4.18 mostra os disjuntores para circuitos monofásicos, bifásicos e trifásicos. 
 
 
 
Figura 4.18 – Disjuntores para diferentes números de fases de um circuito. 
 
 Os disjuntores são dispositivos “termomagnéticos” que fazem a proteção de uma instalação 
contra curtos-circuitos e contra sobrecargas. O Disjuntor não deve ser utilizado como dispositivo de 
liga-desliga de um circuito elétrico e sim, de proteção. 
 Como visto no esquema anterior, no disjuntor, para a proteção contra a sobrecarga existe um 
elemento térmico (bi-metálico) e para a proteção contra curto-circuito existe um elemento magnético. 
 Quanto à simbologia para o disjuntor, na Figura 4.19 vêem-se algumas indicações, de acordo 
com as Normas ABNT. 
 
 (a) (b) (c) (d) 
 
Figura 4.19 – Simbologia (normas ABNT) para o disjuntor. (a) Seccionador-disjuntor. (b) Disjuntor tripolar. (c) 
Disjuntor com elemento magnético, proteção contra corrente de curto-circuito. (d) Disjuntor tripolar com 
elementos térmicos e magnéticos, proteção contra correntes de curto-circuito e sobrecarga. 
 
4.3.2 – Disjuntor – Curvas de Disparo 
 
As curvas de disparo do disjuntor indicamo tempo que o mesmo leva para interromper a 
corrente quando esta ultrapassa o valor da nominal. 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
158 
 Um exemplo é mostrado na Figura 4.20. Note que quanto maior a corrente, menor o será o 
tempo para a interrupção. 
 
4.3.3 – Disjuntor Diferencial Residual 
 
 Este tipo de disjuntor é indicado para 
proteção contra correntes de fuga à terra em 
instalações elétricas de BT, protegendo, 
portanto, equipamentos e a vida das pessoas. 
 A relevância dessa proteção faz com que 
a Norma Brasileira de Instalações Elétricas – 
ABNT NBR 5410 (uso obrigatório em todo 
território nacional conforme lei 8078/90, art. 
39 - VIII, art. 12, art. 14), defina claramente a 
proteção de pessoas contra os perigos dos 
choques elétricos que podem ser fatais, por 
meio do uso do Dispositivo DR de alta 
sensibilidade (≤ 30mA). 
 A Figura 4.21 mostra os efeitos da 
corrente elétrica sobre o corpo humano – 
gráfico tempo de duração do choque elétrico x 
corrente elétrica (veja a tabela na sequência). 
 
 
 
 Corrente  
 
Figura 4.20 – Curva tempo x corrente de um disjuntor. 
Fonte: Catálogo de Disjuntores SIEMENS – Modelos 5SX, 
5SP e 5SY. 
 
Observações Importantes: 
 
1) O Disjuntor Diferencial (DR) tem como função principal proteger as pessoas ou o patrimônio contra faltas à 
terra: 
 - Evitando choques elétricos (proteção às pessoas). 
 - Evitando Incêndios (proteção ao patrimônio). 
 O DR não substitui um disjuntor, pois ele não protege contra sobrecargas e cutro-circuitos. Para estas 
proteções, devem-se utilizar disjuntores em associação. 
2) Sensibilidade 
 A sensibilidade do interruptor varia de 30 a 500mA e deve ser dimensionada com cuidado, pois existem 
perdas para terra inerentes à própria qualidade da instalação. 
Proteção contra contato direto: 30mA 
 Contato direto com partes energizadas pode ocasionar fuga de corrente elétrica, através do corpo 
humano, para terra. 
Proteção contra contato indireto: 100mA a 300mA 
 No caso de uma falta interna em algum equipamento ou falha na isolação, peças de metal podem tornar-
se "vivas" (energizadas). 
Proteção contra incêndio: 500mA 
 Correntes para terra com este valor podem gerar arcos / faíscas e provocar incêndios. 
 
Fonte: http://www.geindustrial.com.br/produtos/disjuntores/dr/ 
 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
159 
 
 
 
 
Figura 4.21 – Gráfico com zonas tempo x corrente e os efeitos sobre as pessoas. IEC 60.479-1 – Percurso mão 
esquerda ao pé. Fonte: Catálogo de Disjuntores DR – AGO – 90 - SIEMENS. 
 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
160 
4.3.3.1 - Princípio de Proteção das Pessoas 
 
 
 Qualquer atividade biológica no corpo humano seja ela glandular, nervosa ou muscular é 
originada de impulsos de corrente elétrica 
 Se a essa corrente fisiológica interna somar-se uma corrente de origem externa (corrente de 
fuga), devido a um contato elétrico, ocorrerá no organismo humano uma alteração das funções vitais, 
que, dependendo da duração e da intensidade da corrente, poderá provocar efeitos fisiológicos graves, 
irreversíveis ou até a morte da pessoa. 
 Ainda a respeito do Disjuntor DR, o gráfico da Figura 4.22 apresenta as áreas de atuação 
relacionadas com a corrente nominal do equipamento (veja a Tabela 4.1). 
 
 
Figura 4.22 – Gráfico tempo x corrente – minidisjuntor DR (fabricante GE). 
Fonte: http://www.msacontrol.com.br/GE_mini_dr.pdf 
 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
161 
Tabela 4.1 – Atuação do minidisjuntor DR (fabricante GE). 
Curvas em função da corrente nominal do equipamento (veja a Figura 4.22). 
Curva 
Valor de 
Atuação 
Tempo de 
Disparo 
Aplicação 
B 
 
entre 
3 e 5 In 
 
3 In e t  0,1 s 
5 In e t < 0,1 s 
Cargas resistivas como: 
Aquecedores, chuveiros elétricos, fornos elétricos, 
iluminação incandescente 
C 
 
entre 
5 e 10 In 
 
5 In e t  0,1 s 
5 In e t < 0,1 s 
- Cargas indutivas ou com corrente de partida elevada 
- Iluminação fluorescente 
- Pequenos motores 
D 
 
entre 
10 e 20 In 
 - Para proteção de circuitos que alimentam cargas altamente 
indutivas que apresentam elevados picos de corrente no 
momento de ligação, como grandes motores, 
transformadores, além de circuotos de características 
semelhantes a essas. 
Fonte: Catálogo GE – Minidisjuntores IEC. Disponível em http://www.msacontrol.com.br/GE_mini_dr.pdf 
 
 
CEFET-MG - Acionamentos e Comandos Elétricos - Ensino Técnico 
 
162 
LEP 5 
 
 
 Lista de Exercícios e Problemas 5 – 9 Questões 
 
 
 
Questão 1 – Caracterizar um curto-circuito quanto à duração e à origem. 
Questão 2 – Qual é o princípio de funcionamento do fusível? 
Questão 3 – Diferenciar fusíveis de efeito rápido de fusíveis de efeito retardado. 
Questão 4 – Onde são utilizados os fusíveis tipo D (Diazed) e tipo NH? 
Questão 5 – Quanto à classe de objetos e à classe de serviços, classifique os seguintes fusíveis: aM, 
aL, gB e gL. Qual o significado técnico das letras minúsculas a e g? 
Questão 6 – Identificar para o disjuntor da Figura 1 e explicar a função dos componentes: 
(a) atuador; 
(b) extintor de arco-voltaico; 
(c) solenóide. 
 
 
Figura 1 – Aspecto interno de um disjuntor. 
 
Questão 7 – Quais são os principais defeitos em contatores elétricos? 
Questão 8 – Para dimensionar um contator, que critérios deve-se levar em conta? 
Questão 9 – Complete as lacunas abaixo: 
No disjuntor, para a proteção contra a ___________________ existe um elemento térmico (bi-
metálico) e para a proteção contra ___________________ existe um elemento magnético. 
 
 
CEFET-MG - Acionamentos e Comandos Elétricos - Ensino Técnico 
 
163 
4.4 – Relés de Sobrecarga 
 
 
 Os relés de sobrecarga são dispositivos baseados no princípio da dilatação de partes elétricas 
bi-metálicas (metais diferentes) que sofrem dilatações diferentes quando submetidas a uma variação de 
temperatura. 
 A Figura 4.23 mostra a deflexão do bimetal, onde se vê que a curvatura do mesmo se dá para o 
metal de menor coeficiente de dilatação. Esta curvatura é utilizada para desarmar um contato e 
portanto desligar o relé. 
 
 
 
Figura 4.23 – Deflexão do bimetal, de acordo com o parâmetro  (coeficiente de dilatação linear). 
 
 
O relé de proteção contra sobrecarga, também conhecido como relé bimetálico ou ainda relé 
térmico é aplicado na proteção de motores elétricos contra sobrecarga. 
 
 Mas, o que vem a ser a sobrecarga em um motor elétrico? 
 
A sobrecarga é a operação do motor elétrico acima de suas condições nominais. 
 A atuação do relé de sobrecarga consiste então em desligar a alimentação do motor a fim de 
protegê-lo contra valores de corrente e de tempo que possam deteriorar a isolação da instalação. 
Existem dois tipos de relé de proteção contra a sobrecarga, de acordo com o principio 
construtivo: 
1) relés de sobrecarga bimetálico (Figura 4.24) e 
2) relés de sobrecarga eletrônico, apropriados para as funções de proteção contra sobrecarga, 
proteção de falta de fase e assimetria de fase. Podem oferecer também uma detecção 
interna de fuga à terra, possuindo rearme elétrico remoto integrado (fonte: fabricante 
SIEMENS). 
 
 
CEFET-MG - Acionamentos e Comandos Elétricos - Ensino Técnico 
 
164 
 
Figura 4.24 – Representação do esquema de 
um relé de sobrecarga bimetálico.A Figura 4.24 mostra o esquema 
de um relé de sobrecarga bimetálico. 
Note-se os componentes 4 e 6 (lâminas 
bimetálicas auxiliar e principal). 
 
Elementos de um relé de sobrecorrente: 
 
1 – botão de rearme 
2 - contatos auxiliares 
3 - botão de teste 
4 – lâmina bimetálica auxiliar 
5 – cursor de arraste 
6 – lâmina bimetálica principal 
7 – ajuste de corrente 
 
 Os relés de sobrecarga são utilizados na proteção de equipamentos elétricos, como motores e 
transformadores, por exemplo, de um possível superaquecimento. 
 No caso de um motor elétrico, o que pode causar o superaquecimento? 
 
1. Sobrecarga mecânica na ponta do eixo; 
2. tempo de partida muito alto; 
3. rotor bloqueado; 
4. falta de uma fase; 
5. desvios excessivos de tensão e freqüência da rede. 
 
 A Figura 4.25 mostra o aspecto (vista superior) de um relé de sobrecarga eletrônico, bem 
como a identificação dos seus terminais. Os terminais do relé de sobrecarga são marcados da mesma 
forma que os terminais de potência dos contatores. 
 
 
Figura 4.25 – Aspecto de um relé de sobrecarga – identificação dos terminais. 
 
 
CEFET-MG - Acionamentos e Comandos Elétricos - Ensino Técnico 
 
165 
 Os terminais dos circuitos auxiliares do relé (Figura 4.26) são marcados com funções 
específicas. Com a terminação 6 (95-96), a chave é do tipo NF e com a terminação 8, a chave é do tipo 
NA (95-98 ou 97-98, no caso do duplo contato). 
 
 
Figura 4.26 – Contatos NA e NF de um relé de sobrecarga. 
 
4.4.1 – Relé de Sobrecarga Bimetálico com Botão RESET e Tecla Multifunções 
 
De acordo com o fabricante WEG, 
Os relés de sobrecarga bimetálicos protegem cargas contra o aquecimento indevido 
causado por sobrecarga ou falta de fase. Quando temos uma sobrecarga ou uma falta 
de fase no circuito ocorre um aumento na corrente do motor. Esta elevação de 
corrente causa o acionamento do mecanismo de disparo que atuará sobre os contatos 
auxiliares 95-96 (NF) e 97-98 (NA). Os contatos auxiliares desligam a carga por 
meio de um contator. O tempo para o desligamento é uma função da corrente de 
disparo em relação à corrente ajustada, que se encontra devidamente representada na 
curva de disparo do relé. Após o desarme, deve-se aguardar o restabelecimento do 
sistema para que se faça o rearme, que pode ser feito de forma manual ou 
automática. Os relés de sobrecarga bimetálicos RW foram projetados para a 
proteção de motores trifásicos e monofásicos em CA, e para motores em CC. Se os 
relés de sobrecarga RW forem utilizados na proteção de cargas monofásicas em CA 
ou cargas em CC, os esquemas de ligação apresentados em catálogo deverão ser 
respeitados. 
Fonte: Catálogo – Contatores e Relés de Sobrecarga. WEG Equipamentos Elétricos S.A. Disponível em: 
http://www.weg.net/files/products/WEG-contatores-e-reles-de-sobrecarga-folheto-905-catalogo-portugues-br.pdf 
 
 As funções de um relé de sobrecarga eletrônico equipados com um botão RESET são: 
A - Função somente o rearme automático; 
AUTO - Função de rearme automático e função teste; 
HAND - Função de rearme manual e função teste; 
H - Função somente rearme manual. 
 
CEFET-MG - Acionamentos e Comandos Elétricos - Ensino Técnico 
 
166 
Descrição de Funcionamento 
 
 Nas posições H (manual - somente rearme) e A (automático - somente rearme) – veja a Figura 
4.27 -, as funções de teste estão bloqueadas, enquanto que nas posições HAND (manual) e AUTO 
(automático) é possível a simulação de teste e o desarme através da atuação direta na tecla Reset. 
 
 
 (a) (b) 
Figura 4.27 – (a) Tecla multifunção / botão RESET do relé eletrônico série RW 117/217/317. 
(b) Modelo RW 27D. Fabricante: WEG. Fonte: http://farm3.static.flickr.com/2580/4112623488_b8a3c6e2cf_z.jpg 
 
 Nas posições H e HAND: o relé após atuar (relé desarmado) tem que ser resetado manualmente 
através de pressão na tecla Reset, enquanto que nas posições A e AUTO o relé após atuar (relé 
desarmado) é resetado automaticamente. 
 Funções H, HAND, AUTO e A: o ajuste das funções H, HAND, AUTO e A ocorre através do giro 
sem pressão do botão vermelho (com uma chave apropriada), posicionando o mesmo nas 
indicações da tecla Reset. 
 Na passagem de HAND para AUTO a tecla Reset deve ser levemente pressionada 
simultaneamente ao giro do botão vermelho. 
 A Figura 4.28 mostra a instalação de um relé de sobrecarga em um diagrama de acionamento. 
 
 
Figura 4.28 – Instalação do relé térmico de sobrecarga. 
 
CEFET-MG - Acionamentos e Comandos Elétricos - Ensino Técnico 
 
167 
 Com relação à instalação de relés de sobrecarga trifásicos para operação em circuitos bifásicos 
ou monofásicos, as ligações são efetuadas como ilustra a Figura 4.29. 
 
 
 
(a) (b) 
 Figura 4.29 - Relé térmico de sobrecarga trifásico para serviço: (a) monofásico; (b) bifásico. 
 
 
4.4.2 – Relés Eletrônicos 
 
Os relés eletrônicos podem desempenhar diversas funções, além de proteção contra 
sobrecarga: 1) temporização, 2) proteção de sequência de fase, 3) proteção de falta de fase ou 
falta de neutro, 4) proteção de sub e sobretensão, 5) proteção para monitoramento de 
temperatura do motor elétrico com sonda PTC, 6) controle de nível (automação de 
reservatórios) etc. 
 A seguir serão descritos resumidamente alguns modelos de relés eletrônicos. 
 
Exemplo 4.2 – Relé Eletrônico de Sobrecarga – Fabricante: Allen Bradley®. Modelo: E1 Plus. 
 
 
Figura 4.30. 
Características: 
Faixa de ajuste 5:1 (cobre a faixa de 4 relés bimetálicos, 
reduzindo o estoque). 
Compensação de temperatura ambiente. 
Proteção contra sobrecarga e perda de fase (3 segundos). 
Pouca geração de calor e baixo consumo: 150mW. 
Relés de 0,1 a 800 Ampères. 
Classe de desarme ajustável: 10/15/20/30 seg. 
Opcionais: Comunicação em rede, proteção de travamento de 
eixo, fuga a terra, entrada PTC. 
 
Fonte: http://www.macrotec.net.br/ 
 
 
CEFET-MG - Acionamentos e Comandos Elétricos - Ensino Técnico 
 
168 
Exemplo 4.3 – Relé Eletrônico de Sobrecarga – Fabricante: SIEMENS®. Modelo: 3RB20/21 Sirius. 
 
 
Figura 4.31. 
Legenda – Funções: 
(1) Terminais para montagem em contator coordenado de modo ideal 
com relação aos aspectos elétricos, mecânicos e de design dos 
contatores e soft-starters. Estes pinos de conexão permitem uma 
montagem direta do relé de sobrecarga. Como alternativa, pode ser 
realizada uma montagem individual (alguns tamanhos necessitam de 
suporte para montagem individual do relé). 
(2) Seletor para RESET manual/automático A chave deslizante 
permite a seleção simples entre rearme manual e automático. 
(3) Botão de RESET Pressionando o botão de RESET, o dispositivo 
poderá ser rearmado localmente, quando o ajuste estiver na posição 
de RESET manual. 
(4) Indicador de estado e função de teste (TEST) das ligações Indica 
um disparo e permite o teste das ligações. 
(5) Teste eletrônico: permite o teste dos principais componentes e 
funções do dispositivo. 
 
(6) Ajuste da corrente do motor Através do parafuso rotativo de ajuste é possível realizar o ajuste simples do 
dispositivo em relação à corrente nominal do motor. 
(7) Ajuste da classe de disparo / detecção interna de fuga à terra (apenas 3RB21). Através do parafuso rotativo 
de ajuste é possível ajustar a classe de disparo necessária em função das características da partida e a detecção 
interna de fuga à terra poderá ser ativada. 
(8) Terminais (bloco de terminaispara circuitos auxiliares, removível) Dimensionados de modo especial, 
permitem a ligação de dois condutores possuindo diferentes seções para os circuitos principal e auxiliar. A 
ligação do circuito auxiliar pode se realizar através da conexão por parafusos ou através da conexão cage-clamp. 
 
 
 
Figura 4. 32 – Relés de sobrecarga SIEMENS – Modelos 3RB20 e 3RB21. Fonte: 
http://www.industry.siemens.com.br/automation/br/pt/dispositivos-baixa-tensao/Reles/reles-de-
sobrecarga/3rb/3rb20-21/Documents/3.pdf 
 
 
Os relés eletrônicos mantêm a estabilidade, desempenho, segurança e qualidade de motores e 
instalações, tendo em vista também a economia. Por serem eletrônicos possuem a grande vantagem da 
 
CEFET-MG - Acionamentos e Comandos Elétricos - Ensino Técnico 
 
169 
baixa perda de potência, reduzindo o consumo de energia em até 98% em relação aos relés de 
sobrecarga térmicos. 
Pela possibilidade de aplicação contínua, conferem uma técnica inovadora e um significativo 
número reduzido de execuções graças às amplas faixas de ajuste de corrente. Atendem integralmente 
aos mais rígidos padrões de conformidade. 
Os relés eletrônicos de sobrecarga auto-alimentados são destinados para a proteção de cargas 
com partidas normais e pesadas, contra um aquecimento indevido causado por sobrecarga, assimetria 
de fases ou falta de fase. Adicionalmente o relé eletrônico de sobrecarga oferece uma detecção interna 
de fuga à terra e possui rearme elétrico remoto integrado. Possuem ampla faixa de ajuste (relação 1:4 
comparado com os relés térmicos) e potência consumida extremamente baixa. Podem ser montados 
tanto individualmente como diretamente aos contatores, proporcionando maior economia de espaço. 
 
Fonte: catálogo de Relés Eletrônicos SIEMENS. Série 3RB Sirius (adapatado). 
Disponível em: http://www.eletricabrasilia.com.br/public/imgs/up/siemens_3rb2021.pdf 
 
 
Exemplo 4.4 – Relé Eletrônico de Proteção contra Inversão na Sequência de Fase – Fabricante: 
WEG
®
. Modelo: RPW-SF. 
 
Estes reles são dispositivos eletrônicos que protegem os sistemas trifásicos contra 
inversão da seqüência de fase. Sempre que houver esta anomalia no sistema trifásico o relé 
atuará para interromper a operação do motor ou processo a ser protegido. 
 
A Figura 4.33 mostra o aspecto deste 
relé, bem como os esquemas de ligação, onde 
as 3 fases R, S e T da rede a ser monitorada 
são conectadas aos bornes L1, L2 e L3. 
 
 
Funcionamento: 
 
Se a sequência de fase estiver 
correta o relé de saída comuta os contatos 
para a posição de operação (fechando os 
terminais 15-18, NA) e o LED vermelho 
(relé) e o verde (alimentação) ligarão – 
veja a Figura 4.34 (gráfico de atuação). 
Na ocorrência de inversão das 
fases, o LED vermelho desliga e o relé 
comuta a sua chave para a posição 15-16 
(NF). 
 
 
Figura 4. 33 – Relés Eletrônico de proteção contra inversão 
de sequência de fase. Modelo RPW-SF. Fonte: Catálogo 
WEG - Relés Protetores RPW, Relés Temporizadores RTW 
e Relés de Nível RNW. Disponível em: 
 http://www.weg.net/files/products/WEG-reles-temporizadores-
protetores-e-de-nivel-50009830-catalogo-portugues-br.pdf 
 
 
CEFET-MG - Acionamentos e Comandos Elétricos - Ensino Técnico 
 
170 
 
Figura 4.34. Fonte: www.weg.net/files/products/WEG-reles-temporizadores-protetores-e-de-nivel-50009830-catalogo-portugues-br.pdf 
 
 
4.5 – Relé de Tempo 
 
 Os relés de tempo são temporizadores para controle de intervalos de tempo de curta duração, 
utilizados no controle de máquinas e processos industriais, em tarefas como: 1) sequenciamento, 2) 
interrupções de comandos e 3) chaves de partida. 
 O relé de tempo comuta os seus contatos de saída, decorrido o tempo selecionado na sua 
escala (Figura 4.35). O início da temporização ocorre quando da energização da sua bobina. 
 
 
Figura 4.35 – Princípio básico do relé de tempo. 
 
- Tensões de comando (usuais): 24 V em CC e 127 V (ou 110 V) e 220 V em CA. 
- Contatos: 1 ou 2 contatos do tipo reversor (veja a Figura 4.36). 
 
 
Figura 4.36 - Diagrama de ligação e funções de um relé de tempo. Fabricante: WEG. 
Contatos: A1 – A2: alimentação, 15 (contato comum), 16 (contato NF) e 18 (contato NA). 
 
