Buscar

Manual_de_Aulas_Teoricas_de_Hidrologia

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 215 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 215 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 215 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Por: 
Professor Doutor Carmo Vaz 
HIDROLOGIA & RECURSOS HIDRICOS 
GUIA DAS AULAS TEORICAS DE
CURSO DE METEOROLOGIA
DEPARTAMENTO DE FISICA 
FACULDADE DE CIENCIAS 
 UNIVERSIDADE EDUARDO MONDLANE 
Introdução à Hidrologia 1-1 
 
 
1 INTRODUÇÃO À HIDROLOGIA 
 
 
1.1 IDEIAS GERAIS SOBRE A HIDROLOGIA 
 
1.1.1 Objecto da hidrologia 
 
A Hidrologia trata da ocorrência, circulação e distribuição da água na Terra, das suas 
propriedades físicas e químicas, da sua interacção com o meio, de acordo com a definição 
apresentada em 1982 pela Organização Meteorológica Mundial e que é aceite de forma 
generalizada. 
 
Embora a Hidrologia abranja o conhecimento da água tanto nos continentes como na atmosfera e 
nos oceanos, o estudo dos ramos aéreo e oceânico é feito nas disciplinas específicas de 
Meteorologia e Oceanografia, ficando a Hidrologia propriamente dita dedicada ao ramo terrestre. 
 
A Hidrologia da Engenharia (Engineering Hydrology na terminologia inglesa corrente) é uma 
parte restrita da Hidrologia que inclui as áreas pertinentes ao planeamento, projecto e exploração 
de obras de engenharia visando o controlo e a utilização da água para satisfação das necessidades 
humanas. O seu enfoque é, por isso, o da aplicação da ciência na solução de problemas de 
engenharia. 
 
 
1.1.2 A Hidrologia como disciplina do curso de Engenharia Civil 
 
A Hidrologia da Engenharia, apesar do seu carácter aplicado, apresenta diferenças muito 
significativas no seu tratamento em relação à maioria das restantes disciplinas do curso de 
Engenharia Civil. Se, a título de exemplo, quisermos confrontar a Hidrologia com as 
disciplinas da área de Estruturas (Resistência de Materiais, Teoria das Estruturas, Pontes), 
podemos constatar: 
 
a) o objecto de estudo das disciplinas de Estruturas engloba estruturas artificiais construídas 
em grande medida com materiais fabricados pelo Homem, sendo bastante bem previsíveis 
os comportamentos quer dos materiais quer das estruturas. No caso da Hidrologia, o 
objecto de estudo é o ciclo hidrológico nas suas várias componentes, que são fenómenos 
da Natureza e, por conseguinte, processos essencialmente aleatórios. 
b) as diferenças no objecto de estudo traduzem-se em grandes diferenças no controlo sobre o 
mesmo que é grande no caso das Estruturas e pequeno ou nulo no caso dos processos que 
integram o ciclo hidrológico. 
c) no que se refere aos métodos de análise, as disciplinas de Estruturas utilizam uma teoria 
matemática formal, baseada em hipóteses próximas da realidade, e ainda recorrem à análise 
experimental relativamente pouco dispendiosa. No caso da Hidrologia, há (ainda) um peso 
grande de empirismo para enfrentar fenómenos demasiado complexos para serem 
analisados com métodos matemáticos relativamente simples. Verifica-se a necessidade 
duma grande acumulação de informações (dados hidrológicos). A experimentação é, em 
 
Manual de Hidrologia 
dr.sambo
Highlight
dr.sambo
Highlight
Introdução à Hidrologia 1-2 
 
 
geral, muito dispendiosa. 
d) no que respeita aos processos de cálculo, ambas as áreas têm beneficiado imenso do acesso 
a computadores cada vez mais potentes que, por sua vez, possibilitam o desenvolvimento e 
a utilização de programas de cálculo sempre mais sofisticados e o tratamento de 
quantidades crescentes de informação. No caso da Hidrologia, as ferramentas mais 
utilizadas são a análise estatística e os modelos de simulação hidrológica das componentes 
da fase terrestre do ciclo hidrológico, desde a precipitação até ao escoamento. 
 
 
 
1.1.3 Objectivos da disciplina de Hidrologia 
 
Os objectivos do estudo da disciplina de Hidrologia correspondem às necessidades de: 
 
• aprofundar o conhecimento do ramo terrestre do ciclo hidrológico; 
• utilizar os conhecimentos adquiridos em aplicações práticas como, por exemplo, 
 - no dimensionamento de obras hidráulicas (descarregadores de barragens, secções de 
vazão de pontes, etc.); 
 - no dimensionamento de sistemas de drenagem de regadios e áreas urbanas; 
 - na determinação de necessidades de rega; 
 - na gestão dos recursos hídricos; 
 - na protecção do meio ambiente. 
 
Nas aplicações, a Hidrologia liga-se estreitamente às disciplinas antecedentes de Hidráulica 
Geral e às disciplinas subsequentes de Abastecimento de Água, Drenagem e Saneamento, Obras 
Hidráulicas. 
 
 
 
1.1.4 Breve referência à História da Hidrologia 
 
Sugere-se a leitura do excelente livro de A.K. Biswas, "History of Hydrology", no qual o autor 
faz uma interessante recapitulação dos principais marcos no progresso da Hidrologia, desde a 
Antiguidade aos fins do século XIX. Os elementos que a seguir se apresentam foram extraídos 
desse livro e do "Handbook of Applied Hydrology" de Ven Te Chow. 
 
1.1.4.1 A Hidrologia na Antiguidade Oriental (Egipto, Mesopotâmia, China) 
 
A civilização egípcia floresceu à volta do Nilo. Para além das extensivas obras de irrigação do 
tempo dos Faraós, há a referir a barragem de Saad-El-Kafara, datada de cerca de 2800 a.c. e 
cujos encontros permaneceram até aos nossos dias. 
 
A importância dada à água, em particular às obras de irrigação e controle de cheias, na China 
Antiga era tão grande que, diz a lenda, um engenheiro que dirigiu grandes obras hidráulicas 
acabou por se tornar o imperador Yü, o Grande. 
 
Manual de Hidrologia 
dr.sambo
Highlight
Introdução à Hidrologia 1-3 
 
 
 
Se a Hidráulica, pelo impacto directo das obras, ocupava o primeiro plano, a necessidade de 
conhecimentos sobre a ocorrência e a distribuição da água tornava-se também muito importante. 
Sendo a irrigação no Nilo feita por inundação, a medição dos níveis nesse rio foi desde logo 
sendo feita, através dos "nilómetros" (cisternas com escalas graduadas ligadas ao rio por 
condutas subterrâneas). O nilómetro de Roda, próximo do Cairo, tem um registo contínuo de 
níveis de 641 d.c. a 1890 d.c., constituindo a mais longa série hidrológica do mundo. 
 
A Mesopotâmia (nome que significa "entre rios") era uma região fértil, atravessada pelos rios 
Tigres e Eufrates, ambos de regime muito irregular, obrigando a grandes cuidados com os diques 
de protecção contra cheias e obras de irrigação. Essa preocupação aparece bem explícita no 
famoso Código de Hamurabi, imperador da Babilónia (cerca de 1700 a.c.) 
 
1.1.4.2 A Hidrologia na Antiguidade Clássica - Grécia e Roma 
 
As primeiras tentativas de explicação da circulação da água (donde surgem os rios?) aparecem 
com os filósofos gregos. Platão apresenta o conceito dum mar subterrâneo (Tartarus) com 
inúmeras ligações à superfície, dando origem aos rios, lagos e mares. Aristóteles defendia que o 
frio transformava o ar em água e isso acontecia tanto nas altas montanhas como no interior da 
terra, sendo essa a origem dos rios. Note-se que os Gregos dispunham de observações limitadas 
de muitos fenómenos e da sua interligação o que de certa forma explica a sua incapacidade de 
descobrirem o conceito do ciclo hidrológico. Apesar disso, filósofos como Anáxagoras e 
Teófrasto apresentaram hipóteses próximas da concepção moderna do ciclo hidrológico, 
infelizmente caídas no esquecimento devido à influência dominante de Aristóteles. 
 
A civilização romana não foi tão fértil como a grega em pensadores, tendo no entanto produzido 
grandes obras de engenharia através da aplicação empírica da experiência adquirida. Apesar 
disso, Vitruvius apresenta no seu livro "De architectura libridecem" um conceito bastante claro 
do ciclo hidrológico, com a precipitação dando origem ao escoamento e a evaporação como 
fonte das nuvens. Há a referir ainda Hero de Alexandria que escreve que o caudal depende da 
área e da velocidade mas este conceito não se impôs até ao século XVI. 
 
1.1.4.3 A Hidrologia na Idade Média 
 
A Idade Média na Europa foi dominada ideologicamente pela Igreja que se opôs fortemente à 
pesquisa experimental, baseando-se nos dogmas e na escolástica, para evitar o aparecimento de 
heresias. Foi um período de cerca de 13 séculos defraco desenvolvimento científico com o 
correspondente reflexo na Hidrologia. 
 
1.1.4.4 A Hidrologia no Renascimento - Século XVI 
 
O Renascimento corresponde ao desabrochar definitivo do pensamento científico e da 
experimentação. A partir do século XVI, a Hidrologia, com as ciências irmãs da Hidráulica e da 
Meteorologia não parou de se desenvolver. 
 
 
Manual de Hidrologia 
Introdução à Hidrologia 1-4 
 
 
Leonardo da Vinci, conhecido sobretudo como um pintor de génio, tinha nos seus cadernos de 
notas conceitos essencialmente correctos sobre o ciclo hidrológico, sobre o escoamento em 
superfície livre e sobre a distribuição de velocidades numa secção. 
 
Bernard Palissy, um cientista francês, apresentou a primeira formulação clara e completa do ciclo 
hidrológico, baseada em observações. Apresentou também ideias sobre o escoamento 
subterrâneo. 
 
1.1.4.5 A Hidrologia nos Séculos XVII e XVIII 
 
O século XVII é o século de Galileo, Kepler, Newton, Harvey, Descartes, Van Leeuwenhoek. 
No domínio da Hidrologia salientam-se os nomes de Perrault e Halley. 
 
Benedeto Castelli apresenta uma explicação clara da relação entre caudal, secção transversal e 
velocidade, sistematizando ideias anteriores de Hero e Leonardo da Vinci. 
 
Perrault, no seu livro "Da origem das fontes", demonstra brilhantemente que o escoamento no rio 
Sena (cabeceiras) podia ser totalmente explicado a partir da precipitação, apresentando um 
balanço hídrico rudimentar. 
 
