Buscar

TCC_Bruno-Nespoli

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 63 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 63 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 63 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

MINISTÉRIO DA EDUCAÇÃO 
UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL 
CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA 
CURSO DE GRADUAÇÃO EM ENGENHARIA AMBIENTAL 
 
 
 
 
ESTUDO DE EROSÃO HÍDRICA 
 
 
 
BRUNO NESPOLI RODRIGUES 
 
 
 
 
 
 
 
 
Campo Grande – MS 
2009 
ESTUDO DE EROSÃO HÍDRICA 
 
 
 
 
BRUNO NESPOLI RODRIGUES 
 
 
Trabalho de Conclusão de Curso submetido ao 
Curso de Graduação em Engenharia Ambiental da 
Universidade Federal de Mato Grosso do Sul, 
como requisito parcial para obtenção do título de 
Engenheiro Ambiental 
 
 
 
 
Orientador: Prof°. Me. Mauro Polizer 
 
 
 
Campo Grande – MS 
2009
I 
 
DEDICATÓRIA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
À minha mãe Nilva, 
pelo apoio incondicional. 
 
 
 
II 
 
AGRADECIMENTOS 
 
A Deus, que me deu força nos momentos de maior necessidade; 
Aos meus pais, José e Nilva, e minhas tias, Neuza e Nilza, pelo incentivo e apoio 
incondicional durante toda minha vida; 
Ao meu filho, Mateus, que é a razão de tudo; 
À minha esposa, Taynara, pelo carinho e compreensão dos momentos de ausência para 
a realização deste trabalho; 
Ao Professor Me. Mauro Polizer, pela orientação e paciência dedicada durante a 
realização deste trabalho; 
A todos os professores com quem tive o privilégio de ter tido aula; 
Aos formandos de Engenharia Ambiental, turmas de 2008 e 2009, pela amizade e 
companheirismo; 
Ao meu amigo, Romeu, pelo companheirismo e irritante organização, que me ajudou 
substancialmente para o término do curso. 
Enfim, a todos que, de forma direta ou indireta, contribuíram para a realização deste 
trabalho. 
 
 
 
 
 
 
III 
 
SUMÁRIO 
 
DEDICATÓRIA ............................................................................................................ I 
AGRADECIMENTOS ................................................................................................. II 
SUMÁRIO.................................................................................................................. III 
LISTA DE FIGURAS ................................................................................................. VI 
LISTA DE TABELAS ............................................................................................... VII 
RESUMO ................................................................................................................ VIII 
OBJETIVO DO ESTUDO .......................................................................................... IX 
1. MATERIAIS E MÉTODOS ...................................................................................... 1 
2. INTRODUÇÃO ........................................................................................................ 2 
3. RESULTADOS ........................................................................................................ 4 
3.1 EROSÃO DO SOLO E SUA RELEVÂNCIA ...................................................... 4 
3.2 PROCESSO EROSIVO ....................................................................................... 6 
3.3 FATORES CONDICIONANTES ........................................................................ 7 
3.3.1 Declividade do Terreno e Comprimento de Rampa ........................................ 7 
3.3.2 Clima ............................................................................................................ 8 
3.3.3 Chuva............................................................................................................ 8 
3.3.4 Solo............................................................................................................... 9 
3.3.5 Cobertura Vegetal ......................................................................................... 9 
3.3.6 Interferência Humana .................................................................................. 10 
3.4 AGENTES EROSIVOS ..................................................................................... 10 
3.5 TIPOS DE EROSÃO HÍDRICA ........................................................................ 11 
3.5.1 Erosão por Embate ...................................................................................... 11 
3.5.2 Erosão Laminar ........................................................................................... 11 
3.5.3 Erosão Linear .............................................................................................. 11 
3.5.4 Erosão Subterrânea ou Piping ...................................................................... 11 
3.6 MECANISMOS DO PROCESSO EROSIVO .................................................... 12 
3.6.1 Splash ......................................................................................................... 12 
3.6.1.1 Energia Cinética da Chuva .................................................................... 12 
3.6.1.2 Ruptura dos Agregados ......................................................................... 13 
IV 
 
3.6.1.3 Formação de Crostas e Selagem dos Solos ............................................ 13 
3.6.2 Infiltração e Formação de Poças na Superfície do Solo ................................ 14 
3.6.3 Início do Escoamento Superficial ................................................................ 15 
3.6.3.1 Escoamento em Lençol (Sheetflow) ...................................................... 15 
3.6.3.2 Desenvolvimento de Fluxo Linear (Flowline) ....................................... 16 
3.6.3.3 Desenvolvimento de Microrravinas (Micro-Rills) ................................. 16 
3.6.3.4 Formação de Microrravinas com Cabeceiras (Headcuats)...................... 17 
3.6.3.5 Desenvolvimento de Bifurcações, Através dos Pontos de Ruptura 
(Knickpoints) ................................................................................................... 17 
3.6.3.6 Voçorocas ............................................................................................. 18 
3.7 PREVISÃO DE PERDAS DE SOLO POR EROSÃO........................................ 19 
3.7.1 Equação Universal de Perda de Solo (EUPS) ............................................... 19 
3.7.2 Equação Universal de Perdas de Solo Modificada (MUSLE) ....................... 20 
3.7.3 Equação Universal de Perda de Solo Revisada (RUSLE) ............................. 20 
3.7.4 Water Erosion Prediction Project (WEPP) ................................................... 20 
3.7.5 Kineros ....................................................................................................... 21 
3.8 PREVENÇÃO DE PROCESSOS EROSIVOS................................................... 21 
3.8.1 Erosão em Áreas Urbana e Rural ................................................................. 21 
3.8.1.1 Prevenção em Área Urbana ................................................................... 22 
3.8.1.1.1 Planejamento Urbano ..................................................................... 25 
3.8.1.1.2 Microdrenagem .............................................................................. 26 
3.8.1.1.3 Macrodrenagem .............................................................................. 26 
3.8.1.2 Prevenção em Área Rural...................................................................... 27 
3.8.1.2.1 Capacidade de Uso e Planejamento Conservacionista ..................... 28 
3.9 CONSERVAÇÃO DO SOLO ............................................................................ 29 
3.10 PRÁTICAS CONSERVACIONISTAS ............................................................ 31 
3.10.1 Práticas de Caráter Vegetativo ................................................................... 31 
3.10.1.1 Plantas de Cobertura ........................................................................... 31 
3.10.1.2 Culturas em Faixas.............................................................................. 31 
3.10.1.3 Cordões de Vegetação Permanente......................................................31 
3.10.1.4 Alternância de Capinas ....................................................................... 32 
3.10.1.5 Quebra-ventos ..................................................................................... 32 
3.10.2 Práticas de Caráter Edáfico ........................................................................ 32 
V 
 
3.10.2.1 Controle do Fogo ................................................................................ 32 
3.10.2.2 Adubação Verde e Plantio Direto ........................................................ 33 
3.10.2.3 Adubação Química ............................................................................. 33 
3.10.2.4 Adubação Orgânica ............................................................................. 33 
3.10.2.5 Rotação de Cultura.............................................................................. 33 
3.10.2.6 Calagem.............................................................................................. 34 
3.10.3 Práticas de Caráter Mecânico .................................................................... 34 
3.10.3.1 Plantio em Contorno (em nível) .......................................................... 34 
3.10.3.2 Terraceamento .................................................................................... 34 
3.10.3.3 Canais Escoadouros ............................................................................ 37 
3.11 CONTENÇÃO AO AVANÇO DE VOÇOROCAS .......................................... 37 
3.11.1 Dissipadores de Energia ............................................................................ 40 
3.11.2 Barragens em Terra com Vertedores Tipo Cachimbo ................................. 41 
3.11.3 Barragens em terra com vertedor em superfície livre ................................. 42 
3.11.4 Barragens em Gabiões ............................................................................... 43 
3.12 RECUPERAÇÃO DE VOÇOROCAS ............................................................. 44 
4. CONCLUSÕES ...................................................................................................... 46 
5. REFERÊNCIAS BIBLIOGRÁFICAS ..................................................................... 48 
 
 
 
 
 
 
 
 
 
 
VI 
 
LISTA DE FIGURAS 
 
Figura 01 - Voçoroca em ambiente urbano na cidade de Campo Grande, MS ............... 25 
Figura 02 - Desenho esquemático de um terraço .............................................................. 35 
Figura 03 - Esboço hipotético de uma voçoroca mostrando algumas medidas de 
estabilização ......................................................................................................................... 38 
Figura 04 - Bacia de dissipação tipo mergulho ................................................................. 40 
Figura 05 - Barragem em terra com vertedor tipo cachimbo ........................................... 41 
Figura 06 - Barragem em terra com vertedor de superfície livre ..................................... 42 
Figura 07 - Barragem em gabião ........................................................................................ 43 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
VII 
 