CEFET-MG - Acionamentos e Comandos Elétricos - Ensino Técnico 
 
171 
4.5.1 – Relés de Tempo Eletrônicos 
 
 Os principais relés de tempo eletrônicos são: relés com retardo na energização (ou para ligar) e 
com retardo na desenergização (ou para desligar) e relés cíclicos. 
Um relé eletrônico do tipo TRE (Retardo na Energização) é aquele que ao ser energizado 
(tensão na bobina A1-A2), não arma os seus contatos imediatamente. A partir daí, inicia-se a 
contagem do tempo tRE pré-selecionado na escala, após o qual o relé arma. As suas formas de onda 
(energização e resposta dos contatos) podem ser vistas na Figura 4.37. 
 
 
Figura 4.37 – Relé de tempo com retardo na energização de seus contatos (TRE) – símbolo e formas de onda. 
 
 
Exemplo 4.5 – Aplicação do relé de tempo TRE 
 
 O Relé TRE é também conhecido como relé AO TRABALHO. Na Figura 4.38, vê-se uma 
aplicação simples, onde através do relé se controla o tempo de funcionamento de uma lâmpada. Note-
se a sua simbologia. É identificado nos esquemas por KT. 
 
 
Figura 4.38 – Ao ligar a chave S, é iniciada a contagem de tempo conforme o ajuste (por exemplo, 10 segundos). A chave 
está na posição NA. Uma vez atingido o tempo final, os contatos comutarão acendendo a lâmpada. Ao desligar a chave S, a 
lâmpada apaga, já que a bobina do relé está sem energia. Fonte: http://www.scribd.com/doc/8527597/ApostilaDispEletrico. 
 
 
 Um relé eletrônico do tipo TRD (Retardo na Desenergização) é aquele que ao ser energizado 
(tensão na bobina A1-A2, veja o seu símbolo), arma seus contatos. Ao ser desenergizado inicia-se a 
contagem do tempo tRD pré-selecionado na escala, após o qual o relé desarma – veja a Figura 4.39. 
 
 
CEFET-MG - Acionamentos e Comandos Elétricos - Ensino Técnico 
 
172 
 
Figura 4.39 – Relé de tempo com retardo na desenergização de seus contatos (TRD) – símbolo e formas de onda. 
 
 
Exemplo 4.6 – Aplicação do relé de tempo TRD 
 
 O Relé TRD é também conhecido como relé AO REPOUSO. Na Figura 4.40, este relé 
controla o tempo de funcionamento de uma lâmpada. Ao fechar a chave S, o relé é ativado, comutando 
os contatos e acendendo a lâmpada (chave NA ligada). Ao desligar a chave S, a lâmpada permanece 
acesa durante um tempo preestabelecido. 
Com este relé, há um ATRASO entre o comando de desligar o contator (botoeira S aberta) e o 
desligamento da lâmpada. O relé de tempo com retardo no desligamento mantém seus contatos 
comutados por um tempo determinado (regulável através de uma escala), após desenergização dos 
terminais de alimentação (chave S aberta). 
 
 
 
Figura 4.40 - Fonte: http://www.scribd.com/doc/8527597/ApostilaDispEletrico 
 
 
Exemplo 4.7 – Relé Cíclico 
 
 O relé cíclico é aquele que possui dois tempos de ajuste independentes: relé energizado (tON) e 
relé desenergizado (tOFF). O funcionamento deste relé está representado na Figura 4.41, onde o relé em 
questão tem aplicações em equipamentos para avicultura, máquinas para fabricação de gelo, freezers 
em geral, dozadores, balcões e câmaras frigoríficas e equipamentos de refrigeração. 
 
 
CEFET-MG - Acionamentos e Comandos Elétricos - Ensino Técnico 
 
173 
 
(a) 
 
(b) 
Figura 4.41 – Relé cíclico: modo de operação. (a) Formas de onda. (b) Funções indicadas no painel 
frontal do instrumento. Fonte: http://www.shop.com.br/polipartes/paginas/RTDF.pdfExemplo 4.8 – Aplicação do relé em controle de nível de reservatórios 
 
 Os Relés de nível são dispositivos eletrônicos de controle que permitem o monitoramento e a 
regulagem automática do nível de líquidos (Figura 4.42), com o uso de sensores capacitivos ou de 
eletrodos, para líquidos condutores de corrente elétrica. 
 
 
Figura 4.42 – Modelo de controle de nível de reservatórios. (1) Quadro de ligações dos relés. (2) Caixa d’água 
superior. (3) Caixa d’água inferior. Fonte: www.weg.net/files/products/WEG-reles-temporizadores-protetores-e-
de-nivel-50009830-catalogo-portugues-br.pdf. 
 
 
 
CEFET-MG - Acionamentos e Comandos Elétricos - Ensino Técnico 
 
174 
São bastante utilizados em automação de reservatórios em geral, em diversas aplicações como 
prevenção de funcionamento a seco da bomba, proteção contra transbordamento do tanque de 
enchimento, acionamento de solenóides ou alarmes sonoros / luminosos. 
O princípio de funcionamento na medição do nível se apóia na resposta dos sensores de 
presença/ausência de líquido. O relé possui um DIAL (potenciômetro) de sensibilidade que permite 
ajustar a resposta do sensor. 
Os relés de nível são disponíveis em funções de controle de enchimento e de esvaziamento. 
Os eletrodos ou sensores são fixados no reservatório (Figura 4.43) em níveis diferentes para o 
controle: máximo (reservatório cheio), mínimo e referência (reservatório vazio). 
A Figura 4.44 mostra a localização dos terminais e o diagrama de ligação do relé de controle 
de esvaziamento RNW-ES do fabricante WEG. 
 
 
Figura 4.43 – Fixação dos sensores ou eletrodos no reservatório, podendo ser verticalmente (tipo pêndulo) ou 
horizontalmente (tipo haste). Fonte: www.weg.net/files/products/WEG-reles-temporizadores-protetores-e-de-
nivel-50009830-catalogo-portugues-br.pdf 
 
 
 
Figura 4.44 – Esquema de ligação (terminais) do relé RNW-ES (fabricante WEG). Obs.: o borne C é o terminal 
de nível de referência. Disponível em: www.weg.net/files/products/WEG-reles-temporizadores-protetores-e-de-
nivel-50009830-catalogo-portugues-br.pdf 
 
 
 
CEFET-MG - Acionamentos e Comandos Elétricos - Ensino Técnico 
 
175 
No controle do esvaziamento do reservatório, o relé de saída energiza (fecha os contatos 15-
18) quando o líquido atinge o eletrodo/sensor de nível máximo e desenergiza (abre os contatos 15-18) 
quando o eletrodo/sensor de nível mínimo é acionado – Figura 4.45a. 
Função Enchimento: o relé de saída energiza (fecha os contatos 15-18) quando o sensor de 
nível mínimo é acionado e desenergiza (abre os contatos 15-18) quando o líquido atinge o sensor de 
nível máximo (Figura 4.46b). 
 
 
(a) 
 
 
(b) 
Figura 4.45 – (a) Curva de operação do relé de esvaziamento RNW-ES (fabricante WEG). (b) Curva de operação 
do relé de esvaziamento RNW-ENS (fabricante WEG). Disponível em: www.weg.net/files/products/WEG-reles-
temporizadores-protetores-e-de-nivel-50009830-catalogo-portugues-br.pdf 
 
CEFET-MG - Acionamentos e Comandos Elétricos - Ensino Técnico 
 
176 
LEP 6 
 
 
 Lista de Exercícios e Problemas 5 – 17 Questões 
 
 
Questão 1 
a) Com base no esquema Figura 1, numere os itens de acordo com a seqüência genérica de acionamento de um 
motor elétrico. 
b) Seja a Figura 2. Projetar um acionamento de um motor trifásico para reversão de rotação que utilize o contator 
da Figura 2, juntamente com um relé de tempo. 
 
 
 
( ) 
 
 
Proteção contra sobrecarga 
 
 
 
( ) 
 
Seccionamento 
 
( ) 
 
Dispositivo de manobra 
 
( ) 
 
Proteção contra curto-circuito 
 
( ) 
 
Motor 
 
( ) 
 
Rede elétrica 
Figura 1. Figura 2 - Diagrama esquemático de um 
contator com 2 terminais NA e um NF. 
 
Questão 2 – Como funciona um relé de controle de sequência de fase? Montar um diagrama com este relé, onde 
a carga é um MIT. 
 
Questão 3 – A Figura 3 mostra um 
diagrama de atuação de um relé 
eletrônico, onde são destacados os 
estados das saídas 15-16 e 15-18. 
Pelas curvas apresentadas, pode-se 
dizer que este é um relé eletrônico de: 
 
a. ( ) Sequência de fase 
b. ( ) Cíclico de tempo 
c. ( ) Falta de fase ou falta do neutro 
d. ( ) Inversão de fase 
e. ( ) Controle de Nível 
Figura 3 – Diagrama de atuação de um relé eletrônico. 
 
CEFET-MG - Acionamentos e Comandos Elétricos - Ensino Técnico 
 
177 
Questão 4 – Seja o esquema da Figura 4, que indica um esboço de um relé eletromecânico, utilizado 
em circuitos eletrônicos. 
 
a) Explicar a função dos seguintes componentes: contatos 
da bobina, bobina e contatos elétricos A e B. 
b) Os contatos A e B deste relé são do tipo NA ou NF? 
Justifique. 
Questão 5 – Qual é a finalidade de uso do relé de proteção 
PTC? Como é instalado o sensor de temperatura no 
motor? 
 
Figura 4 – Relé eletromecânico. 
 
Questão 6 – A Figura 5 mostra o layout, o esquema de ligação e as formas de onda de um relé 
eletrônico de falta de fase ou neutro. Explique o seu funcionamento. 
 
Figura 5 – Relé de falta de fase ou de neutro. Disponível em: www.weg.net/files/products/WEG-reles-temporizadores-
protetores-e-de-nivel-50009830-catalogo-portugues-br.pdf 
 
Questão 7 – Utilizando relés ao repouso e ao trabalho, projetar um acionamento de um motor 
Dahlander que utilize um destes relés (ou os dois). 
Questão 8 – Definir o relé térmico ou de sobrecarga. 
Questão 9 – Definir Fator de Serviço (FS) de um motor elétrico. 
Questão 10 – Qual é a função de um relé térmico? 
Questão 11 – Quais são os tipos mais comuns de superaquecimento que podem ocorrer na operação de 
motores elétricos e transformadores? 
Questão 12 – Um relé térmico disparado volta à sua posição de repouso automaticamente? Justifique. 
Questão 13 – Como pode ser calculada a corrente de dimensionamento (Ir, corrente de ajuste) para a 
operação de um relé térmico? Calcule para o motor utilizado nesta aula, considerando um fator de 
serviço de 1,15. 
 
 
CEFET-MG - Acionamentos e Comandos Elétricos - Ensino Técnico 
 
178 
Questão 14 – Complete as lacunas nas expressões a seguir: 
 
a) O Relé é uma chave comandada por uma ______________. Ele é uma chave porque ele 
_________________ um circuito elétrico, permitindo a passagem da corrente elétrica como o 
resultado do fechamento de contato ou impedindo a passagem da corrente durante o estado de contato 
aberto. 
b) O relé é geralmente usado para ____________ a capacidade dos contatos ou _________________ 
as funções de chaveamento de um dispositivo piloto adicionando mais contatos ao circuito. 
c) Os Relés de Falta de Fase destinam-se à proteção de sistemas trifásicos contra 
_____________________ (ou neutro). 
 
Questão 15 – Projete um circuito de comando para efetuar as funções a seguir, adotando para CARGA 
1 e CARGA 2 equipamentos como motores CA, resistência de aquecimento etc. As funções do 
circuito de comando devem ser: 
 
- comandar a CARGA 1 a partir de um acionamento manual, com uma lâmpada de sinalização (L1) 
indicando estado LIGADO (ON); 
- decorridos 5 minutos de operação da CARGA 1, a CARGA 2 deve ser acionada. A lâmpada L1 deve 
apagar e a lâmpada L2 deve acender. Esta última lâmpada indica em um painel o funcionamento 
simultâneo das CARGAS 1 e 2; 
- depois de 10 minutos de funcionamento da CARGA 2, ambas as cargas devem ser desligadas, a 
lâmpada L2 se apaga e uma terceira lâmpada acende indicando o fim do processo. 
Importante: o circuito deve ser protegido por fusível e relé térmico. Em caso de sobrecarga, o circuito 
deve ser desligado e uma quarta lâmpada, L4, deve acender para alertar o operador.Questão 16 – A Figura 6 mostra o diagrama dos sinais de acionamento de um relé de tempo, onde o 
sinal superior é o da alimentação e o inferior a resposta dos contatos comum (C) e normalmente aberto 
(NA), em relação ao primeiro. Classifique este relé de tempo. 
 
 
Figura 6 – Questão 16. 
 
 
CEFET-MG - Acionamentos e Comandos Elétricos - Ensino Técnico 
 
179 
Questão 17 – A Figura 7 mostra um MIT que pode operar alimentado por duas redes de alimentação 
distintas. Explicar em que condições se poderia dar a transferência de uma rede de alimentação para 
outra. 
 
 
 
Figura 7 – Questão 17. 
 
 
 
 
CEFET-MG - Acionamentos e Comandos Elétricos - Ensino Técnico 
 
180 
 
 
 
 
 
Vista de um quadro de comando – dispositivos e ligação ao painel frontal. 
Fonte: http://quadroeletrico.com/images/QUADROELETRICO1.png
 
CEFET-MG - Acionamentos e Comandos Elétricos - Ensino Técnico 
 
181 
Capítulo 5 
 
 
 
 
 
 Dispositivos de Acionamento e de Sinalização 
 
Capítulo 5 – Dispositivos de Acionamento e de Sinalização 
5.1 – Botão de Comando 
 
 Um botão de comando é aquele que aciona uma chave. 
 Chave: é também denominado contato. Tem a função de conectar e desconectar dois pontos 
de um circuito elétrico. 
 A chave tem dois terminais: um deve ser ligado à fonte (ou gerador, podendo ser de CC ou de 
CA) e outro ligado à carga (ou receptor). É feita de metal de baixa resistência elétrica para facilitar a 
passagem de corrente e alta resistência mecânica, de modo a poder ligar e desligar muitos milhares de 
vezes (número de manobras). 
 A sua estrutura metálica tem área de seção transversal proporcional à corrente que comandam. 
 O valor de corrente a ser comandada influencia na pressão de contato entre as partes móveis 
da chave: maiores correntes exigem maiores pressões de contato, para garantir que a resistência no 
ponto de contato seja a menor possível - veja a Equação (5.1). 
 
 
V A
I R I V
R A
       
 (5.1) 
 
 A separação dos contatos na condição de desligamento deve ser tanto maior quanto maior for 
a tensão para a qual o contato foi produzido, já que a resistência é diretamente proporcional à tensão 
(Lei de Ohm). 
 A velocidade de ligação ou desligamento deve ser a mais alta possível, para evitar o desgaste 
provocado pelo calor proveniente do arco voltaico, provocado no desligamento quando a carga for 
indutiva. 
 
5.1.1 – Tipos de Contato 
 
 O contato pode ser do tipo com trava (por exemplo, o tipo alavanca usado nos interruptores de 
iluminação) e também pode ser do tipo de impulso, com uma posição normal mantida por mola e uma 
posição contrária mantida apenas enquanto durar o impulso de atuação do contato. Nesse caso se 
chama fechador ou abridor conforme a posição mantida pela mola. 
 
CEFET-MG - Acionamentos e Comandos Elétricos - Ensino Técnico 
 
182 
Fechador: Também chamado ligador, é mantido aberto por ação de uma mola e se fecha enquanto 
acionado. Como a mola o mantém aberto é ainda denominado normalmente aberto (ou NA, ou do 
inglês normally open, NO). 
Abridor ou ligador: é mantido fechado por ação de uma mola e se abre enquanto acionado. Como a 
mola o mantém fechado, é chamado também de normalmente fechado (ou NF, ou do inglês normally 
closed, NC). 
 A Figura 5.1 mostra a simbologia adotada para as chaves NA e NF. A Figura 5.2 mostra o 
mecanismo com mola para o funcionamento das chaves NA e NF. 
 
 
(a) (b) 
 
Figura 5.1 – Simbologia usual para chaves NA (a) e NF (b). A segunda e a 
terceira chave de cada modelo estão de acordo com a norma ABNT. 
 
 Uma chave com botão ou botoeira é apresentada na Figura 5.3. A Figura 5.4 mostra uma 
botoeira liga-desliga e aplicações. 
 
 
 
Figura 5.2 – Relé com contatos NA e NF. 
 
 
Figura 5.3 – Aspecto de uma botoeira. 
 
EM RESUMO: 
 
 Uma botoeira é uma chave que comanda um circuito por PULSOS, interrompendo ou 
fechando contatos no mesmo. 
 
 A Figura 5.5 apresenta uma simbologia para botões, sugerida pela norma FEM 9941. Alguns 
símbolos são bastante familiares a nós, como no caso de equipamentos como elevadores. 
 A Figura 5.6 mostra um exemplo de um conjunto pendente de botoeiras, onde o operador 
pode, através da mesma, operar uma ponte rolante (veja os tipos de conexões em uma ponte rolante na 
Figura 5.7). 
 
 
CEFET-MG - Acionamentos e Comandos Elétricos - Ensino Técnico 
 
183 
 
 (a) (b) 
Figura 5.4 – (a) Botoeira liga. (b) Botoeira de três funções (por exemplo: subir, emergência, descer). 
 
 
 
Figura 5.5 – Simbologia de botões de acordo com a Norma FEM 9941. 
Fonte: http://www.steck.com.br/brasil/downloads/botoeiras.pdf 
 
 
Figura 5.6 – Conjunto pendente de botoeiras. Fonte: http://www.steck.com.br/brasil/downloads/botoeiras.pdf 
 
 
CEFET-MG - Acionamentos e Comandos Elétricos - Ensino Técnico 
 
184 
 
Figura 5.7 - Esquema apresentando as conexões de comando de uma esteira rolante. 
Fonte: http://www.rmhoist.com/portuguese/images/FullQXlayout.jpg 
 
 
Exercício de Simulação 2 – ES2 
 
 A Figura 5.8 mostra um aplicativo em FLASH para simulação de um guindaste giratório. Após 
fazer o download do arquivo, simular o mesmo com um aplicativo (PLAYER) para arquivos de 
extensão .SWF. 
 Os ícones do controle com botoeiras permitem acionar o guincho para cima e para baixo 
(suspender ou abaixar uma carga) e efetuar o movimento horizontal do guincho (ajuste de 
posicionamento da carga). 
 Já o movimento giratório do guindaste é feito manualmente (clicando-se nos ícones sentido 
horário e sentido anti-horário, disponíveis na parte inferior à direita, na tela). 
 
 
CEFET-MG - Acionamentos e Comandos Elétricos - Ensino Técnico 
 
185 
 
 
Figura 5.8 – Simulação em Flash de um Guindaste Giratório. Arquivo disponível em: 
Fonte: http://www.4shared.com/video/ADfJFL6p/guindaste.html 
 
 
Exercício de Simulação 3 – ES3 
 
 Este é um exercício onde é possível simular o movimento de uma ponte rolante – veja as 
Figura 5.9 e 5.10. Há três motores, para o movimento horizontal da ponte, e para os movimentos do 
guincho (horizontal, para posicionamento e vertical, para controle da carga). 
 
 
 
Figura 5.9 – Simulação em Flash de uma Ponte Rolante. Arquivo disponível em: 
Fonte: http://www.4shared.com/video/d9oY2xU1/ponterolante.html 
 
 
CEFET-MG - Acionamentos e Comandos Elétricos - Ensino Técnico 
 
186 
 
Figura 5.10 – Aspecto de uma ponte rolante empilhadeira. 
Fonte: http://storage.mais.uol.com.br/1565100-orig.jpg?ver=1 
 
 
Exemplo 5.1 – Aplicação de botão de comando com chave 
 
 Este exemplo constitui um botão de comando com chave, que já foi bastante utilizada para 
acionar portões de garagem antes do aparecimento do controle remoto portátil (de chaveiro) – veja a 
Figura 5.11. 
 
 
 
Figura 5.11 – Nos portões eletrônicos antigos era utilizado um sistema semelhante ao da figura, onde o motorista 
abria o portão através de uma chave (não existia o controle remoto, como rotineiramente utilizamos hoje). 
Disponível em: http://www.kap.com.br/pdf/br/kp_c_br.pdf 
 
 
CEFET-MG - Acionamentos e Comandos Elétricos - Ensino Técnico 
 
187 
Exemplo 5.2 – Botão Comutador e botão duplo 
 
 A Figura 5.12 mostra alguns exemplos de botoeiras que fazem o papel de chave comutadora e 
de botão duplo.(a) (b) 
 
Figura 5.12 – (a) Botão comutador e (b) botão duplo. Fonte: 
http://www.steck.com.br/brasil/downloads/maxbottom.pdf 
 
5.2 – Chave de fim-de-curso 
 
 As chaves de fim-de-curso têm a maior aplicação como limitadores de deslocamento e 
proteção de máquinas. Um exemplo clássico de aplicação é no acionamento de portões eletrônicos. 
 A Figura 5.10a mostra os símbolos (Normas ABNT) para este tipo de chave (tipos NA e NF). 
Na Figura 5.13b têm se alguns exemplos. 
 
 
 (a) (b) 
 
Figura 5.13 – (a) Símbolos (padrão ABNT) para chaves NF e NA. (b) Exemplos de chaves de fim-de-curso com 
rolete. Fabricante: SIEMENS. Fonte: http://www.siemens.com.br/medias/IMAGES/14121_20081111145533.jpg 
 
 
CEFET-MG - Acionamentos e Comandos Elétricos - Ensino Técnico 
 
188 
5.3 – Sinalizadores 
 
 Os sinalizadores têm a função de indicar o status de um circuito, facilitando para o operador 
do mesmo o reconhecimento das diversas situações da operação (ligado (ON), desligado (OFF), 
sobrecarga etc.). Veja alguns exemplos na Figura 5.14. 
 Existem os sinalizadores sonoros e os luminosos. Como sinalizador sonoro usa-se geralmente 
sirene ou campainha (buzzer) – Figura 5.15. 
 
 
Figura 5.14 - Botões de comando e sinalizadores. Fabricante: SIEMENS. Fonte: 
www.industry.siemens.com.br/automation/br/PublishingImages/banner%20superior%20botoes%20393.jpg 
 
 
 O sinalizador sonoro tipo cigarra (Figura 5.15, o primeiro na sequência), é fabricado em 
plástico, com grau de proteção IP 40 e alta resistência mecânica, elétrica e ao calor, sendo disponível 
nas tensões de 24/48 V (CA/CC) até 110/220/380 V (CA). Atende as mais variadas aplicações que 
necessitam de interface homem-máquina ou quaisquer tipos de equipamentos para transporte ou 
elevação. Fabricante: STECK. 
 