Mariotte realizou experiências similares e outras respeitantes à medição de velocidades. Halley, 
muito conhecido pelos seus trabalhos de Astronomia, tomou como exemplo o mar Mediterrâneo 
e mostrou que a evaporação dos mares era amplamente suficiente para justificar os escoamentos 
dos rios. 
 
Os desenvolvimentos dos conceitos do ciclo hidrológico no século XVII e seguintes estão 
ligados às medições de precipitação, evaporação e caudal. É assim que começam a surgir os 
primeiros instrumentos hidrométricos modernos: udómetros, tinas de evaporação. 
 
O século XVIII testemunha o florescimento das medições hidrológicas e do desenvolvimento 
teórico. Podem referir-se como marcos fundamentais a medição de velocidade com o tubo 
de Pitot, a equação de Bernouilli (conservação de energia) e a fórmula de Chézy para o 
cálculo do caudal numa secção transversal dum escoamento. 
 
1.1.4.6 A Hidrologia no Século XIX 
 
A ciência da Hidrologia avançou muito rapidamente durante o século XIX. Verificaram-se 
progressos importantes na medição de variáveis hidrológicas, nomeadamente com a introdução 
de udógrafos para registo contínuo da precipitação e de molinetes para a medição de velocidades 
em rios e canais. Nos países mais industrializados, iniciou-se a colheita sistemática de dados 
hidrológicos e a sua análise. 
 
Em termos de conceptualização teórica, os marcos mais significativos a registar são: 
 - o estudo de perfis de velocidade em canais, por Darcy e Bazin; 
 - a equação de Manning para o cálculo de caudais em escoamentos turbulentos 
 
Manual de Hidrologia 
Introdução à Hidrologia 1-5 
 
 
uniformes; 
 - a fórmula racional para a determinação de caudais de cheia, por Thomas Mulvaney; 
 - a teoria do escoamento em meio poroso por Darcy, Dupuit, Thiem e Forcheimer; 
 - o diagrama de Rippl para cálculo de capacidades de albufeiras; 
 - a fórmula de Hagen – Poiseuille para o escoamento laminar. 
 
1.1.4.7 A Hidrologia na actualidade 
 
Os progressos alcançados na Hidrologia durante o século XX são numerosos e representam um 
avanço qualitativo na direcção dum conhecimento científico dos fenómenos. Ven Te Chow 
considerou três períodos para caracterizar o desenvolvimento da Hidrologia no século XX até à 
actualidade: 
 - período do empirismo (1900-1930) com uma grande abundância de fórmulas 
empíricas, criação de organismos para a recolha sistemática de dados hidrológicos, 
criação da Associação Internacional de Ciências Hidrológicas (nome actual); 
 - período da racionalização (1930-1950), caracterizados pelo aparecimento das teorias 
fundamentais da Hidrologia moderna, nomeadamente as teorias do hidrograma 
unitário, de Sherman; da infiltração, de Horton; do escoamento em meio poroso para 
poços em regime variável, de Theis; a análise estatística de fenómenos extremos, 
proposta por Gumbel; e do transporte de sedimentos, de Einstein; 
 - finalmente, um período de teorização (1950 - ), em que a Hidrologia faz cada vez 
mais uso de métodos matemáticos avançados e dos modernos conceitos de Mecânica 
de Fluidos e da Termodinâmica, em paralelo com uma utilização massiva de 
computadores como ferramenta básica de trabalho. 
 
A moderna Hidrologia, e em particular a Hidrologia da Engenharia, faz uma integração que se 
procura sempre mais perfeita, entre as teorias dos processos hidrológicos e a informação 
disponível, em termos de registos de precipitação, caudais e de outras variáveis hidrológicas 
fundamentais. 
 
 
1.2 RESERVAS HÍDRICAS NA TERRA 
 
A água é o liquido mais abundante na Terra. De facto, existe uma quantidade enorme, estimada 
em cerca de 1,600 x 106 km3. Aproximadamente 15 % desta água está quimicamente “presa” na 
crusta terrestre. A quantidade de água livre é cerca de 1,386 x 106 km3 (1,386 x 1015 m3). 
Poderia parecer que a quantidade de água na Terra fosse quase ilimitada. Contudo, esta imagem 
muda bastante se considerar a possibilidade de utilizar essa água. Para tal, pode-se analisar o 
Quadro 1.1, que mostra a importância das diferentes reservas hídricas. 
 
 
 Quadro 1.1. Importância das diversas reservas hídricas (cf. UNESCO, 1978) 
 Volume (103 km3) Volume de água 
total (%) 
Volume de água 
doce (%) 
 
Manual de Hidrologia 
Introdução à Hidrologia 1-6 
 
 
 
Oceanos e mares 
 
Lagos: 
 doce 
 
 salgados 
 
Pântanos 
 
Rios 
 
Humidade do solo 
 
Água subterrânea: 
 doce 
 
 salgada 
 
Gelo e neve 
 
Calotes polares 
 
Água na atmosfera 
 
Água biológica 
1,338,000 
 
 
91.0 
 
85.4 
 
11.5 
 
2.1 
 
16.5 
 
 
10,530 
 
12,870 
 
340.6 
 
24,023.5 
 
12.9 
 
1.1 
96.5 
 
 
0.007 
 
0.006 
 
0.0008 
 
0.0002 
 
0.0012 
 
 
0.76 
 
0.93 
 
0.025 
 
1.7 
 
0.001 
 
0.0001 
- 
 
 
0.26 
 
- 
 
0.03 
 
0.006 
 
0.05 
 
 
30.1 
 
- 
 
1.0 
 
68.6 
 
0.04 
 
0.003 
 
TOTAL DE ÁGUA 
ÁGUA DOCE 
1,385,985 
35,029 
100 
2.5 
 
100 
 
 
Deste quadro ressalta imediatamente a pequeníssima fracção de água utilizável pelo Homem em 
relação à totalidade da água existente no planeta. Vê-se que cerca de 97.5 % é água salgada e 1.7 
% corresponde às zonas polares. Além disso, uma boa parte da água subterrânea está situada a 
enormes profundidades o que torna o seu aproveitamento antieconómico nas condições actuais. 
 
A parcela correspondente às águas superficiais e ás águas subterrâneas pouco profundas, aquela 
que efectivamente pode ser utilizada com mais facilidade, é de facto bastante pequena, apenas 
cerca de 0.3 % da água que existe na Terra ! 
 
O tempo de residência é o valor que se obtêm dividindo o volume da reserva pelo volume 
médio do correspondente fluxo de renovação. Assim, o tempo de residência representa o tempo 
médio que uma gota de água permanece numa certa reserva de água antes de passar para uma 
 
Manual de Hidrologia 
Introdução à Hidrologia 1-7 
 
 
outra reserva. O quadro 1.2 apresenta valores do tempo de residência para as várias reservas 
hídricas. 
 
 Quadro 1.2. Tempo de residência para as várias reservas hídricas 
 Volume 
(103 km3) 
Tempo de residência (ordem 
de grandeza) 
Oceanos e mares 
 
Lagos e albufeiras 
 
Pântanos 
 
Rios 
 
Humidade do solo 
 
Água subterrânea: 
 
Gelos e glaciares 
 
Atmosfera 
1,338,000 
 
176.4 
 
11.5 
 
2.1 
 
16.5 
 
23,400 
 
24,364 
 
12.9 
≈4000 anos 
 
≈10 anos 
 
≈1-10 anos 
 
≈2 semanas 
 
≈2 semanas - 1 ano 
 
≈2 semanas - 10,000 anos 
 
≈10 - 1000 anos 
 
≈10 dias 
 
Note-se que, enquanto para as águas superficiais, especialmente para os rios, esses tempossão 
curtos, para os oceanos, glaciares e águas subterrâneas profundas esses tempos contam-se por 
centenas ou milhares de anos. Note-se também que as reservas representam uma imagem 
estática, um "instantâneo" das disponibilidades de água e pouco tem a ver com a sua importância 
para o ciclo hidrológico (que representa uma imagem dinâmica) onde a contribuição dos rios ou 
da atmosfera, por exemplo, é muito superior ao seu volume total instantâneo. 
 
O tempo de residência também tem relevância no âmbito de poluição de recursos hídricos. Por 
exemplo, um rio com água poluída poderá, em princípio, ser limpo em relativamente pouco 
tempo (teoricamente, em apenas algumas semanas), quando as fontes poluentes deixam de 
existir. No caso dum lago grande, a sua limpeza já será um processo de muitos anos. 
 
 
1.3 O CICLO HIDROLÓGICO 
 
1.3.1 Conceito de ciclo hidrológico. Diagrama de Horton 
 
O conceito de ciclo hidrológico é extremamente útil para se iniciar o estudo da Hidrologia. O 
ciclo hidrológico pode ser descrito como um conjunto de arcos que representam os diversos 
caminhos através dos quais a água na natureza circula e se transforma, constituindo um sistema 
de enorme complexidade. 
 
Manual de Hidrologia 
Introdução à Hidrologia 1-8 
 
 
 
O ciclo hidrológico não tem início ou fim mas é habitual partir-se da evaporação da água dos 
oceanos e sua incorporação na atmosfera. Os processos que em seguida se desenrolam estão 
apresentados sob forma gráfica no diagrama de Horton, figura 1.1. 
 
 
Figure 1.1 Diagrama de Horton 
 
O vapor de água resultante da evaporação nos oceanos acumula-se na atmosfera e é transportado 
por massas de ar em movimento. Sob condições adequadas, o vapor condensa-se para formar 
nuvens que, por sua vez, podem dar origem a precipitação, quer sobre a terra quer sobre os 
oceanos. 
 
A precipitação que cai sobre a terra pode seguir caminhos diversos: 
 - parte evapora-se durante a queda; 
 - parte é interceptada por árvores, vegetação ou telhados de casas e volta a evaporar-se; 
 - parte atinge a superfície do solo, infiltrando-se ou ficando retida em depressões 
superficiais. 
 
A parte retida em depressões superficiais divide-se numa componente que se evapora e noutra 
que origina escorrimento superficial. A parte que se infiltra contribui, por um lado, para 
alimentar o processo de transpiração das plantas e de evaporação a partir do solo; por outro, por 
efeito da gravidade, vai alimentar as toalhas de água subterrânea. As águas subterrâneas 
contribuem para alimentar a vegetação, a evaporação a partir do solo e os escoamentos dos rios. 
Por efeito da gravidade, parte das águas subterrâneas vai ter directamente ao oceano. 
 