LISTA DE TABELAS 
 
Tabela 01 - Perdas de terra e água em diferentes tipos de cobertura do solo .................... 9 
Tabela 02 - Identificação do grau de capacidade de uso .................................................. 29 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
VIII 
 
RESUMO 
 
 Os danos e prejuízos resultantes dos processos erosivos são de conhecimento de 
todos, portanto, é de fundamental importância estudar esse tipo de degradação. Logo, 
este trabalho visou apresentar uma revisão bibliográfica envolvendo as principais 
práticas de prevenção, contenção e recuperação dos processos erosivos de causa hídrica. 
O homem, ao realizar suas atividades de moradia, transporte e produção de alimentos, 
acelera o processo de erosão natural. A retirada da cobertura vegetal, que é o principal 
fator passivo no processo erosivo, é algo quase que inevitável na realização dessas 
atividades. Associada a outros fatores, tais como, declividade do terreno, comprimento 
de rampa, erodibilidade do solo, erosividade da chuva e manejo inadequado do solo, 
pode desencadear o processo erosivo. A erosão se caracteriza pela desagregação e 
transporte das partículas do solo, podendo também fazer parte desse processo, o 
deposito do material transportado. As intervenções antrópicas nos processos erosivos 
podem ocorrer na forma de prevenção, de controle ao avanço e de recuperação da área. 
A prevenção, além de preservar o meio ambiente e evitar riscos e transtornos à 
população, também é o modo de intervenção menos oneroso. Vale ressaltar também que 
o sucesso das medidas de combate a erosão depende das condições locais, ou seja, 
devem estar adaptadas ao clima, proporcionar a melhoria ou proteção do solo e 
objetivarem o disciplinamento das águas da chuva. 
 
Palavras chaves: Degradação do solo, Conservação do solo e água, Prevenção, 
Controle, Recuperação 
 
 
 
 
 
IX 
 
OBJETIVO DO ESTUDO 
 
Objetivo Geral 
Realizar estudo de revisão bibliográfica dos processos de erosão hídrica. 
Objetivos Específicos 
1) Apresentar a dinâmica de desenvolvimento da erosão hídrica. 
2) Apresentar práticas de prevenção, contenção e recuperação de erosão hídrica. 
 
 
 
 
 
 
 
 
 
1 
 
1. MATERIAIS E MÉTODOS 
 
Para a realização deste trabalho foi utilizado uma parcela da vasta bibliografia 
existente sobre o assunto. A bibliografia empregada está na forma de livros, artigos, 
dissertações de mestrado, dissertações de doutorado e materiais de sala de aula. 
Na revisão bibliográfica foram apresentados os conceitos de maior relevância no 
que diz respeito ao tema. Também foi relatada a influência que os processos erosivos 
exercem nas diferentes áreas de atuação (área urbana ou rural), no que diz respeito ao 
meio ambiente e aos aspectos sociais e econômicos. 
Devido à grande quantidade de material bibliográfico existente sobre o tema e as 
diferentes abordagens dadas pelos autores, foram reunidos (“garimpados”) elementos 
que permitam o conhecimento do processo de desenvolvimento da erosão. Também 
foram apresentados os vários tipos de ocorrência dos processos, bem como, os fatores 
intervenientes, além das principais práticas de prevenção, contenção e recuperação. 
 
 
 
 
 
 
 
 
 
 
 
 
 
2 
 
2. INTRODUÇÃO 
 
O solo representa um dos principais suportes da vida, onde acontece e encontra-
se a alimentação de todos os seres vivos do planeta. A intensa atividade humana no solo 
utilizada de forma incorreta, sempre deixa marcas negativas, ocasionando o seu 
desequilíbrio (MAURO, 2001). 
 Entre as degradações causadas pela ocupação inadequada do solo, está a erosão 
que, em alguns casos, chega a comprometer completamente residências e obras de infra-
estrutura, impedindo o uso normal da área atingida e criando inúmeros problemas para a 
população (PLANURB, 1997). 
 No que diz respeito à ocupação inadequada do solo, a retirada da cobertura 
vegetal pela ação antrópica é um dos primeiros fatores que contribuem para o 
desenvolvimento de processos erosivos. De acordo com DAEE/IPT (1990), o solo 
desprotegido recebe o impacto direto de cada gota de chuva, desagregando-o e 
liberando partículas menores. Esta primeira ação é completada pelo escoamento 
superficial, que é muito mais intenso em áreas sem cobertura vegetal. 
 Outro grande fator fundamental para o desenvolvimento de processos erosivos é 
a acentuada declividade do solo, que pode resultar da ação humana ou de processos 
naturais ocorridos no local. A declividade acentuada somada ao comprimento da 
encosta propicia o aumento da velocidade de escoamento, a redução da capacidade de 
infiltração e o conseqüente aumento do volume escoado, resultandono processo de 
desagregação, transporte e sedimentação das partículas do solo. Esse processo é 
chamado de erosão. 
 Os sedimentos produzidos pelas erosões provocam o assoreamento dos 
reservatórios e cursos d’água, com conseqüente perda da capacidade de armazenamento 
e causando inundações nos períodos de chuvas intensas (KERTZMAN et. al., 1995). 
 O regime de chuva tem grande influência na ocorrência de erosões. Em Campo 
Grande, cerca de 75% das chuvas ocorrem entre os meses de outubro e abril e os meses 
de menores precipitações são junho, julho e agosto (PLANURB, 1998). A má 
3 
 
distribuição das precipitações da referida cidade colabora para o aumento dos processos 
erosivos no local. O mesmo ocorre em grande parte do território Brasileiro. 
 As intervenções antrópicas no combate à erosão podem ocorrer na forma de 
prevenção, controle ao avanço e recuperação da área. Dentre elas, a prevenção é a forma 
que requer menos gastos, além de preservar o meio ambiente e evitar riscos e 
transtornos à população. 
As medidas de prevenção, segundo SILVA et al (1995) citado por CARVALHO 
(1995), devem estar adaptadas ao clima (fator ativo), envolverem melhoria das 
características do solo (fator passivo) ou sua proteção e objetivarem o disciplinamento 
das águas pluviais (agente); estarem sistematicamente integradas a medidas voltadas 
para a solução de problemas urbanos correlatos; terem caráter estrutural, de efeito 
difuso; quando tópicas, serem baseadas no conhecimento do terreno e das condições de 
circulação subterrânea. De acordo com a EMBRAPA (2005), o controle ao avanço da 
erosão consiste em realizar a sua estabilização ou evitar que cresça, tanto em largura 
como em profundidade. 
A etapa de recuperação não consiste em restaurar a área da erosão nas condições 
anteriores ao processo, mas sim em dar outro destino a ela. Segundo a EMBRAPA 
(2006), a recuperação de voçorocas não é uma tarefa fácil e barata, principalmente se 
for pensar em correção de taludes com máquinas pesadas onde o custo da hora 
trabalhada é elevado. Entretanto, é possível estancar a evolução de voçorocas, reduzir a 
perda de solo e melhorar a paisagem, de forma eficiente e a custos relativamente baixos, 
fazendo uso somente de mão-de-obra familiar e materiais alternativos, com poucos 
insumos externos à propriedade rural. 
Deste modo, objetivou-se realizar um estudo de revisão bibliográfica 
envolvendo as principais práticas de prevenção, contenção e recuperação dos processos 
de erosão hídrica. 
 
