Prévia do material em texto
SOLUTIONS MANUAL FOR SELECTEDSOLUTIONS MANUAL FOR SELECTEDSOLUTIONS MANUAL FOR SELECTEDSOLUTIONS MANUAL FOR SELECTED PROBLEMS INPROBLEMS INPROBLEMS INPROBLEMS IN PROCESS SYSTEMS ANALYSIS AND CONTROL DONALD R. COUGHANOWR COMPILED BY M.N. GOPINATH BTech.,(Chem)M.N. GOPINATH BTech.,(Chem)M.N. GOPINATH BTech.,(Chem)M.N. GOPINATH BTech.,(Chem) CATCH ME AT gopinathchemical@gmail.com Disclaimer: This work is just a compilation from various sources believed to be reliable and I am not responsible for any errors. CONTENTS PART 1: SOLUTIONS FOR SELECTED PROBLEMS PART2: LIST OF USEFUL BOOKS PART3: USEFUL WEBSITES PART 1 1.1 Draw a block diagram for the control system generated when a human being steers an automobile. 1.2 From the given figure specify the devices Solution: Inversion by partial fractions: 3.1(a) 0)0()0(1 ' 2 2 ===++ xxx dt dx dt dx )0()0()( '2 2 2 xsxsXs dt dx L −−= )0()( xsXs dt dx L −= L(x) = X(s) L{1} = 1/s +−− )0()0()( '2 xsxsXs s sXxsXs 1 )()0()( =+− s sXss 1 )()1( 2 =++= )1( 1 )( 2 ++ = sss sX Now, applying partial fractions splitting, we get )1( 11 )( 2 ++ + −= ss s s sX 2222 2 3 2 1 2 3 3 2 2 1 2 3 2 1 11 )( + + − + + + −= ss s s sX tetCosesXL tt 2 3 sin 3 1 2 3 1))(( 2 1 2 1 1 −−− −−= + −= − tSintCosetX t 2 3 3 1 2 3 1)( 2 1 b) 0)0()0(12 ' 2 2 ===++ xxx dt dx dt dx when the initial conditions are zero, the transformed equation is s sXss 1 )()1( 2 =++ )1( 1 )( 2 ++ = sss sX 12)1( 1 22 ++ + += ++ ss CBs s A sss CsBsssA ++++= 22 )12(1 )(20 )(0 2 sofeffecientscotheequatingbyCA sofeffecientcotheequatingbyBA −+= −+= 2,1,1 2 1 0 )(1 −=−== −= −= =+ −= CBA AC B BA constofeffecientscotheequatingbyA 12 21 )( 2 ++ + −= ss s s sX ( ) ( ) + ++ −= −− 2 11 1 111 )}({ s s s LsXL ( ) + + + −= − 2 1 1 1 1 1 1)}({ ss LtX )1(1)}({ tetX t +−= − 3.1 C 0)0()0(13 ' 2 2 ===++ xxx dt dx dt dx by Applying laplace transforms, we get s sXss 1 )()13( 2 =++= )13( 1 )( 2 ++ = sss sX 13 )( 2 ++ + += ss CBs s A sX CsBsssA ++++= 22 )13(1 )(30 )(0 2 sofeffecientscotheequatingbyCA sofeffecientcotheequatingbyBA −+= −+= 3,1,1 33 1 0 )(1 −=−== −=−= −= =+ −= CBA AC B BA constofeffecientscotheequatingbyA ++ + −= −− 13 31 )}({ 2 11 ss s s LsXL − + + −= −− 22 11 2 5 2 3 31 )}({ s s s LsXL − + − − + + −= −− 2222 11 2 5 2 3 2 5 5 2 . 2 3 2 5 2 3 2 3 1 )}({ ss s s LsXL t t CosetX t 2 5 sinh 5 3 2 5 (1)( 2 3 +−= − 3.2(a) 1)0( 0)0()0()0(; 11 '''' 3 3 4 4 = ====+ x xxxtCos dt xd dt dx Applying Laplace transforms, we get 1 )0()0()0()()0()0()0()0()( 2 '''23'''''1234 + =−−−+−−−− s s xsxxssXsxsxxsxssXs 1 )1()()( 2 34 + =+−+ s s ssssX 34 2 )1()1 1 ()( sss s s sX + +++ + = = )1)(1( 12 )1)(1( 1 23 23 23 23 ++ +++ = ++ ++++ sss sss sss ssss 11)1)(1( 12 23223 23 + + + + +++= ++ +++ s FEs s D s C s B s A sss sss )1()()1()1)(1()1)(1()1)(1(12 323222223 +++++++++++++=+++ ssFEssDssscssBsssAssss A+B+E=0 equating the co-efficient of s5. A+B+E+F=0 equating the co-efficient of s 4 . A+B+C+D+F=0 equating the co-efficient of s 3 . A+B+C=0 equating the co-efficient of s 2 . B+C=2 equating the co-efficient of s. A+B+E=0 equating the co-efficient of s 2 . C=1equating the co-efficient constant. C=1 -B=-C+2=1 A=1-B-C=-1 D+F=0 E+F=0D+E=1 D-E=0 2D=1 A=-1; B=1; C=1 D=1/2; E=1/2; F =-1/2 { } + − + + +++ − = −− 1 )1(2/1 1 2/1111 )( 232 11 s s ssss LsL { } + − + + +++ − = −− 1 )1(2/1 1 2/1111 )( 232 11 s s ssss LsXL { } int 2 1 2 1 2 1 2 1)( 2 StCose t ttX t −++++−= − 2)0(;4)0(2 12 2 2 −==+=+ qqtt dt dq dt qd applying laplace transforms,we get 23 '2 22)0()(()0()0()( ss qssQqsqsQs +=−+−− +=−+−+ 1 12 424))(( 2 2 ss ssssQ )( )24( )1(2 )( 2 3 ss s s s sQ + ++ + = = )1( 2422 4 34 + +++ ss sss )1( 3*2 )1( 2 1 1 4)( 4 + + + + + = sssss sQ 31 3 1 )1(24)())(( teetqsQL tt +−+== −−− therefore te t tq −++= 2 3 2)( 3 3.3 a) + − + = ++ 4 1 1 1 3 3 )4)(1( 3 2222 ss s ss s + − + = 2222 2 1 1 1 ss tCosCost ss L 2 2 1 1 1 2222 1 −= + − + − b) [ ] 522)1( 1 )52( 1 2222 +− + += +− = +− ss CB s A sssss A+B=0 -2A+C=0 5A=1 A=1/5 ;B=-1/5;C=2/5 We get +− − += 52 21 5 1 )( 2 ss s s sX Inverting,we get = −+ tCosetSine tt 22 2 1 1 5 1 = −+ tCostSinet 22 2 1 1 5 1 c) 2222 22 )1(1)1( 233 − + − ++= − +−− s D s C s B s A ss sss 233)1()1()1( 232222 +−−=+−+−+− sssDssCssBsAs 233)()12()2( 2322323 +−−=+−++−++− sssDsssCssBsssA A+C=3 -2A+B-C+D=-1 A-2B=-3 B=2; A=2(2)-3=1 C=3-1=2 D=2(1)-2+2-1=1 We get 22 )1( 1 1 221 )( − + + ++= ssss sX By inverse L.T [ ] tt teettXL +++=− 221)(1 [ ] )2(21)(1 tettXL t +++=− 3.4 Expand the following function by partial fraction expansion. Do not evaluate co-efficient or invert expressions )3()1)(1( 2 )( 22 +++ = sss sX 3)1(11 )( 222 + + + + + + + + + = s F s EDs s CBs s A sX 22222 )1)(1()3)(1)(()1)(3)(1)(()3()1( ++++++++++++++= ssFssEDssssCBsssA )14)(1()34)(()1)(34)(()3)(12( 222224 ++++++++++++++++= sssFssEDssssCBssssA 2333)4 34()346()342()43()( 2345 =++++++ +++++++++++++++++= FEACAFE BCAsCBCAsBCBAsFBCAsFBAs A+B+F=0 -3A+C+4B+F=0 2A+B+4C+3B=0 6A+C+4B+3C=0 A+4C+3B+3D+4E+F=0 3A+3C+3E+F=2 by solving above 6 equations, we can get the values of A,B,C,D,E and 33 )3()1)(1( 1 )( +++ = ssss sX . 3232 )3()3(321 )( + + + + + + + + + +++= s H s G s F s E s D s C s B s A sX by comparing powers of s we can evaluate A,B,C,D,E,F,G and H. c) )4()3)(2( 1 )( +++ = ssss sX 4321 )( + + + + + + + = s D s C s B s A sX by comparing powers of s we can evaluate A,B,C,D 3.5 a) )15.0)(1( 1 )( ++ = sss sX )15.0(1)15.0)(1( 1 + + + += ++ s C s B s A sss Let 1)( 2 1 2 3 2 2 22 =++ ++ ++= ssCs s B ss A A=1 2 1 2 0 22 −=+==++ C B C BA 2 3 0 2 3 −=+==++ CBCB A B/2=1/2 *-3/2=-1; B=-2; C= -3/2+2=1/2 + + + −= 15.0 1 2 1 1 21 )( sss sX tt eetxsXL 21 21)())(( −−− +−=== b) 0)0(;22 ==+ xx dt dx Applying laplace trafsorms ssXxssX /2)(2)0()( =+− )2( 2 ))((1 + =− ss sXL + = −− )2( 2 2))(( 11 ss LsXL = + −= −− 2 2/12/1 2))(( 11 ss LsXL = te 21 −− 3.6 a) 52 1 )( 2 ++ + = ss s sY = 52 1 )( 2 ++ + = ss s sY 4)1( 1 2 ++ + = s s = ++ + = −− 4)1( 1 ))(( 2 11 s s LsYL using the table,we get tCosetY t 2)( −= b) 4 2 2 )( s ss sY + = 32 21 )( ss sY += Y(t)= 21 ))(( ttsYL +=− c) 3)1( 2 )( − = s s sY = 3)1( 222 − +− s s 32 )1( 2 )1( 2 − + − = ss − + − = −− 3 1 2 1 )1( 2 )1( 2 )( s L s LtY = )2( 2 (2 2 2 ttee t te ttt +=+ 3.7a) )1()1()1( 1 )( 222 + + + + + = + = s DCs s BAs s sY 1)1)(()( 2 =++++ sDCsBAsthus = 1)()(23 =+++++ DBsCADsCs C=0,D=0 Also A=0;B=1 222222 )()()()()()( 1 )1( 1 )( is D is C is B is A isiss sY − + − + + + + = −+ = + = 1)())(()())(( 2222 =+++−+−+−+ isDisisCisBisisA 1)()22()()( 23 =−+−−+++−++++−++ DCiBAiDiCBiAsDCiBAisCA Thus,A+C=0 -Ai+B+Ci+2Di=0 ; B=D A-2Bi+C+2Di=0 -Ai-B+Ci-D=1 Also D=-Ci;B=-Ci, A=-C,C=-i/4 A=i/4 ; B=-1/4; D=-1/4 22 )( 4/1 )( 4/ )( 4/1 )( 4/ )( isis i isis i sY − − + − − + + − + + = 22 )( 4/1 )( 4/ )( 4/1 )( 4/ )( isis i isis i tY − − + − − + + − + + = 22 )( 4/1 )( 4/ )( 4/1 )( 4/ )( isis i isis i tY − − + − − + + − + + = itititit teeeeitY 4/14/14/14/)( −−−= −− )(4/1)( itititit teieteietY −−−= −− )()()()((4/1)( tSinitCosttiSintCositSiniCostttiSinCostitY +−+−−−−= ) )22(4/1)( tCosttSintY −= )(2/1)( tCosttSintY −= 3.8 )1( 1 )( 2 + = ss sf = 1 )( 2 + ++= s C s B s A sf 1)1()1( 2 =++++= CssBssA Let s=0 ; A=1 s=1; 2A+B+C=1 s=-1: C=1 B=-1 1 111 )( 2 + ++= sss sf tettf −+−= )1()( PROPERTIES OF TRANSFORMS 4.1 If a forcing function f(t) has the laplace transforms s e s ee s sf sss 3 2 21 )( −−− − − += 2 231 s ee s e sss −−− − + − = )]2()2()1()1[()]3()([)}({)( 1 −−−−−+−−== − tuttuttutusfLtf )3()2()2()1()1()( −−−−−−−+= tututtuttu graph the function f(t) 4.2 Solve the following equation for y(t): 1)0( )( )( 0 ==∫ ydt tdy dy t ττ Taking Laplace transforms on both sides =∫ dt tdy LdtyL t )( })({ 0 τ )0()(.)(. 1 ysyssy s −= 1)(.)(. 