Buscar

parentesco

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 32 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 32 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 32 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

COEFICIENTE DE PARENTESCO 
 
 
Se dois indivíduos são parentes entre si, então eles apresentam alguma 
similaridade pelo fato de possuírem genes em comuns. Assim, a idéia de 
parentesco pressupõe semelhanças de genótipos, dois indivíduos são parentes 
porque têm, pelo menos, um ascendente comum e, conseqüentemente, alelos em 
comum. A mensuração da quantificação dessa semelhança genética é realizada 
pelo coeficiente de parentesco. O coeficiente de parentesco, que pode ser definido 
como a probabilidade de que dois indivíduos apresentem genes idênticos pelo fato 
de serem cópias de um mesmo gene, presente em um ascendente comum. 
Em um indivíduo metade de sua herança , ou de seu conjunto de genes é 
de seu pai e a outra metade é de sua mãe. Pode-se dizer que os filhos possuem 
em média 50% de seus genes em comum com seu pai e os outros 50% em 
comum com sua mãe. 
 
CÁLCULO DO COEFICIENTE DE PARENTESCO 
 
 O processo algébrico para calcular o parentesco entre indivíduos, foi 
idealizado por SEWALL WRIGHT (1922) e pode ser calculado pela expressão: 
 
∑ ′+= nnXY )5,0(R 
 
RXY = grau de parentesco entre indivíduos X e Y; 
n = número de gerações entre o ascendente comum e o animal X; 
n` = número de gerações entre o ascendente comum e o animal Y; 
 
Exemplo 1: Seja o indivíduo X, filho de A e B e o individuo Y filho de A e D (MEIO-
IRMÃOS). 
 








D
A
Y 
B
A
X 
 
 
X B 
 
 
 A 
 
 
Y D 
 
∑ ′+= nnXY )5,0(R = 4125,05,0)5,0(R 211XY ==== ∑ + 
 
Interpretação: Os indivíduos X e Y têm 25% dos seus genes idênticos, pelo fato de 
serem cópias dos mesmos genes presentes em A.. 
 
Exemplo 2; Sejam os pedigrees em dos indivíduos X e Y. 
 






























Q
P
L
G
C
H
Y 
F
E
B
D
C
A
X 
 
 
X A 
 
 C 
 
Y H 
 
RXY = (0,5)4 = 0,625 = 6,25% 
 
X e Y possuem 6,25% dos genes idênticos a mais do que dois indivíduos 
quaisquer d mesma população, por apresentarem um ancestral comum C. 
 
 
Exemplo 3 :Com dois ancestrais comuns: 
 
 






























J
I
D
H
G
C
Y 
H
G
B
F
E
A
X 
 
 
 
 
 
 
X B G 
 
 
 
 
 
Y C H 
 
 
 
X B G C Y = (0,5)4 = 0,0625 
 
X B H C Y = (0,5)4 = 0,0625 
 
RXY = 0,0625 + 0,0625 = 0,125 = 12,50% 
 
HERANÇA E MEIO AMBIENTE 
A maior parte das características econômicas dos animais domésticos são 
de natureza poligênica (controlado por um grande número de gens).a Desta forma, 
os indivíduos são avaliados pelo seu fenótipo, no caso alguma característica de 
interesse econômico.. O fenótipo do individuo não é resultado somente da 
constituição genética do indivíduo, mas também da interação dos seus genes com 
o meio ambiente. Para que os genes possam provocar o desenvolvimento de uma 
característica é preciso que disponham e ambiente adequado. Por outro lado, as 
modificações que o ambiente pode causar no desenvolvimento de uma 
característica são limitadas pelo genótipo do individuo. Nas características de 
interesse econômico (ganho de peso, produção de leite, produção de ovos, 
número de leitões nascidos, etc.) o progresso que pode ser alcançado está na 
dependência da melhor ou pior precisão em avaliar os genótipos, tendo como 
base à informação dos fenótipos dos indivíduos. Procedimentos genéticos-
estatísticos permitem estimar o quanto da variação fenotípica é devido às 
diferenças entre os indivíduos e o quanto é divido às diferenças de natureza 
ambiental. 
 
VALOR FENOTÍPICO, GENOTÍPICO E GENÉTICO 
 
O valor observado, quando dada característica é medida no indivíduo, é 
denominado valor fenotípico. Esse valor pode ser dividido em dois componentes: 
um atribuído à influência do genótipo e outro à influência do ambiente, ou seja, 
P = G + E, 
em que P é o valor fenotípico; G, o valor genotípico; e E, o desvio causado pelo 
ambiente. 
O genótipo pode ser entendido como um agrupamento gênico que 
influencia a característica, e o ambiente são os fatores não-genéticos que 
influenciam a característica. 
Os valores genotípicos (G) podem ser decompostos em 
G = A + D, 
em que A é o valor genético aditivo e D, o desvio da dominância. 
O valor genético aditivo de um indivíduo é definido como a soma dos 
efeitos médios dos genes que ele carrega. O desvio da dominância resulta da 
propriedade de dominância entre alelos de um loco. Na ausência de dominância, 
os valores genéticos e genotípicos coincidem. 
Quando são considerados mais de um loco, existe também a epistasia, 
que é a combinação de genes em diferentes locos, influenciando a mesma 
característica. Assim, 
P = A + D +I + E, 
em que 
P = valor fenotípico; 
A = valor genético aditivo; 
D = efeito da dominância; 
I = efeito da epistasia; 
E = efeito ambiental. 
 