Manual de Hidrologia 
Introdução à Hidrologia 1-9 
 
 
 
O escorrimento superficial sobre o solo dá origem a linhas de água que se fundem em rios os 
quais, devido à gravidade, vão descarregar no oceano, alimentando no seu percurso lagos, 
pântanos e albufeiras. Em todo este processo, há continuamente evaporação da água da mesma 
forma que pode haver precipitação directamente sobre os rios e lagos. Também os rios 
contribuem muitas vezes para alimentar as toalhas de água subterrânea com que comunicam. 
 
Com a descarga da água no oceano por escoamento superficial ou escoamento subterrâneo fecha-
se o ciclo hidrológico. O "motor" deste ciclo é a energia solar que, no processo de passagem de 
partículas de água para atmosfera por evaporação, lhes transmite a energia potencial necessária 
para o seu regresso ao oceano, actuadas pela gravidade a partir da precipitação. 
 
 
A figura 1.2 faz uma outra representação do ciclo hidrológico. Aí estão indicadas os três ramos 
normalmente considerados no ciclo hidrológico: o ramo oceânico, objecto da Oceanografia; o 
ramo aéreo ou atmosférico, objecto da Meteorologia; e o ramo terrestre, objecto da Hidrologia. 
 
 
Figura 1.2 O Ciclo Hidrológico 
 
A figura 1.3 é ainda uma representação descritiva do ciclo hidrológico mas na qual se faz já uma 
avaliação quantitativa das variáveis envolvidas. P, E, ET, I, G e Q representam respectivamente a 
precipitação, a evaporação, a evapotranspiração, a infiltração, o escoamento subterrâneo e o 
escoamento superficial. As percentagens estão expressas em termos da precipitação total anual 
média que se estima em cerca de 860 mm. 
 
 
Manual de Hidrologia 
Introdução à Hidrologia 1-10 
 
 
 
Figure 1.3 Representação quantitativa do Ciclo Hidrológico 
 
 
1.3.2 Irregularidade espacial e temporal 
 
È preciso salientar que as quantidades de precipitação, evaporação, escoamento e outras 
variáveis hidrológicas apresentam enormes irregularidades quer na sua distribuição geográfica 
quer na sua distribuição temporal. O facto de poder haver grandes variações destas quantidades 
de ano para ano num mesmo local significa que a sua caracterização apenas é possível numa base 
estatística a partir de longas séries de valores observados. 
 
Em Moçambique, há dois organismos que desempenham um papel central na recolha e registo 
de dados relativos às variáveis hidrológicas. São eles: 
 
 - O Instituto Nacional de Meteorologia de Moçambique (INAM) que colecta dados de 
precipitação e evaporação, para além de outros relativos a variáveis climáticas 
(temperatura, humidade relativa, vento, radiação solar, etc.) que influem nas grandezas 
hidrológicas; 
 - a Direcção Nacional de Águas (DNA) que recolhe dados de precipitação, evaporação, 
água subterrânea e escoamento superficial. 
 
Outros organismos como o Instituto Nacional de Investigação Agronómica (INIA) e algumas 
grandes empresas do sector agrícola possuem também informação hidrológica com interesse, 
sobretudo registos de precipitação, evaporação, evapotranspiração. 
 
 
 
Manual de Hidrologia 
Introdução à Hidrologia 1-11 
 
 
1.4 BALANÇO HÍDRICO 
 
Se se considerar uma certa região geográfica durante um determinado período de tempo, o 
movimento da água obedece ao princípio da conservação da massa traduzido pela equação da 
continuidade. Essa equação pode escrever-se como 
 
 dt
ds =O - I na sua forma contínua 
 
ou como 
 
 na sua forma discreta s = t O) - (I ∆∆
 
em que I representa a entrada de água no sistema por unidade de tempo, O é a saída de água do 
sistema também por unidade de tempo e ∆S é a variação do volume armazenado no interior do 
sistema. Designa-se por balanço hídrico a equação da continuidade aplicada a uma certa região 
e escrita em função das variáveis do ciclo hidrológico. 
 
 
Figure 1.4 Representação conceptual do balanço hídrico 
 
As regiões em que fazem estudos de balanços hídricos são definidas normalmente em função do 
objectivo que se pretende alcançar, podendo, no entanto, existir restrições de carácter político e 
administrativo à livre definição dessas regiões. 
 
A figura 1.4, uma versão mais abstracta do ciclo hidrológico duma região, é útil porque permite 
uma tradução fácil do balanço hídrico em termos matemáticos. Na figura 1.4, as variáveis 
têm o seguinte significado: 
 
 P precipitação; 
 Q1, Q2 escoamento superficial que entra e sai da região; 
 G1, G2 escoamento subterrâneo que entra e sai da região; 
 Ss, Sso, Saq volume armazenado à superfície, no solo e no aquífero (água 
subterrânea); 
 
Manual de Hidrologia 
Introdução à Hidrologia 1-12 
 
 
 E evaporação a partir de águas superficiais e do solo; 
 T transpiração das plantas; 
 rso, raq água do solo e água subterrânea que reaparecem à superfície 
(ressurgência); 
 I infiltração (no solo); 
 R recarga (percolação para os aquíferos). 
 
Conforme a região que se considere, assim se podem estabelecer os correspondentes balanços 
hídricos. Por exemplo, se se considerar toda a região representada na figura 1.4, ter-se-á a 
seguinte equação: 
 
 (P + Q1 + G1) - (Q2 + G2 + E + T) = ∆S 
 
em que ∆S representa a variação total do volume armazenado. Note-se que nesta equação não 
aparecem a infiltração, a recarga e a ressurgência que, por seremprocessos "interiores" à região 
em estudo, não afectam o respectivo balanço hídrico. 
 
Se agora se considerar apenas a superfície da terra, o balanço hídrico será: 
 
 (P + Q1 + r) - (Q2 + E + T + I) = ∆Ss 
 
O balanço hídrico para um (único) aquífero será: 
 
 (G1 + R) - (G2 + raq) = ∆Saq 
 
É um exercício relativamente simples estabelecer os balanços hídricos para outras regiões como, 
por exemplo, a camada superficial do solo ou do aquífero. Tenha-se em atenção que todas as 
variáveis que intervêm nas equações de balanços hídricos são expressas como volumes por 
unidade de tempo. 
 
A equação do balanço hídrico pode ser consideravelmente simplificada quando a região 
considerada é a bacia hidrográfica e quando se adoptem longos períodos de tempo (pelo menos 
um ano). Numa bacia hidrográfica, não há, em condições naturais, outra entrada de água além da 
precipitação e há uma única saída de água. Por outro lado, num longo período de tempo a 
variação do volume armazenado pode ser desprezada perante os valores acumulados das outras 
variáveis. Assim, a equação do balanço hídrico passa a ser nessas condições: 
 
 
 
P - (Q2 + E + T) = 0 
 
O maior obstáculo na resolução de problemas práticos com utilização do balanço hídrico reside 
principalmente na dificuldade de medir ou estimar adequadamente as variáveis intervenientes. 
Por exemplo, a precipitação é medida pontualmente fazendo-se depois a extrapolação para toda a 
área envolvida1. Os caudais em rios podem ser medidos com razoável precisão excepto durante 
 
1 ver o capítulo sobre precipitação 
 
Manual de Hidrologia 
Introdução à Hidrologia 1-13 
 
 
as cheias. As maiores dificuldades surgem, no entanto, associadas à medição ou estimação dos 
valores de infiltração, recarga, escoamento subterrâneo, evaporação, transpiração e volumes 
armazenados no solo e em aquíferos. 
 
O balanço hídrico é uma ferramenta muito útil e que pode ser utilizada numa grande variedade 
de situações como, por exemplo: 
• determinação do valor duma variável hidrológica quando todas as restantes que entram no 
balanço são conhecidas; 
• estimação do erro global cometido na medição ou estimação das variáveis hidrológicas, 
quando todas as que entram no balanço hídrico são conhecidas; 
• operação de albufeiras; 
• avaliação das necessidades de rega. 
 
O balanço hídrico é também a componente central dos modelos de simulação hidrológica - 
modelos matemáticos em que se procura reproduzir as características principais do movimento 
de água numa região a partir do momento em que ela precipita. 
 
 
 
1.5 ANO HIDROLÓGICO 
 
As variáveis hidrológicas, como a precipitação, o escoamento ou a evaporação, são claramente 
influenciadas por uma ciclicidade anual. Em Moçambique, isto é bem evidente nas duas mais 
importantes variáveis do ciclo hidrológico, a precipitação e o escoamento. Com efeito, tanto a 
precipitação como o escoamento atingem valores elevados nos meses de Dezembro a Março ao 
passo que no período de Junho a Setembro os seus valores são bastante baixos. 
 
Em muitas aplicações, interessa utilizar os valores acumulados anuais de precipitação e 
escoamento, por exemplo para balanços hídricos anuais. Nesses casos, não se pode adoptar como 
período de registo o ano civil (1 Janeiro - 31 Dezembro) pois isso corresponderia a repartir por 
dois anos uma mesma época de chuvas. Considera-se por isso um ano especial designado por 
ano hidrológico. 
 
Toma-se para início do ano hidrológico o fim da época de estiagem o que tem a vantagem de 
evitar a divisão duma mesma época de chuvas. Tem também vantagens para a efectivação de 
balanços hídricos anuais: 
 
 P - (R + E + T) = ∆S 
 
pois no fim da época de estiagem pode aceitar-se que o armazenamento é sempre bastante 
pequeno pelo que ∆S é aproximadamente nulo. Procura-se, portanto, que os anos hidrológicos 
sejam (estatisticamente) independentes uns dos outros, o que obviamente não aconteceria se, por 
exemplo, se se usasse o ano civil. 
 
O procedimento adoptado para a definição do início do ano hidrológico procura, de facto, 
 
Manual de Hidrologia 
Introdução à Hidrologia 1-14 
 
 
minimizar a dependência estatística dos sucessivos anos hidrológicos. Ele consiste em formar 
séries anuais de escoamentos adoptando, alternativamente, diferentes meses para o seu início 
(Setembro, Outubro, Novembro, etc.) e determinar, para cada alternativa de início, o valor do 
coeficiente de autocorrelação. O mês que origine o mais baixo coeficiente de autocorrelação 
deve ser o adoptado para início do ano hidrológico. 
 