1 −= syssy s 1 )( 2 − = s s sy )cosh( 1 )}({)( 2 11 t s s LsyLty − == −− 4.3 Express the function given in figure given below the t – domain and the s- domain This graph can be expressed as )}6()6()5()5()5({)}3()3()2()2({)}5()1({ −−+−−−−+−−−−−+−−−= tuttuttututtuttutu )6()6()5()5()3()2()2()2()1()( −−+−−−−−−−−+−= tuttuttuttuttutf 2 6 2 53 2 3 2 2 )}({)( s e s e s e s e s e s e tfLsf ssssss −−−−−− +−−−+== 2 53623 s eeee s ee ssssss −−−−−− −−+ + − = 4.4 Sketch the following functions: )3()1(2)()( −+−−= tutututf )2()1(3)(3)( −+−−= tututtutf 4.5 The function f(t) has the Laplace transform 22 /)21()( seeSf ss −− +−= obtain the function f(t) and graph f(t) 2 221 )( s ee sf ss −− +− = 2 2 2 1 s ee s e sss −−− − − − = )]2()2()1()1{()()1()1()}({)( 1 −−−−−−+−−−== − tuttutttututsfLtf )2()2()1()1(2)( −−+−−−= tuttutttu 4.6 Determine f(t) at t = 1.5 and at t = 3 for following function: )2()3()1(5.0)(5.0)( −−+−−= tuttututf At t = 1.5 )2()3()1(5.0)(5.0)( −−+−−= tuttututf )1(5.0)(5.0)5.1( −−= tutuf 05.05.0)5.1( =−=f At t = 3 0)33(5.05.0)3( =−+−=f RESPONSE OF A FIRST ORDER SYSTEMS 5.1 A thermometer having a time constant of 0.2 min is placed in a temperature bath and after the thermometer comes to equilibrium with the bath, the temperature of the bath is increased linearly with time at the rate of I deg C / min what is the difference between the indicated temperature and bath temperature (a) 0.1 min (b) 10. min after the change in temperature begins. © what is the maximum deviation between the indicated temperaturew and bath temperature and when does it occurs. (d) plot the forcing function and the response on the same graph. After the long enough time buy how many minutes does the response lag the input. Consider thermometer to be in equilibrium with temperature bath at temperature Xs 0,)/1()( >°+= ttmXtX S as it is given that the temperture varies linearly X(t)-Xs = t Let X(t) = X(t) - Xs = t Y(s) = G(s).X(s) 22 1 1 1 1 )( s C s B s A ss sY ++ + = + = ττ A = 12 =−= CB ττ 2 2 1 1 )( sss sY +− + = τ τ τ tetY t +−= − ττ τ/)( (a) the difference between the indicated temperature and bath temperature at t = 0.1 min = X(0.1)_ Y(0.1) = 0.1 - (0.2e-0.1/0.2 - 0.2+0.1) since T = 0.2 given = 0.0787 deg C (b) t = 1.0 min X(1) - Y(1) = 1- (0.2e -1/0. 2 - 0.2 +1) = 0.1986 (c) Deviation D = -Y(t) +X(t) = -τe-t/T+T =τ (-e-t/T+1) For maximum value dD/dT = τ (-e-t/T+(_-1/T) = 0 -e -t/ = 0 as t tend to infinitive D = τ (-e-t/T+(_-1/T) = τ =0.2 deg C 5.2 A mercury thermometer bulb in ½ in . long by 1/8 in diameter. The glass envelope is very thin. Calculate the time constant in water flowing at 10 ft / sec at a temperature of 100 deg F. In your solution , give a summary which includes (a) Assumptions used. (b) Source of data (c) Results T = mCp/hA = )( )( DLAh CAL p π ρ + Calculation of nmed CR K hD NU (Pr)== 4.9677 10 10)3048.0*10)(10*54.2*8/1( Re 3 32 === − − µ ρDv d KgKKJ K C p /2.4Pr == µ Source data: Recently, Z hukauskas has given c,m ,ξ,n values. For Re = 967704 C = 0.26 & m = 0.6 NuD = hD/K = 0.193 (9677.4)*(6.774X10 -3) = 130 .h = 25380 5.3 Given a system with the transfer function Y(s)/X(s) = (T1s+1)/(T2s+1). Find Y(t) if X(t) is a unit step function. If T1/T2 = s. Sktech Y(t) Versus t/T2. Show the numerical values of minimum, maximum and ultimate values that may occur during the transient. Check these using the initial value and final value theorems of chapter 4. 1 1 )( 2 1 + + = sT sT sY X(s) =unit step function = 1 X(s) = 1/s siT B s A sTs sT sY 22 1 )1( 1 )( += + + = A = 1 B = T1 - T2 sT TT s sY 2 21 1 1 )( + − += 2/ 2 211)( Tte T TT tY − − += If T1/T2 = s then 2/41)( TtetY −+= Let t/T2 = x then x etY −+= 41)( Using the initial value theorem and final value theorem )()( 0 ssYLimTYLim ST ∞→→ = = 5 1 1 1 1 2 1 2 1 2 1 == + + =+ + ∞→∞→ T T s T s T Lim sT sT Lim SS )()( 0 ssYLimTYLim ST ∞→→ = = 1 1 1 2 1 0 = + + → sT sT Lim S Figure: 5.4 A thermometer having first order dynamics with a time constant of 1 min is placed in a temperature bath at 100 deg F. After the thermometer reaches steady state, it is suddenly placed in bath at 100 deg F at t = 0 and left there for 1 min after which it is immediately returned to the bath at 100 deg F. (a) draw a sketch showing the variation of the thermometer reading with time. (b) calculate the thermometer reading at t = 0.5 min and at t = 2.0 min min)1( 1 1 )( )( = + = τ ssX sY −= − s e s s s1 10)( − = − s e sY s1 10)( + − + = − )1()1( 1 10)( ss e ss sY s 1)1(10)( <−= − tetY t ( ) 1)1()1(10)( )1( ≥−−−= −−− teetY tt At t = 0.5 T = 103.93 At = 2 T =102.325 5.5 Repeat problem 5.4 if the thermometer is in 110 deg F for only 10 sec. If thermometer is in 110 deg F bath for only 10 sec 60/10110 teT −−= sec60&sec100 =<< Tt 535.101sec)10( ==tT sec10535.1100 60/)10( >+= −− teT t T(t=30sec) = 101.099 deg F T(t=120sec) = 100.245 deg F 5.6 A mercury thermometer which has been on a table for some time,is registering the room temperature ,758 deg F. Suddenly, it is placed in a 400 deg F oil bath. The following data are obtained for response of the thermometer Time (sec) Temperature, Deg F 0 75 1 107 2.5 140 5 205 8 244 10 282 15 328 30 385 Give two independent estimates of the thermometer time constant. − = T t 400 325 ln τ From the data , average of 9.647,11.2,9.788,10.9,9.87,9.95, and 9.75 is 10.16 sec. 5.7 Rewrite the sinusoidal response of first order system (eq 5.24) in terms of a cosine wave. Re express the forcing function equation (eq 5.19) as a cosine wave and compute the phase difference between input and output cosine waves. τ τ ω ω τ 1 1 )( 1 1 )( 22 + + = + = s s A s s sY splitting into partial fractions then converting to laplace transforms )sin( 11 )( 22 / 22 φω ωτωτ αωτ τ + + + + = − t A e A tY t where φ = tan-1 (ωτ) As t →∝ ) −− + =+ + = φ π ω ωτ φω ωτ 2 cos( 1 )sin( 1 )( 2222 t A t A stY −=+= tAtAtY ω π φω 2 cos)sin()( −= 2 cos)( π ωtAtY The phase difference = φ ππ φ = −−− 22 5.8 The mercury thermometer of problem 5.6 is allowed to come to equilibrium in the room temp at 75 deg F.Then it is immersed in a oil bath for a length of time less than 1 sec and quickly removed from the bath and re exposed to 75 deg F ambient condition. It may be estimated that the heat transfer coefficient to the thermometer in air is 1/ 5 th that in oil bath.If 10 sec after the thermometer is removed from the bath it reads 98 Deg F. Estimate the length of time that the thermometer was in the bath. t < 1 sec τ/ 1 1325400 teT −−= Next it is removed and kept in 75 Deg F atmosphere Heat transfer co-efficient in air = 1/5 heat transfer co-efficient in oil hair = 1/5 hoil hA mC =τ sec10=oilτ sec50=airτ 50/1 2)75(75 tF eTT −−+= CTempFinalTF deg98== 50/10 10/ )325325(7598 1 − −−+= ee t 91356.010/ =−te t 1 = 0.904 sec. 5.9 A thermometer having a time constant of 1 min is initially at 50 deg C. it is immersed in a bath maintained at 100 deg C at t = 0 . Determine the temperature reading at 1.2 min. τ = 1 min for a thermometer initially at 50 deg C. Next it is immersed in bath maintained at 100 deg C at t = 0 At t = 1.2 )1()( /τteAtY −−= 50)1(50)2.1( 1/2.1 +−= −eY Y(1.2) = 84.9 deg C 5.10 In Problem No 5.9 if at, t = 1.5 min thermometer having a time constant of 1 minute is initially at 50 deg C.It is immersed in a bath maintained at 100 deg C at t = 0.Determine the temperature reading at t = 1.2 min. At t = 1.5 CY °= 843.88)5.1( Max temperature indicated = 88.843 deg C AT t = 20 min )1(843.13843.88 1/8.18−−−= eT T = 75 Deg C. 5.11 A process of unknown transfer function is subjected to a unit impulse input. The output of the process is measured accurately and is found to be represented by the function Y(t) = t e -t . Determine the unit step response in this process. X(s) = 1 Y(t) = te -t 2)1( 1 )( + = s sY 2)1( 1 )( )( )( + == ssX sY sG For determining unit step response 2)1( 1 )( + = s sY 22 )1(1)1( 1 )( + + + += + = s C s B s A s sY A = 1 B = -1 C = -1 2)1( 1 1 11 )( + − + −= sss sY tt teetY −− −−= 1)( Response of first order system in series 7.1 Determine the transfer function H(s)/Q(s) for the liquid level shown in figure P7-7. Resistance R1 and R2 are linear. The flow rate from tank 3 is maintained constant at b by means of a pump ; the flow rate from tank 3 is independent of head h. The tanks are non interacting. Solution : A balance on tank 1 gives dt dh Aqq 111 =− where h1 = height of the liquid level in tank 1 similarly balance on the tank 2 gives dt dh Aqq 2221 =− and balance on tank 3 gives dt dh Aqq 302 =− here 1 1 1 R h q = 2 2 2 R h q = bq =0 So we get dt dh A R h q 11 1 1 =− dt dh A R h R h 2 2 2 2 1 1 =− dt dh Ab R h 3 2 2 =− writing the steady state equation 011 1 1 ==− dt dh A R h q SsS dt dh A R h R h SSS 2 2 2 2 1 1 =− 0 2 2 =−b R h S Subtracting and writing in terms of deviation dt dH A R H Q 11 1 =− dt dH A R H R H 2 1 2 2 1 1 =− dt dH A R H 3 2 2 = where Q = q –qS H1= h1-h1S H1= h2-h2S H = h - hS Taking Laplace transforms )( )( )( 11 1 1 sHsA R sH sQ =− ---------(1) )( )()( 22 2 2 1 1 sHsA R sH R sH =− --------(2) )( )( 3 2 2 sHsA R sH = ----------(3) We have three equations and 4 unknowns(Q(s),H(s),H1(s) and H2(s). So we can express one in terms of other. From (3) sAR sH sH 31 2 2 )( )( = -------------(4) )1( )( )( 21 12 2 + = sR sHR sH τ where 222 AR=τ ------------(5) From (1) )1( )( )( 1 1 1 + = s sQR sH τ , 111 AR=τ ---------(6) Combining equation 4,5,6 )1)(1)(( )( )( 213 ++ = sssA sQ sH ττ )1)(1)(( 1 )( )( 213 ++ = sssAsQ sH ττAbove equation can be written as i.e, if non interacting first order system are there in series then there overall transfer function is equal to the product of the individual transfer function in series. 