HERDABILIDADE OU HERITABILIDADE 
 
A seleção e o melhoramento deveriam ser feitos pela escolha dos animais 
com maiores valores genéticos. Como não se pode medir o valor genético 
diretamente, e sim o valor fenotípico, é necessário saber a precisão por meio da 
qual o valor fenotípico representa o valor genético do indivíduo. Esse indicador de 
precisão é chamado herdabilidade ou heritabilidade. 
Em termos estatísticos, a herdabilidade representa a porção da variância 
fenotípica causada pela variação dos valores genéticos aditivos. 
 
Assim, 
2
2
2
P
Ah
σ
σ
= 
em que 
2h = herdabilidade da característica; 
2
Aσ = variância genética aditiva da característica; 
2
Pσ = variância fenotípica da característica. 
 
A herdabilidade pode ser também definida como a regressão dos valores 
genéticos (A) em função dos valores fenotípicos (P) : 
 
APbh =
2
. 
Sendo 
( )
( )PV
PACovbAP
,
= 
 
( ) ( ) ( ) ( ) ( )EACovDACovAACovEDAACovPACov ,,,,, ++=++= ; 
( ) 2, AAACov σ= ; ( ) 0, =DACov ; ( ) 0, =EACov . 
 
Então, 
( ) 2, APACov σ= e ( )( ) 2
2
P
A
AP PV
AVb
σ
σ
== . 
 
Uma predição do valor genético dos indivíduos pode ser obtida pela multiplicação 
do valor fenotípico pela herdabilidade, 
 
PhA 2= . 
 
Existem basicamente dois métodos para se estimar a herdabilidade: 
1) método direto que é baseado na relação entre o ganho genético observado e o 
diferencial de seleção, essa herdabilidade é chamada efetiva ou real; 
2) método baseado na semelhança entre parentes. 
 
 
 Herdabilidade efetiva ou real 
 
A herdabilidade efetiva ou real é obtida por 
 
,
2
S
Gh
∆
∆
= 
em que 
G∆ = ganho genético ou superioridade da progênie em relação à geração dos 
pais; 
S∆ = diferencial de seleção = diferença entre a média dos indivíduos selecionados 
para serem pais e a média da população da qual eles foram selecionados. 
 
 Herdabilidade baseada na semelhança entre parentes 
 
Os valores genéticos dos indivíduos são responsáveis por parte da semelhança 
fenotípica existente entre parentes. 
As covariâncias observadasentre parentes, para determinada característica, 
podem ser usadas para se descrever as propriedades genéticas da população, ou 
seja, as medidas de uma mesma característica em indivíduos parentes fornecem 
estimativa da variância genética aditiva. 
Ao se estimar a herdabilidade, o que interessa é a porção da variância fenotípica 
total ( )2Pσ atribuída à variância genética aditiva ( )2Aσ , o que é fornecido pelas 
covariâncias entre parentes. Por exemplo, a covariância entre meio-irmãos é dada 
por 
( ) 2
4
1
AirmãosmeioCov σ=− . 
Assim, 
( )irmãosmeioCovA −= 42σ . 
 
Os tipos de dados para estimação da herdabilidade dependem da informação 
disponível e da própria espécie animal. Dados referentes a irmãos-completos 
(animais que possuem o mesmo pai e mesma mãe) e meio-irmãos paternos 
(animais que possuem mesmo pai, porém mães diferentes) são mais freqüentes 
na prática. Os dados mais freqüentes são de famílias de meio-irmãos paternos em 
gado de corte e leite, e de famílias de irmãos-completos em suínos e aves. 
 
Exemplo: Análise de variância de observações de meio-irmãos 
 
Considerando informações de meio-irmãos, a análise de variância (Quadro 2.5) 
permite o cálculo da herdabilidade com base na informação de parentes. 
 
 
Quadro 2.5 - Análise de variância 
 
FV GL QM E(QM) 
Reprodutores 1−r 
rQM 22 re kσσ + 
Resíduo rN − 
eQM 2eσ 
 
As esperanças de quadrados médios “E(QM)” indicam que 
 
a) 2eeQM σ= ; 
b) 22 rer kQM σσ += ; 
 
Assim, 
22
err QMk σσ −= 
err QMQMk −=2σ 
k
QMQM er
r
−
=
2σ , 
em que 
2
rσ = componente de variância de reprodutores; 
2
eσ = componente de variância residual; 
k = número de filhos por reprodutor. 
 