Em Moçambique, verifica-se que os escoamentos em dada região dão coeficientes de 
autocorrelação mais baixos tomando o ano hidrológico com início em 1 de Outubro ao passo que 
noutras regiões o mínimo coeficiente de autocorrelação corresponderia a um início em 1 de 
Novembro. Por razões de ordem organizativa, a Direcção Nacional de Águas adoptou como ano 
hidrológico o período que vai de 1de Outubro dum ano a 30 de Setembro do ano seguinte. 
 
 
Manual de Hidrologia 
Introdução à Hidrologia 1-15 
 
 
EXERCÍCIOS 
 
1. Numa albufeira com uma área de 10 km2 verificaram-se durante um período de 5 dias os 
seguintes valores: 
 - Caudal afluente = 15 m3/seg. 
 - Caudal efluente = 3 m3/seg. 
 - Nível da água no 1º dia = 25,0 m. 
 - Nível da água no 6º dia = 25,4 m. 
 - Precipitação = 0 mm. 
 
a) Calcule o volume da água perdida por evaporação na albufeira, durante estes 5 dias 
b) Calcule a altura média diária de evaporação da albufeira. 
 
 
2. Considere um lago com uma saída natural. A área do lago é de 500 km2 e a da bacia 
drenante de 2800 km2. Durante um ano verificou-se que a precipitação na região foi de 600 mm. 
e a evaporação no lago de 800 mm, não se tendo verificado uma variação sensível do nível do 
lago. O caudal médio descarregado ao longo do ano foi de 9 m3/s. 
 
a) Calcule o caudal drenado da bacia para o lago. 
b) Calcule a evaporação na bacia drenante. 
 
 
3. Em que condições é que a precipitação numa bacia não produz 
 
a) Nenhum escoamento superficial 
b) Nenhum escoamento subterrâneo 
c) Nenhum escoamento 
 
 
4. Explique a presença e a ausência de água superficial e água subterrânea numa zona com 
dunas (p. ex. a ilha de Inhaca) e numa planície dum rio (p. ex. o rio Incomati). 
 
 
5. Construiu-se uma barragem numa secção dum rio com uma bacia drenante de 1800 km2. 
A albufeira tem uma área inundada média de 35 km2 e uma capacidade de armazenamento de 
600 milhões m3. O caudal médio (afluente) do rio é de 5,6 m3/s. A precipitação anual média 
ponderada sobre a bacia é de 700 mm. O enchimento da albufeira depois da sua construção levou 
5 anos. Durante esse período o caudal médio descarregado pela albufeira foi de 0,5 m3/s. Logo 
depois da construção da barragem (durante e depois do enchimento da albufeira) começou-se a 
tirar, anualmente, 12 milhões de m3 de água da albufeira para o abastecimento duma vila e para 
um regadio. 
 
a) Calcule o caudal médio descarregado pela albufeira depois do seu enchimento (numa 
situação de equilíbrio o nível médio da albufeira mantêm-se constante). 
 
Manual de Hidrologia 
Introdução à Hidrologia 1-16 
 
 
b) Calcule as perdas anuais na albufeira por evaporação. 
 
 
6. Na secção de saída (secção de referência) duma bacia hidrográfica de 1600 km2 foi 
construída uma barragem com uma albufeira com uma superfície de 35 km2 e uma capacidade de 
armazenamento de 600 milhões m3. A albufeira é alimentada por um rio que drena a bacia. O 
caudal médio no rio é de 4,5 m3/s. A precipitação anual média naquela zona é de 700 mm. O 
enchimento da albufeira depois da sua construção levou 5 anos. 
 
a) Calcule as perdas anuais na albufeira por evaporação (assuma que a superfície da 
albufeira é constante). 
b) Calcule a evapotranspiração anual (em mm) na bacia. 
 
Manual de Hidrologia 
Caracterízação duma bacia hidrográfica 2-1 
 
 
 
2 CARACTERIZAÇÃO DUMA BACIA HIDROGRÁFICA 
 
2.1 BACIASHIDROGRÁFICAS 
 
Uma bacia hidrográfica é uma região definida topográficamente, drenada por um curso de água 
ou um sistema interligado de cursos de água, tal que a única entrada de água na região seja a 
precipitação e todos os caudais efluentes sejam descarregados através de uma única saida (secção 
de referência da bacia). 
 
Quando o balanço hídrico é realizado na região correspondente a uma bacia hidrográfica, ele 
torna-se consideravelmente simplificado já que a única entrada de água corresponde à 
precipitação e a saída de água se faz numa única secção. Também para a gestão dos recursos 
hídricos a bacia hidrográfica constitui a unidade mais conveniente pois é a nível da bacia que se 
verificam as relações mais estreitas entre: 
 
• recursos hídricos a montante e a jusante; 
• recursos de água superficiais e de águas subterrâneas; 
• consumos a montante e disponibilidades a jusante, em termos de quantidade e qualidade; 
• modificações na ocupação do solo ou obras hidráulicas no rio e nas margens e modificações 
morfológicas ou das características do escoamento a montante e a jusante, por vezes a 
distâncias de dezenas de quilómetros. 
 
Tudo isto justifica o papel privilegiado desempenhado pelas bacias hidrográficas em estudos 
hidrológicos e de gestão de recursos hídricos. A figura 2.1 representa as principais bacias de 
Moçambique e a figura 2.2 a bacia do rio Malema, afluente do rio Lúrio. 
 
A bacia hidrográfica é limitada pela linha de separação das águas. Esta linha passa pelos 
pontos de máxima cota entre bacias, seguindo pelas linhas de cumeada, podendo no entanto 
existir pontos mais altos no interior da bacia. A linha de separação divide a região onde a 
precipitação caída vai dar origem a escoamento drenado através da secção de referência das 
regiões vizinhas, drenadas por outros cursos de água. 
 
A definição dos limites da bacia hidrográfica torna-se menos precisa quando se considera o 
escoamento subterrâneo. Assim, distingue-se por vezes a linha de separação topográfica ou 
superficial da linha de separação freática ou subterrânea. Na situação ilustrada pela figura 2.3, 
a precipitação que se infiltra acima da camada geológica impermeável acaba por se escoar numa 
bacia vizinha. 
 
 
 
Manual de Hidrologia 
dr.sambo
Highlight
dr.sambo
Highlight
Caracterízação duma bacia hidrográfica 2-2 
 
 
 
 Figure 2.1 Principais bacias de Moçambique 
 
 
 
 
Manual de Hidrologia 
Caracterízação duma bacia hidrográfica 2-3 
 
 
 
 Figure 2.2 Bacia do rio Malema 
 
 
 
 
Manual de Hidrologia 
Caracterízação duma bacia hidrográfica 2-4 
 
 
 
 Figure 2.3 Limites duma bacia hidrográfica 
 
Nesta situação, a definição dos limites da bacia hidrográfica não se pode fazer sem ambiguidade 
visto que apenas uma parte da precipitação caída acima da camada geológica impermeável se 
infiltra enquanto outra parte se transforma em escoamento superficial na bacia. Por outro lado, os 
níveis freáticos variam ao longo do ano o que tem como consequência a variação da linha de 
separação freática. Por isso, normalmente e para efeitos práticos, despreza-se o efeito introduzido 
pelo escoamento subterrâneo, junto aos limites da bacia. A incorreção cometida é negligenciável 
com a excepção das bacias com muito pequena dimensão ou com características geológicas 
particulares. 
 
O comportamento hidrológico duma bacia hidrográfica é essencialmente uma função das 
características climáticas da região (precipitação, evaporação) e das características fisiográficas 
da bacia. As características fisiográficas podem ser agrupadas da seguinte maneira: 
 
• características geométricas - área de drenagem; 
 - perímetro; 
 - índice de compacidade; 
 - factor de forma. 
 
• características do sistema de drenagem - constância do escoamento; 
 - ordem; 
 - densidade de drenagem. 
 
• características do relevo - curva hipsométrica; 
 - altitude média; 
 - altura média; 
 - perfil do rio; 
 - inclinação média do leito; 
 - declividade dos terrenos; 
 - rectângulo equivalente; 
- declive médio 
- índice de declive de Roche; 
 
 
 
Manual de Hidrologia 
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
Caracterízação duma bacia hidrográfica 2-5 
 
 
 
 - curva hidrodinâmica; 
 - coeficiente de massividade; 
 - coeficiente orográfico. 
 
• características de geologia, solos e vegetação 
 
 
 
2.2 CARACTERÍSTICAS GEOMÉTRICAS 
 
2.2.1 Área de drenagem 
 
A área de drenagem é a área da projecção horizonal da superfice da bacia hidrográfica, sendo 
normalmente determinada por planimetria ou por utilização de GIS (Sistema de Informação 
Geográfica), em cartas com escalas (no caso de Moçambique) entre 1:250,000 e 1:50,000. 
 
A área de drenagem tem uma importância enorme nos valores dos escoamentos, que se podem, 
duma maneira geral, considerar funções crescentes da área. A área da bacia do rio Malema 
(centro-norte de Moçambique) é de 2,600 km2. 
 
2.2.2 Perímetro 
 
O perímetro da bacia é o perímetro da projecção horizontal da superfície da bacia hidrográfica. 
O perímetro da bacia do rio Malema é de 342 km. 
 
2.2.3 Índice de compacidade 
 
O índice de compacidade ou índice de Gravelius, Kc, é a relação entre o perímetro da bacia e o 
perímetro dum círculo de área igual à da bacia: 
 
 Kc = P/(2πR), em que A = πR2 define o valor de R. Então: 
 
 
A
P 0.282 = 
A2
P = Kc
π
π
 
 
Kc é sempre maior ou igual à unidade apenas se tendo Kc = 1 para uma bacia de forma circular. 
Kc é um valor adimensional que não depende da área mas da forma da bacia sendo tanto maior 
quanto mais essa forma se afaste da circular. Note-se que quanto maior fôr Kc menos compacta é 
a bacia. Apresentam-se na figura 2.4 algumas formas esquemáticas de bacias e os respectivas 
índices de compacidade. A título de exemplo, a bacia do rio Malema tem um valor de Kc = 1.89. 
 
 
 
 
Manual de Hidrologia 
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
Caracterízação duma bacia hidrográfica 2-6 
 
 
 
 
 
Manual de Hidrologia 
 
 Figura 2.4 Índices de compacidade para várias formas de bacias 
Se imaginarmos uma precipitação instantânea e uniforme sobre a bacia, o escoamento a que ela 
dá origem surgirá concentrado na secção de saída ou mais distribuido ao longo do tempo 
conforme a forma da bacia seja próxima da circular ou irregular. Assim, em igualdade de outros 
factores, a tendência para grandes cheias será tanto mais acentuada quanto mais próximo da 
unidade for o valor de Kc. 
 