7.2 The mercury thermometer in chapter 5 was considered to have all its resistance in the convective film surrounding the bulb and all its capacitance in the mercury. A more detailed analysis would consider both the convective resistance surrounding the bulb and that between the bulb and mercury. In addition , the capacitance of the glass bulb would be included. Let Ai = inside area of bulb for heat transfer to mercury. Ao = outside area of bulb, for heat transfer from surrounding fluid. .m = mass of the mercury in bulb. mb = mass of glass bulb. C = heat capacitance of mercury. Cb = heat capacity of glass bulb. .hi = convective co-efficient between the bulb and the surrounding fluid. .ho = convective co-efficient between bulb and surrounding fluid. T = temperature of mercury. Tb = temperature of glass bulb. Tf = temperature of surrounding fluid. Determine the transfer function between Tf and T. what is the effect of bulb resistance and capacitance on the thermometer response? Note that the inclusion of the bulb results in a pair of interacting systems, which give an overall transfer function different from that of Eq (7.24) Writing the energy balance for change in term of a bulb and mercury respectively Input - output = accumulation dt dT CmTTAhTTAh bbbbiibf =−−− )()(00 dt dT CmTTAh bii =−− 0)( Writing the steady state equation 0)()(00 ==−−− dt dT CmTTAhTTAh bsbbsbsiibsfs 0)( =− sbsii TTAh Where subscript s denoted values at steady subtracting and writing these equations in terms of deviation variables. dt dT CmTTAhTTAh bbbmbiibf =−−− )()(00 dt dT CmTTAh mmbii =−− 0)( Here TF = Tf - TfS TB = Tb - TbS Tm = T - TS Taking laplace transforms )()())()((00 sTCmTTAhsTsTAh BbbmBiiBF =−−− ----(1) And )())()(( ssTmCsTsTAh BmBii =− ------(2) = )()())()((00 ssTCmsmCSTsTsTAh BbbmBF =−− From (2) we get )1()(1)()( += += ssTs Ah mC sTsT im ii mB τ Where ii i Ah mC =τ Putting it into (1) 0)1))(1()()( 00 0 = +++− s Ah mC sssTsT imF ττ = +++= s Ah mC sssTsT imF 00 0 )1))(1()()( ττ = 1)( 1 )( )( 00 0 2 0 ++++ = s Ah mC s sT sT ii F m ττττ = 1)( 1 )( )( 00 0 2 0 ++++ = s Ah mC s sT sT ii F m ττττ Or we can write 1)( 1 )( )( 00 0 2 0 ++++ = s Ah mC s sT sT ii f ττττ ii i Ah mC =τ and 00 0 Ah Cm bb=τ We see that a loading term mC/ hoAo is appearing in the transfer function. The bulb resistance and capacitance is appear in 0τ and it increases the delay i.e Transfer lag and response is slow down. 7.3 There are N storage tank of volume V Arranged so that when water is fed into the first tank into the second tank and so on. Each tank initially contains component A at some concentration Co and is equipped with a perfect stirrer. A time zero, a stream of zero concentration is fed into the first tank at volumetric rate q. Find the resulting concentration in each tank as a function of time. Solution: . i th tank balance dt dC VqCqC iii =−−1 0)1( =−− issi qCqC = =−− q V dt dC q V CC iii τ )1( Taking lapalce transformation )()()()1( ssCisCsC ii τ=−− )()1()()1( sCissC i τ+=− ssC sC i i τ+ = − 1 1 )( )( 1 Similarly issC sC sC sC sC sC sC sC sCo sC i i i ii )1( 1 )( )( )( )( )( )( )( )( )( )( 2 1 1 2 0 1 τ+ =×−−−−−−−−−××= − − Or N N ssCo sC )1( 1 )( )( τ+ = NN ss C sC )1( )( 0 τ+ − = + −−−−−−− + − + −−= − ssss CsC NNN τ τ τ τ τ τ 1)1()1( 1 )( 10 −−−−− − − − −−= −− − − − − − τ ττ ττ tN N t N N t N e N te N te CtC )!2( . )!1( .1)( 2 2 1 10 +−−−−− − + − −−= −− − 1 )!2( . )!1( .1)( 21 0 N t N t eCtC NN t N τττ 7.4 (a) Find the transfer functions H2/Q and H3/Q for the three tank system shown in Fig P7-4 where H1,H3 and Q are deviation variables. Tank 1 and Tank 2 are interacting. 7.4(b) For a unit step change in q (i.e Q = 1/s); determine H3(0) , H3(∞) and sketch H3(t) vs t. Solution : Writing heat balance equation for tank 1 and tank 2 dt dh Aqq 111 =− dt dh Aqq 2221 =− 1 21 1 R hh q − = 2 2 2 R h q = Writing the steady state equation 01 =− ss qq 021 =− ss qq Writing the equations in terms of deviation variables dt dH AQQ 111 =− dt dH AQQ 2221 =− 1 21 1 R HH Q − = 2 2 2 R H Q = Taking laplace transforms )()()( 111 ssHAsQsQ =− )()()( 2121 ssHAsQsQ =− )()()( 2111 sHsHsQR −= )()( 222 sHsQR = Solving the above equations we get ( )[ ]1)( )( 2121 2 21 22 ++++ = sRAs R sQ sH ττττ Here 111 AR=τ 222 AR=τ Now writing the balance for third tank dt dh Aqq 3332 =− Steady state equation 032 =− SS qq 3 3 3 R h q = dt dh A R H Q 33 3 3 2 =− Taking laplace transforms )( )( )( 3 3 3 2 ssHA R sH sQ =− ( )1)()( 3 3 3 2 += s R sH sQ τ where 333 AR=τ From equation 1,2,3,4 and 5 we got [ ]1)( 1 )( )( 2121 2 21 ++++ = sRAssQ sQs ττττ Putting it in equation 6 [ ]( )11)()( )( 32121 2 21 33 +++++ = ssRAs R sQ sH τττττ Putting the numerical values of R1,R2 and R3 and A1,A2,A3 [ ]( )12164 4 )( )( 2 3 +++ = ssssQ sH [ ]164 2 )( )( 2 2 ++ = sssQ sH Solution (b) s sQ 1 )( = [ ]( )12164 41 )( 23 +++ = ssss sH From initial value theorem )()0( 33 ssHLimH S ∞→ = = )164)(12( 4 2 +++∞→ sss Lim S = )1 6 4()12( 4 2 3 ss ss Lim S +++ ∞→ H3 (0) = 0 From final value theorem )()( 3 0 3 ssHLimH S→ =∞ = )164)(12( 4 20 +++→ sss Lim S H3 (∞) = 4 7.5 Three identical tanks are operated in series in a non-interacting fashion as shown in fig P7.5 . For each tank R=1, ττττ = 1. If the deviation in flow rate to the first tank in an impulse function of magnitude 2, determine (a) an expression for H(s) where H is the deviation in level in the third tank. (b) sketch the response H(t) (c) obtain an expression for H(t) solution : writing energy balance equation for all tanks dt dh Aqq 11 =− dt dh Aqq 221 =− dt dh Aqq =− 32 R h q 11 = R h q 22 = R h q =3 So we get 01 =− SSqq 021 =− SS qq 032 =− SS qq writing in terms of deviation variables and taking laplace transforms )( )( )( 1 1 sHA R sH sQ S=− )( )()( 2 21 sHA R sH R sQ S=− )( )()(2 sHA R sH R sH S=− solving we get 33 )1( 1 )1()( )( + = + = ss R sQ sH τ 33 )1( 2 )1( )( )( + = + = ss sQ sH τ { } tetsHLtH −− == 2 2)()( 2 1 tettH −= 2)( 02 )( =−= −− tt tete dt tdH 22 tt == at t = 2 max will occur. 7.6 In the two- tank mixing process shown in fig P7.6 , x varies from 0 lb salt/ft3 to 1 lb salt/ft 3 according to step function. At what time does the salt concentration in tank 2 reach 0.6 lb/ ft 3 ? The hold up volume of each tank is 6 ft 3 . Solution Writing heat balance equation for tank 1 and tank 2 dt dy Vqq yx =− dt dl Vqq cy =− steady state equation 0=− ysxs qq 0=− csys qq writing in terms of deviation variables and taking laplace transforms )()()( sYs q V sYsX =− q V s s q VsX sY = + = + = τ τ ; 1 1 1 1 )( )( 2)1( )( )1( )( )( + = + = s sX s sY sC ττ 2)1( 1 )( )( + = ssX sC τ s sX 1 )( = 2 3 6 === q V τ 2)12( )( )( + = ss sX sC 2) 2 1 ( )4/1( )( + = ss sC + = 2) 2 1 ( 11 4 1 )( s s sC + − + −= 2 1 1 2 1 1 2 1 1 )( 2 s s sC 22 2 1 1)( tt etetC −− −−= 3/61.0)( ftsaltlbtC = t = 4.04 min 7.7 Starting from first principles, derive the transfer functions H1(s)/Q(s) and H2(s)/Q(s) for the liquid level system shown in figure P7.7. The resistance are linear and R1= R2 = 1. Note that two streams are flowing from tank 1, one of which flows into tank 2. You are expected to give numerical values of the parameters and in the transfer functions and to show clearly how you derived the transfer functions. Writing heat balance equation for tank 1 dt dh Aqqq a 1 11 =−− 1 1 1 R h q = a a R h q 1= dt dh A R h R h q a 1 1 1 11 =−−= writing the balance equation for tank 2 dt dh Aqq 2221 =− dt dh A R h R h 2 2 2 2 1 1 =− writing steady state equations 0 1 1 =−− R sh R h q a s s 0 2 2 1 1 =− R sh R sh writing the equation in terms of deviation variables dt dH A RR HQ a 1 1 1 1 11 = +− dt dH A R H R H 2 2 2 2 1 1 =− taking laplace transforms sHA RR RR sHsQ S a 11 1 21 1 )()( = + − -----------(1) and )( )()( 22 2 2 1 1 sHsA R sH R sH =− -----------(2) from (1) we get + + = a a RR RR sA sQ sH 1 1 1 1 1 )( )( + + + = 1 )( )( 1 11 1 1 1 s RR ARR RR RR sQ sH a a a a [ ]1)( )( 1 1 1 1 + + = s RR RR sQ sH a a τ ; a a RR ARR + = 1 11 1τ and from (2 ) we get [ ]( )11)( )( 21 1 2 1 2 1 ++ + = ss R R RR RR sQ sH a a ττ 222 AR=τ putting the numerical values of parameters + = 1 3 4 3 2 )( )(1 s sQ sH ( )11 3 4 3 2 )( )(2 + + = ss sQ sH 8.1 A step change of magnitude 4 is introduced into a system having the transfer 46.1 10 )( )( 2 ++ = sssX sY Determine (a) % overshoot (b)Rise time (c)Max value of Y(t) (d)Ultimate value of Y(t) (e) Period of Oscillation. Given s sX 4 )( = )46.1( 40 )( 2 ++ = sss sY The transfer function is )1) 4 6.1 ()(2.0 25.010 )( )( 2 ++ × = ss sX sY = )14.025.0 5.2 2 ++ ss 5.0;25.02 == ττ 4.02 =τξand )1(4.0 )5.0(2 4.0 dunderdampeissystem=<==ξ we find ultimate value of Y(t) 10 4 40 )46.1( 40 )()( 2 00 == ++ == →→∞→ ss s LtssYLttYLt SSt thus B= 10 now, from laplace transform tables + − −= − )sin( 1 1 110)( 2 φα ξ τ ξt etY where ξ ξ φ τ ξ α 22 1 tan, 1 − = − = − (a) Over shoot = ×− = − − = 84.0 4.0 exp 1 exp 2 π ξ πξ B A = 0.254 thus % overshoot = 25.4 c)thus, max value of Y(t) = A+B = B(0.254)+B = 2.54+10 = 12.54 e) Period of oscillation = 21 2 ξ πτ − = 3.427 b) For rise time, we need to solve r t ttforte == + − − − 10)sin( 1 1 110 2 φα ξ τ ξ = )sin( φατ ξτ + − rte r = 0 = 0)1589.1833.1sin(5.0 4.0 =+ − rte rτ solving we get tr = 1.082 thus SOLUTION: % Overshoot = 25.4 Rise time = 1.0842 Max Y(t) = 12.54 U(t) Y(t) = 10 Period of oscillation = 3.427 Comment : we see that the Oscillation period is small and the decay ratio also small = system is efficiently under damped. 8.2 The tank system operates at steady state. At t = 0, 10 ft 3 of wateris added to tank 1. Determine the maximum deviation in level in both tanks from the ultimate steady state values, and the time at which each maximum occurs. A1 = A2 = 10 ft 3 R1 = 0.1ft/cfm R2 = 0.35ft/cfm. As the tanks are non interacting the transfer functions are )1( 1.0 1)( )( 1 1 + = + = ss K sQ sH τ )15.3)(1( 35.0 )1)(1()( )( 21 22 ++ = ++ = ssss R sQ sH ττ Now, an impulse of providedisftt 310)( =∂ te s sHsQ −= + === 1 1 )(10)( 1 and 15.45.3 5.3 )15.3)(1( 5.3 )( 22 ++ = ++ = ssss sH Now 871.15.32 === ττ 202.1 2 5.4 5.42 ==== τ ξξτ thus, this is an ovedamped system Using fig8.5, for 2.1=ξ , we see that maximum is attained at min776.1,95.0 == t t τ And the maximum value is around 325.02 =τ Y2 (t) = 0.174 = H2(t) = 0.174x3.5 = 0.16ft thus max deviation is H1 will be at t = 0 = H1 = 1 ft max deviation is H2 will be at t = 1.776 min = H2Max = 0.61 ft. comment : the first tank gets the impulse and hence it max deviation turns out to be higher than the deviations for the second tank. The second tank exhibits an increase response ie the deviation increases, reaches the H2Max falls off to zero. 8.3 The tank liquid level shown operates at steady state when a step change is made in the flow to tank 1.the transaient response in critically damped, and it takes 1 min for level in second tank to reach 50 % of total change. If A1/A2 = 2 ,find R1/R2 . calculate ττττ for each tank. How long does it take for level in first tank to reach 90% of total change? For the first tank, transfer function 1 11 1)( )( + = s R sQ sH τ For the second tank )1)(1()( )( 21 2 ++ = ss R sQ sH ττ = 1)()( )( 21 2 21 22 +++ = ss R sQ sH ττττ 1)( 1 )(; 1 )( 21 2 21 2 2 +++ == ss R s sH s sQ ττττ 21)( τττ =parameterFor 21)( τττ =parameter +−== − 21 21 22 11)(,1 ττ ττ ξ t e t RtHfor given, t = 1 for 21)( τττ =parameter ( ) 222 )0(1)( RRtH =−=∞→ I R eR −= +−= − 2 1 11 2 1 21 2 21ττ ττ also 212 ττξτ += 5.0 2 1 1 2 2 1 2211 21 ====== + == A A R R RARAτ ττ ξ from I τ τ 1 1 15.01 − +=− e min372.1 min596.0 5.0 min372.1;1.0 )1(9.0 )1()(94.0 )1()(; )1( )()3.8 %90 21 2 1 596.0 596.0 11 1 11 1 1 1 1 1 = == = == −= −=∞→ −= + = − − − − t R R thus te eRR eRt eRtH ss R sH t t t t ττ τ τ τ Comment : .tan tansec,., 2121 kfirstthanchangestoslowlymoreresponds ondtheRRasAlsoquicklystatesteadytheregainssystemtheindicateofvaluesSmall >ττ 8.4 Assuming the flow in the manometer to be laminar function between applied pressure P1 and the manometer reading h. Calculate a) steady sate gain ,b) τ ,c) ξ . Comment on the parameters and their relation to the physical nature of this problem. Assumptions: Cross-sectional area =a Length of mercury in column = L Friction factor = 16/Re (laminar flow) Mass of mercury = mrg Writing a force balance on the mercury Mass X acceleration = pressure force - drag force - gravitational force )( 2 )( 2 12 2 ghA u AfAp dt hd AL ρ ρ ρ −−= g p h dt dh gDdt hd g L ρρ µ 1 2 2 8 =++ At Steady state, g p h ss ρ 1= = g p H dt dH gDdt Hd g L ρρ µ 1 2 2 8 =++ = [ ] g sp sHssH gD sHs g L ρρ µ )( )()( 8 )( 12 =++ = [ ] )()(1 13221 spksHsksk =++ = )1()( )( 2 2 1 3 1 1 ++ = sksk k sp sH Where ;1 g L k = ; 8 2 gD k ρ µ = ; 1 3 g k ρ = Thus )12()( )( 22 1 1 ++ = ss R sp sH ξττ Where ; 1 g R ρ = ;2 g L =τ ; 8 2 gDρ µ ξτ = Now ;) g L b =τ 1 4 2 1 . 8 ) − == g L gDgD c ρ µ τρ µ ξ Steady state gain ; 1 )( 0 g RsGLt S ρ == → Comment : a) τ is the time period of a simple pendulum of Length L. b) ξ is inversely proportional to τ , smaller the τ ,the system will tend to move from under damped to over damped characteristics. 8.5 Design a mercury manometer that will measure pressure of upto 2 atm, and give responses that are slightly under damped with ξ = 0.7 Parameter to be decide upon : .a) Length of column of mercury .b) diameter of tube. Considering hmax to be the maximum height difference to be used ; 13600*81.9 10*01325.1*2 5 maxmax1 === hghp ρ ;51.1max mh = Assuming the separation between the tubes to be 30 cm, We get an additional length of 0.47 m; Which gives us the total length L= 1.5176.47 L = 2 M Now, ξ = 0.7 = 7.0 4 = L g gDρ µ 00015.0 10*5.1 81.9*13600*74.0 2 81.9 *10*6.1*4 7.0 4 7 3 = === − − g L g D ρ µ As can be seen, the values yielded are not proper, with too small a diameter and too large a length. A smaller ξ value and lower measuring range of pressure might be better. 8.6 verify that for a second order system subjected to a step response, [ ] ξ ξ τ ξ ξ τ ξ 2 12 2 1 tan1sin 1 1 1)( − +− − −= − − t etY t With ξ <1 )12( 11 )( 22 ++ = sss sY ξττ baswhere ssssss +−= − + − = −−=++ τ ξ τ ξ ξττ 1 ))((12 2 1 21 22 bas −−= − + − = τ ξ τ ξ 12 2 ))(( 1 )( 21 2 sssss sY −− = τ − + − += )()( 1 )( 21 2 ss C ss B s A sY τ − + − += )()( 1 )( 21 2 ss C ss B s A sY τ 0 1)()())(( 12211 2 =++ =−+−+++− CBA ssCsssBsssssssA s 1)( 121 =−−+− CsBsssA s 2121 1 11 ;1 ss CB ss AsAs s −=+=== 1 22 1 s CsBs −=+= 2121 21 21 11 ssss ss CsCs =− + =+= )( 11 )( 1 )( 1 12121122122 ssssssss B sss C − −=− − −== − == ( ) ( ) ( ) −− + −= − = 2122112121 2 1 . )( 11 . 11 . 11 )( sssssssssssss sY τ 8.6 − + − −= tstS e sss e sssss tY 21 )( 1 )( 111 )( 12212121 2τ 21 2 1 ssτ = 1 − − −= tStS e s e sss tY 21 2112 2 11 )( 1 1)( τ [ ]tStS eses ss tY 21 12 12 )( 1 1)( − − −= [ ]tStS esestY 21 12 2 12 1)( − − += ξ τ [ ]btjbtjbabtjbtjbajetY t sin)(cos()sin)(cos( 12 1)( 2 −+−−+−− − −= − ξ τ τ ξ [ ])sincos(2 12 1)( 2 btabtbjb je tY t +− − −= − ξ τ τ ξ [ ])sin()cos(1 1 1)( 2 2 tt e tY t αξαξ ξ τ ξ +− − −= − [ ] ξ ξ α 21− = [ ] − = − ξ ξ φ 2 1 1tan verified 8.14 From the figure in your text Y(4) for the system response is expressed b) verify that for ,1=ξ and a step input τ τ t e t tY − +−= 11)( 1 11 )( 22 ++ = sss sY ττ 22 )1()1( 1 )( + + += + ττ CBs B A ss sY 1)12( 222 =+++ CsBsssA ττ 02 =+ BAτ 02 =+CAτ A=1; 2τ=B ; τ2=C ( )21 )1(1 )( + ++ −= s s s sY τ τττ ( ) 2)1(1 1 )( + − + −= sss sY τ τ τ τ ττ τ tt teetY −− −−= 1 1)( τ τ t te t tY − +−= )1(1)( proved c) for ,1>ξ prove that the step response is [ ])sinh()cosh(1)( ttetY t αβατ ξ +−= − 1 1 2 2 − = − = ξ ξ β τ ξ α Now ))(( /1 )( 21 2 ssBss sY −− = τ Where τ ξ τ ξ 12 1 − +−=s τ ξ τ ξ 12 2 − −−=s from 8.6(a) −− + −− −= )( 1 )( 1 )( 1 )( 1111 )( 2122112121 2 sssssssssssss tY τ [ ]tStS eses ss tY 21 12 12 )( 1 1)( − − −= −+− − −−− − += − −− − − teeeetY ttt τ ξ τ ξτ ξ τ ξ τ ξξ τ ξξ ξ τ 12 1 1 2 2 2 2 11 12 1)( −−−−+− − += − − − −− − − t ttt t eeeee e tY τ ξ τ ξ τ ξτ ξ τ ξ ξξξξ ξ 1 2 1 2 1 2 22 2 11 12 1)( + − − − −+= −−− 221 1)( 2 ttttt eeee etY αααα τ ξ ξ ξ [ ])sinh()cosh(1)( ttetY t αβατ ξ +−= − 8.7 Verify that for a unit step-input (1) overshoot = − − 21 exp ξ πξ (2) Decay ratio = − − 21 2 exp ξ πξ For a unit step input the response (ξξξξ<1): − +− − −= − − ξ ξ τ ξ ξ τ ξ 2 12 2 1 tan1 1 1)( t Sin e tY t (1) we have to find time t where the maxima occurs = dY/dt = 0 − +− − = − − ξ ξ τ ξ ξτ ξ τ ξ 2 12 2 1 tan1 1 ) t Sin e dt dY t 0 1 tan1 2 12 = − +−− − − ξ ξ τ ξ τ τ ξ t Cos e t = − +− − ξ ξ τ ξ 2 12 1tan1tan t = ξ ξ 21− π ξ ξ n t = − 21 for maxima = π ξ ξ n t 2 1 2 = − = 21 ξ π − = t t 8.8 Verify that for X(t) =A sin ωωωωt, for a second order system, ( ) ( ) )sin( 2)(1 )( 222 φω ξτω + +− = t t A tY2 1 )(1 2 tan ωτ ξωτ φ − −= − )12( 1 )( )( 2222 +++ = sss A sY ξττω − + − + + + − = )()()( )( 2 1 1 111 2 ss D ss C js B js AA sY ωωτ ω Now as tBtAtYt ωω sincos)(, 1111 +=∞→ Where 1111 BAA += )( 1111 BAjB −= to determine ordertheinjjsputBA ωω −= ,, 11 ))((2 21 1 sjsj j A −− − = ωωω ))((2 21 1 sjsj j B ++ = ωωω −− − ++ = ))(( 1 ))(( 1 2 2121 11 sjsjjsjs j A ωωωωω ++ +++−−+−−− = ))(( )()( 2 22 2 22 1 2121 2 2121 2 11 ωω ωωωωωω ω ss ssjsjsssjsjsj A ++ + = ))(( )( 22 2 22 1 2111 ωω ss ss A similarly ++ − = ))(( )( 22 2 22 1 2 2111 ωωω ω ss ss B using 22121 12 ττ ξ = − =+ ssss = 2 2 22 2 2 2 2 1 )12(224 τ ξ ττ ξ − =−=+ ss +−+ − = 42 2 2 4 2 11 )12( 21 2 ωξ τ ω τ τ ξ τ ωA A 22 2 2 3 21 2 + − − = τ ξω τ ω τ ωξA = 222 )2())(1( 2 ξωτωτ ωξτ +− − A and + − − = 22 2 2 2 2 11 21 1 τ ξω ω τ ω ω τ τ ϖA B 222 2 )2())(1( ))(1( ξωτωτ ωτ +− − = A Thus 211 11 )(1 2 tan ωτ ωτξ φ − − == B A And, 222 )2())(1(( ξωυωτ +− = A ANew (using NewABA =+ 22 1111 Thus, )( )2())(1(( )( 222 φω ξωυωτ + +− = tSin A tY proved 8.9) If a second- order system is over damped, it is more difficult to determine the parameters τξ & experimentally. One method for determining the parameters from a step response has been suggested by R.c Olderboung and H.Sartarius (The dynamics of Automatic controls,ASME,P7.8,1948),as described below. (a) Show that the unit step response for the over damped case may be written in the form. 21 21 12 1)( rr erer ts trtr − −= Where r1 and r2 are the roots of 01222 =++ ss ξττ (b) Show that s(t) has an inflection point at )( )/ln( 12 12 rr rr ti − = © Show that the slope of the step response at the inflection point )( )( 1 itt ts dt sd i = − Where, i trtr i ererts 21 21 1 )( −=−= )( 1 2 1 211 rrr r r r − −= (d) Show that the value of step response at the inflection point is )(1)( 1 21 211 ii ts rr rr ts += and that hence 21 1 11 )( )( 1 rrts ts i i −−=− (e) on a typical sketch of a unit step response show distances equal to )( 1 & )( )( 1 11 ii i tsts ts − (f) Relate 21 && rrtoτξ (a) ))(( 1 12 1 )12 1 )( 21 2 2 2 2 22 rsrs ss ss sG −− = + + = ++ = τ ττ ξ τ ξττ = ))(( 1 )( 21 2 rsrss sY −− = τ 2121 ))(( 1 rs C rs B s A rsrss − + − += −− )()())((1 1221 rscsrsBsrsrsA −+−+−−= Put s= 0 = Ar1r2 =1 ; 2τ=A Put )( 1 ;1)( 211 2111 rrr BrrBrrs − ==−== )( 1 ;1)( 122 1222 rrr CrrCrrs − ==−== −− + −− += ))(( 1 ))(( 11 )( 21221211 2 2 rsrrrrsrrrs sY τ τ − + − += )()( 1 )( 122211 2 2 21 rrr e rrr e tY trtr τ τ [ ] − − −= trtr erer rr tY 12 21 21 1 1)( )( 1)( 21 21 12 rr erer tY trtr − − −= φ (b) For inflection point , 0&0 2 3 2 2 == dt sd dt sd 21 21 )( 22 rr eerr dt ds trtr − − −= 0 )( 21 1221 2 2 22 = − − −= rr ererrr dt sd trtr itrrtrtr e r r ereu )( 1 2 12 2112 −==== 21 1 2ln rr r r ti − == (c ) )( )( ' itt ts dt tds i = = ] − − −= −− 12 1 21 1 2 1 2 21 21 rr r rr r r r r r r rr rr − − −= − − − 12 1 21 1 2 21 2 1 1 2 21 21 rr r rr r r r r rr r r r rr rr = − − − − 12 1 1 2 21 211 )( rr r r r r rr rrr −= − = 12 1 1 2 1 )( rr r tt r i r r r dt tds Also )( ()( 21 ) 21 12 rr eerr dt tds trtr tt i − − −= = − − − −= = 1 )( )( 2 1 21 21 1 r r rr err dt tds tr tt i trtr tt erer dt tds i 21 21 )( −=−= = (d) 21 1 2 2 11 21 21 )( 11)( 12 rr r r r r ts rr erer ts irttr i ii − − += − − −= = 21 1 2 2 11 )( 1)( rr r r r r ts ts i i − − +== Now +==− 21 1 11)(1)( rr tsts ii −−== − 21 ' 11 )( )(1 rrts ts i 21 21221 1 ; 11 rr rrrr ====+ τ ττ ; 2 21 = − =+ τ ξ rr ξ2121 2 rrrr −=+ +−= 1 2 2 1 2 1 r r r r ξ proved. 8.10 Y(0),Y(0.6),Y(∞ ) if )12( )1(251 )( 2 ++ + = ss s s sY )1 25 2 25 ( 11 1)( 2 ++ += sss sY Y(s) impulse response + step response of G(s) Where )1 25 2 25 ( 1 )( 2 ++ = ss sG ξ ξ τ ξ τξ τ ξ 2 12 2 1 tan1sin 1 1 )( − +− − = − − t etY t Y(t) = 1+5.0.3e -t sin (4.899t)-1.02e -t sin(4.899t+1.369) Y(0)= 1-1=0 Y(0.6) = 1+0.561+0.515 Y(∞ ) =1 Comment : as we can see ,the system exhibits an inverse response by increasing from zero to more than 1 and as t tend to ∞ ,will reach the steady state value of 1. 8.11 In the system shown the dev in flow to tank 1 is an impulse of magnitude 5 . A1 = 1 ft 2 , A2 = A3 = 2 ft 2 , R1 = 1 ft/cfm R2 = 1.5 ft/cfm . (a) Determine H1(s), H2(s), H3(s) Transfer function for tank 1 )1( 1 )( )( 1 1 + = ssQ sH τ )1( 5 )(1 + = s sH from tank 2, )13)(1( 5.1 )1)(1()( )( 21 22 ++ = ++ = ssss R sQ sH ττ for tank 3, dt dh Aqq c 3 32 =− dt dh AQconstqq c 3 323 )( === dt dh A R H 3 3 2 2 = thus, ssH sH R sH sSHA 3 1 )( )()( )( 2 3 2 2 33 === ssH sH R sH sSHA 3 1 )( )()( )( 2 3 2 2 33 === )13)(1( 5.0 )( )(3 ++ = ssssQ sH 8.11© )1( 5 )(1 + = s sH tetH −= 5)(1 AH 155.0)46.3(1 = 143 5.1 )( )( 2 2 ++ = sssQ sH 143 5.7 )(5)1( 22 ++ === ss sHQ 3=τ 42 =ξτ 155.1 32 4 2 4 === τ ξ from fig 8.5 τ ξ t and155.1= = 2 3 46.3 === τ ξ t 5.7265.0)(2 XtH =τ 147.1 5.7265.0 )(2 == τ X tH )143( 5.0 )( )( 2 3 ++ = ssssQ sH )143( 5.2 )(5)( 23 ++ === sss sHsQ 3=τ 3 2 =ξ from fig 8.2 at 155.1,2 == ξ τ t Y(t) =0.54 H3(t) =0.54*2.5 = 1.35 8.12 sketch the response Y(t) if )12.1( )( 2 2 ++ = − ss e sY S Determine Y(t) for t = 0,1,5,∞ 22 2 22 2 2 2 )8.0()6.0( )8.0( 8.0 1 )8.0()6.0()12.1( )( ++ = ++ = ++ = −−− s e s e ss e sY SSS 0)(, 14.0)5(,5 0)1(,1 0)0(0 2))2(8.0sin(25.1)( )2(6. =∞∞= == == == ≥−= −− Yt Yt Yt Ytfor ttetY t Problem 8.13 The system shown is at steady state at t = 0, with q = 10 cfm A1 = 1ft 2 ,A2=1.25ft 2 , R1= 1 ft/cfm, R2= 0.8 ft/cfm. a) If flow changes fro 10 to 11 cfm, find H2(s). b) Determine H2(1),H2(4),H2(∞ ) c) Determine theinitial levels h1(0),h2(0) in the tanks. d) obtain an expression for H1(s) for unit step change. Writing mass balances, ( ) )1tan(11 1 21 kfor dt dh A R hh q = − − At steady state ( ) SS ss hh R hh q 21 1 21 2 −= − − Also for tank 2 ( ) dt dh A R h R hh 2 2 2 2 1 21 =− − At steady state ( ) 810*8.0 8.01 2 221 ==== − S Sss h hhh 181 =Sh C) 181 =Sh ft fth 8)0(2 = The equations in terms of deviation variables dt dH AQQ 111 =− where 1 21 1 R HH Q − = dt dH AQQ 2221 =− 2 2 2 R H Q = 18.2 8.0 1)()( )( 2 2121 2 21 22 ++ = ++++ = sssRAs R sQ sH ττττ ))(31.8( )18.2( 8.0 )( 22 aAns sss sH ++ = Step response of a second order system 4.1 2 8.2 ;8.22 112 === === ξξτ ττ )(176.0)22.0(8.0)(;11) 2 figfromfttH t ta ===== τ )(624.0)78.0(8.0)(;44) 2 figfromfttH t tb ===== τ fttHtc 8.0)() 2 =∞→=∞→ Thus ftH 176.0)1(2 = ftH 624.0)4(2 = ftH 8.0)(2 =∞ 8.13(d) we have )()()()( 111 sHsAsQsQ = )()()()( 2221 sHsAsQsQ =− )()()()()()( 22112 sHsAsHsAsQsQ +=− +=− )()( 1 )()()( 22 2 11 sHsA R sHsAsQ + = )( 1 2 2 2 sH R sτ − = sH ssHAsQR sH 2 112 2 )()(( )( τ We have Deg R sRAs R sQ sH 2 2121 2 21 22 1)()( )( = ++++ = ττττ + − = )1( )()(()( 2 11222 s ssHAsQR Deg sHR τ −−= + )( )( 1 1 1 1 2 sQ sH sA Deg sτ −− = −= Deg sDeg sADeg sH sAsQ sH 2 1 2 1 11)( 1 1 )( )( ττ −−++++ = Deg ssRAs sAsQ sH 22121 2 21 1 11)(1 )( )( τττττ = ++ = Deg sRAs sAsQ sH )1 )( )( 21121 1 τττ ++++ ++ = 1)( )1( )( )( 2121 2 21 212 sRAs sRR sQ sH ττττ τ 8.14 ( ) )18.04( 422 )( 2 ++ + = ss s s sY ( ) )18.04( 24 )( 2 ++ + = ss s s sY )18.04( 12 14)( 2 ++ += sss sY )18.04( 8 )( 2 ++ = sss sY + )18.04( 4 2 ++ ss = (step response) + (impulse response) 24, ==τNow ; 8.02 =ξτ 2.0=ξ also, 2 2 4 == τ t impulse response τY(t) = 4*0.63 = 2.52 (from figure) step response = 8*1.15 = 9.2 (from figure) Y(4) = 1.26+9.2 Y(4) =10.46 Q 9.1. Two tank heating process shown in fig. consist of two identical, well stirred tank in series. A flow of heat can enter tank2. At t = 0 , the flow rate of heat to tank2 suddenly increased according to a step function to 1000 Btu/min. and the temp of inlet Ti drops from 60oF to 52oF according to a step function. These changes in heat flow and inlet temp occurs simultaneously. (a) Develop a block diagram that relates the outlet temp of tank2 to inlet temp of tank1 and flow rate to tank2. (b) Obtain an expression for T2’(s) (c) Determine T2(2) and T2(∞) (d) Sketch the response T2’(t) Vs t. Initially Ti = T1 = T2 = 60 o F and q=0 W = 250 lb/min Hold up volume of each tank = 5 ft3 Density of the fluid = 50 lb/ft 3 Heat Capacity = 1 Btu/lb (oF) Solution: (a) For tank 1 w Ti T1 T2 w q Input – output = accumulation WC(Ti – To) - WC(T1 – To) = ρ C V dt dT1 -------------------------- (1) At steady state WC(Tis – To) - WC(T1s – To) = 0 ------------------------------------(2) (1) – (2) gives WC(Ti – Tis) - WC(T1 – T1s) = ρ C V dt dT 1 ' WTi ’ - WT1 ’ = ρ V dt dT 1 ' Taking Laplace transform WTi(s) = WT1(s) + ρ V s T1(s) ssTi sT τ+ = 1 1 )( )(1 , where τ = ρ V / W. From tank 2 q + WC(T1 – To) - WC(T2 – To) = ρ C V dt dT2 -------------------------- (3) At steady state qs + WC(T1s – To) - WC(T2s – To) = 0 ------------------------------------(4) (3) – (4) gives Q ‘ + WC(T1 – T1s) - WC(T2 – T2s) = ρ C V dt dT 2 ' Q ‘ + WCT1 ’ - WCT2 ’ = ρ C V dt dT 2 ' Taking Laplace transform Q (s) + WC(T1(s) - T2(s)) = ρ C V s T2(s) + + = )( )( 1 1 )( 12 sT WC sQ s sT τ , where τ = ρ V / W. (b) τ = 50*5/250 = 1 min WC = 250*1 = 250 Ti(s) = -8/s and Q(s) = 1000/s Now by using above two equations we relate T2 and Ti as below and after taking laplace transform we will get T2(t) ( ) ( ) ( ) 4)84()( 1 1 1 11 8 )1( 11 4)( 1 8 )1( 4 )( )( 1 1 250 )( 1 1 )( 2 22 22 22 −+= + − + −− + −= + − + = + + + = −t i ettT sssss sT ss sT sT s sQ s sT ττ (c) T2’(2) = -1.29 T2(2) = T2’(2) + T2s = 60 – 1.29 = 58.71 o F T2’(∞) = -4 T2(∞) = T2’(∞) + T2s = 60 – 4 = 56 o F Q – 9.2. The two tank heating process shown in fig. consist of two identical , well stirred tanks in series. At steady state Ta = Tb = 60 o F. At t = 0 , temp of each stream changes according to a step function Ta’(t) = 10 u(t) Tb’(t) = 20 u(t) (a) Develop a block diagram that relates T2’ , the deviation in the temp of tank2, to Ta’ and Tb’. (b) Obtain an expression for T2’(s) (c) Determine T2(2) W1 = W2 = 250 lb/min V1 = V2 = 10 ft 3 ρ1 = ρ2 = 50 lb/ft 3 C = 1 Btu/lb (oF) 0.5 0.85 -4 0 T2’(t) t Solution: (a) For tank1 ssTa sT 1 1 1 1 )( )( τ+ = , where τ1= ρ V / W1. For tank2 W1C(T1 – To) +W2C(Tb – To) – (W1+W2)C(T2 – To)= ρ C V dt dT2 ------ (1) At steady state W1C(T1s – To) +W2C(Tbs – To) – (W1+W2)C(T2s – To)= 0 -----------------(2) (1) – (2) W1T1 ’ + W2Tb ’ - W3T2 ’ = ρ V dt dT 2 ' Taking L.T W1T1(s) + W2Tb(s)- W3T2(s) = ρVs T2(s) W1 Ta T1 T2 W3=W1+W2 Tb W2 W1 [ ])( 3 2)( 3 1 1 1 )( 12 STW WST W W s sT b++ = τ where τ= ρ V / W3. (b) τ1 = 50*10/250 = 2 min τ = 50*5/250 = 1 min W1/W3 = 1/2 = W2/W3 Ta(s) = 10/s and Tb(s) = 0/s Now by using above two equations we relate T1 and Ta as below and after taking laplace transform we will get T2(t) ( ) ( ) ( ) ( ) 2 2 2 2 2 2 1 2 10515)( 21 20 1 515 )( )21)(1( 2015 )( 1 10 )21)(1( 5 )( 1 )( 2 1 )21)(1( )( 2 1 )( 1 )( 2 1 )1( )( 2 1 )( t t ba b eetT sss sT sss s sT sssss sT s sT ss sT sT s sT s sT sT −− −−= + − + −= ++ + = + − ++ = + − ++ = + − + = (c) T2’(2) = 10.64 o F T2(2) = T2’(2) + T2s = 60 + 10.64 = 70.64 o F Q – 9.3. Heat transfer equipment shown in fig. consist of tow tanks, one nested inside the other. Heat is transferred by convection through the wall of inner tank. 1. Hold up volume of each tank is 1 ft 3 2. The cross sectional area for heat transfer is 1 ft 2 3. The over all heat transfer coefficient for the flow of heat between the tanks is 10 Btu/(hr)(ft 2 )( o F) 4. Heat capacity of fluid in each tank is 2 Btu/(lb)( o F) 5. Density of each fluid is 50 lb/ft 3 Initially the temp of feed stream to the outer tank and the contents of the outer tank are equal to 100 oF. Contents of inner tank are initially at 100 oF. the flow of heat to the inner tank (Q) changed according to a step change from 0 to 500 Btu/hr. (a) Obtain an expression for the laplace transform of the temperature of inner tank T(s). (b) Invert T(s) and obtain T for t= 0,5,10, ∞ Solution: (a) For outer tank WC(Ti – To) + hA (T1 – T2)- WC(T2 – To) = ρ C V2 dt dT2 -------------------------- (1) At steady state WC(Tis – To) + hA (T1s – T2s)- WC(T2s – To) = 0 ------------------------------------ (2) (1) – (2) gives WCTi’ + hA (T1’ – T2’)- WCT2’ = ρ C V2 dt dT '2 Substituting numerical values 10 Ti’ + 10 (T1’ – T2’) – 10 T2’ = 50 dt dT '2 Taking L.T. Ti(s) + T1(s) – 2T2(s) = 5 s T2(s) Now Ti(s) = 0, since there is no change in temp of feed stream to outer tank. Which gives ssT sT 52 1 )( )( 1 2 + = Q 10 lb/hr T1 T2 For inner tank Q - hA (T1 – T2) = ρ C V1 dt dT1 --------------------- (3) Qs - hA (T1s – T2s) = 0 ------------------------------- (4) (3) – (4) gives Q’ - hA (T1’– T2’ ) = ρ C V1 dt dT '1 Taking L.T and putting numerical values Q(s) – 10 T1(s) + 10 T2(s) = 50 s T1(s) Q(s) = 500/s and T2(s) = T1(s) / (2+ 5s) )(50 52 )(10 )(10 500 1 1 1 ssT s sT sT s = + +− + + −= 1 52 1 5)( 50 1 s ssT s )11525( )52(50 )( 21 ++ + = sss s sT ( )( ) 50 18.26 50 82.3 )52(2 )(1 ++ + = sss s sT ( ) ( ) 50 18.26 29.5 50 82.3 71.94100 )(1 + − + −= sss sT 50 18.26 50 82.3' 1 e 5.29 -e 94.71 - 100 (t)T tt −− = and 50 18.26 50 82.3 1 e 5.29 -e 94.71 - 200 (t)T tt −− = For t=0,5,10 and ∞ T(0) = 100 o F T(5) = 134.975 o F T(10) = 155.856 oF T(∞) = 200 o F Q – 10.1. A pneumatic PI controller has an output pressure of 10 psi, when the set point and pen point are together. The set point and pen point are suddenly changed by 0.5 in (i.e. a step change in error is introduced) and the following data are obtained. Determine the actual gain (psig per inch displacement) and the integral time. Soln: e(s) = -0.5/s for a PI controller Y(s)/e(s) = Kc ( 1 + τI -1 /s) Y(s) = -0.5Kc ( 1/s + τI -1 /s 2 ) Y(t) = -0.5Kc ( 1 + τI -1 t ) At t = 0 + y(t) = 8 � Y(t) = 8 – 10 = -2 2=0.5Kc Kc = 4 psig/in At t=20 y(t) = 7� Y(t) = 7-10 = -3 3 = 2 ( 1 + τI -1 20 ) τI = 40 sec Q-10.2. a unit-step change in error is introduced into a PID controller. If KC = 10 , τI = 1 and τD = 0.5. plot the response of the controller P(t) Soln: P(s)/e(s) = KC ( 1 + τD s+ 1/ τIs) For a step change in error Time,sec Psig 0 - 10 0 + 8 20 7 60 5 90 3.5 P(s) = (10/s)(1 + 0.5 s + 1/s ) P(s) = 10/s + 5 + 10/s 2 P(t) = 10 + 5 δ(t) + 10 t Q – 10.3. An ideal PD controller has the transfer function P/e = KC ( τD s + 1) An actual PD controller has the transfer function P/e = KC ( τD s + 1) / (( τD/β) s + 1) Where β is a large constant in an industrial controller If a unit-step change in error is introduced into a controller having the second transfer function, show that P(t) = KC ( 1 + A exp(-βt/ τD)) Where A is a function of β which you are to determine. For β = 5 and KC =0.5, plot P(t) Vs t/ τD. As show that β � ∞, show that the unit step response approaches that for the ideal controller. Soln: P/e = KC ( τD s + 1) / (( τD/β) s + 1) For a step change, e(s) = 1/s P(s) = KC s( τD s + 1) / (( τD/β) s + 1) 10 15 10(1+t) P(t) t = + − + β τ βτ ss K D D C 1 11 1 P(t) = − + − D t D D C eK τ β β τ βτ 11 1 = −+ − D t C eK τ β β )1(1 So, A = β – 1 P(t) = 0.5 ( 1 + 4 exp(-5t/ τD)) As β � ∞ then τD/β � 0 and P/e = KC ( τD s + 1) / (( τD/β) s + 1) becomes P/e = KC ( τD s + 1) that of ideal PD controller Q – 10.4. a PID controller is at steady state with an output pressure of a psig. The set point and pen point are initially together. At time t=0, the set point is moved away from 2.5 0.5 P(t) t/τD the pen point at a rate of 0.5 in/min. the motion of the set point is in the direction of lower readings. If the knob settings are KC = 2 psig/in of pen travel τI = 1.25 min τD = 0.4 min plot output pressure Vs time Soln: Given de/dt = -0.5 in/min s e(s) = -0.5 Y(s)/e(s) = KC ( 1 + τD s+ 1/ τIs) Y(s) = -( 1/s + 1/ τIs 2 + τD ) Y(t) = -( 1 + t/1.25 + 0.4 δ(t) ) Y(t) = y(t) – 9 = - ( 1 + t/1.25 + 0.4 δ(t) ) y(t) = 8 – 0.8 t – 0.4 δ(t) Q – 10.5. The input (e) to a PI controller is shown in the fig. Plot the output of the controller if KC = 2 and τI = 0.5 min 9 8 7.6 10 y(t) t e(t) = 0.5 ( u(t) - u(t-1) - u(t-2) + u(t-3) ) e(s) = (0.5/s) ( 1 – e -s - e -2s + e -3s ) P(s)/e(s) = KC ( 1 + (1 / τI s) ) = 2 ( 1+ 2/s ) P(s) = ( 1/s + 2/s2 ) (1 – e-s - e -2s + e-3s ) P(t) = 1 + 2t 0 ≤ t < 1 = 2 1 ≤ t < 2 = 5 – 2t 2 ≤ t < 3 = 0 3 ≤ t < ∞ Q – 12.1. Determine the transfer function Y(s)/X(s) for the block diagrams shown. Wxpress the results in terms of Ga, Gb and Gc 0 1 2 3 4 t, min 0.5 e -0.5 Soln. (a) Balances at each node (1) = GaX (2) = (1) – Y = GaX – Y (3) = Gb(2) = Gb(GaX – Y) (4) = (3) + X = Gb(GaX – Y) + X Y = Gc(4) = Gc (Gb(GaX – Y) + X) = GaGbGcX – GbGcY + GcX GbGc GaGbGc X Y + + = 1 )1( (b) Balances at each node (1) = X – (4) (2) = Gb(1) = Gb( X – (4)) (5) = GcX/Ga (3) = Gc(2) = GbGc( X – (4)) (4) = (3) + (5) --------------------------- 5 = GbGc( X – (4)) + GcX/Ga Y = Ga(4) From the fifth equation (4) = GbGcX – GbGc(4) + GcX/Ga ----------- 6 GaGbGc XGcGaGbGc )1( )( )4( + + = From the sixth equation )1( )1( GbGc GcGaGb X Y + + = Q – 12.2 Find the transfer function y(s)/X(s) of the system shown Soln: Balance