O componente de variância do reprodutor é igual à covariância entre meio-irmãos 
paternos, 
( )MICovr =2σ , 
que é igual a um quarto da variância genética aditiva, 
( ) 2
4
1
AMICov σ= , 
sendo 
4
1
 o coeficiente de parentesco entre meio-irmãos ( )ijR . Com isso, a 
variância genética aditiva pode ser calculada, 
( ) 22 44 rA MICov σσ == . 
 
A variância fenotípica é obtida por 
222
erP σσσ += . 
 
Agora, pode-se obter também a herdabilidade, 
22
2
22
2
2
2
2 4
er
r
er
A
P
Ah
σσ
σ
σσ
σ
σ
σ
+
=
+
== . 
 
A expressão 22
2
er
r
σσ
σ
+
 é denominada correlação intraclasse (t). 
Nesse caso, a herdabilidade pode ser obtida por meio da correlação entre meio-
irmãos paternos, 
th 42 = . 
 
A herdabilidade pode variar de 0,0 a 1,00 ou de 0 a 100%. Quando a 
herdabilidade for de 0,0 a 0,20, é considerada baixa; de 0,20 a 0,40, média; e 
acima de 0,40, alta. Valores baixos significam que grande parte da variação da 
característica é devida às diferenças ambientais entre os indivíduos, e valores 
altos significam que diferenças genéticas entre indivíduos são responsáveis pela 
variação da característica avaliada. Quando alta, significa também que é alta a 
correlação entre o valor genético e o valor fenotípico do animal, e, portanto, o valor 
fenotípico constitui boa indicação do valor genético do animal. 
A estimativa de herdabilidade é válida apenas para a população usada no cálculo. 
Extrapolação para outras populações depende de como se assemelham as 
estruturas genéticas originais, precisão da medida, condições de meio, dentre 
outros fatores. 
Como a estimativa de herdabilidade é uma fração, ela muda com mudança no 
numerador ou no denominador. Quando a seleção for bem sucedida, por exemplo, 
haverá mudanças nas freqüências gênicas, o que resultará em mudança na 
variância genética aditiva e, conseqüentemente, na herdabilidade. Grandes 
variações de meio, por exemplo, resultam em decréscimos nas estimativas de 
herdabilidade, visto que aumentam a variância fenotípica (denominador). 
Exemplo: Peso de novilhos da raça Nelore (GIANNONI E GIANNONI, 1989) 
Número de 
Progênies/touro A B C D 
1 270 282 280 295 
2 285 275 278 299 
3 289 280 300 270 
4 279 258 296 300 
5 297 265 289 289 
6 278 278 295 283 
7 340 283 296 279 
8 285 248 285 276 
9 288 270 270 284 
10 269 281 275 288 
TOTAIS 2880 2720 2864 2863 
GIANONI, M. A.; GIANNONI, M, L. Genética e melhoramento de rebanhos nos 
trópicos,2 ed., São Paulo: Nobel, 1987,463 p. 
 
 
CV GL SQ QM E(QM) 
Entre touros 3 1683,27 561,09 2
G
2
M ˆKˆ σ+σ 
Dentro das progen. 36 6744,50 187,35 2
Mσˆ 
De touros 
total 39 8427,77 
 
2
Mσˆ =187,35 
37,37
10
35,18709,561
K
QMDQMT
ˆ
2
G =
−
=
−
=σ = 
K=número de progênies /touro 
 
COV(MI)=1/4 2aσˆ = 2Mσˆ ; assim 2aσˆ =4 2Mσˆ 
 
Herdabilidade(h2)= 4 2Mσˆ / 2Pσˆ = 2aσˆ / 2Pσˆ =149,48/224,72 = 0,67 
 
 
 
 
 
 
DESVIO PADRÃO DA HERDABILIDADE 
 
 
)1)(1(
])1(1[)1(24)(
22
2
−−
−+−
≅
skk
tkthDP 
 
onde t = correlação intraclasse = 22
2
ˆˆ
ˆ
MG
G
σσ
σ
+
; 
s = número de touros 
 
 
t=37,37/(37,37+187,35) = 0,17 
 
68,0
270
83,84)14)(110(10
]17,0)110(1[)17,01(24)(
22
2
==
−−
−+−
≅hDP 
 
estimativa da herdabilidade => h2 = 0,67 ± 0,68 
 
 
NUMERO DESIGUAIS DE PROGÊNIES POR TOURO 
 
 
A análise de variância é elaborada considerando o número desigual de progênies 
por reprodutor e o coeficiente K é obtido conforme a expressão: 
 




−
−
=
∑
n
n
n
s
k i
2
1
1
 
 
exemplo: quatro touros acasalados com dez vacas produziram o número de 
progênies expresso no seguinte quadro: 
 