 
 
Figura 5.15 – Sinalizadores sonoros (tipos cigarra, sirene e alarme-audiovisual). 
 
 Na sinalização luminosa são variados os tipos de sinaleiros existentes; são usados nas portas 
de quadros de comando, na frente de máquinas, na parte superior das máquinas etc. A cor do 
sinalizador pode indicar alguma função específica. Veja as Tabelas 5.1 e 5.2. 
 
 
CEFET-MG - Acionamentos e Comandos Elétricos - Ensino Técnico 
 
189 
 Tabela 5.1. 
 
 
 Tabela 5.2. 
 
 Fonte: http://saladaeletrica.blogspot.com/p/comandos-eletricos.html 
 
Exemplo 5.3 – Botão Comutador e botão duplo 
 
 A Figura 5.16 mostra os aspectos de um botão luminoso, com o objetivo de sinalizar um 
comando. Nos botões ilustrados, o botão é luminoso de empurrar, com retorno por mola e tecla 
saliente. A tecla ilumina-se (ou apaga-se) quando é operada. 
 O fabricante recomenda, na utilização de lâmpada incandescente, limitar a potência de 2,4 W. 
 
 
 (a) (b) 
Figura 5.16 – Botão luminoso. (a) Botão saliente. (b) Botão protegido. Fonte: Catálogo KAP Componentes 
Elétricos. Disponível em http://www.kap.com.br/pdf/br/kp_c_br.pdf 
 
CEFET-MG - Acionamentos e Comandos Elétricos - Ensino Técnico 
 
190 
5.4 – Tomadas de Uso Industrial 
 
 
 A tomada industrial é usada na alimentação de máquinas que requerem correntes de valores 
maiores, normalmente acima de 16 A. Existem em diversas formas físicas e com variado número de 
pólos (3F + N + T, 2F + N, 3F + N etc.). 
 Os tipos de tomadas mais usados são: 
a) tomadas para ambientes normais 
b) tomadas para ambientes especiais, com modelos à prova de explosão e à prova de umidade, 
gases, vapores e pós. 
Alguns modelos operam em temperaturas até 120 graus (trabalho contínuo) e até 200 graus 
(tempo de 30 minutos). Fonte: Catálogo – Plugs e tomadas blindadas. Disponível em 
http://www.steck.com.br/brasil/downloads/newkon.pdf. Veja a Figura 5.14. 
 
 
Figura 5.17 – Grupo de tomadas e plugs de uso industrial. Fabricante: STECK. 
Fonte: http://www.steck.com.br/brasil/downloads/newkon.pdf. 
 
 Na instalação destas tomadas é importante criar um padrão para a conexão dos fios evitando-
se problemas com seqüência de fases e outros condutores. 
 A Tabela 5.3 e a Figura 5.18 mostram alguns detalhes técnicos do plug e da tomada para uma 
ampla faixa de tensões (Fabricante: STECK). 
As Figuras 5.19 e 5.20 mostram alguns aspectos de uma tomada industrial (desenhos). E, 
finalmente, a Figura 5.121 mostra uma caixa de tomada industrial com os soquetes 3 x 16 A 
industriais. 
 
 
 
CEFET-MG - Acionamentos e Comandos Elétricos - Ensino Técnico 
 
191 
Tabela 5.3 – Tomadas e plugs – Fabricante: STECK. 
 
 Lilás Amarelo Azul Vermelho Preto Verde 
 
 
 
Figura 5.18 – Visualização de um plug e de uma tomada de sobrepor, de uso industrial. Fabricante: STECK. 
Disponível em: http://www.steck.com.br/brasil/downloads/newkon.pdf. 
 
 
 (a) 
 
 
 (b) 
Figura 5.19 – Conector de 6 pontas com fio terra. (b) Conector macho e fêmea. Fonte: Trabalho apresentado na 
área de manutenção para o Concurso Inova SENAI-2008, por André VandOr de Oliveira CFP 1.26 e Guilherme 
Gomes de Aquino Costa, CFP 1.33. Docente Orientador: Mauricio Gati Amaral. Disponível em: 
http://revistaeletronica.sp.senai.br/index.php/seer/article/viewFile/57/34 
 
CEFET-MG - Acionamentos e Comandos Elétricos - Ensino Técnico 
 
192 
 
 
Figura 5.20 – Tomada industrial – Vistas de perfil e explodida. Localização na carcaça de um motor. Fonte: 
Trabalho apresentado na área de manutenção para o Concurso Inova SENAI-2008, por André VandOr de 
Oliveira CFP 1.26 e Guilherme Gomes de Aquino Costa, CFP 1.33. Docente Orientador: Mauricio Gati 
Amaral. Disponível em: http://revistaeletronica.sp.senai.br/index.php/seer/article/viewFile/57/34 
 
 
Figura 5.21 - Caixa de tomada industrial com os soquetes 3 x 16 Ampères industriais e extensão. 
Fonte: http://portuguese.alibaba.com/product-cgs/industrial-outlet-box-with-3x16amp-industrial-sockets-215349137.html
 
CEFET-MG - Acionamentos e Comandos Elétricos - Ensino Técnico 
 
193 
LEP 7 
 
 
 Lista de Exercícios e Problemas 7 – 11 Questões 
 
 
 
Questão 1 – Comando com duplo sentido de rotação com inversão direta e temporizada. 
A Figura 1 mostra um circuito de acionamento (chave de partida) de um motor CA trifásico, com 
reversão, através de chaves de fim de curso. 
a) Fechar as ligações pendentes e explicar a operação do acionamento. 
b) Inserir no comando um relé de tempo, para que o motor, que aciona um portão eletrônico, só reverta 
a rotação após 30 segundos. 
 
 
Figura 1 – Questão 1 (motor trifásico com reversão de rotação). 
 
 
CEFET-MG - Acionamentos e Comandos Elétricos - Ensino Técnico 
 
194 
Questão 2 – Completar as lacunas a seguir: 
 
As chaves auxiliares botoeiras são comandadas manualmente e têm a função de 
____________________ momentaneamente, por pulso, um circuito de comando para 
____________________ um processo de automação (FRANCHI, 2007). 
Fonte: FRANCHI, Claiton Moro. Acionamentos Elétricos. 2ª. Ed. São Paulo: Ed. Érica, 2007. 
 
Questão 3 – Identifique, de acordo com a cor da botoeira, a sua função:(1) vermelho. ( ) iniciar um retorno, eliminar uma condição perigosa. 
(2) Verde ou preto ( ) qualquer função diferente das anteriores. 
(3) Branco ou azul. ( ) parar, desligar ou botão de emergência. 
(4) Amarelo ( ) ligar, partida. 
 
Questão 4 – Conceituar chave com retenção (ou trava). Fazer um esboço. 
 
Questão 5 – O que são chaves de fim-de-curso? Quais são as suas aplicações? 
 
Questão 6 – Conceituar “arco elétrico” ou “arco voltaico”. Dar dois exemplos. 
 
Questão 7 – Seja o esquema da Figura 3, que indica um sistema de iluminação (com a lâmpada L1 
ou um grupo de lâmpadas). Há também um acionamento de iluminação de emergência com bateria 
(pela lâmpada L2). Nota: a iluminação deve ser ligada através da botoeira S1. 
 
a) Indicar no desenho onde é conectada a bateria (com tensão nominal de 12 V, que alimenta a 
lâmpada de sinalização L2). 
 
b) Explicar o funcionamento deste sistema. Está faltando algum componente? 
 
c) Modificar o sistema, de modo que a lâmpada L2 fique ligada ainda por 30 segundos, mesmo 
como retorno da rede de corrente alternada. 
 
 
Figura 3. 
 
Questão 8 – A Figura 4 mostra o diagrama de ligação de um motor monofásico (modo manual - 1 e 
automático - 2) para acionamento de uma bomba d’água, para controle de nível de uma caixa d’água 
de 10.000 litros. Inserir no diagrama a chave-bóia (nível mínimo, 500 litros) e um alarme sonoro, que 
indique caixa cheia (o tempo para encher a caixa, de 500 a 10.000 litros, é de 3 h 30 min. 
 
 
CEFET-MG - Acionamentos e Comandos Elétricos - Ensino Técnico 
 
195 
 
Figura 4 – Questão 8, acionamento de uma bomba d’água. 
 
Questão 9 – Os diagramas da Figura 5 dizem respeito ao acionamento de uma bomba para controle de 
nível de um reservatório de água. 
 
a) Complete o diagrama de comando para que a bomba (acionada por um motor trifásico) seja ligada e 
desligada nos modos manual (MAN) e automático (AUT). Observação: SH1 pode ser uma chave 
intertravada com a chave NF ligada nos pontos X1 e X2 (onde está ligada uma chave-bóia). 
b) Inserir um sensor com chave de fim de curso, para que a bomba seja ligada com o reservatório 
vazio. 
c) Sendo conhecida a vazão do fluxo de água, monitorar o controle de nível do reservatório com o uso 
de relé de tempo. 
 
Questão 10 
Explicar o funcionamento dos motores M1 e M2, para os diagramas de acionamento e comando da 
Figura 6. Inserir uma modificação, a fim de que o motor M2 só seja ligado tão logo M1 seja desligado 
(o motor M2 é um motor reserva neste sistema). 
 
 
CEFET-MG - Acionamentos e Comandos Elétricos - Ensino Técnico 
 
196 
 
Figura 5 – Questão 9, acionamento de uma bomba para 
 controle de nível de um reservatório de água. 
 
 
Figura 6 – Questão 10. 
 
 
CEFET-MG - Acionamentos e Comandos Elétricos - Ensino Técnico 
 
197 
Questão 11 – Seja o esquema da Figura 7, que mostra um diagrama incompleto para o acionamento de 
uma bomba, para controle de nível de uma caixa d’água. A Figura 8 mostra o uso de uma chave de três 
posições (MANUAL - 1, DESLIGADO - 0 e AUTOMÁTICO - 2). 
 
a) Projetar um sistema de acionamento para controle de nível da caixa d’água de 1000 litros, para que 
no modo 2 (AUT), com controle de nível máximo (chave S2, Figura 1) e de nível mínimo. 
 
b) Sabendo-se que para completar o volume da caixa d’água são necessárias 2 horas, inserir também 
um relé de tempo, caso a chave-bóia S2 falhar. 
 
 
 
 
 
Figura 7. Figura 8. 
 
 
 
 
 
 
 
CEFET-MG - Acionamentos e Comandos Elétricos - Ensino Técnico 
 
198 
 
Ponte rolante – Casa de máquinas da usina hidrelétrica de Itatinga - SP. Fonte: 
http://visita-usina-itatinga-2010.blogspot.com/2010/04/ponte-rolante-da-casa-de-maquinas-de.html
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
199 
Capítulo 6 
 
 
 Comando de Motores 
Trifásicos com Contator 
 
Capítulo 6 – Comando de Motores Trifásicos com Contator 
 
 
6.1 – Comando Local e à Distância 
 
 Um comando local para um acionamento é aquele onde o circuito de comando está muito 
próximo do circuito de carga. No circuito da Figura 6.1, o contator K é acionado pela chave S3 (local). 
O selo é fechado, garantindo a energização da bobina e a chave K fechada. 
 
 
Figura 6.1 – Exemplo básico de um comando local e à distância. 
 
 No comando à distância, a chave de acionamento (comando LIGA) também está em paralelo 
com o selo do contator, mas está distante da carga acionada. Este acionamento é denominado de 
comando remoto ou à distância. 
 Para citar alguns exemplos, equipamentos como bombas, exaustores, centrais de ar-
condicionado, aquecedores etc. podem ser controlados à distância, a partir de uma central instalada 
longe dos mesmos, em uma sala de manutenção de uma indústria, em um painel de portaria de um 
condomínio etc. Também podem ser controladas à distância a abertura e fechamento de válvulas 
solenóides em tubulações de líquidos, em instalações prediais ou industriais, sendo ou não acopladas a 
uma central com controles e sensores adicionais. (Fonte: http://www.comtron.com.br/quadros.htm). 
 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
200 
6.2 – Partida Direta 
 
O texto Acionamentos Industriais – Cap.5: Métodos de comando de um motor de indução, 
destaca: “o modo mais simples de dar a partida a um MI é o de ‘partida direta’, no qual o motor é 
ligado à rede CA diretamente através de um contator – Figura 6.2. 
Este método se aplica às seguintes situações: 
- em máquinas com qualquer tipo de carga; 
- em máquinas que permitem normalmente suportar o conjugado (torque) de aceleração; 
- onde há fonte com disponibilidade de potência para alimentação do motor; 
- onde há confiabilidade de serviço pela composição e comando simples. 
Há três formas usuais para a partida direta de um motor de indução, todas com base no modo de 
proteção do motor contra curto-circuito e sobrecarga: 1) utilizando fusível e relé de sobrecarga 
térmico; 2) fazendo uso de disjuntor e mantendo o relé térmico e 3) fazendo uso do disjuntor onde o 
mesmo executa a tarefa de proteção contra curto-circuito e contra sobrecarga.” (Acionamentos 
Industriais - Apostila. Cubatão: IFSP – Curso Superior de Tecnologia em Automação Industrial, 
Campus Cubatão, 2010, p. 51). 
 
 
Figura 6.2 – Diagramas de Carga e de comando de um MIT em Partida Direta. Fonte: 
http://amauri.pro.br/arquivos/SAI471_ACI/Apostila_Acionamentos_Industriais_94p_rev_06.pdf 
 
Este tipo de partida não é recomendado para motores elétricos de grande porte, pois, como já 
foi estudado no capítulo 2, a corrente de partida de um motor de indução quando ligado diretamente à 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
201 
tensão da rede é 6 a 8 vezes maior do que a corrente nominal. Assim, outros métodos de partida são 
utilizados, como: - partida estrela-triângulo, - partida por autotransformador (também chamada de 
compensadora) e partida suave (soft-starter), por meio de eletrônica de potência (uso do inversor de 
freqüência). 
 
 
6.3 – Reversão de Rotação (manual e semi-automático) 
 
 Como foi visto no capítulo 2, é o campo magnético H, na condição de campo girante, que 
determina o sentido de rotação do eixo de um motor trifásico. Tal campo girante é criado pela 
interação das correntes de alimentação trifásicas (ação motora: injeta-se nos terminais do equipamento 
energia elétrica e obtém-se no seu eixo energia mecânica). 
Explicando em outras palavras, o campo girante, criado pelo enrolamento trifásico do estator, 
induz tensões nas barras do rotor(linhas de fluxo cortam as barras do rotor) as quais geram correntes, 
e conseqüentemente, um campo no rotor, de polaridade oposta à do campo girante. Como campos 
opostos se atraem e como o campo do estator (campo girante) é rotativo, o rotor tende a acompanhar a 
sua rotação. Desenvolve-se então, no rotor, um conjugado motor que faz com que ele gire, acionando a 
carga (Fonte: Catálogo de Motores Elétricos WEG). 
 A reversão de rotação, em um motor trifásico, é obtida de modo muito simples: basta inverter 
qualquer par de conexões entre o motor e fonte elétrica. 
 A Figura 6.3 mostra uma furadeira de impacto que opera com o recurso de reversão de rotação 
(a furadeira utiliza um motor monofásico, do tipo Universal). 
 
 
Figura 6.3 – Furadeira de Impacto onde se trabalha com reversão de rotação. 
Fonte: https://www.ovd.com.br/sim/Imagens/informativos/fotos/6020119422.jpg 
 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
202 
6.3.1 – Chave Reversora de Comando Manual 
 
 A chave reversora de comando manual tem o seu aspecto ilustrado na Figura 6.4a. Possui três 
posições: direita (D), desligada (0) e esquerda (E). 
De acordo com o esquema da Figura 6.5, 
estando a chave na posição zero (0), não há conexão 
da alimentação com o motor, já que as fases R, S e T 
não são ligadas aos terminais 1, 2 e 3 do mesmo. 
Portanto, o motor está desligado e o seu eixo não 
gira. 
 
(a) (b) 
Figura 6.4 - (a) Chave reversora manual 
 (aspecto). (b) Modelo de fabricante. 
 
 
Figura 6.5 – Chave reversora com posição (0) ajustada. Fonte: 
Apostila de Máquinas e Comandos Elétricos – SENAI-SP. 
 
 Com a manopla do dispositivo na posição (D), ocorrem as seguintes conexões, mostradas na 
Figura 6.6a. Na posição E, as conexões são representadas na Figura 6.6b. Note-se que houve troca de 
duas das três fases. 
 
 
 
 (a) (b) 
Figura 6.6 – (a) Chave reversora com posição (D) ajustada. (b) Chave reversora com posição (E) 
ajustada. Fonte: Apostila de Máquinas e Comandos Elétricos – SENAI-SP. Disponível em: 
http://www.ebah.com.br/apostila-maquinas-e-comandos-eletricos-pdf-a82379.html 
 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
203 
 A Figura 6.7 mostra um acionamento com reversão de rotação para um motor de indução 
trifásico (MIT), no modo MANUAL, através de contatores (K1 e K2), botoeira (S0) e chaves NA e NF 
intertravadas (S1 e S2). A proteção é feita pelos fusíveis e pelo relé térmico. 
 
 
Figura 6.7 – Diagramas de carga e de comando para a reversão MANUAL de rotação de um MIT. 
 
 Tente fazer uma descrição seqüencial do acionamento do MIT da Figura 6.7. 
 
 
 
 
 Projetar um acionamento de um motor trifásico 
para reversão de rotação que utilize o contator da 
figura ao lado, juntamente com um relé de tempo. 
 
 
Diagrama esquemático de um contator 
com 2 terminais NA e um NF. 
 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
204 
6.3.2 – Chave Reversora de Comando Semi-Automático 
 
 Este tipo de comando é muito utilizado no acionamento de portões, conhecido como “portão 
eletrônico”, onde, através de um controle remoto, o usuário abre e fecha o portão. O sistema de 
acionamento define a partida, o tempo de parada (para a entrada/saída de veículos), o início da 
reversão e o fechamento/desligamento do portão. 
 São utilizadas chaves de fim-de-curso, relés de tempo e outros dispositivos. 
 
EF - Exercícios de Fixação 
Série 9 
 
EF 41 – Sejam os diagramas da Figura 6.8 - comando de um MIT, local e à distância. 
a) Completar as ligações para um comando local e explicar o seu funcionamento. 
b) Inserir um comando remoto (chave S11) de acionamento no diagrama, que sinalize no local o motor 
ligado. 
 
 
Figura 6.8 - comando de um motor trifásico, local e à distância. 
 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
205 
EF 42 – Alterar o diagrama de comando para o sistema da Figura 6.7 (reversão de rotação de um 
MIT), de modo que o acionamento seja automático, com K1 acionando o MIT por 30 segundos, e após 
10 segundos, o contator K2 aciona o MIT com reversão de rotação, por 30 segundos. Após este tempo, 
liga-se de novo o MIT manualmente e o ciclo recomeça. É possível reiniciar a operação do MIT 
automaticamente? Faça um projeto. 
 
EF 43 – O sistema da Figura 6.9 é um diagrama para controle de nível de um reservatório de água, de 
1000 litros. Modificar o circuito de acionamento, de modo que possa haver um acionamento remoto 
(liga/desliga) para a bomba. 
 
 
Figura 6.9. 
 
EF 44 – PROJETO 1 – Para o projeto de um “portão eletrônico” (Figura 6.10) acionado por um 
motor de indução trifásico, pensou-se em utilizar os seguintes componentes, nos diagramas de 
comando e de carga: duas chaves de fim-de-curso, duas botoeiras (1 NA e 1 NF), cinco fusíveis 
Diazed, um relé térmico, dois contatores (K1 e K2), um relé de tempo, ajustado para 30 segundos 
(tempo suficiente, no caso do motor acionando um portão de garagem, para um veículo entrar ou sair 
com segurança), e duas lâmpadas de sinalização (para indicar portão em movimento e motor em modo 
de espera, antes de fechar). Projetar, desenhar e explicar este sistema de acionamento, desde a abertura 
até o fechamento do portão eletrônico. 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
206 
 
Figura 6.10 – Portão eletrônico e posições das chaves de fim-de-curso. 
 
6.4 – Motor de duas Velocidades (Dahlander) 
 
Para o acionamento de um motor Dahlander, deve-se seguir o padrão das ligações apresentado 
na Figura 6.11. Repare no fechamento dos terminais 1U, 1V e 1W em um ponto comum (em curto-
circuito). Como mostram as Figuras 6.11 e 6.12, este motor possui em seu estator seis bobinas, 
combinadas de duas formas: estrela/triângulo e dupla estrela. 
 
 
Figura 6.11 – Ligações no painel de um motor Dahlander (baixa e alta velocidades). 
Posição da chave de
fim-de-curso 1 (portão
aberto).
Posição da chave de
fim-de-curso 2 (portão fechado).
v
Posição da chave de
fim-de-curso 1 (portão
aberto).
Posição da chave de
fim-de-curso 2 (portão fechado).
v
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
207 
 Relembrando... 
 O circuito da Figura 6.11, já estudado 
no capítulo 2, mostra os enrolamentos deste 
motor. Em baixa velocidade a alimentação 
trifásica é ligada aos terminais 1U, 1W e 1V e 
os terminais 2U, 2V e 2W não são conectados. 
Na velocidade alta, a alimentação trifásica é 
ligada diretamente aos terminais 2U, 2V e 2W e 
são curto-circuitados 1U, 1V e 1W. 
 
Figura 6.12. 
 
 A Figura 6.13 mostra um diagrama completo de acionamento (diagramas de comando e de 
carga) para o motor Dahlander. O circuito opera da seguinte forma: acionando a botoeira S1, o motor 
parte em baixa velocidade, já que o contator K1 alimenta os bornes U1, V1 e W1. Decorridos 5 
segundos, o relé RT1 atua através da sua chave NA, e os seus contatos 15-18 são fechados, 
alimentando os contatores K2 e K3 e seus respectivos selos. Isto desliga o contator K1 pela chave NF 
K2. Com K2 e K3 acionados, o motor gira em alta velocidade – os bornes U1, V1 e W1 são ligados em 
comum pelo contator K2 e os bornes U2, V2 e W2 são alimentados pela rede trifásica via contator K3. 
 