 
 
4 
 
3. RESULTADOS 
 
3.1 EROSÃO DO SOLO E SUA RELEVÂNCIA 
Com a diminuição do ritmo de expansão da fronteira agrícola provocada pela 
conscientização ambiental, tornou-se de vital importância a adequação dos sistemas 
produtivos às condições ecológicas disponíveis, fundamental para a manutenção da 
produtividade da terra a longo prazo (KOFFLER, et. al., 1995). A conseqüência mais 
evidente do mau uso do solo é a erosão. 
A erosão é um processo natural de desagregação, decomposição, transporte e 
deposição de materiais de rochas e solos que vem agindo sobre a superfície terrestre 
desde os seus princípios (LARIOS, 2000). No Brasil, a erosão hídrica (ou causada pelas 
águas) é a mais importante (LEPSCH, 2002). A erosão hídrica consiste basicamente 
numa série de transferências de energia e matéria geradas por um desequilíbrio do 
sistema água/solo/cobertura vegetal, as quais resultam numa perda progressiva do solo 
(GUERRA, 2005). 
A sedimentação, que se dá ao longo do tempo e é responsável pela formação de 
novos materiais, é contrabalançada pelo processo de erosão, que remove seus 
constituintes, sobretudo pela ação da água de chuvas, caracterizando um quadro 
extremamente dinâmico, no qual diversos processos atuam de forma contrária, 
formando e erodindo os materiais da superfície terrestre. Este é um quadro que reflete 
equilíbrio na natureza e, neste quadro, a erosão é considerada como erosão normal 
(MAURO, 2001). Contudo, a ação humana sobre o meio ambiente contribui 
exageradamente para a aceleração do processo. 
A erosão acelerada é o incremento da perda de solo em relação ao processo 
geológico natural, decorrente de intervenções feitas pelo homem que levam á ruptura da 
condição natural de equilíbrio (POLIZER, 2004), trazendo como conseqüências, a perda 
de solos férteis, a poluição da água, o assoreamento dos cursos d’água e reservatórios e 
a degradação e redução da produtividade global dos ecossistemas terrestres e aquáticos 
(LARIOS, 2000). 
5 
 
As águas de chuva, quando se precipitam sobre o solo e não conseguem se 
infiltrar, correm, e quando correm, levam tudo para baixo; solo, sementes, adubo, 
plantas, cercas, casas, animais; vão deixando atrás de si solos empobrecidos, rasos e 
esburacados, benfeitorias estragadas (estradas, cercas, casas), lavouras falhadas, raízes 
descobertas, plantas tombadas, arrastadas e enroscadas. Descem a grandes velocidades e 
em grandes volumes, jogando-se nas represas, nos lagos, nos rios, entupindo-os, 
assoreando-os, provocando as inundações, a invasão de vilas e cidades, desabrigando 
populações inteiras, semeando o desassossego, o medo, a fome, a doença e a morte 
(GALETI, 1973). 
A degradação dos solos afeta tanto terras agrícolas como as áreas com vegetação 
natural e pode ser considerada, dessa forma, um dos mais importantes problemas 
ambientais dos nossos dias. Cerca de 15% das terras são atingidas pela degradação. 
Atualmente a erosão acelerada dos solos, tanto pelas águas como pelo vento, é 
responsável por 56% e 28%, respectivamente, da degradação dos solos no mundo. O 
Brasil não está imune a esses problemas, e grandes áreas do seu território tem sido 
identificadas como solos bastante degradados (GUERRA, 2005). 
Os solos brasileiros são predominantemente favoráveis à ocorrência da erosão. 
Além das suas características, o solo sofre sob o implacável fator climático de elevadas 
temperaturas e regime de intensas chuvas (POLIZER, 2004). Em relação à prevenção e 
combate à erosão, infelizmente o Brasil figura ainda como um país subdesenvolvido, 
quer seja pela cultura de seu povo em relação ao problema ou pelo pouco caso com que 
historicamente as autoridades tratam o tema. Associado a isso temos o baixo custo das 
terras, onde ainda é mais barato comprar uma nova área do que realizar a manutenção 
preventiva contra a erosão das terras que se ocupa atualmente (MACHADO, 1995). 
No Estado de Mato Grosso do Sul, mais especificamente em sua capital Campo 
Grande, a situação não é diferente, sendo muito comum à ocorrência de processos 
erosivos, pois desde a década de 1970, o rápido e elevado crescimento populacional tem 
provocado ocupações sem implantação de uma infra-estrutura urbana adequada 
(MAURO, 2001). 
 
6 
 
3.2 PROCESSO EROSIVO 
De acordo com GALETI (1973), qualquer que seja o agente, a erosão se 
processa em três fases, nem sempre muito distintas uma das outras porque podem 
realizar-se concomitantemente. 
I – Desagregação 
Ocorre no momento em que as gotas da chuva se chocam com a superfície do 
solo. Com o impacto, estas gotas se fragmentam e respingam alguns centímetros à 
frente (podendo passar de 1 metro), já com partículas de solo soltas. 
A amplitude da desagregação depende do tipo de solo, da cobertura vegetal e da 
erosividade da chuva. 
II – Transporte 
As partículas de solo soltas são transportadas pelo agente erosivo. 
No transporte pelas águas, observa-se que as partículas menores são levadas em 
solução; as médias são transportadas em suspensão (não se dissolvem na água); as 
partículas mais grossas são empurradas ou roladas. Há, neste tipo de transporte pela 
água seleção de material; o material mais grosso, ao ser movimentado ao nível do 
terreno, provoca a desagregação de outros materiais. 
A distância percorrida por essas partículas depende da força do agente, do 
tamanho das partículas, da topografiado terreno e a presença ou não de obstáculos que 
interrompa o transporte. 
III – Deposição 
Quando o transporte é cessado, ocorre o que chamamos de deposição ou 
sedimentação. Nesta etapa as partículas arrastadas pelo agente erosivo se depositam na 
superfície da terra. 
A presteza com que a deposição ocorre depende do tamanho das partículas em 
arraste, da declividade do terreno, velocidade do agente erosivo e da existência ou não 
de obstáculos. 
7 
 
3.3 FATORES CONDICIONANTES 
 A erosão tem sua origem no rompimento do equilíbrio natural no solo, em 
decorrência da ação de forças advindas de fatores climáticos como a chuva e o vento. 
Associadas a outros fatores relativos à área sobre a qual a chuva incide, essas forças 
determinam a intensidade do processo erosivo. Dentre esses fatores destacam-se a 
declividade do terreno, a capacidade de infiltração da água no solo e a sua resistência à 
ação erosiva da água, a distância percorrida pelo escoamento superficial, a rugosidade 
superficial do terreno e o volume de cobertura do solo quando da ocorrência da chuva 
(PRUSKI, 2006). É comum entre os autores apontar a ação humana como um dos 
fatores intervenientes no processo erosivo. 
 Os fatores naturais (clima, solos, relevo e cobertura vegetal) determinam taxas 
naturais de erosão que podem ser modificadas pela ação humana, intensificando-se ou 
não (MAURO, 2001). 
3.3.1 Declividade do Terreno e Comprimento de Rampa 
 A declividade, ou grau de inclinação do terreno, muito influencia na 
concentração, dispersão e velocidade da enxurrada e, em conseqüência, no maior ou 
menor arrastamento superficial das partículas de solo. Nos terrenos planos, ou apenas 
levemente inclinados, a água escoa com pequena velocidade e, além de possuir menos 
energia, tem mais tempo para infiltrar-se, ao passo que, nos terrenos muito inclinados, a 
resistência ao escoamento das águas é menor e, por isso, elas atingem maiores 
velocidades. As regiões montanhosas são, portanto, as mais suscetíveis à erosão hídrica 
(LEPSCH, 2002). 
 Em experimentos relativos à declividade do terreno como fator interveniente no 
processo erosivo GALETI (1973) chegou as seguintes conclusões: 
 Quando o declive é quatro vezes maior (passa de 2% para 8%, por exemplo), 
a velocidade da enxurrada duplica; 
 Quando a enxurrada dobra de velocidade, a sua capacidade de erodir (causar 
erosão) fica multiplicada por quatro; 
 Quando a velocidade da enxurrada dobra, ela é capaz de desagregar e 
arrastar 32 vezes mais partículas (maior quantidade); 
8 
 
 Quando a velocidade da enxurrada dobra, ela é capaz de desagregar e 
arrastar partículas 64 vezes maiores. 
 Outro fator importante no declive é o comprimento de rampa, pois a velocidade 
e o volume da enxurrada aumentam à medida que aumenta o lançante. 
 GALETI (1973) também cita experimentos realizados pela Seção de 
Conservação do Solo do Instituto Agronômico de Campinas pelos Eng.°s Agr.°s José 
Quintiliano de Avelar Marques, José Bertoni e Geraldo Barreto, com respeito a 
comprimento do lançante chegando a conclusão de que à medida que dobra o 
comprimento do lançante, também dobram as perdas de solo (praticamente dobram). 
3.3.2 Clima 
 As regiões de climas úmido, tropical quente e, temperado, com inverno seco e 
verão chuvoso, são, respectivamente, as mais atingidas pela erosão (POLIZER, 2004). 
3.3.3 Chuva 
 Segundo PRUSKI (2006), a chuva constitui o agente responsável pela energia 
necessária para a ocorrência da erosão hídrica, tanto pelo impacto direto das gotas sobre 
a superfície do solo quanto pela sua capacidade de produzir o escoamento superficial. 
 A capacidade da água da chuva em provocar erosão de solos é denominada de 
erosividade. A erosividade associada a outros fatores como erodibilidade, declividade 
do terreno, manejo e ocupação do solo, pode constituir-se em um dos fatores mais 
influentes no processo erosivo. 
 A freqüência das chuvas é um fator que também influi nas perdas. Se os 
intervalos entre as chuvas são curtos, o teor de umidade de solo é alto, e assim as 
enxurradas são mais volumosas mesmo com chuvas de menor intensidade. Quando os 
intervalos são maiores o solo estará seco e não deverá haver enxurrada em chuvas de 
baixa intensidade; porém, em alguns casos de longa estiagem a vegetação pode sofrer 
por falta de umidade e reduzir, assim, a proteção natural do terreno (LOMBARDI 
NETO, 1995). 
 