Touro Número de progênies 
A 5 
B 10 
C 6 
D 7 
Total 28 
 
S= 4 touros; 
n =28 progênies e; 
ni = número de progênies por touro. 
( ) 83,65,728
3
1
28
7610528
14
1 2222
=−=


 +++
−
−
=k
 
 
O desvio-padrão é expresso como: 
 
 
)1)((
])1(1[)1)(1(24)( 2
22
2
−−
−+−−
≅
ssnk
tktnhDP 
 
ESTIMATIVA DE HERDABILIDADE EM ESPÉCIES PROLIFERAS 
 
 
 Neste caso, os machos são acasalados com várias fêmeas que produzem 
cada uma mais de uma progênie. Nesta situação temos famílias de meio-irmão, 
bem como irmão-completos. A estimativa de herdabilidade pode ser obtida nas 
duas situações. 
 
 
Exemplo: Quatro galos da raça Plymouth Branca forma acasalados com quatro 
fêmeas que produziram cada quatro progênies. O peso corporal na oitava semana 
de cada progênie é apresentado no seguinte quadro. 
 
 
 progênies 
Galo Fêmea Totais 
A 1 1908 1604 1508 1596 6616 
 2 1584 1260 1408 1492 5744 
 3 1268 1484 1388 1528 5668 
 4 1360 1300 1483 1332 5475 
 23503 
B 5 1460 1576 1860 1752 6648 
 6 1380 1672 1796 1752 6600 
 7 1796 1580 1684 1848 6908 
 8 1480 1328 1460 1552 5820 
 25976 
C 9 1372 1592 1580 1724 6268 
 10 1484 1704 1456 1600 6244 
 11 1352 1644 1572 1828 6396 
 12 1500 1372 1760 1680 6312 
 25220 
D 13 1936 1576 1556 1536 6604 
 14 1788 1740 1520 1732 6780 
 15 1572 1420 1508 1536 6036 
 16 1712 1760 1560 1820 6852 
 26272 
ANÁLISE DE VARIÂNCIA 
 
( )
89,159299106
64
1009712
2
===
∑
n
X
C 
 
Soma de quadrado entre galos (k1 = número de progênies por macho = 16) 
 
SQentre galos = 17,289016
16
26272252202597623503 2222
=−
+++ C 
 
 
 
Soma de quadrado entre fêmeas dentro de galo(k=número de progênies por 
fêmea=4) 
 
SQ entre fêmeas dentro de galo= −+++
4
6852...57446616 222
 
16
26272252202597623503 2222 +++
 = 463267,19 
 
 
 
Soma de quadrado entre progênies de fêmeas 
 
SQEprog. Den. Fêmeas = 19082+16042+...+18202 - 
4
6852...57446616 222 +++
 = 
989310,75 
 
 
 
Quadro da análise de variância 
 
Causas de Variação GlSQ QM E(QM) 
Entre galos 3 289016,17 96338,72 2ˆMσ + 2ˆDkσ + 21 ˆGk σ 
Entre fêm. den. galo 12 463267,19 38613,93 2ˆMσ + 2ˆDkσ 
Entre prog. den. fêm. 48 989310,75 20610,64 2ˆMσ 
 
 
2
ˆMσ = 20610,64 
 
2
ˆDσ ( covariância genética entre irmãos completos) 
 
2
ˆDσ =(QM Entre fêm. den.. galo- 2ˆMσ )/k = 4500,82 
 
 
2
ˆGσ =(QM Entre galos - QM Entre fêm. den.. galo)/K1 = 3607,80 
 
 
Estimativas de herdabilidades: 
 
1) Por meio de meio-irmãos: 
 
50,0
64,2061082,450080,3607
)80,3607(4
=
++
=Gh 
 
2) Por meio de irmãos-completos: 
 
31,0
64,2061082,450080,3607
)82,4500(2
=
++
=Gh 
 
 
 
 
Característica Herdabilidade (h2) 
BOVINOS DE CORTE 
Peso ao nascer 0,35 - 0,45 
Peso a desmama 0,25 – 0,30 
Peso aos 12 meses 0,38 – 0,45 
Peso aos 18 meses 0,45 – 0,55 
Ganho de peso em confinamento 0,45 – 0,70 
Ganho de peso em pastagem 0,30 – 0,45 
Classificação de carcaça 0,35 – 0,45 
Maciez de carne 0,40 – 0,70 
Espessura da gordura de cobertura 0,25 - ,045 
 
BOVINO DE LEITE 
Produção de leite 0,20 – 0,40 
Produção de gordura 0,40 – 0,70 
Intervalo entre partos 0,00 – 0,10 
Período de serviço 0,01 – 0,10 
Serviço por concepção 0,03 – 0,07 
Tamanho de maturidade 0,35 – 0,50 
Eficiência alimentar 0,20 – 0,45 
Longevidade 0,05 – 0,10 
Resistência à mamite 0,03 – 0,35 
Velocidade de ordenha 0,10 – 0,20 
 