 
 (a)(b) 
Figura 6.13 – Acionamento temporizado do motor Dahlander. 
(a) Diagrama de Carga. (b) Diagrama de Comando. 
 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
208 
6.5 – Comando Condicionado de Motores Elétricos 
 
 Ocorre entre, pelo menos, dois motores. Por exemplo, sejam dois motores, M1 e M2, onde o 
objetivo é ligar o motor M1 e após um determinado tempo, acionar o motor M2, sempre nesta ordem, 
utilizando um relé temporizado. Logo, o segundo motor só é ligado se o primeiro estiver ligado, daí o 
nome de comando condicionado ou subseqüente. 
 Na ligação subseqüente de motores, podemos acionar uma esteira, ponte rolante ou um sistema 
automático industrial, a fim de desenvolver um produto determinado, mas sempre levando em conta 
que o(s) motor (es) seguinte(s) só funciona(m) se o anterior funcionar. 
A instalação representada na Figura 6.14 é constituída por duas correias transportadoras tendo 
ao meio um moinho. É necessário que os motores entrem em funcionamento sucessivo pela seguinte 
ordem: m1, m2 e m3. Explique o motivo: 
 
 
 
 
Se o leitor não conseguiu responder, vai aqui uma explicação: na sequência indicada, evitar-
se-à a acumulação dos materiais transportados. Primeiramente é ligado o motor m1, para o 
transporte do material recebido do moinho acionado por m2. Este motor só liga se m1 for ligado antes. 
Seguindo o processo, o material que entra no moinho vem da esteira acionada por m3. Este motor é 
acionado após o motor m2. 
E para desligar os motores? Qual deve ser desligado primeiro? Para evitar o acúmulo de 
material nas esteiras e no moinho, é coerente a sequência: primeiro, desligar o motor m3 (um sensor 
pode ser utilizado – esteira 3 vazia). A seguir, após o moinho m2 esvaziar, desligar m2 e, finalmente, 
após a esteira de m1 esvaziar, desligar m1. 
 
 
Figura 6.14 – Comando condicionado de três motores – esteira rolante. 
 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
209 
 Um diagrama de carga para o sistema da Figura 6.14 é apresentado na Figura 6.15. Note que 
há um erro no sistema de proteção, já que somente um motor tem um conjunto de fusíveis para as 
fases de alimentação, M2 e M3 ficam sem proteção individual. 
Um possível diagrama de comando para os três motores, M1, M2 e M3 é apresentado na Figura 
6.16. 
 
Modo de operação: 
 
Pressionando a botoeira B1 o contator KM1 atraca e o motor M1 parte. Só depois de atracar o 
contator KM1 (fechando o contato auxiliar 13-14, selo de KM1) se poderá acionar o motor M2, 
pressionando a botoeira B2. 
 
 
 
Figura 6.15 – Diagrama de carga para o comando condicionado de três motores. 
 
O motor M3 só poderá ser acionado após atracar o contactor KM2, que fechará o contato 
auxiliar 13-14 (selo). Basta pressionar o botão B3 para o contactor KM3 atracar e o motor M3 arrancar. 
Se houver alguma situação de sobrecarga no motor M1 todos os motores em funcionamento pararão. 
Como é feita a parada do sistema? A parada dos motores em funcionamento em qualquer 
momento é feita após pressionar o botão de paragem B0. 
Finalizando o item, na Figura 6.17 é apresentada uma foto de uma esteira industrial. 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
210 
 
Figura 6.16 – Diagrama de Comando para o sistema da Figura 6.12. 
 
 
 
Figura 6.17 – Esteira transportadora industrial de caixas, que após um processo, deslizam em uma rampa. Fonte: 
http://3.bp.blogspot.com/_1Kz6dHKHAEU/S9VJo1v0AnI/AAAAAAAANWI/d5kr0RYfwag/s1600/8I04A_Briefzentrum.jpg. 
 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
211 
EF - Exercícios de Fixação 
Série 10 
 
EF45 – Modificar o diagrama de comando da Figura 6.15, de modo que o motor M2 seja ligado 10 
segundos após o motor M1. O motor M3 só será ligado 20 segundos após M1. Os três motores deverão 
ficar ligados durante 45 segundos e, decorrido este tempo, serão desligados. 
 
EF46 – Para o sistema de esteiras mostrado na Figura 6.18, onde os motores M1 e M2 operam em 
modo subseqüente, pede-se: 
a) Descrever o funcionamento do sistema, de acordo com o que mostra a Figura 6.14 – são decorridos 
15 segundos entre uma situação e outra. 
b) Projetar um diagrama de comando temporizado para este sistema funcionar. Desenhar também o 
diagrama de carga, onde M1 e M2 são motores de indução trifásicos. 
 
 
 
 
 
Figura 6.18 – Exercício EF42. 
 
EF47 – A Figura 6.19 mostra um circuito de acionamento (chave de partida) de um motor CA, 
utilizado para abrir e fechar uma persiana. 
a) Explicar o funcionamento do circuito e a função das chaves de fim-de-curso Q2 e Q3. 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
212 
b) É possível temporizar o tempo de fechamento da persiana? Monte um diagrama de 
acionamento temporizado. 
 
 
Figura 6.19 – EF43, reversão no acionamento de uma persiana. 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
213 
LEP 8 
 
 
 Lista de Exercícios e Problemas 7 – 10 Questões 
 
 
 
Questão 1 – Descrever quais e a quantidade de dispositivos necessários para a manobra de dois 
motores, onde um deve ter partida direta e o outro, partida com reversão. Descrever também qual a 
função de cada elemento dentro do circuito. 
 
Questão 2 – Explicar a sequência do acionamento do seguinte sistema de reversão (Figura 1). 
 
 
Figura 1 – Questão 1. 
 
Questão 3 – Um relé eletrônico do tipo TRE (Retardo na Energização) é aquele que ao ser energizado 
(bobina A1-A2), não arma os seus contatos imediatamente. A partir daí, inicia-se a contagem do 
tempo t (tRE) pré-selecionado na escala, após o qual o relé arma. Já um relé eletrônico do tipo TRD 
(Retardo na Desenergização) é aquele que ao ser energizado (bobina A1-A2), arma seus contatos 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
214 
imediatamente. Ao ser desenergizado inicia-se a contagem do tempo t (tRD) pré-selecionado na escala, 
após o qual o relé desarma. 
Projetar um sistema de acionamento (reversão de velocidade, comando subseqüente etc.) 
empregando pelo menos um destes tipos de relé, onde as cargas são dois motores de indução trifásicos, 
M1 e M2. Nota: deverá ser utilizada uma lâmpada de sinalização L1, que mostra os dois motores 
funcionando juntos. 
 
Questão 4 – Para o acionamento da Figura 2, completar as ligações pendentes, para o comando 
condicionado dos dois motores e para reversão de velocidade no primeiro motor 30 s após a partida. 
 
a) Descrever a seqüência do acionamento. 
 
Figura 2 – Comando condicionado de dois motores trifásicos – diagramas de carga e de comando. 
 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
215 
b) Desafio: elaborar um diagrama de comando para manobrar dois motores de modo que o 
primeiro pode ser ligado de forma independente. O segundo pode ser ligado apenas quando o 
primeiro for ligado, mas pode se manter ligado mesmo quando se desliga o primeiro motor. 
Fonte: http://www.gerson.110mb.com/index_arquivos/Apostila2mca.pdf 
 
Questão 5 – Seja o esquema da Figura 3, para o comando manual do Motor Dahlander. Completar as 
ligações pendentes e descrever a seqüência do acionamento. 
 
 
Figura 3 – Motor Dahlander – Diagramas de Carga e de Comando (comando manual). 
 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
216 
Questão 6 – PROJETO. Seja um elevador elétrico, como mostram os esquemas das Figura 4a e 4b. O 
carro e o contrapeso são suspensos por cabos de aço que passampor polias, de tração e de desvio, 
instaladas na casa de máquinas ou na parte superior da caixa. 
 
 
 (a) (b) 
 
Figura 4 – Esquema de um elevador elétrico. (a) Posicionamento dos componentes do elevador para projetos de 
edifícios com casa de máquinas. (b) Layout dos componentes de um elevador sem casa de máquinas. Fonte: 
http://www.atlas.schindler.com/manual_transporte_vertical_2008.pdf 
 
O movimento de subida e descida do carro e do contrapeso é proporcionado pela máquina 
elétrica de tração, que imprime à polia a rotação necessária para garantir a velocidade especificada 
para o elevador. A aceleração e o retardamento ocorrem em função da variação de corrente elétrica no 
motor. A parada é possibilitada pela ação de um freio instalado na máquina. 
 Projetar o acionamento completo (carga e comando) para este elevador, onde o mesmo é 
deslocado verticalmente por somente dois andares. Prever para o movimento um sistema de parada 
utilizando chaves de fim-de-curso. Desprezar o controle de velocidade (aceleração e frenagem). 
 Como sugestão de leitura, consultar o trabalho técnico “Controle de Elevador”, disponível em: 
http://www.vargasp.net/download/livros/Contr_dig_de_elevador.pdf. 
 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
217 
Questão 7 – Uma ponte rolante é apresentada na Figura 5, com todos os motores necessários para a 
sua operação: movimento da ponte na horizontal (motor M2), movimento do guincho na horizontal 
(motor M1) e movimento do guincho na vertical (motor M3). Projetar um acionamento elétrico para 
este sistema, prevendo os movimentos citados. 
 
 
Figura 5 – Esquema de uma ponte rolante – movimentos dos motores e operador com controle remoto industrial. 
Fonte: http://www.senai.fieb.org.br/img/infra/LogCADsticaeEMI-EMI-Ponterolante2004.gif 
 
Questão 8 – O Diagrama completo de acionamento de um motor Dahlander é mostrado na Figura 6. 
Os contatores do diagrama de comando operam em 220 V. 
 
Figura 6 – Reversão de velocidade em motor Dahlander. Diagramas de Carga e de Comando. 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
218 
a) Identifique e corrija os erros que impedem este sistema de funcionar (partida e reversão de 
velocidade). 
b) Inserir um comando automático onde o motor liga; após 10 segundos ocorra a reversão de 
velocidade e 30 segundos após ocorra o desligamento do sistema. 
 
Questão 9 – PROJETO. Projetar um diagrama completo, de comando e de carga, para o sistema de 
carregamento a granel apresentado na Figura 7. A mistura controlada pelo motor M6 só é ativada se 
pelo menos 3 materiais estão sendo depositados na esteira. Caso contrário, a esteira (M5) cessa o 
movimento, bem como o misturador. Os motores M1, M2, M3 e M4 são ligados somente nesta 
sequência, 5 segundos após o outro (comando subseqüente), permanecendo ligados enquanto houver 
material nos seus respectivos silos. A esteira M5 é ligada assim que o motor M4 é ligado. Se, por 
exemplo, pelo menos dois silos estiverem sem material, os motores M1 a M4 são desligados. Para 
ativar novamente o processo de mistura, é preciso encher pelo menos 3 silos acima do nível médio 
(metade do silo, acima do nível mínimo). 
 
 
Figura 7 – Sistema de carregamento a granel. Fonte: http://www.bextra.com.br. 
 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
219 
Questão 10 – PROJETO. Projetar um diagrama de comando para a ponte rolante mostrada na Figura 
8 (e desenhar o correspondente diagrama de carga, para quatro motores), a fim de se implementar a 
seguinte sequência de movimentos (ida e volta): 
 
a) movimento horizontal na direção A-B, com dois motores atuando simultaneamente; 
b) movimento horizontal na direção E-F, através de um só motor; 
c) movimento vertical na direção C-D, com um só motor (levantamento e descida da carga pelo 
guincho). 
 Uma observação importante: prever a atuação de um relé térmico, caso a carga a ser 
controlada seja acima de 500 kg. 
 Fazer a simulação no CADE Simu. 
 
 
 
Figura 8 – Sistema de uma ponte rolante com vários movimentos, na horizontal e na vertical. 
Fonte: http://croaciamc.com.br/simula/ponterolante.swf 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
220 
LEITURA RECOMENDADA 
Ponte Rolante: um dos equipamentos mais largamente utilizados para o manuseio de cargas 
 
Para movimentar com segurança de um ponto a outro não existe um equipamento mais 
versátil. Uma Ponte Rolante possui várias formas e é altamente adaptável em diferentes ambientes. A 
seguir temos uma lista de razões pelas quais esta peça de equipamento é muito valiosa. 
- Não existe a necessidade de liberar corredores. Uma ponte rolante pode mover-se em lugares onde 
nenhum outro equipamento consegue chegar. Você já teve o caminho de suas empilhadeiras 
bloqueado e foi obrigado a redirecionar mão-de-obra para poder liberar um corredor. Obviamente que 
com uma ponte isto não aconteceria. Com uma botoeira independente ou mesmo com um controle 
remoto seu operador de ponte pode desviar-se dos obstáculos e até mesmo manobrar a carga 
facilmente sem qualquer obstrução. Você pode arrumar o pavimento da planta, com material 
exatamente onde este é necessário sem preocupar-se com obstruir o caminho da carga em movimento. 
 
 
 
- Espaço Livre no Pavimento. Seu pavimento estará livre porque os suportes da ponte não estão no 
caminho. Normalmente o seu projetista irá fazer o design e posicionamento de colunas que esteja em 
espaço adequado, alinhadas com as paredes do pavilhão ou acompanhando as colunas deste. Você 
pode escolher uma ponte montada no topo das paredes (geralmente este projeto é feito já em conjunto 
com a construção) ou pode levantar os suportes da ponte do solo. Algumas vezes o projeto é uma 
combinação das duas coisas. 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
221 
- Segurança. O operador pode posicionar-se em localização privilegiada para mover a carga em 
segurança. As empilhadeiras criam pontos cegos que são inerentes à estrutura ao redor do operador. 
Empilhadeiras são conhecidas causadoras de acidentes, fatais inclusive, por sua propensão a capotar 
ou virar quando a carga não está corretamente posicionada nos garfos. Funcionários podem se 
atropelados por empilhadeiras, fato comum bem como quedas de operadores. Pontes rolantes podem 
ser projetadas com aparelhos anti-colisão evitando choques com outras pontes dentro do mesmo 
pavimento. 
- Customizáveis e adaptáveis. Pontes rolantes são bastante versáteis quando se refere aos acessórios 
conectados ao gancho principal. Os tipos são quase ilimitados. Acessórios que podem ser utilizados 
incluem barras de distribuição, ganchos em C, balanças, ferramentas customizadas de levantamento, 
manipuladores, levantadores a vácuo só para citar alguns. A indústria em geral possui vários tipos de 
ferramentas que são trocadas para cada trabalho em particular. 
- Cargas mais pesadas. Cargas de alto peso podem ser manuseadas enquanto mantém-se o pessoal 
trabalhando na planta fora do alcance da carga. Empilhadeiras requerem que o operador esteja muito 
próximo da carga. Com uma ponte rolante o operador pode fixar a carga e afastar-se desta e do perigo 
que um acidente, com alguns tipos de carga, poderia gerar. O Controle remoto facilita o serviço e 
aumenta a segurança. 
Uma ponte rolante pode trabalhar ao longo de toda a extensão da planta sem interrupções. 
- Cobertura Completa. Sua planta inteira pode ser coberta sem nenhum pontomorto. Maior 
flexibilidade quando se faz o design da área operacional. 
- Custos operacionais baratos. Os custos operacionais das pontes são muito baixos. Desde tipos que 
não requerem energia e são totalmente manuais até um sistema trifásico muito econômico. Não 
existem necessidades de cargas em baterias ou tanques de combustível. Uma ponte rolante está 
sempre pronta para o trabalho. 
- Facilidade ergonômica. Uma das máximas da atualidade é ajudar o trabalhador em seu local. Pontes 
Pequenas e ergonômicas em forma de cela substituíram o trabalhador movendo produtos manualmente 
e permitindo que este levante um produto com um aparelho de suporte. Uma carga típica de 30 quilos 
pode ser elevada pela ponte e o operador perceberá meio quilo de força. Quando uma ponte do tipo 
“workstation” é equipada com ferramentas de levantamento customizadas o trabalho pode ser feito 
com maior produtividade e os danos ao produto em si são largamente minimizados. 
- Aumento da produtividade. Em se tratando de transporte de carga, manuseio na área de produção, 
sua mão-de-obra é otimizada, a produção aumenta significativamente. Em plantas de produção de 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
222 
ciclagem rápida uma ponte rolante do tipo Box-girder ou Workstation é facilmente justificada e o 
retorno do investimento é em curto período de tempo. 
- Mão-de-obra diversificada. Com o uso de pontes seu grupo de trabalho pode incluir ambos os sexos, 
tanto quando trabalhadores de constituição física mais frágil, que não poderiam ser designados para 
trabalho manual pesado. Na medida que nossa mão-de-obra envelhece e inclui mais o sexo feminino, 
uma ponte rolante torna-se ainda mais importante e um equipamento a ser seriamente considerado. 
Fonte: http://ponterolante.co/vantagens-de-uma-ponte-rolante/ 
ZL Equipamentos Industriais e Projetos Ltda. 
 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
223 
Capítulo 7 
 
 
 Sistemas de Partida de Motores Elétricos de Indução 
 
Capítulo 7 – Sistemas de Partida de Motores Elétricos de Indução 
 
7.1 – Introdução 
 
A ligação de um motor elétrico à rede de alimentação deve ser feita com base em 
recomendações da concessionária de energia local e de normas técnicas. O objetivo é que todo o 
sistema funcione com o máximo rendimento, e que a montagem do mesmo seja efetuada otimizando 
espaço, custo e funcionalidade. 
Existem duas maneiras de se ligar um motor elétrico, que são divididas em dois grupos: 1) 
partida direta e 2) partida indireta. 
 
Sistema de Partida Direta 
 
A partida direta, (ver o item 6.2), é aquela em que o motor é energizado com a tensão de 
funcionamento desde o instante da partida (botoeira ligada). Apresenta como características a 
simplicidade, a facilidade de instalação, o baixo custo e o maior conjugado de partida do motor. 
Apresenta os inconvenientes: 
1) a corrente de partida muito alta (cerca de 8 a 10 vezes maior do que a corrente nominal), o que 
inviabiliza a sua aplicação com motores de potência elevada. Conforme determinações das 
concessionárias de energia, é consenso adotar os limites de potência de 5 CV nas redes de 220 V/127 
V e de 7,5 CV nas redes de 380 V/ 220 V; 
2) pode ocasionar a uma elevada queda de tensão no sistema de alimentação da rede CA; 
3) o sistema de proteção (cabos, contatores, fusíveis e disjuntores) terá que ser sobredimensionado, 
ocasionando um custo elevado. 
 
Sistema de Partida Indireta 
 
 Este sistema consiste em reduzir a corrente de partida do motor, através da aplicação de uma 
tensão inferior à nominal no instante da partida. Daí, a potência do motor fica reduzida e, 
conseqüentemente, sua corrente de partida. Quando o motor atingir a rotação nominal, eleva-se sua 
tensão de trabalho até o valor correto (ver dados de placa do motor). Assim, elimina-se o problema de 
corrente de pico na partida. 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
224 
 Os sistemas de partida indireta são caros e complexos. Além disso, o motor não pode partir 
com plena carga, já que a corrente é reduzida e também o conjugado. A redução que ocorre na 
corrente e no conjugado é proporcional ao quadrado da tensão. Por exemplo: se a tensão for reduzida 2 
(duas) vezes, a corrente e o conjugado ficam reduzidos 4 (quatro) vezes. 
 Justifica-se o uso de partida indireta em um motor elétrico somente se houver a comutação 
correta (na rotação nominal mudar para a tensão plena). Isto porque ocorrerá um segundo pico de 
corrente neste momento, com um valor praticamente igual ao primeiro (corrente de partida), o que 
tornaria o sistema sem função – veja a Figura 7.1. Tal comutação pode ser feita através de uma chave 
manual, acionada diretamente pelo operador – que deve estar orientado/treinado para o sistema que 
supervisiona – ou automaticamente por um relé de tempo. 
 
 
Figura 7.1 – Corrente de partida em partida direta e indireta. (b) Variação da velocidade em função 
do conjugado da carga. Fonte: WEG Equipamentos Elétricos S.A. 
 
 Um sistema de partida de motor elétrico é comumente chamado de “chave de partida”. 
Neste capítulo serão estudadas as chaves de partida: 1) Estrela/Triângulo, 2) Compensadora e 
3) chave para Motor de Indução com rotor bobinado (resistência rotórica), cuja função é 
reduzir as correntes de partida elevadas, no caso de motores de elevada potência. 
 
 
7.2 – Chave Estrela-Triângulo Manual e Semi-Automática 
 
O método de partida estrela-triângulo é empregado em motores elétricos trifásicos, onde se 
utiliza uma chave de mesmo nome. Esta chave, manual ou automática, é interligada aos enrolamentos 
do motor, que devem estar desmembrados em seis terminais disponíveis. É indicada para partida sem 
carga (a vazio). 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
225 
 Neste método, o motor parte ligado em estrela (Figura 7.2), conexão que proporciona uma 
maior impedância, e menor tensão nas bobinas, diminuindo assim a corrente de partida juntamente 
com seu conjugado, ocasionando uma perda considerável de torque na partida. 
 
 
 
Figura 7.2 – Ligação Estrela (Y). 
 
7.2.1 - Vantagens e Desvantagens da Partida Y- 
 
Vantagens: 
 é muito utilizada, devido ao seu custo reduzido; 
 não tem limites quanto ao seu número de manobras; 
 os componentes ocupam pouco espaço; 
 a corrente de partida fica reduzida para aproximadamente 1/3 da nominal. 
 
Desvantagens: 
 a tensão de linha da rede deve coincidir com a tensão da ligação triângulo do motor; 
 se o motor não atingir 90 % da velocidade nominal no momento da troca de ligação, o pico de 
corrente na comutação será quase como se fosse uma partida direta, o que não justifica o seu 
uso; 
 para ser possível a ligação em Y-Δ, faz-se necessário que os motores tenham a possibilidade 
de serem ligados em dupla tensão (220 V / 380 V ou 380 V / 660 V ou 440 V / 760 V), além 
de terem no mínimo, seis bornes de ligação. 
 