at each node (1) = X – Y ---------(a) (2) = (1) + (3) ----------(b) (3) = G1(2) where G1 = 1/(τ1s + 1) ----------(c) (4) Y = G2(3) where G2 = 0.5/(τ1s/2 + 1) ----------(d) From (d) and (c) Y = (2)G1G2 = G1G2 (X – Y + (3) ) ----------(e) Also from (b) and (c) (3) = G1((1) + (3)) (3)(1 – 1/(τ1s + 1)) = 1/(τ1s + 1) (3) τ1s = 1 (3) = 1/(τ1s ) = (X – Y) / (τ1s) Substitute this in (e) ( )YX sss Y − + ++ = 11 1 1 1 )1 2 )(1( 5.0 τττ 12 1 1 22 1 ++ = ssX Y ττ Q – 12.3. For the control system shown determine the transfer function C(s)/R(s) Soln. Balances at each node (1) = R – C ------------------(a) (2) = 2 (1) = 2(R – C) ------------------(b) (3) = (2) – (4) = 2(R – C) – (4) -------------------(c) (4) = (3)/s = (2(R – C) – (4))/s -------------------(d) (5) = (4) – C -------------------(e) C = 2(5) -------------------(f) Solving for (4) using (d) s (4) = 2(R – C) – (4) (4) = 2(R – C) / (s +1) Using (e) (6) = 2(R – C) / (s +1) – C ( ) −− + = CCR s C 1 2 2 ( ) 73 4 )1(24)1(4 + = ++++= sR C ssCR Q – 12.4. Derive the transfer function Y/X for the control system shown Soln. Balance at each node (1) = (5) + X -----------------(a) (2) = (1) – (4) -----------------(b) (3) = (2)/s ------------------(c) Y = (3)/s ------------------(d) (5) = 2 (3) ------------------(e) (4) = 25Y ------------------(f) From (b) (4) = (1) – (2) = (1) – s (3) from (c) = (1) – s 2 Y from (d) = (5) + X - s2 Y from (a) = 2 (3) + X - s 2 Y from (e) = 2 s Y + X - s2 Y From (f) Y = (2 s Y + X - s 2 Y)/25 X = Y( 25 – 2s + s 2 ) 252 1 2 +− = ssX Y 13.1 The set point of the control system in fig P13.1 given a step change of 0.1 unit. Determine (a) The maximum value of C and the time at which it occurs. (b) the offset (c) the period of oscillation. Draw a sketch of C(t) as a function of time. )12)(1( 5 1 )12)(1( 5 ++ + ++ = ss K ss R C 932 8 2 ++ = ssR C s R 1.0 = b) 0889.0 9 8.0 932 8.0 )( 20 == ++ =∞ → ss LtC S offset = 0.0111 c) 22 1 3 1 2; 3 2 ; 9 8.0 =⇒=== ξξττK overshoot = 305.0 1 exp 2 = − − ξ πξ = Maximum vslue of C = 1.0305*0.0889=0.116 Maximum value of C = 0.116 − +− − −= − − ξ ξ τ ξ ξ τ ξ 2 122 1 tan1sin 1 1 1 9 8.0 116.0 t e t 6.1 1 tan 1 2 1 2 = − − = − ξ ξ ξ τ t Time at which Cmax occurs = 1.6 (c ) Period of ociullation is 166.3 1 2 2 = − = ξ πτ T T =3.166 Decay ratio = (overshoot) 2 = 0.093 13.2 The control system shown in fig P 13.2 contains three-mode controller. (a) For the closed loop, develop formulas for the natural period of oscillation τ and the damping factor ξ in terms of the parameters K, Dτ , Iτ and 1τ . (b) Calculate ξ when K is 0.5 and when K is 2. (c ) Do ξ & τ approach limiting values as K increases, and if so, what are these values? (d ) Determine the offset for a unit step change in load if K is 2. (e ) Sktech the response curve (C vs t) for a unit-step change IN LOAD WHEN k is 0.5 and when K is 2. (f) In both cases of part (e) determine the max value of C and the time at which it occurs. ++ + + ++ + = s s s k s sk s R C a I D I D τ τ τ τ τ τ 1 1 1 1 1 1 1 1 ) 1 1 ( ) ++ + + + = s sk s s U C I D τ τ τ τ 1 1 1 1 1 1 1 1 1 = 1 12 + ++ + s k k s k k s I II DI I τ ττ ττ τ ++++ ++ = s sks s sk R C I D I D τ ττ τ τ 1 11 1 1 1 ( ) ksksk ssk R C IIDI IID ++++ ++ = τττττ τττ )1()( 1 2 1 2 k k k k IIDI ττξ τττ τ )1( 2; )(2 += + = k k k k IIDI τξ τττ )1()( 2 + = + ×= )(2 )1( 1ττ τ ξ + + == D I kk k )(2 )1()(4 )( 2 1 2 1 2 1 1 2 ττ τττ τττ π ξ τπ + +−+ + × = − == D DD DI kk kkk k k T 21 1 )1(4 )(4 +− + + = kkk k T II D D τ τ τ τ ττπ B) Dτ = Iτ =1; 1τ .=2 For k = 0.5 ; ξ =0.75 671.0 )5.2(5.0 1 = For k = 2 ; ξ =1.5 530.0 32 1 = × C) + + = + + == k k kk k I D I D I τ τ τ ττ τ ξ 2 1 2 1 1 2 1 )( )1( 2 1 As 3535.0 2 1 , 1 ==∞→ τ τ ξ Ik 21 1 )1(4 )(4 +− + + = kkk k T II D D τ τ τ τ ττπ k k IDI τττττ 1 + = k I DI 1τττττ += DIK τττ =∞→ =1 2552.7 14 4 , = − =∞→ I D DTkAs τ τ πτ (d) ++ + + + = s s s k s U C I D τ τ τ τ 1 1 1 1 1 1 1 1 ksksk s U C IDI I ++++ = 2 1 )()1( ττττ τ s U 1 = ksksk C IDI I ++++ = 2 1 )()1( ττττ τ 0 0 )( 0 == → k ssfLt S K=2 For a unit step change in U 0)( =∞C Offset = 0 (e) k = 0.5, ξ =0.671 & τ =2.236 95.18 1 2 2 = − = ξ πτ T If k = 0.5 135 2 2 ++ = ss s U C ; 135 2 ++ = ss s C If k = 2 15.12 5.0 2 ++ = ss s U C ; 15.12 5.0 2 ++ = ss C In general τ ξ ξτ τ ξ t etC t 2 2 1sin 1 11 )( − − = − The maximum occurs at ξ ξ ξ τ 21 2 1 tan 1 − − = −t If k = 0.5 tmax = 2.52 Cmax=0.42 If k = 2 tmax = 1.69 Cmax=0.19 13.3 The location of a load change in a control loop may affect the system response. In the block diagram shown in fig P 13.3, a unit step chsange in load enters at either location 1 and location 2. (a) What is the frequency of the transient response when the load enters at location Z? (b) What is the offset when the load enters at 1 & when it enters at 2? (c) Sketch the transient response to a step change in U1 and to a step change in U2. 0; 1 21 == U s U C ss UCRS = + + +− 12 1 12 2 ))(( 1 R = 0 1144 2 1)12( 2 5 )12( 2 2 2 2 1 ++ = ++ × + = ss s s U C 1144 2 2 1 ++ = ssU C 11 1 11 4 2; 11 2 ; 11 2 =⇒=== ξξττK 2516.0 2 10 2 11 2 11 2 == − === πτ ξ πT fFrequency C(∞) = 2/11 Offset = 2/11 =0.182 U1=0;U2=1/s C s UCR s = + +− + ×⇒ 12 1 )( 12 2 5 2 R=0 1 12 1 12 10 12 1 2 + + × + +=⇒ ss s U C 1144 12 2 2 ++ + = ss s U C C(∞) = 1/11 Offset = 1/11=0.091 a) if ; 1 1 s U = frequency = 0.2516 if ; 1 2 s U = frequency = 0.2516 b)if ; 1 1 s U = frequency = 0.182 if ; 1 2 s U = frequency = 0.091 13.5A PD controller is used in a control system having first order process and a measurement lag as shown in Fig P13.5. (a) Find the expressions for ξ and τ for the closed –loop response. (b) If τ1 = 1 min, τm = 10 sec, find KC so that ξ = 0.7 for the two cases: (1) τD =0,(2) τD =3 sec, (c) Compare the offset and period realized for both cases, and comment on the advantage of adding derivative mode. )1)(1( )1( 1 )1( )1( ) 1 1 ++ + + + + = ss sK s sK R C a m DC DC ττ τ τ τ )1()( )1)(1( 1 2 1 +++++ ++ = CDCmm mDC KsKs ssK R C τττττ ττ = 1 12 + = C m K ττ τ 1 1 + = C m K ττ τ )1(2 1 1 1 + ++ = Cm DCm k k ττ τττ ξ b) 7.0;10min;11 === ξττ sm 1) )1(600 70 2 1 7.0 0 + ×=⇒ = C D k τ kc=3.167 2) 255.5 )1(600 370 2 1 7.0 3 = + + ×=⇒ = C C C D k k k sτ c)for 1 )(; 1 + =∞= C C k k c s R periodsperiodsfor periodperiodfor offsetCsfor offsetCFor D D D D == − == == − × == ==∞= ==∞= 17.86 )7.0(1 255.6 600 2 ;3 57.105 1 167.4 600 2 ;0 16.0;84.0)(;3 24.0;76.0)(;0 2 2 π τ ξ π τ τ τ Comments: Advantage of adding derivative mode is lesser offset lesser period 13.6The thermal system shown in fig P 13.6 is controlled by PD controller. Data ; w = 250 lb/min; ρ = 62.5 lb/ft3; V1 = 4 ft 3,V2=5 ft 3; V3=6ft 3; C = 1 Btu/(lb)(°F) Change of 1 psi from the controller changes the flow rate of heat of by 500 Btu/min. the temperature of the inlet stream may vary. There is no lag in the measuring element. (a) Draw a block diagram of the control system with the appropriate transfer function in each block.Each transfer function should contain a numerical values of the parameters. (b) From the block diagram, determine the overall transfer function relating the temperature in tank 3 to a change in set point. (c ) Find the offset for a unit steo change in inlet temperature if the controller gain KC is 3psi/°F of temperature error and the derivative time is 0.5 min. CWTTTCVqCWT 10110 )( +−=+ ρ CWTTTCVCWT 21221 )( +−= ρ CWTTTCVCWT 32332 )( +−= ρ )()( 1110 CVCWTqCVWCT ρρ +=++ 1 01 CVWC q TT ρ+ += T1= T2 = T3 ⇒ + += 1 03 CVWC q TT ρ ( )sCVWC sq sT 1 3 )( )( ρ+ = 13.6 (b) )15.1)(125.1)(1( 2 )1(1 )15.1)(125.1)(1( 2 )1( )( )('3 +++ ++ +++ + = sss sk sss sk sR sT DC DC τ τ = )1(2)175.2875.1)(1( )1(2 )( )( 2 ' 3 sksss sk sR sT DC DC τ τ +++++ + = 12)275.3(625.4875.1 )1(2 )( )( 23 ' 3 +++++ + = cDC DC kskss sk sR sT τ τ c) kC=3; s soffsetD 1 )(?,,5.0 '0 === ττ 12)275.3(625.4875.1 1 )( )( 230' ' 3 +++++→ CDCsi kskss Lt sT sT τ = 143.0 7 1 12 1 == +Ck Offset =0.143 13.7 (a) For the control system shown in fig P 13.7, obtain the closed loop transfer function C/U. (b) Find the value of KC for whgich thre closed loop response has a ξ of 2.3.(c) find the offset for a unit-step change in U if KC = 4. C s UCR s s KC = +− + + × 1 )( 125.0 1 = 125.0 1 .1 1 + + + = s s s K s U C C )1(25.0 125.0 2 +++ + = sKss s U C C CC KsKs s U C 4)1(4 4 2 +++ + = b) ξ=2.3 C C C K K K 1 2; 4 1 + == ξττ = C C C K K K 1 3.22 4 1 + =× 3.2 1 = + = C C K K KC=2.952 C) KC=4,U = 1/s = 1620 41 2 ++ + ×= ss s s C 4 1 )( =∞C offset = 0.25. 