SUÍNOS 
Comprimento do corpo 0,40 – 0,60 
Número de tetas 0,20 – 0,40 
Número de leitões nascidos 0,05 – 0,15 
Número de leitões desmamados 0,10 – 0,20 
Crescimento da desmama ao abate 0,20 – 0,30 
Comprimento de carcaça 0,40 – 0,60 
Área de olho de lombo 0,40 – 0,60 
Rendimento de carne 0,25 – 0,35 
Espessura do toucinho 0,40 – 0,60 
 
AVES 
Tamanho do ovo 0,40 – 0,50 
Fertilidade 0,00 – 0,15 
Viabilidade 0,01 – 0,15 
Peso corporal 0,25 – 0,65 
REPETIBILIDADE 
 
 Refere-se a expressão da mesma característica em diferentes épocas da 
vida do mesmo animal, exemplo; Produção de leite, Produção de ovos, Produção 
de lã, etc. A repetibilidade mede a correlação existente entre as medidas de uma 
característica em um mesmo animal. 
Ao se escolher um animal superior em sua primeira produção, espera-se que ele 
continue sendo o melhor nas próximas produções. É importante, então, saber até 
que ponto a produção do animal se repetirá durante sua vida produtiva. Essa 
medida é denominada repetibilidade. 
 A variância de uma mesma característica em diferentes etapas da vida de 
um animal, pode ser analisada sob 2 componentes: 
A) variância entre indivíduos: é parcialmente genética e parcialmente ambiental, 
sendo que a parte ambiental é causada por circunstâncias de meio ambiente que 
afetam os indivíduos permanentemente; como por exemplo a perda de um teto 
devido a mamite, estas causas de variação que afetam toda a vida do animal, são 
chamadas de variações devido a ambiente permanente. 
 
B) variância dentro de indivíduos: mede as diferenças temporárias no 
desempenho do indivíduo. Como por exemplo podem ser citados: qualidade de 
alimentação (variação sazonal), suplemetação mineral e diferenças de manejo. 
 
 
 
A repetibilidade é definida como: 
 
dentro Variânicaentre Variância
entre Variância
r
+
= 
 
VEtVEpVG
VEpVG
VP
VEpVG
r
++
+
=
+
= 
em que 
r = repetibilidade da característica; 
VG = variância genotípica; 
VEp = variância devido aos efeitos permanentes de meio; 
VEt = variância devido aos efeitos temporários de meio; 
VP = variância fenotípica. 
Quanto mais alta a repetibilidade (r) maior a possibilidade de uma única 
observação representar sua real capacidade de produção Se a repetibilidade for 
baixa, há necessidade de se esperar mais uma observação para ter certeza do 
potencial produtiva do animal. 
Então, a repetibilidade mede a proporção das diferenças de produção entre 
os animais, que é atribuída a causas permanentes. 
Quando mais de uma medida da característica for feita no indivíduo, a 
repetibilidade pode ser calculada com base no Quadro 2.7 de análise de variância 
dada a seguir. 
 
Quadro 2.7 - Análise de variância 
 
FV GL QM E(QM) 
Indivíduos 1−n bQM 22 be mσσ + 
Resíduo nN − 
eQM 2eσ 
 
As esperanças de quadrados médios “E(QM)” indicam que 
a) 2eeQM σ= ; 
b) 22 beb kQM σσ += 
 
assim, 
22
ebb QMm σσ −= 
ebb QMQMm −=2σ 
m
QMQM eb
b
−
=
2σ , 
em que 
2
bσ = componente de variância entre indivíduos; 
2
eσ = componente de variância residual; 
n = número de indivíduos; 
m= número de medidas feitas em determinada característica em cada indivíduo; 
N = número total de observações (n x m). 
 
A variância fenotípica é obtida por 
 
222
ebPVP σσσ +== , 
em que 
2
bσ = representa as diferenças permanentes de herança ( )2Gσ e meio ( )2Epσ 
existente entre os indivíduos; 
2
eσ = representa as diferenças temporárias de meio ( )2Etσ . 
 
A repetibilidade é dada por 
22
2
2
2
eb
b
P
br
σσ
σ
σ
σ
+
== . 
 
O valor da repetibilidade pode ser usado para predição do desempenho futuro do 
animal, com base na produção anterior. É também útil para classificação do 
animal, de acordo com sua capacidade provável de produção (CPP). Assim, 
quando a repetibilidade é alta, os melhores animais, na primeira produção, 
continuam sendo os melhores nas próximas produções. 
 
 
Importância da repetibilidade 
 
 
1) Estabelece o limite superior para o cálculo da herdabilidade: os valores são 
sempre maiores que os valores de herdabilidade, porque além do efeitos 
genético aditivo, a repetibilidade inclui também o efeito permanente de meio 
ambiente. 
 