Comentários – Chave de Partida Y-Δ 
 
• Através desta manobra o motor realizará uma partida mais suave, reduzindo sua corrente de 
partida em aproximadamente 1/3 da que seria se acionado em partida direta. Daí ocorre a 
redução do torque de partida, também em 33 %; 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
226 
• logo, esta chave deve ser empregada em aplicações com conjugado resistente (conjugado de 
carga) de até 1/3 do conjugado de partida, ou seja, deve ser utilizada quase que 
exclusivamente para partidas sem carga (FRANCHI, 2007); 
• durante a partida ocorre uma redução de tensão nas bobinas do motor. O motor parte em 
ligaçãoY, com uma tensão de 58 % da tensão nominal; 
• na partida Y-Δ no modo automático, a passagem de ligação Y para a ligação Δ é controlada 
por um relé temporizador; 
• no modo manual, utiliza-se uma chave especifica – Figura 7.3; 
 
 
 
Figura 7.3 – Chave comutadora Y-Δ manual e conexões efetuadas em triângulo e em estrela. 
Fonte:http://www.electro-tech- online.com/ attachments/general-electronics-chat/44799d1279636070-looking-
star-delta-motor-starter-diagram-moet348410e_460.jpg 
 
 
• um ponto importantíssimo em relação a este tipo de partida de motor elétrico trifásico, é que 
o fechamento para triângulo só deverá ser feito quando o motor atingir pelos menos 90 % 
(noventa por cento) de sua velocidade em RPM. Logo, o ajuste de tempo de mudança 
estrela-triângulo deverá estar baseado neste fato. O uso de um tacômetro é essencial nesta 
tarefa na primeira ligação do motor com carga. A mudança da configuração para triângulo 
sem que o motor tenha atingido este percentual de rotação provocaria um pico de corrente 
praticamente igual ao que teria se usasse partida direta. Caso o motor em questão não atenda 
a este quesito devido à carga acionada, é indicado outro tipo de partida como por exemplo, 
chave compensadora, Soft-start (partida suave) ou um inversor de frequência nesta função; 
 
• no uso do temporizador estrela-triângulo recomenda-se um atraso de 30 a 100 ms (tempo 
fixo) para evitar um curto-circuito entre as fases, pois os contatores não podem ser fechados 
simultaneamente (FRANCHI, 2007). 
 
 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
227 
7.2.2 – Diagrama da Chave de Partida Estrela-Triângulo no Modo Manual 
 
Os diagramas de carga e de comando para a partida Y-Δ em modo manual são apresentados na 
Figura 7.4. 
 
 
 
Figura 7.4 - Partida no Método Estrela-Triângulo (modo manual). 
 
Modo do operação: 
 De acordo com o diagrama de acionamento (à direita, na Figura 7.4), ao se pressionar a 
botoeira S1, energiza-se o contator K1, o que leva ao fechamento do seu respectivo selo. A lâmpada 
L1 se acende e os contatos de força de K1 no circuito de carga à esquerda se fecham. Ao mesmo 
tempo, a bobina de K2 é energizada – daí, os seus contatos de força são acionados e a chave K2 NF se 
abre (o que impede a energização da bobina do contator K3. Deste modo, o motor está operando na 
ligação ESTRELA. 
 A chave S2 possui contatos intertravados (NA e NF). Ao se pressionar no ramo de K3 a chave 
S2 NA, a chave S2 NF no ramo de K2 é aberta, desfazendo-se então a ligação Y. A chave K3 NF é 
aberta neste mesmo ramo, o que impede de K2 e K3 operarem simultaneamente. O motor está agora 
operando na conexão TRIÂNGULO (contatores K1 e K3 acionados). 
 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
228 
7.2.3 – Diagrama da Chave de Partida Estrela-Triângulo no Modo Semi-Automático 
 
A Figura 7.5 mostra uma chave de partida no método Estrela-Triângulo semi-automático. A 
sequência de eventos na partida é muito simples: 
 
 
 
Figura 7.5 – Partida Y- semi-automática. (a) Diagrama de comando. (b) Diagrama de Carga. 
Fonte: http://upload.wikimedia.org/wikipedia/commons/0/0d/Partida-estrela-delta.png 
 
Apertando a botoeira S1, o contator K1 é energizado, o que fecha o seu selo. Daí é energizado 
o relé de tempo D1 e são fechados os contatos de potência de K1 e de K2 (energizado pela chave 15-
16 do relé de tempo D1). O motor parte então ligado em estrela. Note que o ramo de K3 está aberto 
(chave NF de K2 atuou). Decorrido o tempo ajustado em D1, a sua chave comuta para 15-18, 
desligando K2 e ligando K3. Daí é feita a transição para a ligação triângulo (ligação dos bornes 1-6, 2-
4 e 3-5 no MIT). 
 
7.2.4 – Dimensionamento dos Contatores para a Chave de Partida Estrela-Triângulo 
 
Tomando como base o diagrama de carga apresentado nas Figura 7.6a, tem-se que: 
- o contator K1 é utilizado para a conexão direta do motor 3 à rede elétrica; 
- o contator K3 efetua a conexão em estrela; 
- o contator K2 efetua a conexão em triângulo. 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
229 
A Figura 7.6b mostra a conexão dos contatores K1 e K2 para a operação em triângulo (1-6, 2-4 
e 3-5 nos bornes do motor). Na ligação em triângulo, as correntes nos contatores K1 e K2 são IK1 e IK2, 
respectivamente. 
 
 
Figura 7.6 – (a) Diagrama de carga – partida estrela-triângulo. (b) Conexões para a operação em . 
 
 A corrente de linha é IL, a corrente nominal do motor (In). Quando na conexão em triângulo, 
tem-se: 
1 2 0,58
3
L
K K n
I
I I I I I      
 
 
 A impedância de cada fase do motor é dada pela Equação (7.1). 
 
F
F
V
Z
I

 (7.1) 
 Assim, obtém-se: 
 3
3
F L L
F nL
V V V
Z
I II

  
 (7.2) 
 
Na conexão estrela, representada pela Figura 7.7, a corrente em cada chave do contator K3 é 
IK3, obtida pela Equação (7.3): 
 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
230 
3 3
0,33.
33
n n
n
Y n
n
n
V V
I
I I
Z V
I
   

 (7.3) 
Daí, 
3 0,33.K nI I
. 
 
 
Figura 7.7 – Conexão em estrela: dimensionamento da corrente IK3. 
 
 
7.2.5 – O Conjugado de Partida da Chave Estrela-Triângulo 
 
 Como fica o conjugado do motor após a transição da conexão em estrela para triângulo? 
 Tendo que Vn é a tensão nominal de cada uma das fases do enrolamento do motor, o 
conjugado desenvolvido pelo mesmo na conexão triângulo é obtido pela Equação (7.4). 
 
2. nT k V 
 (7.4) 
 
Onde: T é o torque na ligação  e k é uma constante do motor e Vn = VL(Rede). 
Daí, a Equação (7.4) pode ser reescrita como: 
 
2 2
Rede. .LT k V T k V   
. 
 Na partida em conexão Y, a tensão em cada fase do motor é 
(Rede) 3F LV V
. 
 Daí, o torque de partida, TY, é dado por: 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
231 
 
 
2
2
(Rede). . 3Y F LT k V k V 
 
 Desenvolvendo esta equação (comprove), obtém-se: 
3
Y
T
T 
 
 Isto comprova que, na partida em estrela do motor de indução trifásico, ocorre uma redução de 
33 % no seu torque ou conjugado de partida. 
 
Exercício de Simulação 4 – ES4 
 
 A Figura 7.8 mostra um aplicativo em Flash para simulação de uma chave de partida Y-. 
Tente fazer o download do arquivo e simular a operação de partida (modo automático). 
 Verificar na simulação: 
 - os contatores que atuam na conexão em estrela; 
 - idem para a conexão em triângulo. 
 
 
Figura 7.8 – Simulação em FLASH da Chave de Partida Y-. Disponível em: 
http://www.4shared.com/file/-9HzOsiI/94_ESTRELA_TRINGULO.html 
 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
232 
7.3 – Chave Compensadora Semi-Automática 
 
 
Essa chave de partida alimenta as bobinas do motor com tensão reduzida na partida. Tal redução 
é feita através da ligação de um autotransformador em série com as bobinas. Após a partida do motor, 
as suas bobinas recebem a tensão nominal (FRANCHI, 2007). 
Uma chave de partida compensadora é composta, na maioria dos casos, dos seguintes 
equipamentos: 
 
1) um transformador ligado em estrela; 
2) três contatores; 
3) um relé de sobrecarga; 
4) três fusíveis retardados e 
5) um relé de tempo. 
Destina-se a máquinas que partem com conjugado tais como, bombas, compressores, 
ventiladores, exaustores, etc. 
- Partidas normais (< 10 s ). 
- Para partidas prolongadas (pesadas) deve-se ajustar as especificações do contator, relé de 
sobrecarga,condutores, etc. 
A partida compensadora ou chave compensadora é utilizada para partidas sob cargas 
de motores de indução trifásicos com rotor em curto-circuito, onde a chave estrela-triângulo é 
inadequada. 
 As normas técnicas e manuais de fabricantes prevêem a utilização desta chave para motores, 
cuja potência seja maior ou igual a 15 CV. 
 Esta chave reduz a corrente de arranque, evitando sobrecarregar a linha de alimentação. Deixa, 
porém, o motor com conjugado suficiente para a partida. 
 A tensão na chave compensadora é reduzida através de um auto-transformador trifásico que 
geralmente possui taps de 50 %, 65 % e 80 % da tensão nominal. 
 
 
Exemplo 7.1 – Chave Compensadora com dois taps de ajuste, em modo automático 
 
A Figura 7.8 mostra o diagrama de carga para uma chave compensadora com dois taps de 
ajuste da tensão nominal: 65 % e 80 %. A Figura 7.9 mostra o respectivo diagrama de comando. 
 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
233 
 
Figura 7.8 – Chave compensadora para um MIT com dois taps de ajuste. 
 
 
Figura 7.9 – Diagrama de comando para a chave compensadora – diagrama de carga da Figura 7.8. 
 
 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
234 
Exemplo 7.2 – Chave Compensadora com quatro taps de ajuste, em modo automático 
 
A Figura 7.10 mostra outro exemplo de chave de partida compensadora. Estudar o diagrama 
de comando da Figura 7.11 e descrever a sua operação. 
 
 
Figura 7.10 – Chave compensadora para um MIT com quatro taps de ajuste. 
 
 
Figura 7.11 – Diagrama de Comando da Chave compensadora para um MIT com quatro taps de ajuste. 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
235 
 As vantagens do uso da chave compensadora são (FRANCHI, 2007): 
 - na comutação do TAP de partida para a tensão da rede, o motor não é desligado e o segundo 
pico de corrente é bastante reduzido; 
 - para que o motor possa partir satisfatoriamente, é possível variar o TAP de 65 %, 80 % ou 
até 90 % da tensão da rede; 
 - o valor da tensão da rede pode ser o mesmo da tensão da ligação triângulo ou estrela do 
motor; 
 - o motor necessita somente de três bornes externos. 
 Como desvantagens, podem ser citadas: 
- limitação de manobras; 
- custo mais elevado em função do autotransformador; 
- maior espaço ocupado no painel devido ao tamanho do autotransformador. 
 
 
7.3.1 – Equacionamento da Chave de Partida Compensadora – o Torque de Partida 
 
 Primeiramente, será apresentado o esquema de um autotransformador, utilizado para a partida 
com chave compensadora do motor trifásico. 
 A Figura 7.12 mostra o esquema de um autotransformador, no qual é aplicada uma tensão à 
sua bobina, que possui vários taps de ajuste. 
 
 
Figura 7.12 – Esquema de um autotransformador. 
 
 Considerando que não há perdas neste sistema, a potência de saída é igual à de entrada, ou seja: 
 
 = (sem perdas)
entrada i saída o
o o i i
P P e P P
V I V I
 
 
 A relação de espiras, N2/N1 será chamada de fator a (fator de redução da tensão da entrada). 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
236 
 Este fator será então, para tensão e corrente: 
2
1
 = = o i
i o
V IN
a
N V I

 
Torque do Motor com Chave Compensadora 
 
De posse destas relações acima, encontra-se a redução percentual no Torque de partida do 
motor submetido a este processo de partida. 
 Relembrando, o torque do motor é dado por 
2. nT k V
, 
 onde T é o torque do motor, k é uma constante do motor e Vn a sua tensão nominal (dados de 
placa ou o fabricante). 
 Logo, temos um torque de partida nominal dado por: 
2
( ) ( ).p n p n nT k V
 
 
Torque com compensação 
 
Com o uso da chave compensadora, a tensão nominal do motor é a tensão de saída do 
autotransformador. Então o torque será indicado por Tp(c) , descrito pela Equação: 
 
2 2 2 2
( ) ( ) ( ) ( ). .( . ) . .p c p c c p c i p c iT k V k aV k a V  
 
 
Como a tensão de entrada do autotransformador é a própria tensão da rede de alimentação 
(Vn), então: 
 2 2 2 2 2( ) ( ) ( ) ( ) ( ). . . . . p c p c n p c n p c p nT k a V a k V T a T   
 
Logo, o conjugado compensado é o produto do conjugado nominal pela relação do número de 
espiras ao quadrado. 
 
Exemplo 7.3 
 
 Se fosse aplicada uma relação de transformação no autotransformador de uma chave 
compensadora, onde o fator de redução a = 0,5 ou 50 %, p. ex., com N1 = 100 e N2 = 50, qual seria a 
redução do conjugado em relação ao nominal? 
Aplicando a equação 
2
( ) ( ). p c p nT a T
: 
 
2 2
( ) ( ) ( ) ( ) ( ). 0,5 . 0,25. p c p n p n p c p nT a T T T T   
 
 Logo, o conjugado de partida compensado seria igual a ¼ do conjugado de partida nominal. 
 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
237 
 Exemplo 7.4 
 
 Por que é importante conhecer o conjugado da carga para a aplicação de uma chave 
compensadora? 
É importante e fundamental conhecer o conjugado resistente (ex.: o peso máximo da carga de 
um elevador), para escolher o TAP correto, já que há neste método, uma redução significativa no 
conjugado de partida. 
 Para partir, o motor tem que apresentar um conjugado de partida maior que o conjugado 
resistente. 
 
Exemplo 7.5 
 
 Quais são as aplicações da Chave Compensadora? 
O acionamento com chave de partia compensadora normalmente é indicado para motores de 
potência elevada, acionando cargas com alto índice de atrito, tais como acionadores de 
compressores, grandes ventiladores, laminadores, moinhos, bombas helicoidais e axiais (aplicações 
em poços artesianos), britadores, calandros, máquinas acionadas por correias, etc. 
 
Exercício de Simulação 5 – ES5 
 
 A Figura 7.13 mostra um aplicativo em Flash para simulação de uma chave compensadora. 
Tente fazer o download do arquivo e simular a operação de partida (modo automático). 
 
 
Figura 7.13 – Simulação em Flash da Chave Compensadora (modo automático, com relé de tempo). 
Fonte: http://www.4shared.com/get/0vnS4DcC/Apresentao_sobre_motores_em_fl.html 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
238 
7.3.2 – Correntes da Chave Compensadora 
 
O diagrama unifilar de partida utilizando a chave compensadora é destacado na Figura 7.14, 
onde há vários TAPs (ou derivações ou ainda pontos de tomada, à direita em zoom). Para o correto 
entendimento deste circuito, será necessário compreender como funciona um autotransformador. 
 
Figura 7.14 – Taps da chave compensadora. À direita, um zoom mostrando as derivações e correntes.. 
 
7.3.2.1 – O Autotransformador 
 
O funcionamento de um autotransformador será apresentado neste item. Na Figura 7.15 são 
apresentados o seu aspecto construtivo e o seu circuito elétrico. 
 
 
Figura 7.15 – Autotransformador. (a) Aspecto construtivo. (b) Circuito elétrico. 
 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
239 
A corrente I1, através da parte superior ou em série do enrolamento de N1 espiras, produz o 
fluxo magnético 1. Pela Lei de Lenz, a corrente natural da parte inferior do enrolamento (de N2 
espiras) produz um fluxo oposto 2. 
Portanto, a corrente I2 sai do enrolamento pelo TAP, identificado como ponto b no esquema da 
Figura 15. A Figura 7.16 mostra a direção dos fluxos magnéticos 1 e 2. 
 
 
Figura 7.16 – Autotransformador – direção das componentes de fluxo magnético. 
 
Numa definição clássica, o autotransformador constitui um enrolamento eletricamente 
contínuo,com um ou mais pontos de tomada (TAG ou TAP), em um núcleo magnético 
(EDMINISTER, 1985). 
 Com relação ao circuito ao lado, a sua relação de transformação é: 
 
 
1 1 2
2 2
1
V N N
a
V N

  
 (7.5) 
 
a qual excede por uma unidade a relação de 
transformação de um transformador ideal de 
dois enrolamentos com a mesma relação de 
espiras. 
 Para a determinação da relação de 
transformação de correntes, considera-se em 
um autotransformador ideal, sem perdas – 
Equação (7.6). 
 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
240 
1 2
1 1 2 2
2 1
V I
V I = V I =
V I

 (7.6) 
 
1 2
2 1
2 1
V I
1 I ( 1)I
V I
a a     
 
Daí, as correntes estão também na mesma relação de transformação. 
Chamando de N1
/
 o número total de espiras do primário (do ponto a ao c no circuito ao lado), 
pode-se escrever: 
1 2 1
2 1 2
V I N
V I N
a

  
 (7.7) 
onde 
1 1 2N N + N . 
 
 
7.3.2.2 – Equacionamento das Correntes da Chave Compensadora: IK1, IK2 e IK3 
 
Para a determinação das correntes da chave compensadora, 
considera-se: 
- No contator K1 flui a corrente nominal, In. 
- A impedância do motor, constante, é dada por: 
n
n
V
Z
I

 
Quando da aplicação da tensão reduzida, obtém-se: 
/ S n
S S
V V
Z a
I I
 
 
Lembrando que VS = aVe 
e que Ve = Vn. 
 
Como /Z Z - a impedância do motor é constante, sendo aplicadas a corrente e a tensão 
nominais (FRANCHI, 2007) -, tem-se: 
n n
n S
V V
k
I I

 (7.8) 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
241 
onde k = a é o fator de transformação ou redução. Daí, 
1
2
e
s
NN
k
N N
 
 ajustado pelos taps do 
autotransformador. 
Da Equação (7.8), isolando a corrente Is, obtém-se: 
 .n n S n
n S
V V
k I k I
I I
  
 
 
Corrente no contator K2 
 
Considerando o autotransformador sem 
perdas, as potências do primário e do secundário são 
iguais: 
Ps = Pe 
Daí: 
 
2
. .
. . . . 
S S e e
n n n K
V I V I
k V k I V I


 
 
A corrente no contator K2 é então: 
 
2
2 = .K nI k I
 
 
Correntes nos contatores K1 e K3 
A corrente IK1 é a própria corrente nominal do motor, ocorrendo somente quando o contator K1 
é acionado (operação com tensão plena). 
 Logo, 
1 = K nI I
 
 Para o contator K3: 
2 3+ S K KI I I
 
2 3
2
3 2
+ 
. .
S K K
K S K n n
I I I
I I I k I k I

   
 
 23 .K nI I k k 
 
 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
242 
Corrente no Relé de Sobrecarga, FT1 
 
 É a mesma do contator K1, já que está situado 
logo abaixo deste, em série. 
 Assim, 
1 1.FT KI I
 
 Todas as correntes do circuito são: 
1 = K nI I
 
2
2 = .K nI k I
 
 23 .K nI I k k 
 
1 1FT KI I
 
 
A Tabela 7.1 apresenta o cálculo das correntes nos contatores K2 e K3 para os seguintes 
valores ajustados nos TAPs do autotransformador (FRANCHI, 2007). 
 
Tabela 7.1 – Correntes nos contatores K2 e K3 a partir da relação de TAPs do autotransformador (FRANCHI, 2007). 
TAPs do 
autotransformador 
 (ajuste em % de Vn) 
Fator de redução 
(K) 
Corrente IK2 Corrente IK3 
85 0,85 0,72 In 0,13 In 
80 0,80 0,64 In 0,16 In 
65 0,65 0,42 In 0,23 In 
50 0,50 0,25 In 0,25 In 
 
 
7.4 – Chave para Motor de Indução com Rotor Bobinado (Resistência Rotórica) 
 
Este tipo de chave é utilizado e motores de rotor bobinado, onde os terminais são acessíveis. Daí 
se consegue alterar a resistência do enrolamento de cada fase, através da introdução de resistências 
externas, em série com o circuito do rotor. A ligação destas resistências com o motor é efetuada 
através de três anéis coletores (veja a Figura 7.17). Desta ação se obtém (REZEK, 2010): 
- diminuição e controle da corrente de partida; 
- aumento do conjugado de partida e 
- controle de velocidade. 
 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
243 
 
Figura 7.17 – Esquema de ligação do reostato externo ao motor CA de rotor bobinado. 
 
 O enrolamento trifásico deste tipo de motor é formado por um enrolamento trifásico 
construído com condutores de cobre isolados e dispostos em ranhuras, formando as bobinas, 
conectadas em estrela. Os terminais livres de cada enrolamento, como se vê na Figura 7.17, 
encontram-se ligados a um coletor de anéis que fazem contato com a parte estatórica através de um 
conjunto de escovas de carvão grafítico. 
 A função do reostato de partida, ligado aos enrolamentos do rotor, é reduzir as correntes de 
partida elevadas, no caso de motores de elevada potência (Figura 7.18). 
 
 
Figura 7.18 – Conexão do reostato de partida aos enrolamentos do rotor. 
 
 À medida que o motor ganha velocidade, as resistências são retiradas progressivamente do 
circuito até ficarem curto-circuitadas, quando o motor passa a funcionar no seu regime nominal. 
 Como se vê na Figura 7.19b – curvas C x s (conjugado x escorregamento) –, o conjugado de 
partida (breakdown torque) do motor diminui com o aumento da resistência aplicada aos enrolamentos 
do rotor. Nesta figura, R2 > R1 > R0. 
 Como o conjugado é uma função da corrente do rotor, suas curvas são fortemente 
influenciadas pela variação da resistência rotórica. 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
244 
 O controle de velocidade através da variação de resistências não é muito indicado, pois 
acarreta perdas ao sistema. 
 
 
 
(a) 
 
 
(b) 
Figura 7.19 – (a) Curva C x s. Fonte: http://www.geindustrial.com.br/download/artigos/nt01.pdf. (b) Efeitos da 
introdução de resistências sobre as curvas C x s. Fonte: http://www.vias.org/feee/c13_motors_09.html 
 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
245 
7.4.1 – Chave de Partida para Motor de Indução com Rotor Bobinado 
 
A Figura 7.20 mostra os diagramas de carga e de comando para uma chave de partida que 
controla a inserção de resistências no circuito do rotor de um MIT. 
 
 
(a) 
 
(b) 
Figura 7.20 – (a) Diagrama de carga e (a) de comando para um MIT 
com rotor bobinado – Controle da resistência rotórica. 
 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
246 
LEP 9 
 
 
 Lista de Exercícios e Problemas 8 – 11 Questões 
 
 
 
Questão 1 – Seja o esquema da Figura 1: 
diagrama de comando para um motor 
trifásico no sistema de partida Y-. 
a) Por que, no caso do motor partindo em 
estrela, ocorre uma redução da tensão nas 
suas bobinas? Em termos percentuais, 
qual é esta redução? Demonstrar. 
b) Onde é utilizada, na prática, a chave 
estrela-triângulo? 
c) No esquema da Figura 1, qual é o 
contator responsável pelo fechamento 
das bobinas em triângulo? 
 