2.2.4 Factor de forma 
 
O factor de forma, Kf, é a relação entre a largura média e o comprimento da bacia, definido 
como o comprimento, L, do seu curso de água mais longo. A largura média, l, é definida como a 
largura dum rectângulo com o mesmo comprimento e com a mesma área: 
 
 l = A/L 
 
 Kf = l/L = A/L2 
 
Se se considerar as primeiras três bacias representadas na figura 2.4, os seus factores de forma 
são aproximadamente 0.25, 0.50 e 1. As bacias com factores de forma baixos são as que têm 
formas estreitas ou irregulares. Nestes casos, é menos provável a ocorrência de chuvas intensas 
cobrindo simultâneamente toda a sua extensão e, por outro lado, os escoamentos resultantes 
surgem na secção de saída mais distribuidos ao longo do tempo pelo que, em igualdade de outros 
factores, bacias com Kf baixos terão menos tendências para grandes cheias do que bacias com Kf 
elevados. O valor de Kf para a bacia do rio Malema é de 0.1 aproximadamente. 
 
 
 
2.3 CARACTERÍSTICAS DO SISTEMA DE DRENAGEM 
 
2.3.1 Constância do escoamento 
dr.samboHighlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
Caracterízação duma bacia hidrográfica 2-7 
 
 
 
 
Os rios e seus afluentes podem classificar-se como perenes, intermitentes e efémeros, de 
acordo com o critério da constância do escoamento. 
 
Os rios perenes são os que, em condições naturais1, escoam água durante todo o ano quer por 
terem afluentes com diferentes regimes de alimentação quer por terem uma alimentação contínua 
de águas subterrâneas. É normalmente o caso dos rios mais importantes de Moçambique, como o 
Maputo, o Umbelúzi, o Incomáti e o Limpopo, na região sul. 
 
Os rios intermitentes são os que em geral têm água durante a época húmida e secam na estiagem. 
Durante a época húmida beneficiam da precipitação e dum nível freático alto enquanto que, 
durante a época seca, o lençol freático desce a um nível inferior ao do leito do rio, não 
permitindo fazer a sua alimentação. Podem referir-se como exemplo os rios Mazim’chopes e 
Govuro. 
 
Os rios efémeros apenas têm água durante e imediatamente a seguir aos períodos de precipitação, 
não recebendo escoamento subterrâneo. Podem citar-se como exemplo os rios Movene e 
Impamputo. 
 
2.3.2 Ordem 
 
A ordem dos cursos de água é uma classificação que reflecte o grau de ramificação da rede 
hidrográfica da bacia. Pode ser feita a partir dum mapa em que estejam representados todos os 
canais naturais suficientemente bem definidos quer correspondam a cursos de água perenes, 
intermitentes ou efémeros. 
 
Um critério de ordenação que por vezes tem sido seguido é o de considerar como de ordem 1 os 
cursos de água que não são afluentes de qualquer outro; de ordem 2 os que são afluentes dos rios 
de ordem 1; de ordem n+1 os que são afluentes dos cursos de água de ordem n. Este critério é de 
aplicação simples e quase nada dependente do pormenor com que a rede hidrográfica está 
representada no mapa. No entanto, apresenta como significativas desvantagens o facto de 
poderem surgir como tendo a mesma ordem rios de dimensão totalmente distinta. Em 
Moçambique, tanto o Zambeze como o Infulene seriam rios de ordem 1 por este critério. 
 
Um critério mais seguido actualmente é o de Horton-Strahler: são considerados de ordem 1 as 
linhas de água iníciais, que não recebem quaisquer afluentes; a junção de duas linhas de água de 
ordem 1 origina uma linha de água de ordem 2; a junção de dois rios de ordem n gera um rio de 
ordem n+1. Assim, os troços terminais dos grandes rios têm números de ordem bastante altos. 
 
 
 
A figura 2.5 ilustra a utilização destes dois critérios. 
 
 1 É necessário referir o rio “em condições naturais” por causa das grandes modificações de regime de escoamento introduzidas por tomas 
de água e por albufeiras de armazenamento. 
 
 
 
Manual de Hidrologia 
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
Caracterízação duma bacia hidrográfica 2-8 
 
 
 
 Figure 2.5 Critérios de ordenação de cursos de água 
 
2.3.3 Densidade de drenagem 
 
A densidade de drenagem, λ, é a relação entre o comprimento total dos cursos de água duma 
bacia, sejam eles perenes, intermitentes ou efémeros, e a área da bacia: 
 
A
l
=
i
i
∑
λ 
 
λ é dado em km-1 e varia normalmente entre 0.5 e 3.5 km-1. A densidade de drenagem é também 
um indicador da tendência para a ocorrência de cheias numa bacia hidrográfica. Com efeito, 
numa bacia bem drenada o escoamento superficial é rapidamente canalizado para linhas de água 
bem definidas e pode surgir concentrado na secção de referência da bacia. Naquelas bacias mal 
drenadas (λ baixo), a precipitação vai originar sobretudo escoamento sub-superficial e 
subterrâneo que se processam com muito mais lentidão, não originando por isso picos de cheia 
elevados. 
 
 
 
2.4 CARACTERÍSTICAS DO RELEVO 
 
2.4.1 Curva hipsométrica 
 
A curva hipsométrica é a curva A(z) em que A é a área da bacia que se situa acima da altitude ou 
cota z referida ao nível do mar. A área pode ser expressa em km2 ou em percentagem da área 
total da bacia. A curva hipsométrica é obtida a partir da carta hipsométrica, carta onde a 
representação das altitudes é feita por curvas de nível ou por qualquer outro processo de 
representação gráfica. A figura 2.6 apresenta um exemplo de curva hipsométrica. A figura 2.7 
apresenta a curva hipsométrica da bacia do rio Malema. 
 
 
 
 
 
 
Manual de Hidrologia 
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
Caracterízação duma bacia hidrográfica 2-9 
 
 
 
 
 
 
 
 Figure 2.6 Curva hipsométrica 
 
 
 
 
 Figure 2.7 Curva hipsométrica do rio Malema 
 
 
 
 
 
Manual de Hidrologia 
Caracterízação duma bacia hidrográfica 2-10 
 
 
 
 
2.4.2 Altitude média 
 
A altitude média da bacia, Z, é dada pela expressão: 
A
daz
 = Z
total
A
0
total
⋅∫
 
O integral dá a área limitada pela curva z(A) e pelos eixos coordenados, podendo ser fácilmente 
calculado por uma fórmula de integração numérica a partir da curva hipsométrica. Um processo 
mais expedito é o de assimilar o integral a um somatório: 
 
 Az =da z ii
1=i0
∑∫ ⋅
nAtotal
 
em que Ai é a área da bacia entre as curvas de nível i e (i+1) e zi a média das altitudes dessas duas 
curvas de nível. 
 
A altitude média é uma característica com grande influência em variáveis hidrometeorológicas 
como a precipitação e a temperatura. Em Moçambique, as zonas de maior altitude (Gurué, 
Milange, Angónia, Lichinga) são as regiões de maiores precipitações anuais médias e mais 
baixas temperaturas mínimas. 
 
2.4.3 Altura média 
 
A altura média, H, é dada pela expressão: 
 
 
A
dah
 = H
total
0
⋅∫
Atotal
 
 
em que h é a cota acima da secção de referência ou de estudo, em vez de z que é a altitude ou 
cota referida ao nível do mar. Assim, se estivermos a tomar como secção de referência a foz no 
oceano, as alturas h coincidem com as altitudes z; se a secção de referência fôr, por exemplo, a 
secção de confluência do afluente com o rio principal, então para esse afluente ter-se-á: 
 
 h = z - zconf 
 ou h = z - z100 
 
já que toda a bacia (100%) do afluente se situa acima de zconf. Daqui se tira imediatamente que 
 
 
 
 
Manual de Hidrologia 
Caracterízação duma bacia hidrográfica 2-11 
 
 
 
 H = Z - z100 
 
A altura média da bacia dá-nos uma ideia se a bacia é muito ou pouco acidentada. Normalmente, 
as bacias com maiores alturas médias apresentam quedas mais importantes que podem por vezes 
ser aproveitadas para a produção de energia hidroeléctrica. 
 
2.4.4 Perfil do rio 
 
O perfil do rio é a representação gráfica da função z(L) em que z é a cota duma dada secção do 
rio e L a respectiva distância à foz. 
 
A figura 2.8 apresenta a título de exemplo o perfil do rio Malema e dos seus afluentes Namparro, 
Mutivasse, Nataleia e Lalace. Note-se que a marcação de distâncias para os afluentes em sentido 
contrário ao rio principal, a partir da confluência, torna o gráfico mais legível do que seria se 
todas as distâncias fossem marcadas no mesmo sentido. O perfil dum rio dá uma noção imediato 
das zonas de quedas importantes, grandes extensões quase planas e mais facilmente inundáveis, 
etc. 
 
2.4.5 Inclinação média do leito 
 
A inclinação média do leito obtem-se dividindo a diferença entre as cotas máxima e mínima do 
leito pelo comprimento do rio. É também possível determinar de modo análogo a inclinação 
média dum troço do rio. 
 
A partir da figura 2.8, pode-se calcularque a inclinação média de todo o leito do rio Malema é de 
0.00859 mas que o troço de 135 km de jusante tem uma inclinação de apenas 0.00278. 
 
 
2.4.6 Declividade dos terrenos 
 
Quanto maior a declividade dos terrenos maior será a velocidade com que se dá o escorrimento 
superfícial e, consequentemente, menor será o tempo que a água leva a atingir o sistema de 
drenagem, facilitando o aparecimento de maiores pontas de cheias. Para tal contribui também o 
facto de maior declividade corresponder a uma menor infiltração de água no solo. Por outro lado, 
as maiores velocidades agravam o problema da erosão do solo. 
 
A declividade dos terrenos duma bacia é normalmente obtida por amostragem: 
 
• marcam-se, por exemplo a partir duma quadrícula aposta ao mapa da bacia, um número 
elevado de pontos no interior da bacia; 
• para cada ponto determina-se a declividade a partir das duas curvas de nível entre as quais o 
ponto se situa; 
• fica-se assim com uma distribuição estatística das declividades o que permite igualmente 
obter a declividade média da bacia. 
 
 
 
Manual de Hidrologia 
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
Caracterízação duma bacia hidrográfica 2-12 
 
 
 
 Figure 2.8 Perfis do rio Malema e afluentes 
 
 
 
 
Manual de Hidrologia 
Caracterízação duma bacia hidrográfica 2-13 
 
 
 
Um outro método para determinar a declividade média dos terrenos é o método do Alvord. 
 