 
2) Indica a acurácia das mensurações múltiplas, aumentando o número de 
observações do mesmo indivíduo, há redução da variância devido aos 
efeitos temporários do ambiente, diminuindo também a variância fenotípica. 
 
ESTIMAÇÃO DA REPETIBILIDADE (r) 
 
 As características repetívies apresentadas pelos animais podem ser 
representadas no tempo (lactações sucessivas de uma vaca) ou no espaço 
(espessura de toucinho em suínos). 
 
EXEMPLO: Em um renbanho de gado leiteiro, são fornecidos dados de cinco 
lactações de quatro vacas tomadas ao acaso. 
 
Vacas Produção de leite em kg Totais 
A 2703 2000 1945 1919 1800 10367 
B 2310 2425 2110 2558 2100 11503 
C 2200 2985 2693 2200 2531 12609 
D 2000 1900 2545 2510 2300 11225 
 
 
 N=4; n=20; 0,45734 ;0,1065595442 == ∑∑ XX 
 
 
Análise de variância: 
 
• SQTOTAL = ( )∑ ∑=− 20
X
C onde ,
2
2 CX = 106559544-104579937,8 = 
1979606,2 
 
• SQENTRE VACAS = C−+++
5
)11255()12609()11503()10367( 2222
 
= 105091120,8 – 104579937,8 = 511183,0 
 
C V GL S.Q Q.M. E(Q.M.) 
Entre vacas 3 511183,0 170394,33 22 ˆˆ MPMT Kσσ + 
Entre lac. Dentro de vaca 16 1468423,2 91776,45 2ˆMTσ 
Total 19 1979606,2 
 
 
2
ˆMTσ =91776,45 
 
22
ˆˆ MPMT Kσσ + =170394,33; 5
45,9177633,170394
ˆ
2 −
=MPσ =15723,57 
 
Cálculo da repetibilidade (r): 
 
15,0
45,9177657,15723
57,15723
ˆˆ
ˆ
22
2
=
+
=
+
=
MTMP
MPr
σσ
σ
 
 
 
 
DESVIO-PADRÃO DA REPETIBILIDADE 
 
( )
)1)(1(
])1(1[12)(
22
−−
−+−
=
Nkk
rkr
rDP 
( ) 25,0)14)(15(5
]15,0)15(1[15,012)(
22
=
−−
−+−
=rDP 
 
 
Estimativa da herdabilidade: r = 0,15±0,25 
 
 
 
ESTIMAÇÃO DA REPETIBILIDADE PARA NÚMERO DESIGUAL DE 
INFORMAÇÃO POR INDIVÍDUO 
 




−
−
=
∑
m
X
m
N
K I
2
1
1
 
 
N= número de indivíduos; 
m= número total de mensurações. 
 
 
( )
)1)((
])1(1[)1(12)(2
22
−−
−+−−
=
NNmk
rkrm
rDP 
 
 
 
 
 
CORRELAÇÃO GENÉTICA, FENOTÍPICA E AMBIENTAL 
 
Uma vez que no melhoramento o valor econômico de um animal é influenciado por várias 
características, devem-se considerar, nos programas de seleção, tanto as mudanças nas 
características sob seleção quanto as mudanças correlacionadas que podem também ocorrer 
nas outras características. 
A magnitude e a direção das respostas correlacionadas dependem da correlação genética 
entre as características, a qual é definida como a que existe entre os efeitos genéticos 
aditivos dos genes que influem em ambas as características. 
A principal causa de correlação genética é o pleiotropismo, embora ligações gênicas sejam 
causa transitória de correlação. Pleiotropismo é a propriedade pela qual um gene influi em 
duas ou mais características. O grau de correlação originado pelo pleiotropismo expressa a 
quantidade pela qual duas características são influenciadas pelos mesmos genes. A 
correlação resultante do pleiotropismo expressa o efeito total de todos os genes em 
segregação que afetam ambas as características. Alguns genes podem aumentar ambas as 
características, enquanto outros aumentam uma e reduzem outra, visto que os primeiros 
tendem a causar correlação positiva, e os últimos, negativa. Assim, o pleiotropismo não 
causa, necessariamente, correlação que possa ser detectada. 
A correlação fenotípica é a associação que pode ser observada diretamente. Ela tem dois 
componentes, um genético e outro de ambiente. 
A correlação de ambiente entre duas características é conseqüência do fato de que animais 
compartilham ambiente comum. A correlação resultante de causas de ambiente é o efeito 
total de todos os fatores variáveis de ambiente, em que alguns tendem a causar 
correlação positiva, outros negativa. 
As correlações genéticas (rG), fenotípica (rP) e de ambiente (rE), podem ser 
descritas como 
( )
( ) ( )Y.X
Y,XCov
r
AA
A
G
σσ
= ; 
( )
( ) ( )Y.X
Y,XCov
r
PP
P
P
σσ
= ; 
( )
( ) ( )Y.X
Y,XCov
r
EE
E
E
σσ
= ; 
 
em que 
( )YXCovA , = covariância genética aditiva entre as características X e Y ; 
( )XAσ = desvio padrão genético aditivo da característica X ; 
( )YAσ = desvio padrão genético aditivo da característica Y . 
 