Questão 2 (FRANCHI, 2007) – Mostrar 
com cálculos, que, na ligação do motor 
em estrela (Y), ocorre uma redução do 
conjugado (torque) na partida do motor 
em 1/3 (33 %). 
 
 
Figura 1 – Chave de Partida Y-. Diagrama de Carga. 
 
Questão 3 (FRANCHI, 2007) – Citar as vantagens e desvantagens da Chave de Partida Estrela-
Triângulo. 
 
Questão 4 (FRANCHI, 2007) – Elaborar um diagrama de comando para uma Chave de Partida Y- 
automática, utilizando relés de tempo, dos tipos TRE e TRD. O tempo de partida, de acordo com a 
carga conectada ao motor, deverá ser de 500 ms (tempo para o motor atingirpelos menos 90 % 
(noventa por cento) de sua velocidade em RPM). O motor deverá permanecer em regime permanente 
durante 30 segundos e, após este tempo, desligar. 
 
Questão 5 (FRANCHI, 2007) – Sobre a Chave de Partida Compensadora, responda: 
a) Quais são os dispositivos utilizados nesta chave? 
b) Pode-se substituir os relés de sobrecarga e os fusíveis retardados neste tipo de comando? 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
247 
c) Justifique a afirmativa: 
“na partida por chave compensadora, o conjugado da máquina acionada e a corrente que 
circula no enrolamento do motor ficam reduzidos por fatores correspondentes ao TAP (derivação) do 
auto-transformador escolhido para a operação”. 
 
Questão 6 – Que tipo de temporizador é indicado pelo diagrama da Figura 2? Explicar o seu 
funcionamento, projetando um diagrama de acionamento apropriado. 
 
 
Figura 2 – Questão 6. 
 
 
Questão 7 – O esquema da Figura 3 diz respeito aos diagramas de carga e de comando de um motor de 
indução trifásico (MIT) – método de partida em Estrela-Triângulo. 
 
a) Para os diagramas apresentados, descrever os possíveis erros de ligações e de identificação 
pendentes. 
b) A corrente do contator K2 é igual à corrente nominal do motor? Justifique. 
 
 
 
Figura 3 – Questão 7. 
 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
248 
Questão 8 
 
a) Identificar corretamente as chaves utilizadas no diagrama da Figura 4b, para o acionamento de 
um MIT – Partida com chave compensadora. 
b) Como fica o conjugado de partida do motor com este tipo de acionamento? 
 
 
Figura 4 – Questão 8. 
 
 
 
Questão 9 – A partida automática com autotransformador (chave compensadora) permite que o motor 
inicie a sua operação com tensão reduzida. Após um certo tempo, previsto e ajustado, permite que o 
motor passe a operar com a tensão plena. Isto dá a este método, em relação à partida manual duas 
vantagens: 
 
1) não exige esforço físico do operador; 
2) permite comando à distância. 
 
Para o diagrama de comando da Figura 5a, observar se há erros que comprometem o comando do MIT 
da Figura 5b. Corrigir os eventuais erros e refazer o diagrama de comando. 
 
 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
249 
 
 
 (a) (b) 
Figura 5 – Chave compensadora, questão 9. 
 
 
Questão 10 – Projetar para o motor de 
indução trifásico da Figura 6: 
 
a) um diagrama de comando para partida 
em estrela-triângulo (modo manual) e 
reversão de rotação após 10 segundos; 
b) um diagrama de comando onde todo o 
procedimento seja automático – partida em 
estrela-triângulo, reversão de rotação e 
parada/desligamento do motor. Os tempos 
de ajuste do relé serão: 
- partida Y-: 200 ms; 
- reversão: 30 segundos após a partida; 
- desligamento: 5 minutos após a partida. 
 
 
Figura 6 – Diagrama de carga de um MIT para partida 
em estrela-triângulo com reversão de rotação. 
 
 
 
Fundamentos de Acionamentos Elétricos - Ensino Técnico 
 
250 
Questão 11 – Identificar e corrigir os eventuais erros no diagrama de comando da Figura 7b, a fim de 
que possa ser realizada a partida compensada para o MIT da Figura 7a. 
 
 
 
 
 (a) (b) 
 
Figura 7 – MIT acionado por uma chave compensadora. (a) Diagrama de Carga. (b) Diagrama de comando. 
 
CEFET-MG – Curso Técnico de Mecatrônica - Acionamentos e Comandos Elétricos 251 
 
 
0-9-09-9- 
Capítulo 8 
 
 
 Motor Monofásico 
Capítulo 8 – Motor Monofásico 
 
 
8.1 – Motor Monofásico - Princípio de Funcionamento e Componentes 
 
8.1.1 – Introdução 
 
 Para definir de uma maneira objetiva um motor monofásico, bastaria mencionar que este é uma 
versão simplificada de um motor trifásico, já que há somente uma bobina ou um enrolamento estatórico 
distribuído. A Figura 8.1 apresenta duas versões de motores monofásicos. 
 
 
 (a) (b) 
Figura 8.1 – (a) Motor monofásico, utilizado exclusivamente para aplicações didáticas (baixa potência). 
Disponível em: www.delorenzogroup.com/dl/altri/portoghese/eurolab/euro_por06.pdf. (b) Torno industrial, 
equipado com motor monofásico de 220 V. 
Fonte: http://www.dmitaliasrl.com/it/Scheda_prodotto/Foto/Tornio_BVB25L3.jpg. 
 
 
Os motores elétricos monofásicos, de um modo geral, constituem uma alternativa quando não se 
dispõe da rede elétrica trifásica. Esta é uma situação que ocorre na zona rural, onde, em algumas 
comunidades só existe a rede monofásica, em 110 V (derivada através do transformador bifásico com 
secundário de 220 V). 
 
CEFET-MG – Curso Técnico de Mecatrônica - Acionamentos e Comandos Elétricos 252 
 Pelo fato de possuírem apenas uma fase de alimentação, não há a formação do campo magnético 
girante, característica principal dos motores trifásicos. Daí não ocorre o conjugado de partida, já que no 
rotor é induzido um campo magnético alinhado com o campo magnético do estator. 
 A fim de solucionar o problema da partida do motor monofásico, são utilizados enrolamentos 
auxiliares de partida, dimensionados e posicionados de forma a criar uma segunda fase fictícia, o que 
permite a formação do campo girante para a partida. Em decorrência, o motor monofásico é sempre 
maior e mais caro que o trifásico, para uma mesma potência, e requer uma maior manutenção. 
 
 
8.1.2 – A Partida em um Motor Monofásico 
 
A partida é dada por meio de um enrolamento auxiliar ao qual é ligado um capacitor em série 
com a bobina (chamado de capacitor de partida), que provoca um defasamento da corrente, fazendo o 
motor funcionar como bifásico. Um dispositivo centrífugo (chave mecânica) em série com o capacitor 
de partida desliga o enrolamento auxiliar após o motor ter atingido uma certa velocidade (veja as 
Figuras 8.2a e 8.2b). 
 Pela inclusão do capacitor de partida (capacitor start) em série com o enrolamento auxiliar de 
partida, é criado um ângulo de defasagem entre as correntes dos enrolamentos principal e auxiliar, 
elevando o torque de partida (o ângulo de fase da corrente do enrolamento auxiliar é colocado em 
avanço de fase de 90 graus, relativamente à corrente no enrolamento principal). Como os dois 
enrolamentos, na construção do motor, estão separados de 90 graus, a diferença de fase de 90 graus das 
correntes produzirá um único campo magnético, uniforme e girante, e o motor se comporta como se 
arrancasse a partir de uma rede de alimentação trifásica. O conjugado de partida por atingir até 4 
(quatro) vezes o valor do conjungado nominal. O motor monofásico com capacitor de partida é bastante 
utilizado em potências na faixa de ¼ CV até 15 CV. 
A inversão do sentido de rotação do motor monofásico ocorre quando as ligações do 
enrolamento auxiliar são invertidas, trocando o terminal número 6 pelo número 5. 
 
 
(a) (b) 
Figura 8.2 – Enrolamentos de um motor monofásico. 
 
CEFET-MG – Curso Técnico de Mecatrônica - Acionamentos e Comandos Elétricos 253 
 
 Em resumo, o princípio de funcionamento do motor monofásico é descrito da seguinte forma: 
1) O enrolamento principal monofásico produz um campo pulsante; 2) matematicamente o campo 
pulsante é decomposto em dois campos girantes, girando em oposição (Figura 8.3); 3) a interação entre 
estes campos e as correntes induzidas norotor produzem binários opostos. 
 
 
Figura 8.3 – Decomposição do campo pulsante. 
 
A Figura 8.4 mostra a formação do campo magnético pulsante para duas fases (defasadas de 180 
graus) atuando. Veja que o campo resultante não é girante. 
 
 
Figura 8.4 – Campo magnético pulsante para duas fases atuando (motor monofásico). 
 
CEFET-MG – Curso Técnico de Mecatrônica - Acionamentos e Comandos Elétricos 254 
 
Os motores monofásicos não partem por si só, quando alimentados por uma tensão alternada, já 
que não há a formação do campo girante, como ocorre nos trifásicos. A Figura 8.5 apresenta a formação 
do campo magnético devido a uma só fase (rede senoidal monofásica). 
Como se vê, este campo é pulsante e tem sempre a mesma direção, não permitindo então a 
indução de correntes significativas nos enrolamentos do rotor. 
 
 
Figura 8.5 – Campo magnético pulsante, Bp, gerado pela alimentação senoidal, 
aplicada aos terminais do motor de indução monofásico. 
 
Pode-se criar um método de criação de um segundo campo magnético, com uma defasagem de 
90 graus em relação à alimentação. Surge então um sistema bifásico, com a conseqüente formação de 
um campo magnético girante, capaz de provocar a partida do motor, como mostra a Figura 8.6. 
 
 
Figura 8.6 – Campo magnético girante B, formado gerado pela alimentação 
senoidal bifásica, aplicada aos terminais do motor de indução monofásico. 
 
 
CEFET-MG – Curso Técnico de Mecatrônica - Acionamentos e Comandos Elétricos 255 
 
8.1.3 – Características Principais do Motor Monofásico 
 
- Os motores monofásicos possuem um campo magnético pulsante. 
- Devido ao baixo torque de partida, além do enrolamento principal utiliza-se um enrolamento auxiliar 
(que defasa corrente em 90º). 
- Não é recomendada a utilização de motores maiores que 3 CV (provoca desbalanceamento da rede 
elétrica). 
- O motor de indução monofásico é o motor mais usado em aplicações domésticas como frigoríficos, 
máquinas de lavar, relógios, compressores, bombas, etc. 
- A potência vai até 10 HP. Acima de 1 HP têm menor binário de arranque, são mais caros e mais 
ruidosos que os motores trifásicos. 
 
 
8.1.4 – Motor Monofásico x Motor Trifásico 
 
Em uma comparação com motores trifásicos, os monofásicos apresentam desvantagens, 
listadas a seguir (NEVES, 2010): 
 
1) apresentam maiores volume e peso para potências e velocidades iguais (em média 4 vezes); em 
razão disto, seu custo é também mais elevado que os de motores trifásicos de mesma potência e 
velocidade; 
2) necessitam de manutenção mais apurada devido ao circuito de partida e seus acessórios; 
3) apresentam rendimento e fator de potência menores para a mesma potência (ver a Tabela 8.1) - em 
função disso apresentam maior consumo de energia (em média 20% a mais). 
4) possuem menor conjugado de partida; 
5) são difíceis de encontrar no comércio para potências mais elevadas (acima de 10 CV); 
6) apresentam rendimento e FP menores; 
7) alcançam apenas 60 a 70 % da potência do motor trifásico do mesmo tamanho; 
8) não é possível inverter diretamente o sentido de rotação dos motores monofásicos. 
 
Tabela 8.1 – Comparação entre rendimento () e fator de potência (cos ) de motores mono e trifásicos para a 
mesma faixa de potência. Fonte: O motor elétrico rural – Companhia Energética de São Paulo, CESP, 1980. 
 
Faixa de 
Potências (CV) 
Rendimento () Fator de Potência (cos ) 
Monofásico Trifásico Monofásico Trifásico 
1,6 – 1,0 0,5 – 0,65 0,59 – 0,74 0,50 – 0,65 0,58 – 0,70 
1,5 – 10,0 0,67 – 0,76 0,74 – 0,78 0,68 – 0,80 0,75 – 0,85 
11,0 – 25,0 0,76 – 0,80 0,78 – 0,89 0,80 – 0,83 0,85 – 0,86 
 
 
CEFET-MG – Curso Técnico de Mecatrônica - Acionamentos e Comandos Elétricos 256 
 
 
8.2 – Diagramas de Ligação em 127 V e em 220 V 
 
8.2.1 – Motor Monofásico de 2 Terminais 
 
 São destinados apenas a um valor de tensão. Neste tipo de motor não é possível a reversão do 
seu sentido de rotação. Exemplos: motores de pequenas bombas d’água, motores de ventiladores 
grandes para o meio rural etc. 
 
8.2.2 – Motor Monofásico de 4 Terminais 
 
 Opera com dois valores de tensão: 110 V e 220 V. Não é possível inverter o sentido de rotação. 
 Esquemas (alimentação no painel frontal de ligações): ver a Figura 8.7. 
A Figura 8.8 mostra os circuitos correspondentes às ligações em série e em paralelo para as 
bobinas. 
 
 
 (a) (b) 
 
Figura 8.7 – (a) Ligação em 110 V (bobinas em paralelo). (b) Ligação das bobinas em 220 V (conexão série). 
 
 
 
 
(a) (b) 
 
Figura 8.8 – (a) circuito do motor monofásico para ligação em 110 V – bobinas em paralelo. 
(b) Circuito para ligação das bobinas em 220 V (série). 
 
CEFET-MG – Curso Técnico de Mecatrônica - Acionamentos e Comandos Elétricos 257 
 
 
8.2.3 – Motor Monofásico de 6 Terminais 
 
 
 Este tipo de motor monofásico permite dois tipos de alimentação diferentes, uma o dobro da 
outra (110 V e 220 V), como no motor de 4 terminais. 
 Pode-se inverter o sentido de giro do motor. As Figuras 8.9 e 8.10 mostram os esquemas de 
ligação, de duas maneiras diferentes. Notar, nestas figuras, que o terceiro ramo possui uma chave 
centrífuga e um capacitor auxiliar de partida. 
 
 
 
Figura 8.9 – Conexões possíveis em um motor monofásico de 6 terminais. 
 
 
 
 
 (a) (b) 
 
Figura 8.10 – Motor monofásico alimentado em (a) 110 V e (b) 220 V. 
 
 
CEFET-MG – Curso Técnico de Mecatrônica - Acionamentos e Comandos Elétricos 258 
8.3 – Sistema de Reversão de Rotação no MM 
 
Para que haja inversão (ou reversão) na rotação do eixo, basta inverter a ligação dos 
bornes 5 e 6 do enrolamento auxiliar para com os terminais do enrolamento principal, o que 
garante a inversão do sentido da corrente e, obviamente, do campo magnético em uma das 
bobinas. 
Para o MM alimentado em 110 V ou 127 V, a reversão será mostrada na Figura 8.11, de 
acordo com a atuação dos contatores K1, K2 e K3. Na primeira situação (Figura 8.11a), os 
bornes 1 e 3 e 2 e 4 estão ligados no painel do motor. O contator K1 liga estes bornes à fase e ao 
neutro (rede de alimentação CA). O enrolamento secundário ou auxiliar ainda não foi ligado. 
Com K3 ligado, os bornes 5 e 6 são ligados à rede de 127 V (Figura 8.11b). Ocorre a partida do 
motor monofásico. 
 
(a) 
 
 
 
(b) 
 
 
(c) 
 
Figura 8.11 – Partida do motor monofásico alimentado em 127 V. Sequência de operação dos contatores. 
 
CEFET-MG – Curso Técnico de Mecatrônica - Acionamentos e Comandos Elétricos 259 
 
 Para ocorrer a reversão de rotação, o contator K3 deve ser desligado e o contator K2 ligado, para 
haver a troca entre os terminais do enrolamento auxiliar e do enrolamento principal (5 liga com 4 e 6 
liga com 3). 
 Mas, deve ser observar que: esta troca só deve ser feita com PARADA DO MOTOR (contator 
K3 desligado), já que não se garante que, ao ligar o contator K2, o contator K3 esteja desligado (mesmo 
havendo intertravamento entre os ramos de K2 e de K3), podendo ocorrer um curto-circuito fase-neutro. 
Para garantir um intervalo de tempo entre a abertura de K3 e o fechamento de K2, recomenda-se o uso de 
um relé de tempo. 
 Respeitando-se este critério, o motor agora funciona comandando por K1 e K2, e com reversão 
de rotação - Figura 8.11c. 
 Resumindo: contatoresK1 e K3 – o motor gira em sentido horário (anti-horário). Contatores K1 e 
K2 – o motor gira em sentido anti-horário (horário). 
 O mesmo raciocínio empregado no acionamento em 127 V vale para o acionamento em 220 V. 
 A Figura 8.12 mostra o diagrama de carga deste motor. Completar as ligações pendentes! 
 
 
 
Figura 8.12 – Diagrama de Carga para reversão de rotação do motor monofásico. 
 
 
 Para encerrar o capítulo, a Figura 8.13 mostra os dados de placa de um motor monofásico. Da 
sua correta interpretação depende a correta instalação e o bom funcionamento deste motor. Ver a 
conexão dos bornes para a operação em MAIOR TENSÃO (220 V) e em MENOR TENSÃO (110 V). 
 
CEFET-MG – Curso Técnico de Mecatrônica - Acionamentos e Comandos Elétricos 260 
 
 
 
Figura 8.13 – Dados de placa de um motor monofásico. 
Fonte: www.kcel.com.br/MyFiles/fotos%20nova/IP21%20Mono.tif.jpg 
 
 A Figura 8.14 mostra uma das muitas aplicações de um motor monofásico: acionamento de uma 
betoneira (na área de construção civil), para mistura de massa de concreto. O motor opera com tensões 
de 110 V e 220 V, 60 Hz. O tambor da betoneira pode girar em até 26 RPM (rotações por minuto). 
 
 
Figura 8.14 – Betoneira acionada por um motor monofásico. 
 
 
CEFET-MG – Curso Técnico de Mecatrônica - Acionamentos e Comandos Elétricos 261 
 
LEP 10 
 
 
 Lista de Exercícios e Problemas 10 – 10 Questões 
 
 
 
Questão 1 – Responda, com relação ao motor de indução monofásico: 
a) Como é feita a partida deste motor? Como é constituído o enrolamento de armadura? 
b) Quais são as desvantagens do motor de indução monofásico, com relação ao motor de indução 
trifásico? 
 
Questão 2 – A Figura 1 mostra o circuito de um motor de indução monofásico. 
a) Qual é o papel do interruptor centrífugo neste esquema? 
b) Desenhar o esquema dos enrolamentos deste motor (considere o mesmo de 6 terminais), para ligação 
em 127 V e em 220 V. 
 
Figura 1. 
 
Questão 3 – Citar as características do motor monofásico de fase dividida (split phase). O torque de 
partida deste motor é elevado? Desenhar a curva C x n. 
 
Questão 4 – Representar os enrolamentos do motor monofásico, para conexão em 110 V (ou 127 V) e 
para conexão em 220 V. 
 
Questão 5 – Quais são as características do motor universal? Quais são as suas aplicações? 
 
Questão 6 – Como se identifica os enrolamentos de um motor monofásico de 6 terminais? 
 
Questão 7 – Projetar um diagrama de comando em modo automático para o motor monofásico cujo 
diagrama de carga é o da Figura 8.12. A sequência do acionamento dos contatores será a seguinte: 
1) ligar o motor – K1 e K3 (operação por 10 segundos); 
2) parar o motor (10 segundos); 
3) ligar o motor com reversão (K1 e K2) e operar o mesmo por 30 segundos; 
4) nova parada, desligar K2 e K1. 
 
CEFET-MG – Curso Técnico de Mecatrônica - Acionamentos e Comandos Elétricos 262 
Questão 8 – Seja o sistema de controle de nível, para reservatórios de água de um condomínio (Figura 
2a). É possível utilizar o motor monofásico como bomba d’água elétrica? Se afirmativo, projetar um 
diagrama de comando para o sistema. Ver a operação da chave-bóia, Figura 2b. 
 
 
(a) 
 
(b) 
Figura 2 - (a) Esquema elétrico de um sistema automático que liga/desliga uma bomba d’água elétrica usando 
chave-bóia para medição de nível. Fonte: http://www.sociedadedosol.org.br/agua/blts_h2o/imagens/reletro6.jpg. 
(b) Chave-bóia: modo de operação. 
 
Para fazer o liga/desliga automático de uma bomba elétrica (ou moto-bomba) é necessário um conjunto de 
componentes associados entre a bomba e a rede elétrica. O liga/desliga da bomba será feito segundo uma leitura do nível da 
água de dentro do(s) reservatório(s). Para fazer essa leitura, usa-se bóia eletronível, ou sensor de nível (micro-bóia que 
comanda uma micro chave elétrica tipo microswitch). 
A bóia eletronível contém no seu interior uma chave microswitch, que abre ou fecha os contatos conforme a posição 
que a bóia estiver virada (para cima ou para baixo). No cabo que é presa essa bóia, contém no seu interior três fios (a, b e c) 
ligados nos contatos a, b e c. da chave microswitch, e para ajustar o nível de água desejado dentro do reservatório, usa-se um 
peso ajustável e preso nesse cabo para determinar os pontos exatos em que deve-se ligar ou desligar a bomba. 
Observação importante: se for usar a bóia de nível em bomba com motor trifásico, ou monofásico maior que 1 HP 
em 127V ou 2 HP em 220V, deverá instalar um contator (tipo de relê com chave contatora acionada pela bóia de nível). Isso é 
importante para não haver a queima do motor ou dos contatos da chave microswitch de dentro da bóia eletronível. Para o caso 
do micro-sensor, o uso do contator é obrigatório para ligar/desligar qualquer tipo de carga (bomba, lâmpada, etc.). 
Fonte: ONG Sociedade do Sol - BOLETIM 0087 - 19/06/2007. Disponível em: 
<http://www.sociedadedosol.org.br/agua/blts_h2o/h2o0087.htm>. Acesso em 25 mar 2011. 
 