 
9 
 
3.3.4 Solo 
 O comportamento do solo diante do processo erosivo é comumente referido na 
literatura como erodibilidade do solo, que expressa, portanto, a sua susceptibilidade à 
erosão, constituindo uma propriedade intrínseca que depende da capacidade de 
infiltração e de armazenamento da água e das forças de resistência do solo à ação da 
chuva e do escoamento superficial (PRUSKI, 2006). 
 De acordo com POLIZER (2004), os solos mais propícios à formação de 
voçorocas são os do tipo arenoso e ácidos, predominando as cores claras nos horizontes 
mais superficiais. 
3.3.5 Cobertura Vegetal 
 Segundo BASTOS (2004), a vegetação (cobertura vegetal) tem efeitos na 
interceptação da chuva e no decréscimo da velocidade do escoamento superficial. 
Mudanças no regime de escoamento superficial e subterrâneo são observadas como 
conseqüência do desmatamento e alteração nas formas de uso do solo. Por outro lado, as 
raízes afetam propriedades do solo relacionadas à erodibilidade. 
 De acordo com LOMBARDI NETO (1995), quando uma gota de chuva cai em 
um terreno coberto com densa vegetação ela se divide em inúmeras gotículas, perdendo 
também a sua força de impacto. Quando o terreno é descoberto a gota de chuva faz 
desprender e salpicar as partículas de solo, que são facilmente transportadas pela água. 
 Esse efeito pode ser observado com os dados obtidos, nas estações 
experimentais do Instituto Agronômico, nos quatro principais tipos de uso do solo que 
são apresentados no quadro seguinte (LOMBARDI NETO, 1995). 
Tabela 01: Perdas de terra e água em diferentes tipos de cobertura do solo 
Perdas de terra e água em diferentes tipos de 
cobertura do solo 
 
MÉDIAS ANUAIS DE PERDAS 
DE 
Vegetação Terra Água 
 t/ha % sobre a chuva 
Mata 0,004 0,7 
Pasto 0,4 0,7 
Café 0,9 1,1 
Algodão 26,6 7,2 
Fonte: Lombardi Neto (1995). 
10 
 
3.3.6 Interferência Humana 
A ação do homem sobre o meio ambiente também pode ser considerado como 
um dos mais significantes fatores intervenientes no processo erosivo. O homem, para 
realizar suas necessidades de moradia, produção e transporte, acaba por acelerar o 
processo de erosão. 
 Segundo POLIZER (2004), dentre as atividades do homem que estão 
relacionadas com a questão da produção de erosão podemos citar, retirada da cobertura 
vegetal; agricultura com manuseio impróprio; manejo inadequado de pastagens (ex. 
manejo extensivo); modificação da superfície do terreno de forma inadequada (ex. 
valetas); abertura de estradas sem os devidos cuidados quanto à erosão; parcelamento do 
terreno, desprovido de práticas abrangentes na bacia. 
 
3.4 AGENTES EROSIVOS 
É um consenso de toda comunidade científica que um processo erosivo ocorre 
por 3 (três) diferentes agentes que, podem agir separadamente ou simultaneamente. 
Estes agentes erosivos são: 
 Água 
 Vento 
 Geleira 
Portanto, é comum entre os autores, classificar a erosão segundo o seu agente 
erosivo. 
 Erosão Hídrica (quando o agente erosivo é a água); 
 Erosão Eólica (quando o agente erosivo é o vento); 
 Erosão Glacial (quando o agente erosivo é a geleira) 
Como já foi dito, o agente mais significativo para erosão de solos no Brasil é a 
água, portanto, este trabalho dará ênfase à erosão hídrica. 
 
11 
 
3.5 TIPOS DE EROSÃO HÍDRICA 
 As erosões se dividem em erosões superficiais e erosões subterrâneas ou piping. 
Dentre os tipos de erosão superficial têm-se as erosões laminar e linear (MAURO, 
2001). Alguns autores consideram a erosão porembate uma outra forma de erosão 
superficial. 
3.5.1 Erosão por Embate 
 A erosão por embate é devida ao impacto das gotas de chuva sobre o terreno 
desnudo. As partículas do solo são desprendidas e arremessadas para o alto, ao mesmo 
tempo em que o solo é compactado (splash). Em terrenos mais inclinados o 
deslocamento das partículas para a jusante é maior. Soltas no terreno, elas adquirem 
condições favoráveis ao arraste pelo escoamento superficial, que é a fase seguinte do 
processo denominado de erosão laminar (POLIZER, 2004). 
3.5.2 Erosão Laminar 
 Erosão laminar, em lençol ou superficial, quando se verifica na superfície; a 
desagregação e deslocamento do material se processam superficialmente, sem se formar 
sulcos. O agente desgasta por igual; retira uma lâmina na superfície (GALETI, 1973). 
3.5.3 Erosão Linear 
 Segundo MORTARI (1994) citado por MAURO (2001), a erosão linear ocorre 
quando os filetes de água se concentram até formar enxurradas e concentram-se em 
locais formando sulcos, ravinas e canais mais profundos, constituindo as voçorocas. 
3.5.4 Erosão Subterrânea ou Piping 
 O fenômeno de piping é um processo de erosão subterrânea que provoca o 
arraste das partículas formando canais em forma de tubos a partir das paredes e dos 
fundos das erosões (MAURO, 2001). 
 Segundo LIMA (1999), tal fenômeno está normalmente associado à presença do 
lençol freático ou ao acúmulo de águas em bacias de dissipação que ao estabelecerem, 
mesmo que intermitentemente, um regime de fluxo, pode desencadear o processo de 
erosão interna. 
12 
 
3.6 MECANISMOS DO PROCESSO EROSIVO 
Segundo GUERRA (2005), para evitar a erosão é preciso que se conheça a 
dinâmica erosiva, desde os seus primórdios, ou seja, a partir do momento em que as 
gotas de chuva começam a bater nos solos. 
O processo inicia-se com o impacto das gotas da chuva sobre o solo, provocando 
a ruptura dos agregados do solo. Neste momento começa a erosão por salpicamento, 
seguido pela formação de crostas e selagem do solo. A selagem do solo interfere na 
infiltração, contribuindo para a formação de poças. O escoamento superficial ocorre 
com o transbordamento da água das poças, inicialmente em lençol e, depois, em fluxos 
lineares que evoluem para um crescente sistema de microrravinas e, destas, para 
voçorocas (POLIZER, 2004). 
Para um melhor entendimento do processo será enfatizado a seguir cada uma das 
etapas do processo erosivo. 
3.6.1 Splash 
O splash, também conhecido por erosão por salpicamento, é a primeira etapa da 
erosão hídrica. Nesta etapa, as partículas do solo são rearranjadas de tal forma que as 
mesmas possam ser carreadas pelo escoamento superficial. Segundo GUERRA (2005), 
essa preparação se dá tanto pela ruptura dos agregados, quebrando-os em tamanhos 
menores, como pela própria ação transportadora que o salpicamento provoca nas 
partículas dos solos. Além disso, os agregados vão preenchendo os poros da superfície 
do solo, provocando a selagem e a conseqüente diminuição da porosidade, o que 
aumenta o escoamento das águas. 
A ação do splash depende tanto da resistência do solo ao impacto das gotas da 
chuva, quanto da energia cinética que as gotas chegam à superfície do terreno. A 
quantidade energia cinética do impacto das gotas no solo é que vai determinar a 
facilidade da ruptura dos agregados e a formação de crostas provocando a selagem do 
terreno. 
3.6.1.1 Energia Cinética da Chuva 
A energia cinética com que a gota de água da chuva atinge o solo é o que 
designa a erosividade da precipitação. De acordo com WISCHMEIER & SMITH 
13 
 