13.8 For control system shown in Fig 13.8 (a) C(s)/R(s) (b) C(∞∞∞∞) (c) Offset (d) C(0.5) (e) Whether the closed loop response is oscillatory. (a) )1( 4 1 )1( 4 + + + = ss ss R C 4 4 2 ++ = ssR C b) C(∞) =2*1=2 C(∞) =2 C) offset = 0 d) 4 1 4 1 2; 2 1 =⇒== ξξττ + − −= − − 15tan 4 15 sin 4 1 1 1 1 2 )( 12 2 τ t e tC t = +−= − − 15tan 4 15 sin 15 4 12)5.0( 14 1 eC C(0.5)=0.786 .e) ξ<1, the response is oscillatory. 13.9 For the control system shown in fig P13.9,determine an expression for C(t) if a unit step change occurs in R. Sketch the response C(t) and compute C(2). 1̀2 1 1 11 1 1 + + = ++ + = s s R C s s R C 2 2 1 1)( 12 11 )12( 1 1 t etC ssss s C s R − −= + − += + + = = C(2) = 0.816 13.10 Compare the responses to a unit-step change in a set point for the system shown in fig P13.10 for both negative feedback and positive feedback.Do this for KC of 0.5 and 1.0. compare the responses by sketching C(t). -ve feed back : ))1(( ++ = C C Kss K C +ve feed back 1 1 1 1 1 + − + × = s K s K R C C C ))1(( C C Kss K C −+ = For KC = 0.5 , response of -ve feed back is 32 3 2 3 1 )32( 1 + − += + = ssss C )1( 3 1 3 1 3 1 )( 2 3 2 3 tt eetC −− −=−= response of +v feed back is 21)( 12 21 )12( 1 t etC ssss C − −= + − += + = For KC = 1, response of -ve feed back is tetC ssss C 2 2 1 2 1 )( 2 2 1 2 1 )2( 1 −−= + − += + = response of +ve feed back is ttC s C = = )( 1 2 14.1 Write the characteristics equation and construct Routh array for the control system shown . it is stable for (1) Kc= 9.5,(ii) KC =11; (iii) Kc= 12 Characteristics equation 0)66(116 0)66(116( 06)3)(2)(1( 0 )3)(2)(1( 6 1 23 2 =++++ =++++ =++++ = +++ + Kcsss Kcsss Kcsssor sss Kc Routh array )1(6 )66(6 111 2 3 Kcs Kcs s + + For Kc=9.5 = 10-(Kc)= 10-9.5=0.5>0 therefore stable. For Kc=11 = 10-(Kc)= 10-11=-1<0 therefore unstable For Kc=121 = 10-(Kc)= 10-12=--2<0 therefore unstable 14.2 By means of the routh test, determine the stability of the system shown when KC = 2. Characteristic equation 0 1042 10 2 3 121 2 = ++ ++ sss 060252 01205042 0120401042 010.2).3(2)1042( 23 23 23 2 =+++ =+++ =++++ =++++ sss sss ssss ssss Routh Array 1 25 2 60 -10/2 The system is unstable at Kc = 2. 14.4 Prove that if one or more of the co-efficient (a0,a1,….an) of the characteristic equation are negative or zero, then there is necessarily an unstable root Characteristic equation : 0..................................110 =+++ − n nn axaxa 0)/......................./( 0 1 010 =++ − aaxaaxa n nn 0............................., 0).(..........).........)(( 21 210 < =−−− n n haveWe xxxa ααα ααα As we know the second co-efficient a1/a0 is sum of all the roots 2/)1( 11 2 0 1 −= ∑∑ == n j ji n ia a αα Therefore sum of all possible products of two roots will happen twice as 21αα dividing the total by 2. And 00/ )00(0 202 >⇒>∴ <<> aaa jiji αααα Similarly ),.......1(0 0/ 00)1()1( 0/01)1( )()1( 0 0 0 0 njforaso aacasebothin againis a a soissumtheandisoddjif aasoissumtheandisevenjif rootsjofproductspossibleaollofsum a a j j jj j j jj => > ><−−= >>−= −= 14.5 Prove that the converse statement of the problem 14.4 that an unstable root implies that one or more co-efficient will be negative or zero is untrue for all co-efficient ,n>2. Let the converse be true, always .Never if we give a counter example we can contradict. Routh array 0 2 3 23 01 31 21 32 s s s s sss − +++ System is unstable even when all the coefficient are greater than 0; hence a contradiction, 14.6 Deduce an expression for Routh criterion that will detect the Presence of roots with real parts greater than σ for any rectified σ >0 Characteristic equation 0.................................110 =+++ − n nn axaxa Routh criteria determines if for any root, real part > 0. Now if we replace x by X such that .x + σ =X Characteristic equation becomes 0.................................)()( 110 =++−+− − n nn aXaXa σσ Hence if we apply Routh criteria, We will actually be looking for roots with real part >σ rather than >0 0.................................22 1 10 =+++ −− n nnn axaxaxa Routh criterion detects if any root jα is greater than zero. Is there any )1(0.,...............,,........., 21 −−−−−>= njx αααα Now we want to detect any root )1( 0 From j j > −> α σα σα σα σ σασ σασ σασ σασ σ α α α α αααα −> >+ += >+=+ >+=+ >+=+ >+=+ >= >= >= >= >= j j n j n j nj or anyecttocriteriaRouthapplyand xXLetso x x x x anythereis sidesbothonadd x x x x anythereisimplies x 0det , 0 . . . 0. . . . 0 0 0 . . . 0 . . . 0 0 0,.................,............................,........., 2 1 2 1 21 14.7 Show that any complex no S1 satisfying ,1<S yields a value of s s Z − + = 1 1 that satisfies Re(Z)>0, Let S=x+iy, 122 <+ yx s s Z − + = 1 1 ( ) +− += > <−++< == =−= −++ <+>+− <<− <<− <+ <+ >++− >+−> ++− +− = ++− ++− = +−+ −−+=+− +− +− −− ++ − )5.05.0( 1 )5.05.0( : 0)Re( 4)2)(1(0 00&1 40&1 2)(1 10)(1 int11 11 1 1 0)(21 0)(10)Re( )(21 )(1 )Re( )(21 2)(1 21 ))11(1( )1( )1( )1( 1 1 22 22 2222 22 22 22 22 22 22 22 22 22 22 is L partrealthetodueunstableissystemtheisif example z xyx isitthenyxif isitthenyxif xyx Now yxthereforetrueisyx circleunittheinsPoy xareRanges yx yxhavewe yxx andyxthenzif yxx yx Z yxx iyyx yxx yiyxxx iyx iyx iyx iyx )5.05.0( )5.05.0( 1 5.01 tSintCose is L t += +− − 14.8 For the output C to be stable, we analyze the characteristic equation of the system 0)1( )1)(1( 11 1 3 21 =+× ++ + s sssI τ τττ 01)()( 01)1( 3 2 21 3 21 3212 2 1 =+++++ =+++++ sss sssss III I ττττττττ ττττττ Routh Array 1 0 1)( 0 21 2 321 3 s s s s I II α τττ τττττ + + )( ))(( 21 21321 τττ ττττττττ α + −++ = I III Now 0)1( 12 >τττI Since 21 &ττ are process time constant they are definitely +ve 0;0 21 >> ττ (2) 0)( 21 >+τττ I (3) 21321 ))((0 ττττττττα III >++⇒> 0 )()( 0 3 21 21 2132121 21322311 > − + > +−>+ >−+++ I I I II also τ τ ττ ττ τ ττττττττ ττττττττττ 14.9 In the control system shown in fig find the value of Kc for which the system is on the verge of the instability. The controller is replaced by a PD controller, for which the transfer function is Kc(1+s). if Kc = 10, determine the range for which the system is stable. Characteristics equation 0)66(116 06)3)(23( 06)3)(2)(1( 0 )3)(2)(1( 6 1 23 2 =++++ =++++ =++++ = +++ + Kcsss Kcsss Kcsssor sss Kc Routh array +− + ) 3 1 3 13 31 2 3 Kc s Kcs s For verge of instability 8 ) 3 1 3 = += Kc Kc Characteristics equation 0 3)1( )1(10 1 = + + + s kcs 011)103(3 23 =++++ Kcssss Routh Array 30/2 230 11)103(3 113 1031 2 3 > > >+ + D S s D vegefor s s s τ τ τ τ 14.10 (a) Write the characteristics equation for the central system shown (b) Use the routh criteria to determine if the system is stable for Kc=4 © Determine the ultimate value of Kc for which the system is unstable (a) characteristics equation 02)1(32 0)2()12)(( 0 )1( 1 12 1 3 2 1 23 2 =++++ =++++ = + = ++ kcskcss skcsss ss s kc 0)1(33 23 =++++ kcsss Kc=4Routh array 3;03 0 3 4)1(3 3/1 83 52 2 3 ==− = −+ − KcKc kckc stablenot s s s For verge of instability 14.11 for the control shown, the characteristics equation is 0)1(464 234 =+++++ kssss (a) determine value of k above which the system is unstable. (b) Determine the value of k for which the two of the roots are on the imaginary axis, and determine the values of these imaginary roots and remaining roots are real. 0)1(464 234 =+++++ kssss k ks ks s ks + +− + + 11 )1( 5 4 4 15 44 )1(61 2 3 4 For the system to be unstable 1 1 01 4 5 1 1 0 5 1 14 −> −< <+ > + < < +− k k k k k k The system is stable at -1<k<4 (b) For two imaginary roots 4);1( 5 4 4 =+= kk Value of complex roots is s ±= =+ 055 2 5454641 22342 +++++++ sssssss 24 0 ss ++ 0 55 55 404 54 2 2 3 23 + + ++ + s s ss ss SOLUTION: i i s ±−= ±− = −±− = 2 2 24 2 20164 PART 2 LIST OF USEFUL BOOKS FOR PROCESS CONTROL 1. PROCESS CONTROL BY R.P VYAS, CENTRAL TECHNO PUBLICATIONS, INDIA ( WIDE VARIETY OF SOLVED PROBLEMS ARE AVAILABLE IN THIS BOOK) 2. ADVANCED CONTROL ENGINEERING BY RONALD.S .BURNS , BUTTERWORTH AND HIENEMANN. 3. PROCESS MODELLING SIMULATION AND CONTROL FOR CHEMICAL ENGINEERS, WILLIAM.L.LUYBEN, MCGRAW HILL. 4. A MATHEMATICAL INTRODUCTION TO CONTROL THEORY BY SCHOLOMO ENGELBERG, IMPERIAL COLLEGE PRESS LIST OF USEFUL WEBSITES www.msubbu.com FOR BLOCK DIAGRAM REDUCTION AND OTHER CHEMICAL ENGG. LEARNING RESOURCES Readings,Recitations,Assignments,Exams,StudyMateri als,Discussion Group,Video Lectures now study whatever u want with respect to chemical engg. http://ocw.mit.edu/OcwWeb/index.htm ***********************