Buscar

Lista de Atividades

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 11 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 11 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 11 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Análise de Sistemas Lineares
Revisão Prova – Velocidade Motor DC: Modelagem com Simulink
1
Modelagem Motor de Corrente Contínua
Um atuador comum em sistemas de controle é o motor DC. Ele fornece diretamente o movimento rotativo e pode fornecer movimento translacional. O circuito elétrico da armadura e o diagrama do rotor são mostrados na figura a seguir:
Para este exemplo, assumiremos que a entrada do sistema é a fonte de tensão (V) aplicada à armadura do motor, enquanto a saída é a velocidade de rotação do eixo d (theta) / dt. Considera-se que o rotor e o eixo são rígidos. Além disso, assumimos um modelo de fricção viscosa, ou seja, o torque de fricção é proporcional à velocidade angular do eixo.
Os parâmetros físicos para o nosso exemplo são:
(J) momento de inércia do rotor 0.01 kg.m^2
(b) constante de fricção viscosa do motor 0.1 N.m.s
(Ke) constante de força eletromotriz 0.01 V/rad/sec
(Kt) Constante do torque do motor 0.01 N.m/Amp
(R) resistência elétrica 1 Ohm
(L) indutãncia elétrica 0.5 H
2
Modelagem Motor de Corrente Contínua
1) Construindo o modelo com o Simulink
Construindo o modelo com o Simulink
Agora, vamos adicionar os torques que são representados na equação rotacional. Primeiro, vamos adicionar o torque de amortecimento .
Insira o bloco de ganho abaixo do bloco "Inertia". Em seguida, clique com o botão direito do mouse no bloco e selecione   Format > Flip Block   no menu resultante para virar o bloco da esquerda para a direita. Você também pode virar um bloco selecionado mantendo pressionada a tecla   Ctrl-I.
Defina o valor Ganho como "b" e renomeie esse bloco para "Damping".
Toque uma linha (segure   Ctrl   ao desenhar ou clicar com o botão direito na linha) da saída do integrador rotativo e conectá-lo à entrada do bloco "Damping".
  Desenhe uma linha da saída do bloco "Damping" para a entrada negativa do bloco Add.
Agora, adicionaremos os termos de tensão que são representados na equação elétrica. Primeiro, adicionaremos a queda de tensão através da resistência da armadura.
                 Insira um bloco de ganho acima do bloco "Indutância" e flip ele da esquerda para a direita.
                 Defina o valor Ganho como "R" e renomeie esse bloco para "Resistance".
                 Toque uma linha da saída do Integrador atual e conecte-a à entrada do bloco "Resistance".
                 Desenhe uma linha da saída do bloco "Resistance" para a entrada negativa superior do bloco Add de equação atual.
Em seguida, vamos adicionar a força eletromotriz induzida do motor.
                 Insira um bloco Gain ligado à outra entrada negativa do bloco Add a uma linha.
                 Edite seu valor para "K" para representar a constante de emf do motor e rotulá-lo "Ke".
                 Toque uma linha na saída do Integrador rotacional e conecte-a ao bloco "Ke".
  Adicione os blocos In1 e Out1 da biblioteca Simulink / Portas e Subsistemas e, em seguida, rotulá-los "Voltage" e "Speed".
Para salvar todos esses componentes como um único bloco de subsistema, primeiro selecione todos os blocos e selecione   Criar subsistema   do menu   Editar. Nomeie o subsistema "DC Motor" e, em seguida, guarde o modelo. Seu modelo deve aparecer da seguinte maneira. 
 
Para simular a resposta ao Degrau, os detalhes da simulação devem primeiro ser definidos. Isso pode ser feito selecionando parâmetros de configuração no menu Simulação. Dentro do menu resultante, defina o tempo para o qual a simulação deve ser executada no campo de tempo de parada. Entraremos "3", pois 3 segundos serão longos o suficiente para que a resposta ao Degrau atinja o estado estacionário. Dentro desta janela, você também pode especificar vários aspectos do solucionador numérico, mas usaremos os valores padrão para este exemplo.
Simulação no Simulink 
c
Em seguida, precisamos adicionar um sinal de entrada e um meio para exibir a saída de nossa simulação. Isso é feito fazendo o seguinte:
Remova os blocos In1 e Out1.
Insira um bloco Step da biblioteca Simulink / Fontes e conecte-o com uma linha à entrada de tensão do subsistema do motor.
Para visualizar a saída de Velocidade, insira um Scope na biblioteca Simulink / Sinks e conecte-o à saída de Velocidade do subsistema do motor.
Para fornecer uma entrada Degrau Unitária apropriada em t=0, clique duas vezes no bloco Step e defina o tempo de Step como "0".
9
Em seguida, execute a simulação (pressione Ctrl-T ou selecione Iniciar no menu Simulação). Quando a simulação for concluída, clique duas vezes no SCOPE e aperte seu botão de escala automática. Você deve ver a saída a seguir.
Simulação no Simulink 
Lembre que os parâmetros físicos necessitam ser definidos previamente no workspace do Matlab.
J = 0.01;
b = 0.1;
K = 0.01;
R = 1;
L = 0.5;
3 – A partir de H(s), calcular a resposta a entrada degrau unitário e rampa unitária, comparar com o resultado obtido realizando simulação utilizando o bloco “transfer fcn” do Simulink e o resultado obtido anteriormente utilizando o diagrama de blocos. 
J = 0.01;
b = 0.1;
K = 0.01;
R = 1;
L = 0.5;

Outros materiais