(1978), citado por COLODRO (2002), a erosividade da chuva (fator R da Equação 
Universal de Perda de Solos - EUPS) determina a sua capacidade em provocar erosão 
cujo valor é obtido pelo produto entre a energia cinética total da chuva (E) e a sua 
intensidade máxima em 30 min (I30). 
A determinação da erosividade da chuva envolve um trabalho exaustivo de 
seleção e leitura de uma série de registros de chuvas. Esses dados são escassos e muitas 
vezes de difícil acesso. A fim de minimizar estes problemas, diversos autores 
correlacionaram o índice EI30 com o coeficiente de chuva (Rc), conhecido como índice 
de Fournier (RENARD & FREIMUND, 1994, citado em MELLO et al., 2007) 
3.6.1.2 Ruptura dos Agregados 
A ruptura dos agregados está diretamente ligada a erodibilidade do solo 
impactado pela gota de água da chuva. De acordo com BASTOS (1999), erodibilidade é 
um dos principais fatores condicionantes da erosão dos solos. Pode ser definida como a 
propriedade do solo que retrata a maior ou menor facilidade com que suas partículas são 
destacadas e transportadas pela ação de um agente erosivo. Constitui umas das 
propriedades de comportamento dos solos de maior complexidade em função do grande 
número de fatores físicos, químicos, biológicos e mecânicos intervenientes. 
A importância da matéria orgânica na estabilidade dos agregados do solo é 
reconhecida por vários autores. O teor de matéria orgânica, associado com outras 
propriedades dos solos, como textura, a densidade aparente, a porosidade, e estrutura, 
ainda, as características das encostas, a cobertura vegetal, a erosividade da chuva e o 
uso e manejo do solo, afetam diretamente a ruptura dos agregados (POLIZER, 2004). 
A estabilidade dos agregados reduz diretamente a erodibilidade dos solos, na 
medida em que a presença de poros entre os agregados aumenta as taxas de infiltração 
diminuindo o escoamento superficial. Os agregados estáveis maiores também resistem 
ao impacto das gotas de chuva, diminuindo a erosão por salpicamento (GUERRA, 
1990). 
3.6.1.3 Formação de Crostas e Selagem dos Solos 
Com o rompimento dos agregados do solo, causado pelo impacto das gotas de 
água da chuva, começam a surgir a formação de crostas e a conseqüente selagem dos 
solos. O efeito da selagem é a redução das taxas de infiltração, ocasionando um 
14 
 
aumento nas taxas de escoamento superficial, e possivelmente, um acréscimo da perda 
de solo. 
EPSTEIN E GRANT (1967), citado por GUERRA (2005), observaram a 
formação de crostas, em um experimento sob chuva simulada, apenas seis minutos após 
o inicio dos ensaios, em um solo franco-siltoso. Os mesmos autores observaram, nesse 
experimento, que a densidade aparente aumentou de 1,1g/cm3 para 1,54g/cm3, depois 
que as crostas se formaram. Esse aumento significativo da densidade aparente é 
responsável pelo início do processo erosivo, pois diminui a porosidade, dificultando a 
infiltração de água no solo, formando as poças, que se interligam e começam o processo 
de escoamento. 
3.6.2 Infiltração e Formação de Poças na Superfície do Solo 
Nem toda água da chuva escorre sobre a superfície do solo. Uma parcela é 
interceptada pela cobertura vegetal, podendo voltar à atmosfera pela evapotranspiração; 
e outra parcela se infiltra através dos espaços que encontra no solo e nas rochas. 
Designa-se infiltração ao processo pelo qual a água atravessa a superfície do solo, sendo 
o mais influente na produção de escoamento superficial (PRUSK, 2006). 
Durante uma precipitação, a água que atinge o solo primeiramente causa o 
splash, e logo em seguida se infiltra causando um acréscimo no teor de umidade, 
chegando até a saturar o solo. Com o solo saturado, o processo de infiltração é 
interrompido, dando origem à formação de poças nas irregularidades do terreno. Com a 
extrapolação dessas irregularidades inicia-se o escoamento superficial. 
GUERRA (2005) alertou para a importância do bom uso e manejo do solo ao 
relatar que Reed (1979), estudou alguns solos argilosos no sul da Inglaterra e 
demonstrou que a capacidade de armazenamento na microtopografia da superfície do 
terreno diminui de 5 a 7 mm, antes do cultivo, para 3 mm, depois das operações com as 
maquinas agrícolas, após o cultivo. 
Duley (1939), estudando o selamento superficial de um solo submetido à 
precipitação, cobriu-ocom resíduo vegetal para protegê-lo do impacto das gotas de 
água. Após cinco horas de irrigação, a capacidade de infiltração da água no solo tornou-
se praticamente constante e igual a 31 mm/h. Trinta minutos depois da remoção do 
15 
 
resíduo vegetal, a capacidade de infiltração foi reduzida para 6 mm/h (DULEY, 1939, 
citado por PRUSK, 2006). 
3.6.3 Início do Escoamento Superficial 
Depois que uma precipitação começa, após um intervalo de tempo, o solo 
começa a ficar saturado, fazendo com que ocorra a formação de poças nas 
irregularidades do terreno. Quando as poças se enchem e extravasam, dá-se início ao 
escoamento superficial. 
Segundo HORTON (1945), citado por GUERRA (2005), o conceito de evolução 
de ravinas baseia-se no fato de que, quando a precipitação excede a capacidade de 
infiltração do solo, inicia-se o escoamento superficial. 
A água que excede as poças começa a descer a encosta, inicialmente com fluxo 
laminar, podendo evoluir para uma ravina. Nessa etapa, o fluxo passa a ser linear, até 
evoluir para microrravinas e depois para microrravinas com cabeceiras. De acordo com 
GUERRA (2005), ao mesmo tempo que essa evolução vai se estabelecendo na 
superfície do terreno, pode ocorrer também o desenvolvimento de bifurcações, através 
dos pontos de ruptura (knickpoints) das ravinas. 
3.6.3.1 Escoamento em Lençol (Sheetflow) 
O escoamento em lençol ou escoamento de fluxo laminar inicia-se com a 
extrapolação das poças. Nessa etapa o fluxo é difuso, ou seja, o fluxo ocorre espalhado 
sobre a superfície do terreno. De acordo com HORTON (1945) citado por GUERRA 
(2005), a força de cisalhamento imposta por esse fluxo ainda não é suficiente para 
transportar partículas, mas, à medida que esse fluxo de água aumenta e acelera, encosta 
abaixo, ocorre o cisalhamento das partículas do solo e, finalmente, a erosão começa a 
ocorrer a partir de uma pequena distância crítica do topo da encosta. 
Esta distância crítica que vai do topo da encosta até o local onde a força de 
cisalhamento é capaz de remover as partículas do solo, é o que Horton chama de área 
sem erosão (belt of no erosion). 
Segundo POLIZER (2004), pode-se afirmar que na maioria dos eventos 
chuvosos o escoamento superficial se dá em parte na forma laminar, ou seja, em lençol, 
e parte concentrado. Este último é o responsável pela erosão por sulcos. 
16 
 