Os demais termos são igualmente definidos, sendo P = fenotípico e E = ambiental. 
A correlação fenotípica pode ser desdobrada em 
( ) ( )
( ) ( )
( )
( ) ( )
( )
( ) ( )Y.X
Y,XCov
Y.X
Y,XCov
Y.X
Y,XCovY,XCov
r
PP
E
PP
A
PP
EA
P
σσ
+
σσ
=
σσ
+
= . 
 
Multiplicando e dividindo as expressões do segundo membro da igualdade por 
( ) ( )Y.X AA σσ e ( ) ( )Y.X EE σσ tem-se 
 
( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )Y.X.Y.X
Y.X.Y,XCov
Y.X.Y.X
Y.X.Y,XCov
r
EEPP
EEE
AAPP
AAA
P
σσσσ
σσ
+
σσσσ
σσ
= 
 
( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )Y.X.Y.X
Y.X.Y,XCov
Y.X.Y.X
Y.X.Y,XCov
r
PPEE
EEE
PPAA
AAA
P
σσσσ
σσ
+
σσσσ
σσ
= 
 
( ) ( ) ( ) ( )Ye.Xe.rYh.Xh.rr EGP += , 
 
em que 
( )Xh 2 = herdabilidade da característica X ; 
( )Yh 2 = herdabilidade da característica Y ; 
( )Xe2 = ( )Xh 21− ; 
( )Ye2 = ( )Yh 21− . 
 
Isso mostra como as causas de correlação genética e de ambiente se combinam 
para dar a correlação fenotípica. Se ambas características (X e Y) têm baixas 
herdabilidades, então a correlação fenotípica é determinada, principalmente, pela 
correlação de ambiente. Se elas têm altas herdabilidades, então a correlação 
genética é mais importante. 
As correlações genéticas e de ambiente são, freqüentemente, muito diferentes em 
magnitude e, em algumas vezes, diferentes em sinal. Uma diferença de sinal entre 
as duas correlações mostra que as causas de variação genética e de ambiente 
influem nas características por diferentes mecanismos fisiológicos. 
Da mesma forma que a herdabilidade, a correlação genética pode ser estimada 
pela semelhança entre parentes. 
 
 
 Análise de covariância de observações de meio-irmãos 
 
Considerando informações de meio-irmãos paternos, o Quadro 2.5, de análise de 
variância dada no item anterior (4.2) e a análise de covariância dada a seguir 
(Quadro 2.6), pode-se calcular a correlação genética. 
 
Quadro 2.6 - Análise de covariância 
 
FV GL PCM E(PCM) 
Reprodutores 1−r 
rPCM ( ) ( )YXkCovYXCov re ,, + 
Resíduo rN − 
ePCM ( )YXCove , 
 
As esperanças de produtos cruzados médios “E(PCM)” indicam que 
 
a) ( )YXCovPCM ee ,= ; 
b) ( ) ( )YXkCovYXCovPCM rer ,, += ; 
 
assim, 
( ) ( )YXCovPCMYXkCov err ,, −= 
( ) err PCMPCMYXkCov −=, 
( )
k
PCMPCM
YXCov err
−
=, , 
em que 
rPCM = componente de covariância de reprodutores; 
ePCM = componente de covariância residual. 
 
Do componente de covariância de reprodutor pode-se, da mesma forma que na 
análise de variância, obter a covariância genética aditiva, 
 
( )YXCovCov rA ,4= . 
 
A covariância fenotípica é obtida por 
 
( ) ( ) ( )YXCovYXCovYXCov erP ,,, += . 
 
A covariância ambiental é obtida por 
 
( ) ( ) ( )YXCovYXCovYXCov APE ,,, −= 
( ) ( )[ ] ( )[ ]YXCovYXCovYXCov rer ,4,, −+= 
( ) ( ) ( )YXCovYXCovYXCov rer ,4,, −+= 
( ) ( )YXCovYXCov re ,3, −= 
 
Obtenção da correlação genética: 
 
( )
( ) ( )
( )
( ) ( )[ ] 2122 44
4
/
rr
r
AA
A
G
Y.X
Y,XCov
Y.X
Y,XCov
r
σσ
=
σσ
= 
 
Obtenção da correlação fenotípica: 
 
( )
( ) ( )
( ) ( )
( ) ( )[ ] ( ) ( )[ ] 21222122 /
er
/
er
er
PP
P
P
YY.XX
Y,XCovY,XCov
Y.X
Y,XCov
r
σ+σσ+σ
+
=
σσ
= . 
 