Suponha-se a bacia representada numa carta com curvas de nível espaçadas de D (por exemplo, 
D = 20 metros). A figura 2.9 representa as curvas de nível às cotas n-D, n, n+D. 
 
 
 
Figure 2.9 Método de Alvord. 
 
Considere-se a curva de nível à cota n. A faixa de terreno entre as curvas de nível à cota n-D/2 e 
n+D/2 está representada a tracejado na figura. 
 
Se se designar por dn a largura média dessa faixa, a declividade média dos terrenos nessa faixa 
será dada por in = D/dn. 
 
Se o comprimento da curva de nível à cota n for Ln, então: 
 
A
LD = 
L d
L D = i
n
n
nn
n
n 
 
em que An é área da faixa a tracejado. 
 
Este raciocínio é aplicável a qualquer faixa de terreno correspondente a uma curva de nível da 
carta. Portanto, pode-se definir a declividade média dos terrenos da bacia como a média 
ponderada das declividades médias de todas as faixas que compõem a bacia. 
 
 A
L D = 
A 
LD = 
A
i A = I
n
n
n
nn
∑
∑
∑
∑
 
 
em que L é o comprimento total das curvas de nível de equidistância D existentes na bacia e A é 
a área da bacia. 
 
Esta método é, assim, bastante prático pois, conhecido D, basta determinar A com um planímetro 
(ou GIS) e medir L com um curvímetro (ou GIS). Note-se que, sendo I um valor adimensional, 
se deve exprimir tanto L como D em km e A em km2. 
 
 
 
 
Manual de Hidrologia 
Caracterízação duma bacia hidrográfica 2-14 
 
 
 
 
2.4.7 Rectângulo equivalente 
 
O rectângulo equivalente é o rectângulo com área e perímetro iguais aos da bacia, isto é: 
 
 2(Le+le) = P 
 Le * le = A 
 
Pode-se ressolver as duas equações para obter Le e le: 
 
 A - 16
P + 
4
P = L
2
e Só é válida para AP 16
2 ≥
 A - 16
P - 
4
P = l
2
e 
 
A bacia do rio Malema tem A = 2,600 km2 e P = 342 km, donde se tira para o rectângulo 
equivalente: 
 
 Le = 154 km; 
 le = 17 km. 
 
 Figure 2.10 Rectângulo equivalente do rio Malema 
 
A figura 2.10 faz a representação do rectângulo equivalente para a bacia do rio Malema. Nele 
marcaram-se as várias curvas de nível espaçadas de formas a representarem as correspondentes 
áreas. Por exemplo, a área entre as curvas de nível de 700 e 800 m é de 20 x 17 = 340 km2 . As 
áreas são obtidas a partir da curva hipsométrica. 
 
2.4.8 Índice de declive médio 
 
O índice de declive médio, Ii, entre as curvas de nível de cotas Zi e Zi-1 é dado pela relação: 
 
X
Z-Z = I
i
1-ii
i 2, 
em que Xi é a distância entre as duas curvas de nível no rectângulo equivalente. Por exemplo, no 
caso da bacia do rio Malema, o índice de declive médio entre as cotas 1,300 e 1,400 m é: 
 
 
 
Manual de Hidrologia 
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
Caracterízação duma bacia hidrográfica 2-15 
 
 
 
 
 0.0159 = 6,300
1,300-1,400 = I 
 
enquanto que ele é apenas de 0,0024 entre as cotas 600 e 700 m. 
 
2.4.9 Índice de declive de Roche 
 
O índice de declive de Roche, Ip, é o índice de declive médio para toda a bacia. No exemplo do 
rio Malema, o rectângulo equivalente permite calcular 
 
 0.00932 = 154,000
465-1,900 = I p 
 
2.4.10 Índice de declive global 
 
O índice de Roche é muito afectado se a bacia tiver pequenas áreas de grande altitude. Afim de 
representar mais fielmente as características médias da bacia, o índice de declive global, Ig, 
exclui as áreas correspondentes aos 5% mais altos e aos 5% mais baixos da bacia: 
 
 
L
Z-Z = I
e
955
g 
 
Para a bacia do Malema, obtem-se: 
 
 0.00558. = 154,000
540-1,400 = I g 
 
Como é evidente, Ig é sempre inferior a Ip. Os valores de Z5 e Z95 são obtidos a partir da curva 
hipsométrica. 
 
2.4.11 Curva hidrodinâmica 
 
A curva hidrodinâmica representa, a menos dum factor constante, as possibilidades energéticas 
da bacia. 
 
Se se considerar um volume de água V caindo duma altura h, a energia potencial que lhe 
corresponde é 
 
 En = ρgVh Joules (com as unidades do Sistema Internacional), ou 
 En = 2,722 Vh KWh (com V em Mm3 e h em m). 
 
Considere-se agora o caso dum rio sem afluentes onde estão identificadas diversas secções 
 
 
 
Manual de Hidrologia 
dr.sambo
Highlight
dr.sambo
Highlight
dr.sambo
Highlight
Caracterízação duma bacia hidrográfica 2-16 
 
 
 
(figura 2.11) e marquem-se os pontos (Vi, hi). 
 
 
Vdh 2,722 = En
h
∫
max
Figure 2.11 Curva hidrodinâmica 
h é a cota da secção e V o volume anual médio que nela se escoa. A área delimitada pela curva 
V(h) multiplicada pelo factor 2,722 dá a energia potencial total correspondente ao escoamento do 
rio, designando-se por potencial fluvial bruto. 
 
 3 
0
 
Considere-se agora o caso dum rio com afluentes como se representa na figura 2.12. O processo 
de representação da curva V(h) pode ser repetido para o rio principal e para os afluentes, à 
semelhança do caso anterior, permitindo determinar o potencial fluvial bruto de cada afluente e 
da totalidade da bacia. 
 
 Figura 2.12 Curva Hidrodinâmica para um rio principal e os 
afluentes 
 
A determinação do potencial fluvial bruto implica o conhecimento dos volumes escoados nas 
diversas secções. Quando tal não acontece e se dispõe apenas de cartas topográficas com a 
indicação da rede de drenagem, pode utilizar-se a curva hidrodinâmica para uma primeira ideia 
do potencial energético da bacia. 
 
A curva hidrodinâmica baseia-se na hipótese da proporcionalidade entre áreas drenadas e 
volumes escoados: 
 
 K, =... = 
A
V = 
A
V = 
A
V
3
3
2
2
1
1 
 
hipótese válida em primeira aproximação desde que toda a área tenha características climáticas, 
geológicas e de solos homogéneas. Então: 
 
 
 
Manual de Hidrologia 
Caracterízação duma bacia hidrográfica 2-17 
 
 
dhAK 2,722 = dhV2,722 = En
h
0
h
0
⋅⋅ ∫∫
maxmax
 
 
 
 
Manual de Hidrologia 
 
 
Portanto, se se traçar uma curva semelhante às das figuras 2.11 e 2.12 mas em que os volumes 
escoados são substituidos pelas correspondentes áreas de drenagem, teremos a curva 
hidrodinâmica. 
 
Para se obter o valor do potencial energético multiplica-se a área delimitada pela curva 
hidrodinâmica pelo factor (2,722 * K). O valor de K pode ser estimado por uma das seguintes 
vias: 
 
• se numa secção (de preferência, a jusante) se conhecer o valor do volume anual médio V e 
sendo A a respectiva área drenante, virá K = V/A, com K em m se V em Mm3 e A em km2. 
• se não houver quaisquer dados de escoamento na bacia, utilizar o valor deK calculado para 
uma bacia vizinha com características similares. 
 
As figuras 2.13 e 2.14 apresentam as curvas hidrodinâmica e do potencial fluvial bruto da bacia 
do Malema. As curvas diferem entre si porque a bacia não tem características homogéneas de 
precipitação e, por isso, os escoamentos não são proporcionais às áreas. 
 
2.4.12 Coeficiente de massividade 
 
O coeficiente de massividade é o quociente entre a altura média da bacia, em metros, e a sua 
área, em km2. O coeficiente de massividade da bacia do rio Malema é de 340/2,600 = 0.13. Este 
coeficiente toma valores elevados para pequenas bacias com grandes desníveis e valores baixos 
para grandes bacias de relevo pouco acentuado. No entanto, os respectivos valores podem ser os 
mesmos para bacias muito diferentes. Por exemplo, uma bacia pequena com relevo pouco 
acentuado e uma bacia grande com grandes desníveis podem ter valores muito próximos de 
coeficiente de massividade. 
 
2.4.13 Coeficiente orográfico 
 
O coeficiente orográfico é o produto da altura média pelo coeficiente de massividade. O 
coeficiente orográfico permite fazer a distinção de situações em relação às quais o coeficiente de 
massividade dá indicações dúbias. Admite-se que a fronteira entre relevo pouco acentuado e 
relevo acentuado é marcado pelo valor do coeficiente oregráfico igual a 6. O coeficiente 
orográfico da bacia do rio Malema é de 44. 
dr.sambo
Highlight
dr.sambo
Highlight
Caracterízação duma bacia hidrográfica 2-18 
 
 
 
 Figura 2.13 Curva hidrodinâmica do rio Malema e alguns 
afluentes 
 
 
 
Manual de Hidrologia 
Caracterízação duma bacia hidrográfica 2-19 
 
 
 
Figura 2.14 Curvas do potencial fluvial bruto da bacia do rio 
MalemaCARACTERÍSTICAS DE GEOLOGIA, SOLOS E VEGETAÇÃO 
 
A geologia duma bacia hidrográfica e o tipo de solos dela resultante têm uma grande influência 
no movimento da água na bacia, em particulação no que toca ao escoamento, superfical e 
subterrâneo. 
 
A geologia define a existência de formações permeáveis e impermeáveis e de aquíferos bem 
como a forma como os aquíferos são alimentados e contribuem para alimentar o escoamento dos 
rios. A geologia condiciona a localização do nível freático que tem grande importância para o 
fenómeno da evapotranspiração. Os rios que comunicam com importantes lençóis freáticos são 
normalmente rios perenes, com caudais significativos mesmo durante as estiagens. 
 
O tipo de solos e das camadas geológicas superficiais condicionam fortemente a permeabilidade 
dos terrenos e, consequentemente, a infiltração, fenómeno que está na base da recarga dos 
aquíferos. Terrenos pouco permeáveis dão origem a que toda a precipitação se transforme 
rápidamente em escoamento superficial, gerando por isso cheias mais intensas e de menor 
duração. 
 