 
CEFET-MG – Curso Técnico de Mecatrônica - Acionamentos e Comandos Elétricos 263 
 
Apêndice I – Plano de Ensino da Disciplina de Acionamentos e Comandos Elétricos 
Apêndice I – Plano de Ensino da Disciplina Acionamentos e Comandos Elétricos 
 
 
CENTRO FEDERAL DE 
EDUCAÇÃO TECNOLÓGICA 
DE MINAS GERAIS 
 
 
DIRETORIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA 
COORDENAÇÃO GERAL DE AVALIAÇÃO EPT 
COORDENAÇÃO PEDAGÓGICA 
 
 
PLANO DE ENSINO 
 
I – Identificação 
1.1 - Campus: VIII Unidade: Varginha 
1.2 - Curso: Técnico em Mecatrônica - Modalidades: Integrado e Concomitância Externa / Subsequente. 
Série: 1ª. 
1.3 - Disciplina: Acionamentos e Comandos Elétricos 
 CH. Anual: 80 - Aulas Semanais: 2 
1.4 - Professor: André Barros de Mello Oliveira 
 
II – Ementa Contida no Projeto de Curso: 
 
Motor de indução. Ligações de motores de indução. Contator magnético. Dispositivos de proteção. 
Dispositivos de acionamento e sinalização. Comando de motor trifásico com contator. Sistema de partida 
semi-automática. Motor trifásico. Dispositivos de proteção e temporização. Sistema de reversão do 
sentido de rotação de um motor de indução trifásico (MIT) semi-automática. Sistema de acionamento 
automático de MIT. Motor monofásico. 
 
III - Interface com outras Disciplinas e Áreas de Conhecimento: 
 
Circuitos Elétricos, Máquinas Elétricas e Instalações Elétricas. 
 
 
CEFET-MG – Curso Técnico de Mecatrônica - Acionamentos e Comandos Elétricos 264 
IV – Objetivos: 
 
 Ao final da série, o aluno deverá ser capaz de: 
 
– Entender o princípio de funcionamento de motor de indução; 
– Identificar as partes constituintes de um motor de indução, bem como as suas funções nesta 
máquina; 
– Identificar os equipamentos usados em comandos elétricos; 
– Ligar motores de indução; 
– Interpretar diagramas elétricos: de comando e de carga; 
– Executar as montagens de comandos nas bancadas; 
– Identificar os dispositivos de manobra utilizados em comandos elétricos; 
– Utilizar os dispositivos de proteção em acionamentos elétricos; 
– Reconhecer a simbologia técnica utilizada em acionamentos elétricos; 
– Identificar os principais defeitos que ocorrem em acionamentos elétricos; 
– Interpretar diagramas de chave de partida estrela-triângulo semi-automática para MIT (Motor de 
Indução Trifásico); 
– Montar circuitos de chave de partida estrela-triângulo semi-automática; 
– Interpretar diagramas de chave compensadora (autotransformador) semi-automáticapara MIT; 
– Montar circuitos de chave de partida compensadora semi-automática; 
 – Ligar motores monofásicos. 
 
V – Unidades de Ensino e Conteúdos Programáticos Bimestrais 
 
UNIDADE 1 – MOTOR DE INDUÇÃO 
1.1 – Aplicação 
1.2 – Partes constituintes 
1.3 – Princípio de funcionamento 
1.4 – Características nominais 
 
UNIDADE 2 – LIGAÇÕES DE MOTORES DE INDUÇÃO 
 
2.1 – Ligações de motores de indução de seis terminais 
2.2 – Ligações de motores de nove terminais em estrela 
2.3 – Ligações de motores de nove terminais em triângulo 
2.4 – Ligações de motores de doze terminais em estrela/triângulo 
2.5 – Ligações de motores de duas velocidades (Dahlander) 
 
CEFET-MG – Curso Técnico de Mecatrônica - Acionamentos e Comandos Elétricos 265 
 
UNIDADE 3 – CONTATOR MAGNÉTICO 
3.1 – Funcionamento 
3.2 – Componentes 
3.3 – Diagrama de carga 
3.4 – Diagrama de comando 
 
UNIDADE 4 – DISPOSITIVOS DE PROTEÇÃO 
 
4.1 – Fusíveis 
4.2 – Relé de sobrecarga 
 
UNIDADE 5 – DISPOSITIVOS DE ACIONAMENTO E DE SINALIZAÇÃO 
 
5.1 – Botão de Comando 
5.2 – Chave de fim de curso 
5.3 – Sinaleiro 
 
UNIDADE 6 – COMANDO DE MOTOR TRIFÁSICO COM CONTATOR 
 
6.1 – Comando local 
6.2 – Comando à distância 
6.3 – Reversão direta 
6.4 – Reversão indireta 
6.5 – Motor de duas velocidades (Dahlander) 
6.6 – Comando condicionado de dois motores 
 
UNIDADE 7 – SISTEMA DE PARTIDA SEMI-AUTOMÁTICA 
 
7.1 – Chave estrela-triângulo semi-automática 
7.2 – Chave compensadora semi-automática 
7.3 – Motor de indução com rotor bobinado (resistência rotórica) 
 
UNIDADE 8 – MOTOR MONOFÁSICO 
 
8.1 – Motor monofásico: princípio de funcionamento e componentes 
8.2 – Diagrama de ligação 127 V / 220 V 
 
CEFET-MG – Curso Técnico de Mecatrônica - Acionamentos e Comandos Elétricos 266 
8.3 – Sistema semi-automático de reversão (contatores) 
 8.3.1 – Reversão em 127 V 
 8.3.2 – Reversão em 220 V 
VI – Bibliografia Específica: 
1) FRANCHI, Claiton Moro. Acionamentos Elétricos. 2ª. ed. São Paulo: Ed. Érica, 2007. 
2) NASCIMENTO Júnior, Geraldo Carvalho do. Máquinas Elétricas - Teoria e Ensaios. 2ª ed. São 
Paulo: Ed. Érica, 2007. 
3) ABNT. Normas de Instalações Elétricas de Baixa Tensão – NBR 5410. 
 
VII – Bibliografia Complementar: 
1) PAPENKORT, Franz. Esquemas Elétricos de Comando e Proteção. São Paulo: EPU, 1989. 
2) KOSOW, Irwing L. Kosow. Máquinas Elétricas e Transformadores. 14ª ed. Rio de Janeiro: Ed. 
Globo, 2006. ISBN-10: 8525002305. 
3) OLIVEIRA, André Barros de Mello. Guias de Aulas Práticas de Acionamentos Elétricos. Varginha: 
CEFET-MG, 2010. Disponível em <mellogalo.4shared.com> Acesso em jan 2010. 
 
CEFET-MG – Curso Técnico de Mecatrônica - Disciplina: Acionamentos e Comandos Elétricos 267 
Apêndice II – Normas e Símbolos utilizados em Comandos Elétricos 
Apêndice II – Normas e Símbolos utilizados em Comandos Elétricos 
 
Informações Úteis: 
 
I. Contatores: 
 
Na Figura AII.1 são ilustradas as chaves principais e auxiliares e identificação da 
função (verificar a numeração padrão adotada). 
 
 
Figura AII.1 – Normas para numeração dos contatos do contator. 
 
II. RELÉS DE TEMPO. Formas de onda de relés TRE (a), com retardo na energização e TRD 
(b), com retardo na desenergização (ver Figura AII.2). 
 
 
 
Figura AII.2. 
 
CEFET-MG – Curso Técnico de Mecatrônica - Disciplina: Acionamentos e Comandos Elétricos 268 
 
III. Simbologia – Dispositivos de manobra, proteção e comando. 
 
 
Tabela 1 - Simbologia dos principais dispositivos empregados em diagramas de comando e de carga, 
segundo as Normas ABNT (Associação Brasileira de Normas Técnicas). São apresentados também 
símbolos em outras normas, como as normas DIN (alemã) e ANSI (americana), p. ex., com a indicação 
destas aparecendo embaixo do dispositivo. 
 
 
 
Motor de 6 
terminais 
 
 
 DIN 
 
Chave NA (normalmente 
aberta) ou FECHADOR 
 
 
 DIN 
 
Chave NF (normalmente 
fechada) ou ABRIDOR 
 
 
 
Bobina 
eletromagnética, 
geral (do contator) 
 
 FT1 
 
Relé térmico ou 
de sobrecarga (no 
circuito de carga 
trifásico) 
 
 
 
 
Lâmpada de 
sinalização 
 
 
 
Fusível 
 
 
 
 
Disjuntor 
 
 
 
Relé de tempo TRE 
(retardo para energizar 
 ou operar, ou AO 
TRABALHO) 
 
 
 
Relé de tempo TRD 
(retardo para desligar ou 
desenergizar, ou AO 
REPOUSO) 
 
 
 
Chave do relé 
de tempo 
 
Relé térmico 
(exemplo de 
chave NF no 
circuito de 
comando) 
 
 
 
 
 
Abridor de 
comando 
manual 
(botoeira 
DESLIGA) 
 
 
Fechador de 
comando 
manual 
(botoeira 
LIGA) 
 
 
CEFET-MG – Curso Técnico de Mecatrônica - Disciplina: Acionamentos e Comandos Elétricos 269 
Apêndice III - Aulas Práticas 
Apêndice III - Aulas Práticas 
 
Elaboração: 
 
Prof. André Barros de Mello Oliveira, Prof. Daniel Soares de Alcântara, Prof. Egidio Ieno 
Júnior e Técnico Antônio Carlos Borges. 
 
 
 
 
 
 
 
CEFET-MG – Curso Técnico de Mecatrônica - Disciplina: Acionamentos e Comandos Elétricos 270 
 
CEFET-MG – Curso Técnico de Mecatrônica - Disciplina: Acionamentos e Comandos Elétricos 271 
Aula Prática 1 - Acionamento de Lâmpadas e Medição de Corrente e Tensão Monofásicas 
Aula Prática 1 
 
 
 Acionamento de Lâmpadas e Medição 
de Corrente e Tensão Monofásicas 
 
 
 
Grupo de trabalho (nome completo) Matrícula 
1. 
2. 
3. 
4. 
5. 
 
Turma: Modalidade: Data: 
___/___/20___ 
Nota: 
 
 
1.1 – Objetivos 
 
 Apresentação do laboratório e das normas técnicas de funcionamento e de segurança. 
 Montagem de Circuitos série e paralelo de lâmpadas incandescentes. Medição da tensão e da 
corrente eficaz nos elementos do circuito. 
 
1.2 – Procedimentos 
 
a) Montar o circuito série da Figura 1.1, onde Q1 é um disjuntor monofásico e as lâmpadas são 
incandescentes. 
 
 
 
 
 
 
 
 
 
 
 
Figura 1.1 – Lâmpadas alimentadas em série. Figura 1.2 – Lâmpadas alimentadas em paralelo. 
 
b) Medir para este circuito as tensões e a corrente indicadas na Tabela 1.1. 
Tabela 1.1 – Medições para as lâmpadas L1 e L2 conectadas em série. 
Grandezas VFN (VRMS) VL1 (VRMS) VL2 (VRMS) I (ARMS) Rnom () Rop () 
Medições 
 
CEFET-MG – Curso Técnico de Mecatrônica - Disciplina: Acionamentos e Comandos Elétricos 272 
Observação: Rnom é a resistência nominal da lâmpada, dada por 
2
nom nom nom
R V P
 e Rop é a resistência de 
operação da lâmpada, calculada por 
op L LR V I
, onde VL e IL são os valores eficazes medidos na lâmpada. 
 
c) Colocar as lâmpadas em paralelo e desenhar o circuito no espaço da Figura 1.2. 
 
d) Medir novamente os valores de tensão e de corrente e anotar na Tabela 1.2. 
 
Tabela 1.2 – Medições para as lâmpadas L1 e L2 conectadas em paralelo. 
VFN (VRMS) VL1 (VRMS) VL2 (VRMS) I (ARMS) IL1 (ARMS) IL2 (ARMS) Rnom () Rop () 
 
 
1.3 – Questões 
 
1.3.1 – Calcule, para os dois circuitos montados, a potência dissipada pelas lâmpadas. Obs.: P = VI. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1.3.2 – A soma das potências dissipadas nas lâmpadas é igual à potência entregue às mesmas pela 
fonte de tensão monofásica? Justifique. 
 
 
 
 
 
 
 
 
CEFET-MG – Curso Técnico de Mecatrônica - Disciplina: Acionamentos e Comandos Elétricos 2731.4 – Considerações Finais 
 
Anotar abaixo as principais considerações a respeito da aula prática 1. 
 
 
 
 
 
 
 
 
 
 
CEFET-MG – Curso Técnico de Mecatrônica - Disciplina: Acionamentos e Comandos Elétricos 274 
 
 
Usina termossolar, no Deserto Mojave, Califórnia, EUA. Fonte: http://sesi255-energias.blogspot.com/ 
 
 
CEFET-MG – Curso Técnico de Mecatrônica - Disciplina: Acionamentos e Comandos Elétricos 275 
Aula Prática 2 - Comandos de Acionamento por Chaves e Medição de Valores Trifásicos 
Aula Prática 2 
 
 
 Comandos de Acionamento por Chaves 
e Medição de Valores Trifásicos 
 
 
Grupo de trabalho (nome completo) Matrícula 
1. 
2. 
3. 
4. 
5. 
 
Turma: Modalidade: Data: 
___/___/20___ 
Nota: 
 
 
2.1 – Ligação de uma lâmpada em 220 V e medição de tensão e corrente de linha 
 
 
Na Figura 2.1, a chave S1 é um interruptor simples. Pode ser utilizada também uma chave NA, 
normalmente aberta, como ilustrado na Figura 2.2 – verifique este tipo de chave também. 
A lâmpada é de 220 V, com potência nominal de _________ W (verificar, se disponível a 
indicação na lâmpada). 
 
 
 
 
Figura 2.1 – Montagem 1: acionamento de uma 
lâmpada com um interruptor simples. 
 
Figura 2.2 – Montagem 2: uso de uma botoeira NA 
para acionar a lâmpada em 220 volts. 
 
 
CEFET-MG – Curso Técnico de Mecatrônica - Disciplina: Acionamentos e Comandos Elétricos 276 
 
- Desenhar no espaço da Figura 2.3 o circuito da Figura 2.2 com um amperímetro para medição da 
corrente na lâmpada. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 2.3 – Desenho da Montagem 1, com a ligação do amperímetro. 
 
 
- Conferir as ligações juntamente com o professor/técnico e então energizar o circuito. 
 
MEDIÇÕES: 
 
Tensão na lâmpada = _________ V. Corrente na lâmpada: _________ A. 
 
 
2.2 – Ligação de lâmpadas de 220 V no Sistema Trifásico 
 
 
2.2.1 - Seja o circuito da Figura 2.4, onde as lâmpadas são de 220 V. Completar as ligações em linha 
pontilhada, a fim de que as lâmpadas sejam conectadas em triângulo. Representar também no circuito 
a conexão do (s) voltímetro (s) e do (s) amperímetro (s), para medição das tensões e correntes, de linha 
e de fase. 
 
2.2.2 - Neste tipo de ligação, de acordo com a alimentação disponível no laboratório, cada lâmpada 
recebe uma tensão de (preencher a Tabela 2.1): 
 
 Tabela 2.1 – Tensão nas lâmpadas (ligação em triângulo). 
VL1 (V) VL2 (V) VL3 (V) 
 
 
 
2.2.3 - A corrente de linha é igual à corrente de fase? Justifique e faça as medições, tomando como 
base as fases R e S. 
 
 IR = _________ A (corrente de linha). IRS = _________ A (corrente de fase). 
 
CEFET-MG – Curso Técnico de Mecatrônica - Disciplina: Acionamentos e Comandos Elétricos 277 
 
 Figura 2.4. Figura 2.5 
 
2.2.4 – Representar na Figura 2.5 (completar as ligações pendentes) a conexão das lâmpadas em 
estrela (Y). 
 
2.2.5 – Medir a tensão de linha e a tensão de fase, por exemplo, na fase R e fases RS: 
 
VRS = _________ V. VRN = _________ V. 
 
2.2.7 – Explique as principais diferenças na alimentação das 3 lâmpadas em triângulo e em estrela. 
 
 
 
 
2.3 – Questões 
 
2.3.1 – Qual é a vantagem do uso da botoeira em relação ao uso de uma chave do tipo interruptor 
simples? 
 
 
 
 
 
 
 
CEFET-MG – Curso Técnico de Mecatrônica - Disciplina: Acionamentos e Comandos Elétricos 278 
2.3.2 – Qual é a função de um fusível? 
 
 
 
 
2.3.3 – O que é o curto-circuito e que situações podem provocá-lo? 
 
 
 
 
 
2.3.4 – Onde é utilizado o fusível diametral (Diazed)? Em que faixa de valores de corrente ele atua? 
Faça o esboço deste tipo de fusível. 
 
 
 
 
Esboço: 
 
 
 
 
 
 
 
 
 
 
 
CEFET-MG – Curso Técnico de Mecatrônica - Acionamentos e Comandos Elétricos 279 
Aula Prática 3 – Controle de Carga utilizando Contator e Relé de Tempo 
Aula Prática 3 
 
 
 Controle de Carga Utilizando 
 Contator e Relé de Tempo 
 
Grupo de trabalho (nome completo) Matrícula 
1. 
2. 
3. 
4. 
5. 
 
Turma: Modalidade: Data: 
___/___/20___ 
Nota: 
 
3.1 - Procedimentos 
 
a) Montar inicialmente o diagrama de comando da Figura 3.1b. Ajustar para o relé KT1 um tempo de 
10 s (ver o esquema de ligação de sua chave na Figura 3.2). Conferir as ligações juntamente com o 
professor/técnico e então energizar o circuito. 
 
 
 
(a) (b) 
Figura 3.1 – Diagramas de carga (a) e de comando (b) para o acionamento de uma lâmpada. 
 
b) Ao acionar a botoeira B1, o que ocorre? 
 
 
 
CEFET-MG – Curso Técnico de Mecatrônica - Acionamentos e Comandos Elétricos 280 
c) Qual é a função do relé de tempo KT1 nesta montagem? 
 
 
Figura 3.2 – Esquema do relé de 
tempo (contatos NF e NA). 
 
d) Montar o diagrama de carga da Figura 3.1a. No lugar de um fusível é utilizada uma chave 
disjuntora monopolar (Q1). L1 pode ser uma lâmpada de 127 V (ligada entre fase e neutro) ou uma 
lâmpada de 220 V (ligada entre duas fases). Conferir as ligações juntamente com o professor/técnico e 
então energizar o circuito. Descrever o seu funcionamento. 
 
 
 
 
 
 
e) Inserir uma lâmpada L2 em paralelo com L1, de modo que L2 seja ligada com o desligamento de L1. 
Desenhar o novo esquema do diagrama de comando e energizar o circuito. Explicar o seu 
funcionamento. 
 
Esquema: 
 
 
 
 
 
 
 
 
 
 
 
Funcionamento: 
 
 
 
CEFET-MG – Acionamentos e Comandos Elétricos 281 
Aula Prática 4 - Chave de Partida Direta - Motor de Indução Trifásico (MIT) de 6 Terminais 
Aula Prática 4 
 
 
 Chave de Partida Direta - Motor de Indução 
Trifásico (MIT) de 6 Terminais 
 
 
Grupo de trabalho (nome completo) Matrícula 
1. 
2. 
3. 
4. 
5. 
 
Turma: Modalidade: Data: 
___/___/20___ 
Nota: 
 
4.1 – Partida direta de um MIT com conexão em Triângulo (220 V) 
 
a) Montar primeiramente o diagrama de comando da Figura 4.1b. Após a montagem, conferir as 
ligações do circuito com o professor ou o técnico de laboratório e colocar o mesmo em 
funcionamento. Observação: na Figura 4.1a, Q1 representa um disjuntor tripolar, substituindo os 
fusíveis F1, F2 e F3. 
 
 3~ 60 Hz 220 V 
 
 (a) (b) 
Figura 4.1 – (a) Diagrama de Carga ou principal. (b) Diagrama de Comando (auxiliar ou funcional). 
 
CEFET-MG – Acionamentos e Comandos Elétricos 282 
 
b) Qual é a função do selo K1? 
 
 
 
 
 
 
c) Montar o diagrama de carga (Figura 4.1a). Após a montagem, conferir as ligações do circuito com 
o professor ou o técnico de laboratório e colocar o mesmo em funcionamento, através da botoeira B1. 
 
d) Medir a corrente e a tensão de linha do motor, bem como a sua rotação. Anotar os valores medidos 
na Tabela 1. 
 
Tabela 1 - Medidas efetuadas no MIT acionado em ligação triângulo. 
IL (A), com o 
amperímetro alicate 
VL (V), com o 
Voltímetro do painel 
n (rpm), com o tacômetro digital 
 
 
e) Alterar o diagrama de comando do MIT(faça o desenho do novo diagrama de comando no 
espaço da Figura 4.2 a seguir), através das seguintes funções: 
- inserir uma lâmpada de sinalização indicando motor em operação; 
- inserir um relé de tempo (KT1) para desligamento automático do MIT em 10 segundos. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 4.2 – Diagrama de Comando (ou auxiliar) para uso de lâmpada de sinalização e de relé de tempo. 
 
 
CEFET-MG – Acionamentos e Comandos Elétricos 283 
4.2 – Questões 
 
4.1 – Calcular a potência do MIT de 6 terminais, utilizando os dados medidos. Usar o FP (fator de 
potência) nominal dado na placa do motor. 
 
 
 
 
 
 
 
 
4.2 – O que muda com a conexão do motor em estrela? Calcular, em função dos valores medidos 
anteriormente, as tensões de linha e de fase e a corrente de linha. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CEFET-MG – Acionamentos e Comandos Elétricos 284 
 
 
Vista de um motor elétrico aberto. Veja o rotor de gaiola. 
 
 
 
CEFET-MG – Acionamentos e Comandos Elétricos 285 
Aula Prática 5 – Partida de um Motor Elétrico com Comando Direto e Intermitente 
Aula Prática 5 
 
 
 Partida de um Motor Elétrico com 
 Comando Direto e Intermitente 
 
 
Nome completo Matrícula 
1. 
2. 
3. 
4. 
5. 
 
Turma: Modalidade: Data: 
___/___/20___ 
Nota: 
 
PARTE 1 – Comando Direto e Intermitente – Interpretação do Circuito 
 
Tendo como base os diagramas da Figura 5.1a e 5.1b, completar as linhas para acionamento 
do MIT (Motor de Indução Trifásico, ligado em estrela) ou do Motor Dahlander (ligado em baixa 
velocidade). 
 
 
 
 (a) (b) 
 
Figura 5.1. – Diagramas de carga (a) e de comando (b) de um MIT. 
 
CEFET-MG – Acionamentos e Comandos Elétricos 286 
 
Com o uso da chave S1, o comando é _______________________ (direto/intermitente). 
 