Obtenção da correlação ambiental: 
 
( )
( ) ( )
( ) ( )
( ) ( )[ ] ( ) ( )[ ] 21222122 33
3
/
re
/
re
re
EE
E
E
YY.XX
Y,XCovY,XCov
Y.X
Y,XCov
r
σ−σσ−σ
−
=
σσ
= . 
Exemplo. Dados de peso corporal em bovinos Nelore aos 3065 e 540 dias 
Peso corporal aos 365 dias 
 Touros 
Progênies A B C D 
1 270 282 280 295 
2 285 275 278 299 
3 289 280 300 270 
4 279 258 296 300 
5 297 265 289 289 
6 278 278 295 283 
7 340 283 296 279 
8 285 248 285 276 
9 288 270 270 284 
10 269 281 275 288 
TOTAIS 2880 2720 2864 2863 11327 
 
Peso Corporal aos 540 dias 
Número de 
Progênies A B C D 
1 508 505 501 518 
2 493 498 503 522 
3 502 503 504 493 
4 512 481 512 523 
5 520 488 515 512 
6 501 501 518 506 
7 563 506 505 540 
8 508 471 508 499 
9 511 493 493 507 
10 492 504 498 490 
TOTAIS 5110 4950 5057 5110 20227 
 
Produto do Peso Corporal aos 365 (X) e 540 dias (Y) 
Progênies A B C D 
1 137160 142410 140280 152810 
2 140505 136950 139834 156078 
3 145078 140840 151200 133110 
4 142848 124098 151552 156900 
5 154440 129320 148835 147968 
6 139278 139278 152810 143198 
7 191420 143198 149480 150660 
8 144780 116808 144780 137724 
9 147168 133110 133110 143988 
10 132348 141624 136950 141120 
∑Xi.∑Yi. 14716800 13464000 14483248 14629930 5729397,8 
 
 
Quadro de análise de esperança de quadrado médio e de produto médio 
CV GL QM(365) QM(540) E(EQM) E(EQM) PC E(PM) 
TOURO 3 561,0917 568,8917 37,3744 32,7617 539,0250 38,2075 
ERRO 36 187,3472 241,2745 156,9500 
 
 
 
 
 
CORRELAÇÃO GENÉTICA 
 
)540()365(
)540,365(
AA
A
A VV
COV
r = = 
32,7617 . 3744,37
2075,38
=Ar ≅ 1,0% 
 
 
 
CORRELAÇÃO FENOTÍPICA 
 
( )
( ) ( )
( ) ( )
( ) ( )[ ] ( ) ( )[ ] 21222122 /
er
/
er
er
PP
P
P
YY.XX
Y,XCovY,XCov
Y.X
Y,XCov
r
σ+σσ+σ
+
=
σσ
= 
 
2745,2417617,323482,1873744,3795,1562075,38
++
+
=pr = 0,67 ou 67% 
 
CORRELAÇÃO AMBIENTAL 
 
( )
( ) ( )
( ) ( )
( ) ( )[ ] ( ) ( )[ ] 21222122 33
3
/
re
/
re
re
EE
E
E
YY.XX
Y,XCovY,XCov
Y.X
Y,XCov
r
σ−σσ−σ
−
=
σσ
= . 
 
)7617,32(32745,241)3744,37(33472,187
)2075,38(39500,156
−−
−
=er = 0,85 ou 85% 
 
Características Correlação 
Bovino de Corte Genética 
Peso ao nascer Peso a desmama 0,58 
Peso ao nascer Ganho em confinamento 0,56 
Peso à desmama Ganho em confinamento 0,58 
Peso aos 12 meses Peso aos 18 meses 0,79 
Peso aos 12 meses Peso aos 24 meses 0,59 
Peso aos 18 meses Peso aos 24 meses 0,93 
Ganho de 12 a 18 meses Ganho de 18 a 25 meses 0,30 
 
Bovino de leite 
Produção de leite % de gordura -0,07 a -0,67 
Produção de leite % de sólidos não gordurosos -0,02 a -0,20 
Produção de leite Produção de gordura 0,70 a 0,80 
Produção de gordura Produção de sólidos não gordurosos 0,30 a 0,70 
Produção de gordura Proteína total 0,40 a 0,70 
 
Suínos 
Ganho Eficiência alimentar -070 a -1,00 
Ganho Espessura de toucinho -0,25 a 0,13 
Conversão alimentar Comprimento de carcaça -0,10 a -0,20 
Comprimento de carcaça Espessura de toucinho -0,60 a -0,70 
Comprimento de carcaça Área de olho de lombo -0,10 a -0,20 
 
Aves 
Número de ovos Peso dos ovos -0,25 a -0,50 
Número de ovos Peso corporal -0,20 a -0,60 
Número de ovos Maturidade sexual -0,15 a -0,50 
Peso do ovo Peso corporal 0,20 a 0,50 
 
 
 
 Quando ambas características apresentam baixa herdabilidade a correlação 
ambiental é a principal fonte para a correlação fenotípica, quando as 
herdabilidades são altas, então a contribuição da correlação genética é maior.

Continue navegando