A geologia e os solos duma bacia são também importantes factores condicionantes da erosão 
superficial. As formações mais recentes (do Holoceno e Pleistoceno) assim como formações 
calcáreas e graníticas muito alteradas são as mais fácilmente erodíveis. A erosão superficial nos 
terrenos da bacia hidrográfica constitui a fonte do caudal sólido que tem de ser transportado pelo 
rio. 
 
A cobertura vegetal também tem bastante importância para os fenómenos hidrológicos. Duma 
maneira geral, terrenos com florestas e matas têm maiores infiltrações e menores velocidade de 
escoamento superficial do que terrenos nus ou cultivados. Isso ajuda a diminuir a erosão 
superficial dos terrenos e origina cheias mais prolongadas e menos intensas. Por outro lado, o 
tipo de vegetação influencia fortemente o fenómeno de evapotranspiração. 
 
A geologia, os solos e a vegetação têm importância não apenas em grandes bacias hidrográficas 
mas mesmo em pequenas bacias urbanas, como é evidenciado pelos grandes problemas de 
erosão que se verificam em algumas das principais cidades de Moçambique como Maputo, 
Nampula, Nacala e Pemba. 
 
 
 
 
 
Manual de Hidrologia 
Revisão de conceitos de probabilidades e estatística 3-1 
 
 
 
3 REVISÃO DE CONCEITOS DE PROBABILIDADES E 
ESTATÍSTICA 
 
3.1 DEFINIÇÕES 
 
Uma variável aleatória χ é um variável que toma valores não resultantes de processos e leis 
físicas ou relações matemáticas bem determinadas, sendo por isso atribuídos à sorte (acaso). Por 
exemplo: o número de pontos no lançamento dum dado. 
 
Uma variável aleatória pode ser discreta ou contínua. É discreta se só pode tomar valores 
descontínuos, por exemplo, o número de dias de chuva num ano. A variável aleatória diz-se 
contínua quando, num determinado intervalo de valores, limitado ou não, puder tomar qualquer 
valor desse intervalo, por exemplo, a precipitação anual. 
 
A população Ω é o conjunto de todos os valores que podem ser assumidos por uma variável 
aleatória. Designa-se por amostra a parte observada da população. 
 
Um acontecimento Ai é qualquer subconjunto da população. 
 
A frequência (ou frequência relativa) dum acontecimento Ai é definida por f = n/N em que n é 
o número de vezes em que o acontecimento Ai ocorre e N o tamanho da amostra. Por exemplo, 
se há um registo de 10 anos de precipitação e se considera o acontecimento de Pano > 1200 mm, 
pode acontecer que tal acontecimento ocorra 2 vezes na amostra, então f = 2/10 = 0.2. 
 
A probabilidade P dum acontecimento Ai é P(Ai) = limN→∞f 
 
A moderna teoria das probabilidades baseia-se numa axiomática desenvolvida por Kolmogorov 
da qual se deduzem as seguintes consequências: 
 
 P(Ai) ≥ 0; 
 P(Ω) = 1; 
 P(A ∪ B) = P(A) + P(B) - P(A ∩ B); 
 P(A ∩ B) = P(A | B) x P(B) = P(B|A) x P(A); 
 Se P(A ∩ B) = P(A) x P(B), os acontecimentos são independentes. 
 
 
 
3.2 FUNÇÕES DE DISTRIBUIÇÃO, DURAÇÃO E DENSIDADE DE PROBABILIDADE 
 
Considere-se uma amostra de N valores duma variável aleatória e classifique-se essa amostra por 
ordem crescente: 
 x1 ≤ x2 ≤ ... ≤ xN 
 
A probabilidade de que a variável aleatória χ assuma um valor não superior a xi é 
Manual de Hidrologia 
 P (χ ≤xi) = i/N = F(xi) 
Revisão de conceitos de probabilidades e estatística 3-2 
 
 
 
 
F(xi) é a função de distribuição empírica (FDE). 
 
Se se classificar a amostra por ordem decrescente: 
 
 x1 ≥ x2 ≥ ... ≥ xN 
 
A probabilidade de que a variável aleatória χ assuma um valor não inferior a xi é 
 
 P (χ ≥xi) = i/N = G(xi) 
 
G (xi) é a função de duração. 
 
Note-se que P(χ ≤xi) + P (χ ≥xi) = P (χ ≤xi) + P(χ >xi) + P(χ =xi) = 1 + P (χ = xi) = F(xi) + G(xi) 
 
Para variáveis aleatórias contínuas, P (χ =xi) = 0 ⇒ F(x) + G(x) = 1 
Para variáveis aleatórias discretas, F(x) + G(x) = 1 + P(χ =xi) 
 
Para uma variável aleatória contínua, define-se a função densidade de probabilidade f(x): 
 dx
dF(x) = f(x) 
 
 )22
(Pr)( dxxdxxobxf +≤≤−= χ 
 
Há definições paralelas para as variáveis aleatórias discretas. 
 
 Figure 3.1 Funções de distribuição, duração e densidade de probabilidade 
 
A figura 3.1 ilustra as relações entre F(x), G(x) e f(x) para uma variável aleatória contínua. 
 
Pode verificar-se teoricamente que o estimador i/N para a probabilidade do acontecimento (χ ≤ 
xi) é um estimador com viez, i.e., quando a dimensão da amostra cresce indefinidamente o valor 
do estimador não tende para o valor correcto da probabilidade. Assim, é preferível utilizar para 
as funções de distribuição e de duração. 
Manual de Hidrologia 
Revisão de conceitos de probabilidades e estatística 3-3 
 
 
 
 
 F (xi) = Prob (x ≤xi) = i/N+1 
 G (xi) = Prob (x ≥xi) = i/N+1 
 
 
 
3.3 PERÍODO DE RETORNO E RISCO HIDROLÓGICO 
 
Considere-se uma série de 50 valores, por exemplo de precipitação anual,ordenados por ordem 
crescente. O valor de ordem i = 41 é igualado ou excedido 10 vezes na série correspondendo-lhe 
uma probabilidade de não excedência F = 0.804. O intervalo médio entre ocorrências 
sucessivas do acontecimento (χ ≥x41) seria então de cerca de 5 anos. Este intervalo médio entre 
ocorrências sucessivas dum acontecimento é designado por período de retorno T. 
 
O período de retorno do acontecimento (χ ≥xi) relaciona-se com a probabilidade de excedência, 
G(xi), ou de não excedência, F(xi), pelas expressões: 
 
 T(xi) = 1 / G(xi) = 1 / {1-F(xi)} 
 
Assim, no exemplo anteriormente referido, ter-se-ia 
 
 F(x41) = P(χ ≤x41) = 0.804 
 G(x41) = P(χ ≥x41) = 0.196 
 T(x41) = 1 / 0.196 ≈ 5 anos 
 
Importa deixar bem claro que o conceito de período de retorno não está associado a qualquer 
ideia de repetição cíclica e regular do acontecimento. Se, por exemplo, um acontecimento tem 
um período de retorno de 10 anos, isso não quer dizer que tal acontecimento ocorre regularmente 
de 10 em 10 anos: ele pode ocorrer em dois anos consecutivos assim como pode não ocorrer 
durante trinta anos. Se, porém, dispusermos duma série suficientemente longa, então o intervalo 
médio entre ocorrências consecutivas do acontecimento seria de 10 anos. 
 
Considere-se agora o acontecimento (χ ≥x) com uma probabilidade de ocorrência G(x) 
relativamente baixa. A probabilidade de não ocorrência do acontecimento em 2 anos sucessivos 
será [F(x)]2 e a de não ocorrência em N anos sucessivos será [F(x)]N. 
 
Então, a probabilidade de que o acontecimento ocorra pelo menos uma vez em N anos 
sucessivos será dada por 1-[F(x)]N. Essa probabilidade designa-se por risco hidrológico R(x, N), 
conceito com bastante interesse prático como se pode ver pelos exemplos seguintes. 
 
1º Exemplo) Uma barragem levará 6 anos a ser construída. A sua construção far-se-á com a 
protecção de ensecadeiras e desvio do rio através de galerias (como se fez, por exemplo, com a 
barragem de Cahora-Bassa). Se adoptar como caudal de dimensionamento das galerias o 
correspondente a uma cheia com o período de retorno T = 20 anos, qual é a probabilidade das 
ensecadeiras serem galgadas durante a construção? 
Manual de Hidrologia 
Revisão de conceitos de probabilidades e estatística 3-4 
 
 
 
 
 
A probabilidade de galgamento durante a construção corresponde à situação de insuficiência das 
galerias de desvio para passagem o caudal afluente. A probabilidade pedida é, pois, o risco 
hidrológico do acontecimento (Qafl > Q20) para N = 6: 
 
 R = 1 - F(x)6 = 1 - [1 - G(x)]6 = 1 - [1 - 1/T(x)]6 
 
Como T = 20, R = 0.265. 
 
A probabilidade de galgamento durante a construção é de 0.265, ou seja, aproximadamente 1 
possibilidade em 4. 
 
2º Exemplo) Se no exemplo anterior se pretender que a probabilidade de galgamento das 
ensecadeiras durante a construção (i.e., o risco hidrológico) não exceda 10%, qual deverá ser o 
caudal de dimensionamento das galerias? 
 
 R = 0.10 = 1 - [1 - 1/T(x)]6 ⇒ T = 57.4 ≈ 60 anos. 
 
As galerias deveriam ser dimensionadas para um caudal com um período de retorno de cerca de 
60 anos. 
 
 
 
3.4 PARÂMETROS ESTATÍSTICOS DA POPULAÇÃO E DA AMOSTRA 
 
3.4.1 Introdução 
 
Na Estatística, a população ou a amostra com que se está a lidar são representadas por um 
número relativamente pequeno de parâmetros estatísticos. Trata-se de uma forma sintética de 
apresentar as principais características da população ou da amostra, em relação às quais interessa 
definir: 
 
 - a tendência central; 
 - a dispensão; 
 - a assimetria; 
 - os quantis. 
 