Com a chave S2, o comando é _________________________ (direto/intermitente). Neste 
caso, o motor ameaça partir, dando pequenos arranques. Finalidade: pequenos ajustes, como por 
exemplo um torque rápido para apertar um parafuso, ou um ajuste para deslocar em um pequeno 
trecho uma ponte rolante. 
 
PARTE 2 – Montagem e Verificação da Operação 
 
a) Montar o diagrama de comando da Figura 5.1b. Após conferir a montagem com a ajuda do 
professor ou do técnico, energizar a mesma. Conferir o funcionamento e anotar a seguir. 
 
 
 
 
 
b) Montar o diagrama de carga da Figura 5.1a e verificar o comando intermitente do motor. 
Utilizar um MIT ou um motor Dahlander, o que estiver mais próximo aos cabos de 
alimentação do diagrama de comando. Assinalar a seguir o motor utilizado e indicar as 
ligações efetuadas. 
 
 ( ) Motor Trifásico - Alimentação em Estrela (Y). 
 
 
 
 
 
 
 
 ( ) Motor Dahlander - Alimentação em Baixa Velocidade. 
 
 
 
 
c) Interromper o motor utilizado pelo relé térmico, explicando a sua atuação no circuito (verificar a 
sua atuação através do botão AUTO-HAND). 
 
 
 
 
 
CEFET-MG – Campus VIII - Laboratório de Acionamentos Elétricos 287 
PARTE 3 – Estrutura de um Pórtico Rolante – Controle de Movimentos (1) 
 
 
 A Figura 5.2 mostra a estrutura de um pórtico rolante, onde 4 (quatro) motores elétricos são 
acionados. No controle de botoeiras ilustrado, as botoeiras B1 e B2 acionam o motor M3 (controle 
vertical do guincho, ver simulação online em http://croaciamc.com.br/simula/porticomanual.swf). 
 Na Figura 5.3 é apresentado um pórtico rolante industrial. 
 Para o movimento horizontal do guincho, é acionado o motor M4 (botoeiras B3 e B4). E para 
o movimento do pórtico rolante são utilizados os motores M1 e M2 (botoeiras B5 E B6). 
 
 
Figura 5.2 – Pórtico Rolante (estrutura). Fonte: http://croaciamc.com.br/simula/porticomanual.swf 
 
 
 
Figura 5.3 - Pórtico rolante – fixado sobre trilhos, é capaz de movimentar cargas de peso em torno de toneladas. 
Fonte: http://lh3.ggpht.com/_ahRGmLPIP0w/SjAOmu6kebI/AAAAAAAAJuU/o9O0jb5goB8/IMG_9692.jpg
 
CEFET-MG – Acionamentos e Comandos Elétricos 288 
PROJETO: Pórtico Rolante – Controle de Movimentos (ver Figura 5.2) 
 
Projetar o acionamento dos motores 1 e 2 (que operam simultaneamente), de modo que: 
 
1) M1 e M2 sejam acionados pela botoeira B5, para um movimento de 10 segundos, a partir do início 
dos trilhos (início do curso). 
2) Decorrido este tempo, após um intervalo de 10 segundos, o pórtico rolante é movimentado até o fim 
de seu curso. 
 
 
 
CEFET-MG – Acionamentos e Comandos Elétricos 289 
Aula Prática 6 – Partida Direta de um MIT com Reversão Temporizada 
Aula Prática 6 
 
 
 Partida Direta de um MIT com 
Reversão Temporizada 
 
 
Grupo de Trabalho (nome completo) Matrícula 
1. 
2. 
3. 
4. 
5. 
 
Turma: Modalidade: Data: 
___/___/20___ 
Nota: 
 
6.1 – Montagem e verificação do acionamento do MIT (Motor de Indução Trifásico) 
 
a) Sejam os diagramas da Figura 6.1. Completar as linhas do diagrama de carga e explicar a 
seqüência de atuação dos contatores K1, K2 e K3 (utilize o verso ou uma folha à parte). Ajustar o 
relé de tempo para 10 s, conferir as ligações com o professor e energizar a bancada. 
 
 
 (a) (b) 
Figura 6.1 – Diagramas de carga (a) e de comando (b). 
 
CEFET-MG – Acionamentos e Comandos Elétricos 290 
Descrição completa do acionamento: 
 
 
 
 
 
 
b) Inserir uma chave de fim-de-curso (NA) no ramo do contator K2. O que ocorre com o o 
funcionamento do motor? 
 
 
 
 
 
6.2 – Projeto: portão eletrônico com um MIT 
 
 Alterar o diagrama de comando da Figura 6.1, utilizando chaves de fim-de-curso, e o relé de 
tempo ajustado para 30 s. Desta forma, haveria um tempo suficiente, no caso do motor acionando um 
portão de garagem, para um veículo entrar ou sair com segurança. 
 
 
 
CEFET-MG – Acionamentos e Comandos Elétricos 291 
Projeto do Portão (veja um exemplo ilustrativo na Figura 6.2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (a) (b) 
Figura 6.2 – (a) Aspecto de um portão eletrônico, utilizado em portões de garagem, principalmente residencial. 
(b) Motor elétrico utilizado – veja a engrenagem que move o portão. 
Fontes: http://casaconstruida.com/wp-content/gallery/portao-eletronico/portao-eletronico-14.jpg e 
http://images02.olx.com.br/ui/5/84/48/1270729312_86697648_2-Portao-eletronico-portoes-eletronicos-3332-3689-Curitiba-
1270729312.jpg 
 
CEFET-MG – Campus VIII - Laboratório de Acionamentos Elétricos 292 
 
 
Sistema de bóia eletrônica – aplicação em controle de nível. Fonte: http://www.rpsteleinformatica.com.br/
 
CEFET-MG – Campus VIII - Laboratório de Acionamentos Elétricos 293 
Aula Prática 7 – Relé Eletrônico Temporizador aplicado na partida e na sinalização de um MIT 
Aula Prática 7 
 
 
 Relé Eletrônico Temporizador aplicado 
na partida e na sinalização de um MIT 
 
 
Grupo de Trabalho (nome completo) Matrícula 
1. 
2. 
3. 
4. 
5.Turma: Modalidade: Data: 
___/___/20___ 
Nota: 
 
7.1 – Montagem e verificação do acionamento 
 
Sejam os diagramas da Figura 7.1, onde o relé RT1 é um relé eletrônico temporizador, 
comandando as chaves de saída A (15-16-18) e B (25-26-28), que opera no modo cíclico. 
 
 
 
 (a) (b) 
Figura 7.1 – Diagramas de carga (a) e de comando (b). Relé temporizador: comando e sinalização de um MIT. 
 
CEFET-MG – Campus VIII - Laboratório de Acionamentos Elétricos 294 
Na Figura 7.2, vêem-se as formas de onda das saídas A e B. O dial superior do relé RTW CI 
(WEG) determina o tempo tON em que os contatos permanecem acionados, enquanto que o dial 
inferior determina o tempo tOFF em que os contatos permanecem desacionados. 
 
 
Figura 7.2 – Tempos de atuação de um relé eletrônico. 
 
a) Montar primeiramente o diagrama de comando – Figura 7.1b. Após a conferência do mesmo pelo 
professor, energizar a bancada. Ajustar o dial superior para 6 segundos e o inferior para 3 segundos. 
As lâmpadas L1 e L2 acendem juntas? Justifique. 
 
 
 
 
 
 
b) Seria possível utilizar as chaves A e B do relé cíclico para comandar um processo de reversão de 
rotação no MIT? Justifique. 
 
 
 
 
 
 
 
c) Montar o diagrama de carga para acionar o MIT, ligado em estrela, ou um motor Dahlander. 
Observar o que ocorre e descrever o acionamento completo. 
 
 
 
 
 
 
 
 
CEFET-MG – Campus VIII - Laboratório de Acionamentos Elétricos 295 
7.2 – Projeto – Ponte Rolante 
 
Elaborar, a partir do diagrama de comando da Figura 7.1, um projeto para acionar os 4 
motores da ponte rolante da Figura 7.3 – veja, no detalhe à direita, um perfil do controle remoto do 
operador. 
Sentidos de movimento da ponte rolante, de acordo com os motores utilizados (M1 a M4): 
M1 e M2 acionados conjuntamente: movimento horizontal, nos sentidos AB e BA. 
M4: movimento vertical (sentido CD e DC). 
M3: movimento horizontal (sentidos EF e FE). 
 
Figura 7.3 – Estrutura de uma Ponte Rolante. Fonte: http://croaciamc.com.br/simula/ponterolante.swf 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CEFET-MG – Campus VIII - Laboratório de Acionamentos Elétricos 296 
7.2 – Projeto – Ponte Rolante – SOLUÇÃO: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CEFET-MG – Campus VIII - Laboratório de Acionamentos Elétricos 297 
7.3 - RELÉ TEMPORIZADOR (CÍCLICO) 
 
Sejam as formas de onda da Figura 7.4, de um relé RT1 - relé eletrônico temporizador -, onde 
as suas bobinas acionam as chaves de saída A (15-16-18) e B (25-26-28). 
O dial superior do relé RTW CI (WEG) determina o tempo tON em que os contatos 
permanecem acionados, enquanto que o dial inferior determina o tempo tOFF em que os contatos 
permanecem desacionados. 
 
 
 
 
(a) (b) (c) 
 
Figura 7.4 – Relé cíclico. (a) Formas de onda. (b) Aspecto do 
relé (modelo RTW CI – WEG). (c) Identificação dos terminais. 
 
 
MONTAGEM EXTRA 
 
Inserir no diagrama de carga da Figura 7.1 um relé de proteção contra falta de fase. 
As conexões são indicadas na Figura 7.4c. 
 
 
 
 
(a) (b) (c) 
 
Figura 7.4 – Relé de falta de fase – Fabricante: WEG Equipamentos Elétricos S.A. (a) e (b) Vista do 
painel do dispositivo. (c) Esquema de ligação nos diagramas de carga e de comando. 
 
 
 
CEFET-MG – Campus VIII - Laboratório de Acionamentos Elétricos 298 
As conexões L1, L2 e L3 apresentadas na Figura 7.3c devem ser conectadas às fases R, S e T 
da rede elétrica; 
A chave NA do relé de FF deve ser utilizada para interromper o diagrama de comando no caso 
da falta de uma fase. 
 No diagrama de carga, este instrumento deve ser representado da seguinte forma (Figura 7.4). 
 
 
 
Figura 7.4 – Diagrama de carga de um MIT com rele de proteção de falta-de-fase. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CEFET-MG – Campus VIII - Laboratório de Acionamentos Elétricos 299 
Aula Prática 8 – Comando Condicionado de Cargas 
Aula Prática 8 
 
 
 Comando Condicionado de Cargas 
 
 
Grupo de trabalho (nome completo) Matrícula 
1. 
2. 
3. 
4. 
5. 
 
Turma: Modalidade: Data: 
___/___/20___ 
Nota: 
 
8.1 – Montagem e verificação do acionamento 
 
O comando condicionado de cargas é aquele onde só é possível acionar mais de uma carga se a 
primeira (e anterior, se forem mais de duas cargas) estiver (em) acionada(s). Este tipo de acionamento é muito 
utilizado em processos industriais onde, por exemplo, uma esteira só é acionada se uma unidade de produção de 
bebidas estiver abastecendo a mesma. 
 Seja o diagrama de comando da Figura 8.1, onde K1 e K2 são contatores que comandam duas cargas 
(motores M1 e M2, ou motor M1 e lâmpada L1, por exemplo). 
 
 
 
Figura 8.1 – Diagrama de comando para o comando 
 condicionado de duas cargas (incompleto). 
a) Completar as ligações pendentes no diagrama 
de comando, desenhar o diagrama de carga e 
explicar o seu funcionamento. 
 
Diagrama de carga: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CEFET-MG – Campus VIII - Laboratório de Acionamentos Elétricos 300 
a) Descrição do funcionamento: 
 
 
 
 
 
 
 
b) Montar este diagrama para acionar 2 (dois) motores trifásicos, ou um motor trifásico e uma lâmpada. 
 
c) Alterar o diagrama de comando da Figura 8.1, de modo que: 
 
- a carga 1 seja ligada; 
- 10 segundos depois a carga 2 seja ligada; 
- 10 segundos depois as duas cargas 1 e 2 sejam desligadas. Desenhar o novo diagrama. 
 
Diagrama de Comando: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Diagrama de Carga: um motor (M1) e uma lâmpada 
(L1) ou dois motores (M1 e M2). 
 
 
8.2 - Relés de Tempo 
 
8.2.1 - RELÉS de Retardo na Energização (TRE) e de Retardo na Desenergização (TRD) 
 
Um relé eletrônico do tipo TRE (Retardo na Energização) é aquele que ao ser energizado 
(bobina A1-A2), não arma os seus contatos imediatamente. A partir daí, inicia-se a contagem do 
tempo t (tRE) pré-selecionado na escala, após o qual o relé arma. As suas formas de onda (energização 
e resposta dos contatos) podem ser vistas na Figura 8.2a. 
 
CEFET-MG – Campus VIII - Laboratório de Acionamentos Elétricos 301 
Já um relé eletrônico do tipo TRD (Retardo na Desenergização) é aquele que ao ser energizado 
(bobina A1-A2), arma seus contatos. Ao ser desenergizado inicia-se a contagem do tempo t (tRD) pré-
selecionado na escala, após o qual o relé desarma – veja a Figura 8.2b. 
 
PROJETO 
 
Projetar um sistema de acionamento onde estes tipos de relé são empregados, e as cargas são dois 
motores de indução trifásicos, M1 e M2 e é utilizada uma lâmpada de sinalização L1, que mostra os 
dois motores funcionando juntos. 
 
 
 
Figura 8.2 – Formas de onda de relés TRE (a) e TRD (b). 
 
 
CEFET-MG – Campus VIII - Laboratório de Acionamentos Elétricos 302 
 
 
 
 
Chave Manual para acionamento do motor trifásico de 2 velocidades – Dahlander. 2 rotações. A11-A442.700-E. 
Fabricante: Kraus. Disponível em: http://www.salfatis.com.br/lojavirtual/Imagens/Produtos/%7B13F22269-D3E8-48EA-
BFD3-93402CB4E374%7D_Imagem8.jpg 
 
 
 
Equipe trabalhando na montagem de um quadro de comando. Fonte: 
http://picasaweb.google.com/lh/photo/GH31cKQaAzqUxzBiad8nDQCEFET-MG – Campus VIII - Laboratório de Acionamentos Elétricos 303 
Aula Prática 9 – Montagem de Chave de Partida Manual e Automática para um Motor Dahlander 
Aula Prática 9 
 
 
 Montagem de Chave de Partida Manual e 
Automática para um Motor Dahlander 
 
 
Grupo de trabalho (nome completo) Matrícula 
1. 
2. 
3. 
4. 
5. 
 
Turma: Modalidade: Data: 
___/___/20___ 
Nota: 
 
9.1 – Montagem e Verificação do Acionamento 
 
O motor Dahlander possui um enrolamento especial, com dois tipos de conexões, o que possibilita 
alterar a quantidade de pólos. Daí é possível se obter duas velocidades distintas, sempre com relação 1:2, já que a 
velocidade depende, além da freqüência da fonte de alimentação CA, também do número de pólos, pela equação 
n = 120.f/p [RPM]. Exemplos: 4/2 pólos (1800/3600 RPM); 8/4 pólos (900/1800 RPM). A Figura 9.1 apresenta 
os diagramas de carga e de comando para a sua partida manual. Completar as ligações pendentes. 
 
 
Figura 9.1 – Motor Dahlander – Diagramas de Carga e de Comando (comando manual). 
 
CEFET-MG – Campus VIII - Laboratório de Acionamentos Elétricos 304 
9.1.1 – Montagem da Chave de Partida em Modo Manual 
 
a) Com base nos diagramas da Figura 9.1, com as ligações pendentes completadas e conferidas, 
montar primeiramente o diagrama de comando, para acionamento dos contatores K1, K2 e K3. 
Conferir a montagem com o professor e energizar as ligações. 
 
a.1) Qual é a sequência de acionamento dos contatores? 
 
 
Fazer uma análise do diagrama de carga, sincronizado com o diagrama de comando. Responder: 
a.2) Que contatores comandam o motor em baixa velocidade? 
 
 
a.3) Quais são os contatores para comandar o motor em alta velocidade? 
 
 
b) Montar o diagrama de comando, observando a conexão dos bornes do motor Dahlander, para baixa 
e alta velocidade – Figura 9.2. 
 
 
Figura 9.2 – Ligações no painel de um motor Dahlander (baixa e alta velocidades). 
c) Energizar a montagem após conferir as suas ligações. Medir com um tacômetro digital as 
velocidades baixa e alta. 
n1 = _________________ RPM. n2 = _________________ RPM. 
 
9.1.2 – Montagem da Chave de Partida em Modo Automático 
a) Um diagrama de comando automático para o motor Dahlander é mostrado na Figura 9.3. Analisar 
as ligações do diagrama de carga – já montado de acordo com a Figura 9.1 - para conferir as 
conexões e numeração dos contatores, a fim de que fiquem todas de acordo com o diagrama de 
comando da Figura 9.3b. Fazer um rearranjo das mesmas, se necessário. 
b) Conferir o diagrama de comando – estão de acordo a ordem e as ligações dos contatores, de 
acordo com a Figura 9.3a? Se não, corrigir as ligações necessárias. 
 
CEFET-MG – Campus VIII - Laboratório de Acionamentos Elétricos 305 
 
 (a) (b) 
Figura 9.3 – Acionamento temporizado do motor Dahlander. (a) Diagrama de Carga. (b) Diagrama de Comando. 
 
CEFET-MG – Campus VIII - Laboratório de Acionamentos Elétricos 306 
c) Montar o diagrama de comando, ajustando para o relé de tempo 5 segundos. Efetuar o teste do 
mesmo após conferir as ligações. 
d) Energizar o conjunto e verificar a variação da velocidade após o tempo ajustado no relé de tempo. 
 
 
 
 
 
 
CEFET-MG – Campus VIII - Laboratório de Acionamentos Elétricos 307 
Aula Prática 10 – Montagem de Chave de Partida Estrela-Triângulo Semi-Automática 
Aula Prática 10 
 
 
 Montagem de Chave de Partida 
Estrela-Triângulo Semi-Automática 
 
 
Grupo de trabalho (nome completo) Matrícula 
1. 
2. 
3. 
4. 
5. 
 
Turma: Modalidade: Data: 
___/___/20___ 
Nota: 
 
10.1 – Montagem e Verificação do Acionamento 
 
a) Montar inicialmente, o diagrama da Figura 10.1a (diagrama de COMANDO). Ajustar para o relé de 
tempo um intervalo de 5 (cinco) segundos. VERIFICAR junto ao professor/técnico responsável pelo 
laboratório se as conexões estão corretas e em seguida, energizar a bancada. 
 
 
Figura 10.1 – Partida Y- semi-automática. (a) Diagrama de comando. (b) Diagrama de Carga. 
 
b) Ao apertar a botoeira S1, o contator _____ é energizado inicialmente. Decorridos aproximadamente 
10 segundos (tempo ajustado para KT1), o que ocorre? 
 
 
 
CEFET-MG – Campus VIII - Laboratório de Acionamentos Elétricos 308 
Após a verificação do diagrama de comando, montar o diagrama de CARGA (Figura 10.1b). 
Verificar atentamente a numeração dos contatos de K1, K2 e K3, bem como dos terminais do MIT 
(motor de indução trifásico). 
 
PARTIDA ESTRELA-TRIÂNGULO – Verificação das tensões e correntes 
 
 Após a montagem e verificação, utilizar um VOLTÍMETRO para medir a tensão em uma das 
bobinas do MIT, nas conexões em ESTRELA e em TRIÂNGULO, e um AMPERÍMETRO-
ALICATE, para medição da corrente de linha, seguindo o roteiro: 
 
- Medição de VF na partida em estrela: 
 
Na ligação em estrela, os terminais 4, 5 e 6 da Figura 10.2.a são interligados, através do 
contator K2 (veja novamente a Figura 10.1b, diagrama de carga). 
Primeiramente, ajustar a chave do multímetro para leitura de TENSÃO CA, no maior calibre 
(recomenda-se maior de 300 V). 
Para a medição de VFN (tensão fase-neutro), um terminal do voltímetro deverá ser ligado em 
um dos pontos de entrada da conexão Y (ponto 1, Figura 10.2b, por exemplo, para medição na bobina 
1-4) e o outro terminal no “ponto de neutro” – ponto 4, por exemplo. 
Quando da mudança de conexão de Y para , a bobina 1-4 recebe a tensão de linha (fases R e 
S conectadas, Figura 10.2c). Nesta conexão o voltímetro mede tensão de linha, VFF. 
 
 
Figura 10.2 – Motor de 6 terminais (a): formação das conexões em estrela (b) e em triângulo (c). 
 
- Medição de VL 
 
Na conexão em triângulo: tomar como base a Figura 10.2c. 
VFN (partida em estrela): ______ V. VFF = VL (conexão em triângulo): _____ V. 
 
 
CEFET-MG – Campus VIII - Laboratório de Acionamentos Elétricos 309 
- Medição da Corrente de Linha, IL 
 
 Através de um amperímetro alicate, com o calibre para medição de CORRENTE CA ajustado 
corretamente, medir o valor de IL na partida e após a conversão para a conexão triângulo. Ver a 
Figura 10.3. 
 
 
Figura 10.3 – Representação do voltímetro para leitura da tensão de fase (na ligação em Y) e de linha (na ligação 
em ). Representação do amperímetro alicate para leitura da corrente de linha. 
 
 
 IL (conexão em estrela): _________ A. IL (conexão em triângulo): _______ A. 
 
10.2 - Anotar os dados de placa do MIT utilizado para calcular as correntes dos contatores K1, K2 e 
K3. Adotar a relação Ip/In igual a 8. 
 
 
CEFET-MG – Campus VIII - Laboratório de Acionamentos Elétricos 310 
 
Aplicação do motor elétrico em uma esteira para atividade física. Fonte: 
http://ednilson.blogspot.com/2010/04/esteira-para-academia.html 
 
 
 
Esteira transportadora industrial. Fonte: http://natreb.com.br/produtos/Esteiras_1.jpg
 
CEFET-MG – Campus VIII - Laboratório de Acionamentos Elétricos 311 
Aula Prática 11 – Chave de Partida Compensadora 
Aula Prática 11 
 
 
 Chave de Partida Compensadora 
 
 
Grupo de trabalho (nome completo) Matrícula 
1. 
2. 
3. 
4. 
5. 
 
Turma: Modalidade: Data: 
___/___/20___ 
Nota: 
 
 
11.1 – Montagem e verificação do acionamento 
 
a) Montar inicialmente, o diagrama da Figura 11.1a (diagrama de COMANDO). Ajustar

Mais conteúdos dessa disciplina