3.6.3.2 Desenvolvimento de Fluxo Linear (Flowline) 
Após o escoamento em lençol inicia-se uma concentração do fluxo de água, 
encosta a baixo, dando início ao escoamento de fluxo linear. Segundo GUERRA (2005), 
à medida que o fluxo se torna concentrado em canais bem pequenos, em pontos 
aleatórios da encosta, a profundidade do fluxo aumenta e a velocidade diminui, devido 
ao aumento da rugosidade, e há uma queda simultânea da energia do fluxo, causada pelo 
movimento de partículas que são transportadas por esses pequenos canais que estão se 
formando e que são os embriões das futuras ravinas. 
Nesse estágio de evolução do escoamento superficial, a concentração de 
sedimentos no interior do fluxo linear faz com que haja um forte atrito entre essas 
partículas e o fundo dos pequenos canais, causando mais erosão nos canais que estão 
começando a se formar. Além disso, uma outra característica desse estágio de evolução 
das ravinas é que começam a se formar dentro desses pequenos canais uma série de 
marcas devidas ao depósito de sedimentos, que se dá com a diminuição de energia do 
fluxo linear, quer seja ao final da chuva, ou pela diminuição de gradiente da própria 
encosta, ao longo do percurso desse fluxo (GUERRA, 2005). 
O escoamento linear tem a tendência de aumentar a sua vazão na medida que 
dirige-se para as partes mais baixas da encosta. Com o aumento do volume de 
escoamento, o fluxo também aumenta a sua capacidade de erodir e de transportar 
sedimentos. A velocidade e a turbulência do escoamento são as responsáveis pela 
erosão em linha, dando origem a pequenos sulcos e à formação de ravinas (POLIZER, 
2004). 
3.6.3.3 Desenvolvimento de Microrravinas (Micro-Rills) 
A próxima etapa do processo de formação de ravinas é o desenvolvimento de 
microrravinas (micro-rills). Segundo GUERRA (2005), nesse caso, a maior parte da 
água que escoa em superfície está concentrada em canais bem definidos, embora ainda 
sejam bem pequenos. A turbulência do fluxo aumenta bastante nesse estágio, que já 
encontra o fundo das ravinas que estão se formando (daí o nome microrravina), com 
algumas ondulações, rugosidades, advindas do estágio anterior – fluxo linear. 
Com o desenvolvimento desse processo ocorre um acréscimo da erosão, 
podendo eclodir algumas pequenas cabeceiras nas ravinas que estão sendo formadas na 
17 
 
encosta. Também começam a surgir algumas pequenas poças na jusante das cabeceiras. 
Quando isso acontece, significa que o processo erosivo está atingindo o próximo estágio 
– microrravinas com cabeceiras. 
3.6.3.4 Formação de Microrravinas com Cabeceiras (Headcuats) 
As cabeceiras tendem a coincidir com um segundo pico na produção de 
sedimentos, resultantes da erosão ocorrida dentro das ravinas. Isso demonstra que, nesse 
estágio de evolução das ravinas, o processo está alcançando um nível de equilíbrio 
dinâmico, ou seja, nesse estágio ocorre uma zona de deposição de sedimentos, abaixo 
das cabeceiras, indicando que a taxa de produção de sedimentos, a partir do recuo das 
cabeceiras, excede a capacidade de transporte do fluxo de água (GUERRA, 2005). 
Segundo GUERRA (2005), à medida que as cabeceiras recuam em direção às 
partes mais elevadas das encostas, o canal se torna mais largo e mais profundo, tendo, 
dessa forma, condições de transportar os sedimentos que chegam a esses canais e, à 
medida que se desenvolvem a partir de outras cabeceiras, tornam-se pequenas ravinas. 
É comum o terreno apresentar não apenas uma ravina, mas sim um sistema de 
ravinas. Este sistema é formado a partir de pontos de bifurcação (POLIZER, 2004). 
3.6.3.5 Desenvolvimento de Bifurcações, Através dos Pontos de Ruptura 
(Knickpoints) 
Uma vez estabelecidas em uma encosta, as ravinas tendem a evoluir através de 
bifurcações em knickpoints (pontos de ruptura) (GUERRA, 2005). 
Através de experimentos conduzidos em laboratório, BRYAN (1990) citado por 
GUERRA (2005), observou que, em superfícies mais irregulares, o transporte inicial de 
sedimentos, pelas ravinas, após o estabelecimento das cabeceiras, pode fazer reduzir a 
rugosidade dentro das ravinas e, conseqüentemente, levar a um alargamento e menor 
profundidade dos microcanais que estão se formando, o que, segundo o referido autor, é 
a condição ideal para a formação dos knickpoints. Uma vez formados, eles seguem uma 
evolução variada e complexa, que inclui seu recuo rápido e bifurcação, que estão 
relacionados à deposição localizada de sedimentos dentro dos canais que estão se 
formando. 
18 
 
Apesar das observações feitas por Bryan serem decorrentes de estudos de 
laboratório, de acordo com POLIZER (2004), é necessário registrar que observações de 
campo nos mostram que após a formação da cabeceira, ou seja, degraus – desnível entre 
a superfície do terreno e o fundo da ravina – em determinados pontos do terreno, a 
ravina passa a receber contribuições laterais em sua cabeceira. Tais escoamentos 
encontram uma condição propícia à bifurcação, pois ali encontram um desnível que 
propicia o aumento da velocidade do escoamento e, assim, a sua capacidade de 
desprender as partículas do solo e arrastá-las, formando novas ravinas. O que representa 
a evolução em consonância ao desenvolvimento de sulcos, que ocorre, 
predominantemente, de forma regressiva. 
Ainda segundo POLIZER (2004), a ravina é um estágio intermediário entre os 
pequenos sulcos e a voçoroca. Assim, o sistema de ravina continua a concentrar o 
escoamento em uma determinada ravina, que possuindo as condições favoráveis ao seu 
desenvolvimento, cresce a capacidadede desprender e transportar os sedimentos, 
podendo evoluir ao estágio de voçoroca. 
3.6.3.6 Voçorocas 
Com o aprofundamento das ravinas o processo erosivo pode atingir a seu estágio 
mais espetacular, a formação de voçorocas (ou boçorocas). 
Boçoroca, do tupi “mboso’roka”, gerúndio de “mboso’roz ((romper ou rasgar) 
rasgada), pode ser definida como uma ravina de grandes dimensões originada pela 
grande concentração do fluxo superficial, na grande maioria das vezes provocada pela 
ação antrópica, combinada com a ação do fluxo subsuperficial e subterrâneo. A 
boçoroca é palco de diversos fenômenos: erosão superficial, erosão interna, 
solapamentos, desabamentos e escorregamentos, que se conjugam e conferem a esse 
tipo de erosão rápida evolução e elevado poder destrutivo (BASTOS, 2004). 
Alguns autores consideram que uma erosão chega ao estágio de voçoroca 
quando os seus sulcos atingem o lençol freático, porém, há controvérsias. 
 De acordo com POLIZER (2004), as voçorocas são valos mais profundos e 
largos que as ravinas, com sulcos superiores a 0,5m de largura e profundidade, e são 
assim conceituadas pela maioria dos autores, tendo atingido o lençol freático ou não. 
19 
 
3.7 PREVISÃO DE PERDAS DE SOLO POR EROSÃO 
 Quando ocorre uma erosão nota-se uma perda de solo no local. Este solo é 
transportado e posteriormente depositado nas partes mais baixas do terreno ou nos 
cursos d’água. É de fundamental importância a previsão da quantidade de solo perdido 
durante o processo, e para tanto, são utilizados modelos matemáticos. 
 Existem vários modelos de predição da erosão hídrica do solo. Para aplicar um 
modelo deve-se validá-lo em nível local. A pesquisa necessita determinar o valor de 
seus parâmetros, para as condições edafo-climáticas locais. Entre os vários modelos de 
predição de erosão existentes, um dos mais conhecidos e estudados no Brasil é o 
modelo USLE (Universal Soil Loss Equation), com base estatística probabilística, e 
suas derivações, MUSLE (Modified Universal Soil Loss Equation) e RUSLE (Revised 
Universal Soil Loss Equation). Mais recentemente estão sendo conduzidas pesquisas no 
Brasil para viabilizar a utilização do modelo WEPP (Water Erosion Predicition Project), 
que é um modelo mais fisicamente baseado (CASSOL & REICHERT, s/d). 
3.7.1 Equação Universal de Perda de Solo (EUPS) 
Para modelagem de quantificação de perda de solo, muitas equações têm sido 
empregadas, dentre elas a EUPS (Equação Universal de Perda de Solo), a qual permite 
uma análise da perda de solo levando em conta a intensidade da chuva na região, a 
erodibilidade dos solos, o comprimento da encosta, o declive e as medidas de uso e 
conservação do solo (RIBEIRO, 2007). 
A Equação Universal de Perda de Solo pode ser expressa por: 
A = RKLSCP 
Onde: 
A = índice que representa a perda de solo por unidade de área; 
R = índice de erosividade; 
K = índice de erodibilidade; 
L = índice relativo ao comprimento da encosta; 
S = índice relativo à declividade da encosta; 
C = índice relativo ao fator uso e manejo do solo; 
P = índice relativo à prática conservacionista adotada. 
20 
 