 
 
3.4.2 Momentos da população e da amostra 
 
Define-se momento de ordem r em relação à origem como 
Manual de Hidrologia 
 para a população dxxfx = r
-
+
r )(
' ⋅∫
∞
∞
µ
Revisão de conceitos de probabilidades e estatística 3-5 
 
 
 
 
 
N
i
r
ir x N
= m ∑
=1
' 1 para a amostra 
 
A média da população, µ, ou da amostra, x , são os momentos de ordem 1 em relação à origem: 
 
 '1µµ =
 
 '1mx =
 
Define-se momento centrado de ordem r como o momento de ordem r tomando a média como 
origem: 
 para a população dxf(x) )-(x = r
-
+
r ⋅∫
∞
∞
µµ
 N
)x-x(
 = m
r
i
N
1=i
r
∑
 para a amostra 
 
 
 
3.4.3 Tendência central 
 
Os parâmetros que caracterizam a tendência central indicam à volta de que valor se distribuem os 
valores da população ou da amostra. 
 
Os parâmetros mais utilizados são a média µ ou x e a mediana , xm . 
 
A média da população e da amostra são dadas respectivamente por 
 dx f(x) x = 
+
-
∫
∞
∞
µ
 
 
 
 
 
A mediana é o valor que divide a população ou a amostra em duas 
partes de igual probabilidade acumulada. Para uma população, a mediana é definida tal que: 
∑
=
N
i
ix N
= x
1
1
 
 0.5 = dx f(x)=dx f(x)
-
∫∫
∞
∞ µ
µ
 
 
Para uma amostra a mediana, xm é definida tal que (amostra ordenada) 
Manual de Hidrologia 
 
Revisão de conceitos de probabilidades e estatística 3-6 
 
 
 
- se N ímpar, m = int(N/2) + 1 
 
 por exº: N=25 ⇒ m=13 
 
- se N par: 
 )x+(x2
1=x NNm 1
2
2 +
 
 
por exemplo, se N=24, xm = (x12 + x13)/2 
 
3.4.4 Dispersão 
 
Os parâmetros que caracterizam a dispersão indicam se os elementos da população ou da 
amostra estão muito ou pouco concentrados em torno da média. Os parâmetros mais utilizados 
são: 
 
 - Variância σ2, s2; 
 - Desvio padrão σ, s; 
 - Coeficiente de variação ηv, cv. 
 
A variância é o momento centrado da 2ª ordem: 
 f(x)dx )-(x = 2
-
+
2 µσ ∫
∞
∞
 1-N
)x-x(
 = 
1-N
N * 
N
)x-x(
 = s
2
i
N
1=i
2
i
N
1=i2
∑∑
 
 
N/N-1 é um factor de correcção do viez. Diz-se que um estimador dum parâmetro apresenta viez 
quando o seu valor não tende para o valor correspondente da população quando a dimensão da 
amostra cresce indefinidamente. 
 
O desvio padrão é a raiz quadrada da variância. Note-se que o desvio padrão é expresso nas 
mesmas unidades que a média e que os elementos da amostra ou da população. 
 
O coeficiente de variação é a relação entre o desvio padrão e a média: 
 
x
s=c = vv µ
σ
η 
 
É um parâmetro adimensional. 
 
A figura 3.2 apresenta duas séries com as mesmas médias mas com diferentes desvios padrão. 
 
Manual de Hidrologia 
Revisão de conceitos de probabilidades e estatística 3-7 
 
 
 
 Figure 3.2 Distribuições do mesmo tipo, com s mesmas média e 
variâncias diferentes 
 
 
3.4.5 Assimetria 
 
As populações e as amostras (e as distribuições que as caracterizam) podem ser simétricas 
(assimetria nula) ou assimétricas (assimetria positiva ou negativa). A figura 3.3 apresenta três 
distribuições com assimetria nula, negativa e positiva. 
 
 Figure 3.3 Distribuições com diferentes assimetrias 
 
Quando a assimetria é nula, a média e a mediana coincidem; quando a assimetria é positiva, a 
média é superior à mediana e, quando é negativa, a média é inferior à mediana. A média é muito 
mais influenciada pelos valores extremos que a mediana. 
 
O parâmetro que caracteriza a assimetria é o coeficiente de assimetria, γ ou g, que é o momento 
centrado de 3ª ordem transformado em parâmetro adimensional pela divisão por σ3. 
 
σ
µ
γ 3
3
+
-
dx f(x) )-(x
 = 
∫
∞
∞ 
 2)-1)(N-(N
N * 
s
)x-x(
 = 
2)-1)(N-(N
N * 
s N
)x-x(
 = g 3
3
i
N
1=i
2
3
3
i
N
1=i
∑∑
 
Manual de Hidrologia 
Revisão de conceitos de probabilidades e estatística3-8 
 
 
 
 
N2/{(N-1)(N-2)} é o factor de correcção do viez. 
 
 
 
3.4.6 Quantis 
 
O quantil da ordem p é o valor ξp ou xp definido por: 
 p = dx f(x) = 
p
-
p ∫
∞
ξ
ξ
Numa amostra ordenada o quantil xp é o valor de ordem j = N * p. 
 
 0 ≤ p ≤ 1 
 
A mediana é o quantil de ordem 0.5. 
 
 
 
3.5 AJUSTAMENTO DUMA AMOSTRA A UMA DISTRIBUIÇÃO TEÓRICA 
 
3.5.1 Metodologia 
 
A partir duma dada amostra é possível definir a sua função de distribuição empírica. A FDE é, no 
entanto, afectada pela dimensão limitada da amostra e, por outro lado, não permite extrapolar 
para períodos de retorno superiores à duração da amostra. 
 
Por essa razão, faz-se o ajustamento da amostra a uma função de distribuição teórica (ou lei de 
probabilidades ou simplesmente distribuição), procurando-se de entre as várias que têm sido 
propostas aquela que melhor se adapte à FDE. 
 
A sequência de cálculo que se adopta para a extrapolação de valores com altos períodos de 
retorno, necessários para o dimensionamento de obras hidráulicas, é então a seguinte: 
 
- selecção de uma de entre as distribuições teóricas; 
- especificação ou ajustamento da distribuição; 
- avaliação do ajustamento; 
- utilização da distribuição para a previsão de valores (extrapolação). 
 
As distribuições teóricas mais utilizadas em Hidrologia são a Normal (ou de Gauss), a Log-
Normal de 2 parâmetros (Lei de Galton), a Log-Normal de 3 parâmetros, a de Gumbel, a Gama, 
a Pearson tipo III e a Log-Pearson tipo III. Neste capítulo apenas se estudará a distribuição 
Normal, estudando-se algumas das restantes no capítulo dedicado às cheias. 
 
Manual de Hidrologia 
A especificação ou ajustamento da distribuição consiste na estimação dos respectivos 
parâmetros a partir da informação contida na amostra. Existem diversos métodos para fazer o 
Revisão de conceitos de probabilidades e estatística 3-9 
 
 
 
ajustamento sendo os mais correntes o método dos momentos, o método da máxima 
verosimilhança e o método dos mínimos quadrados. Embora nem sempre seja o mais eficiente, 
ir-se-á estudar apenas o método dos momentos que é o de mais simples aplicação. 
 
A estimação pelo método dos momentos consiste em seleccionar os valores dos m parâmetros 
da distribuição por forma a que os primeiros m momentos da distribuição sejam iguais aos 
correspondentes momentos da amostra. 
 
 
3.5.2 Distribuição Normal ou de Gauss 
 
A distribuição Normal é a lei de probabilidades que melhor tem sido estudada do ponto de vista 
teórico. Tem um enorme campo de aplicação não apenas em Hidrologia mas em muitas outras 
áreas de Engenharia como a caracterização de solicitações em estruturas ou o controle de 
qualidade dos materiais. 
 
A função densidade é: 
 
 e 
2a
1 = f(x) a2
)b--(x
2
2
π
 
 
A função de distribuição é: 
 
 dx
dF(x) = f(x) dx f(x) = F(x)
x
-
∫
∞
 
 
A distribuição é simétrica, não sendo integrável analíticamente. F(x) é obtida por integração 
numérica e dada em tabelas. A distribuição tem 2 parâmetros: a, b. 
 
Os momentos da distribuição são obtidos em função dos parâmetros: 
 
- média µ = b; 
- variância σ2 = a2; 
- coeficiente de assimetria γ = 0. 
 
Por tal razão, é frequente escrever a expressão de f(x) substituindo a, b, por σ e µ: 
 
 e 
2
1 = f(x) 2
)--(x
2
2
σ
µ
πσ
 
 
Demonstra-se que a distribuição Normal goza da propriedade de invariância linear: Se x é uma 
variável aleatória com distribuição Normal, média µx e desvio padrão σx, então y = c1x + c2 é 
também uma variável aleatória normal, com média µy = c1µx + c2 e desvio padrão σy= c1σx. 
 
Manual de Hidrologia 
Revisão de conceitos de probabilidades e estatística 3-10 
 
 
 
As tabelas da distribuição Normal são construídas para uma variável z, variável normal 
reduzida, definida por 
 
 z = (x – µx)/σx 
 
Com esta definição e atendendo à propriedade da invariância linear da distribuição Normal, é 
imediato que µz = 0 e σz = 1. Diz-se então que z é uma variável N(0,1). 
 
A tabela 3.1, reproduzida de Lencastre e Franco (1984), dá os valores de F(z) para z de 0.00 a 
3.49 em intervalos de 0.01. Atendendo à simetria da distribuição, a tabela permite obter valores 
de F(z) para –3.49 ≤ z ≤ 0. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Manual de Hidrologia 
Revisão de conceitos de probabilidades e estatística 3-11 
 
 
 
Lei Normal ou de Gauss Função de distribuição (µ=0; σ= 1) 
Z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0 0.5 0.504 0.508 0.512 0.516 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.591 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.648 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.67 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.695 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.719 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.758 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.791 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.834 0.8365 0.8389
1 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.877 0.879 0.881 0.883
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.898 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.937 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.975 0.9756 0.9761 0.9767
2 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.983 0.9834 0.9838 0.9642 0.9846 0.985 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.989
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.992 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.994 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.996 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.997 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.998 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.999 0.999
3.1 0.999 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
 
Tabela 3.1 – Função de distribuição Normal ou de Gauss 
— Para volores negativos de z, utilizar o complemento aritmético para 1 dos volores de 
F (z) correspondentes ao volor positivo: 
 F(-z)= 1 – F (z) 
Ex.: F (- 1) = 1 - F(1) = 1 -0,8413=0,1587 
— Para valores de F (z) < 0,5, calcular 1 - F [z], ler o valor de z e afectar esse valor 
de sinal negative. 
Ex.: F |z]= 0,0668; 1 - F (z] = 0,9332; z=-l,5 
Manual de Hidrologia 
Esta tabela pode ser utilizada para qualquer distribuição Normal mesmo que não tenha µ=0 e 
σ=1, bastando para isso fazer a transformação (x-µx)/σx.

Outros materiais