A determinação dos valores de perda de solo provocados pela erosão laminar, 
representados em t/há, é realizada a partir do cálculo dos índices de cada componente da 
equação (GUERRA, 2005). 
3.7.2 Equação Universal de Perdas de Solo Modificada (MUSLE) 
 A MUSLE é uma modificação da EUPS, em que o fator energia cinética da 
chuva (R) é trocado por um fator de escoamento gerado com base no volume escoado e 
na vazão de pico. A MUSLE apresenta um grande potencial de aplicação no Brasil em 
virtude da simplicidade de sua estrutura, ao número relativamente baixo de parâmetros 
empregados e à facilidade de calibração e aplicação (AVANZI et al, 2008). 
3.7.3 Equação Universal de Perda de Solo Revisada (RUSLE) 
A versão revisada da USLE ou RUSLE foi desenvolvida pelo Departamento 
Norte Americano de Agricultura que usa o RUSLE como base na medição da perda 
anual de solo através erosão das encostas e vales. Sua larga utilização é reflexo da 
pequena quantidade de dados demandada na análise, aliado a sua precisão em estimar a 
média ao longo prazo da erosão em campos relativamente homogêneos. Em várias 
partes do mundo o advento de DEM (modelo digital de elevação) generalizados, 
melhorados e mais baratos, executado através de softwares que processam técnicas 
fotogramétricas e sinais de radar SAR, juntamente com cobertura precisa dos terrenos 
mapeados usando o sensoreamento remoto, oferece grande melhorias na definição exata 
da erosão. Nos locais onde existem dados confiáveis para as variáveis RUSLE, o 
módulo permite grande precisão e consistência nas imagens geradas em relação aos 
outro métodos. 
3.7.4 Water Erosion Prediction Project (WEPP) 
De acordo com SILVA & CRESTANA (2003) um dos modelos físicos que tem 
substituído os de natureza empírica (em especial a Equação Universal de Perda de Solo 
e suas variações) de modo a tornar as aplicações mais gerais, é o WEPP (Water Erosion 
Prediction Project). Este modelo simula os processos que ocorrem em uma determinada 
área em função do estado atual do solo, cobertura vegetal, resíduos culturais e umidade, 
tratando-se de um modelo contínuo. 
 
21 
 
3.7.5 Kineros 
Outro modelo para estimativa da produção de sedimentos é o modelo 
hidrossedimentológico conhecido como Kineros. Segundo SILVA et al (2006), esse 
modelo é do tipo chuva-vazão-erosão, distribuído e de base física, que usa uma rede de 
planos e canais para representar a bacia, e utiliza equações diferenciais para descrever o 
escoamento, o transporte de sedimentos e a erosão. 
 
3.8 PREVENÇÃO DE PROCESSOS EROSIVOS 
O homem vem atuando no combate à erosão através da implantação de medidas 
corretivas. Entretanto, o processo acelerado de erosão e desenvolvimento de voçorocas 
exige ações preventivas para impedir que os problemas erosivos se multipliquem 
atingindo dimensões incontroláveis. 
 Segundo o DAEE/IPT (1990), para se estabelecer adequadamente tais ações 
preventivas é necessário determinar as bases técnicas, ou seja, os conhecimentos básicos 
que permitam prever a ocorrência e a intensificação das erosões. Para tanto, o 
conhecimento dos principais fatores intervenientes dos processos erosivos, como a 
declividade, o comprimento de rampa, a freqüência e intensidade das chuvas, o tipo de 
uso e ocupação e a erodibilidade do solo, é de grande importância. Lembrando que esses 
fatores se manifestam de diferentes formas e intensidades, dependendo do local/região 
da propriedade. Portanto, cada caso deve ser estudado de acordo com os fatores locais e, 
só assim, escolher a prática, ou as práticas, de prevenção que melhores se adaptam. 
 A prevenção além de evitar, ou pelo menos reduzir, os transtornos sociais, 
ambientais e econômicos causados pelos processos erosivos, também é a prática menos 
onerosa em relação à recuperação. 
3.8.1 Erosão em Áreas Urbana e Rural 
 A erosão e transporte de sedimentos superficiais de uma bacia urbana, difere 
significativamente dos processos que ocorrem em bacias rurais. Nas áreas urbanas, 
embora possam ocorrer modalidades de erosão semelhantes às áreas rurais, predominam 
aquelas decorrentes da concentração de fluxo, decorrentes principalmente de 
deficiências do sistema de drenagem. Uma outra característica típica das áreas de 
22 
 
ocupação urbano-industrial, é a intensa movimentação de terra nas áreas ocupadas que 
vai desde o nível dos assentamentos de lotes residenciais até a implantação de grandes 
obras públicas ou privadas, como conjuntos habitacionais, loteamentos industriais, entre 
outras tantas que poderiam ser citadas (LLORET RAMOS, 1995). 
Segundo POLIZER (2004), no espaço urbano geralmente a voçoroca provoca 
danos aos sistemas de transporte, abastecimento de água, esgotamento sanitário, 
drenagem pluvial, energia elétrica, telefônico e, a destruiçãode moradias, a depreciação 
imobiliária, e desconforto. Enquanto que, no meio rural, a voçoroca representa a perda 
da área para a atividade agropecuária, o assoreamento de mananciais, o impedimento da 
passagem pela área da voçoroca, a diminuição da profundidade e a conseqüente 
desvalorização da propriedade. 
3.8.1.1 Prevenção em Área Urbana 
 A erosão urbana no Brasil se distingue das formas de erosões naturais e suas 
derivadas rurais por seus novos condicionantes, seus mecanismos exclusivos, pelos 
grandes volumes de materiais envolvidos e pelo papel representado pelo assoreamento 
(PRANDINI & NAKAZAWA, 1995). 
 Ainda segundo PRANDINI & NAKAZAWA (1995), o estudo de rios da RMSP 
demonstra que o assoreamento resulta quase que somente da erosão urbana, ainda que 
metade da área da bacia seja de uso rural. Na fase da implantação urbana, quase todo 
solo erodido é retido nos terrenos baixos ainda não ocupados, não atingindo, assim, 
canais e outras obras de drenagem. A futura ocupação das várzeas e a 
retificação/canalização de córregos “aproximam” as áreas-fonte das calhas principais, a 
serem então assoreadas. 
De acordo com CARVALHO (1995), as seguintes realidades podem ser 
observadas nos meios urbanos: 
a) o homem urbano preza espaços arborizados ou gramados em terreno público, 
mas procura esgotar as possibilidades que a Lei lhe oferece para substituir os seus por 
construções; 
b) o homem urbano perdeu a noção de que as águas pluviais constituem recurso 
natural diretamente aproveitável e foi reduzido à passividade absoluta quanto ao 
23 
 
abastecimento de água, não lhe importando de onde ela vem e a que custo, desde que 
jorre abundante e potável da torneira; 
c) a urbanização afeta o regime hidrológico (concentração de drenagem, 
eliminação de rugosidades, redução de percursos, inibição da infiltração e da 
evapotranspiração, aumentando caudais de cheias, reduzindo tempos de concentração), 
sem contrapartida natural. 
 Estando extremamente associada, em causa e efeito, aos problemas de drenagem 
urbana, a erosão urbana deve ser considerada como uma variável de projeto de 
particular importância, merecendo cuidados de tratamento não só nas fontes principais 
de produção de sedimentos, como também ao longo de todos os percursos do sistema de 
drenagem, para evitar acidentes que produzam erosões localizadas de grande 
envergadura (LLORET RAMOS, 1995). 
 De acordo com ALMEIDA FILHO et al (2001), um plano de prevenção da 
erosão urbana consiste basicamente no ordenamento do assentamento urbano, 
estabelecendo normas básicas para evitar problemas futuros e evitar situações que 
favoreçam o desencadeamento do processo erosivo; no caso de espaços já ocupados, 
reduzir ou eliminar os possíveis efeitos negativos dessa ocupação. 
 Ainda segundo ALMEIDA FILHO et al (2001), para a garantia do sucesso da 
implantação de um plano de prevenção, devem ser definidas diretrizes legais, 
compreendendo uma legislação relativa a perímetro urbano, zoneamento urbano, 
arruamento e loteamentos. Para que se possa prevenir, ou seja, evitar a erosão nessas 
áreas, deve-se planejar e programar as expansões urbanas respeitando-se as técnicas de 
controle, de modo a evitar que uma simples expansão de área traga de volta problemas 
já solucionados. 
Segundo SILVA et al (1995) citado por CARVALHO (1995), as medidas de 
prevenção da erosão urbana devem atender aos requisitos: estarem adaptadas ao clima 
(fator ativo), envolverem melhoria das características do solo (fator passivo) ou sua 
proteção e objetivarem o disciplinamento das águas pluviais (agente); estarem 
sistematicamente integradas a medidas voltadas para a solução de problemas urbanos 
correlatos; terem caráter estrutural, de efeito difuso; quando tópicas, serem baseadas no 
24 
 
conhecimento do terreno e das condições de circulação subterrânea. Seguindo esta 
filosofia, as medidas propostas são: 
 Planejar o suprimento de água por via matricial, envolvendo, com papel 
complementar, a água subterrânea e a pluvial, de modo a proporcionar 
atendimento segundo a demanda, em termos de quantidade e qualidade; 
 Implantado o sistema, estimular o esgotamento dos aqüíferos, para entrarem 
sedentos na estação chuvosa; 
 Planejar a disposição de efluentes inertes de modo que contribuam para a 
recarga estimulada dos aqüíferos; 
 Promover coleta, uso e armazenamento de águas pluviais aproveitando 
coletores prontos (telhados, pátios e avenidas); 
 Promover recarga dos aqüíferos rasos em poços escavados e dos profundos 
em poços tubulares, durante as chuvas fortes; 
 Estabelecer em lei que nenhuma construção resulte no incremento do 
coeficiente de deflúvio local, conceituado como impacto ambiental 
intolerável (perdas nas taxas de infiltração e evapotranspiração devidas à 
construção serão compensadas por coleta dos telhados ou pátios 
cimentados); 
 Em áreas montanhosas, sistematizar o aproveitamento de vales encaixados 
para contenção de caudal sólido e disposição de efluentes inertes contidos 
por diques retentores; 
 Estabelecer em lei prazos para o cumprimento de metas tecnológicas 
mínimas quanto à eficiência de sistemas de fluxo controlado, como válvulas 
sanitárias, aspersores e outros; 
 Estimular pesquisas para inclusão, nos projetos, de sistemas coletores e de 
usos sucessivos em instalações complexas; 
 Reduzir ao essencial o uso do concreto projetado na estabilização de taludes 
em áreas urbanas, eliminando o seu abuso. 
25 
 
 
Figura 01: Voçoroca em ambiente urbano na cidade de Campo Grande, MS. 
Fonte: Wordpress, 2009. 
3.8.1.1.1 Planejamento Urbano 
 Um dos elementos chaves na ocorrência de erosão em áreas urbanas é a falta de 
planejamento urbano. Segundo FENDRICH, et al (1997), o problema da erosão está 
estreitamente ligado ao rápido crescimento da população e urbanização espontânea e, 
portanto, seu controle e prevenção em grande parte dependem do adequado 
planejamento de desenvolvimento urbano. 
Para o planejamento do uso racional da terra, além da capacidade de uso, devem 
ser levados em conta as características econômicas, sociais e aspectos relacionados à 
legislação ambiental (LEPSCH, 2002). Outra ferramenta muito útil é a carta de risco de 
erosão. Segundo TUCCI et al (1995), o tipo de solo, a cobertura vegetal, o uso do solo, 
o perfil geotécnico e a declividade indicam a suscetibilidade do solo ao processo 
erosivo. 
A carta de risco ou a carta de suscetibilidade visa dotar a administração 
municipal de bases técnicas que orientem ações preventivas e corretivas de combate à 
erosão, particularmente ravinas e boçorocas. Seu principal objetivo é subsidiar o 
26 
 
planejamento urbano, em respeito às características do meio físico e à tipologia e 
tendência de evolução dos processos erosivos. Além disso, fornece elementos para o 
controle de erosões existentes nas áreas de urbanização consolidada (RIDENTE JR. et 
al, 1995). 
3.8.1.1.2 Microdrenagem 
 De acordo com FUNASA (2004), a microdrenagem urbana é definida pelo 
sistema de condutos pluviais a nível de loteamento ou de rede primária urbana, que 
propicia a ocupação do espaço urbano ou periurbano por uma forma artificial de 
assentamento, adaptando-se ao sistema de circulação viária. 
 A microdrenagem é formada por bocas de lobo, sarjetas, poços de visita, tubos 
de ligações e condutos. 
3.8.1.1.3 Macrodrenagem 
 Macrodrenagem é o conjunto de obras que visam melhorar as condições de 
escoamento de forma a atenuar os problemas de erosões, assoreamento e inundações ao 
longo dos principais talvegues (fundo de vale). Ela é responsável pelo escoamento final 
das águas, a qual pode ser formada por canais naturais ou artificiais, galerias de grandes 
dimensões e estruturas auxiliares (FUNASA, 2004). 
 Segundo GALERANI (1995), as obras de macrodrenagem são constituídas de 
emissários e dissipadores de energia, são utilizadas para a condução daságuas pluviais 
captadas até locais estabilizados. 
De acordo com FENDRICH et al (1997), a previsão de um canal estável 
freqüentemente envolve a redução da declividade do canal para manter velocidades 
baixas que não causem erosão. Estruturas de controle cumprem esta função. A maior 
parte das quedas num canal são elevadas por meio de estruturas que são projetadas para 
dissiparem energia da água corrente. A declividade do canal entre duas estruturas é 
projetada de maneira que mantenha velocidades que não causem sedimentação nem 
solapamentos. 
 É comum entre os autores classificar as estruturas de controle em temporárias e 
permanentes. 
27 
 
De acordo com POLIZER (2004), as estruturas temporárias possuem a 
finalidade de atender a curto prazo, em geral de caráter emergencial, ao avanço da 
erosão. São soluções que utilizam materiais locais e de baixo custo, disponíveis para uso 
imediato. 
Ainda segundo POLIZER (2004), as estruturas permanentes são construídas com 
materiais de longa duração e com a finalidade de manter a sua função permanentemente. 
Entre os autores, as estruturas permanentes são as mais recomendadas. SMITH 
(1952) citado por FENDRICH (1997) relata que em experiências realizadas com 
estruturas temporárias na fazenda experimental do Soil Conservation Service, apenas 
5% obtiveram um desenvolvimento satisfatório. 
Os dispositivos de controle são as barragens de fundo, os degraus de alteração de 
perfil de fundo, as telas de arame para estabilização da vegetação e revestimento de 
proteção das paredes laterais, dentre outros (POLIZER, 2004). 
 FENDRICH (1997) também afirma que a falta de adequada observação e 
conservação das obras para controle da erosão tem sido responsável por muitos dos 
insucessos ocorridos. 
3.8.1.2 Prevenção em Área Rural 
 A mecanização agrícola através de tecnologias inadequadas constituiu, sem 
dúvida, um dos principais agentes promotores da erosão e limitantes da produtividade 
do solo (CASTRO FILHO & MUZILLI, 1999). Com a retirada da cobertura vegetal do 
solo, ocorre uma perda de consistência do mesmo. O solo passa a ser erodido pelo 
salpicamento e também observa-se um aumento da capacidade de arraste de suas 
partículas, podendo assim, dar origem a voçorocas. 
O controle da erosão em terras rurais é muito complexo, por envolver questões 
tanto de ordem técnica como sócio-econômica, que devem ser conjuntamente avaliadas, 
visando à adoção de uma política agrícola que contemple a manutenção ou aumento do 
potencial produtivo das terras. No que se refere às questões técnicas, destacam-se, como 
fundamentais, a utilização adequada de práticas agrícolas de conservação do solo, a 
adoção de medidas preventivas contra a erosão associada a estradas e o fornecimento de 
28 
 
subsídios visando ao planejamento da ocupação agrícola (capacidade de uso das terras) 
(GUERRA, 2005). 
 Quando o processo de erosão é provocado pelas estradas rurais, o volume de 
solo carregado aos mananciais é muito grande, necessitando um trabalho muito bem 
planejado, com adoção de algumas técnicas primordiais para o controle da erosão, pois 
as estradas rurais são as responsáveis pela maioria das erosões existentes no Estado de 
São Paulo (ZOCCAL, 2007). 
 De acordo com GUERRA (2005), o controle preventivo da erosão relacionado à 
estrada realiza-se por meio da proteção vegetal dos cortes, aterros e terrenos adjacentes 
e da implantação de um eficiente sistema de drenagem, concebido a partir do 
conhecimento da suscetibilidade à erosão dos terrenos e da caracterização/quantificação 
hidráulica, tendo em vista a captação, condução e dissipação das águas. 
3.8.1.2.1 Capacidade de Uso e Planejamento Conservacionista 
 Toda gleba de terra apresenta uma potencialidade de uso, variável em função dos 
seus atributos edafoclimáticos, exigindo maiores ou menores cuidados na sua utilização. 
Quando essa potencialidade é superada, tanto pelo tipo de exploração quanto pela forma 
de manejo – isto é, uma utilização mais intensiva que as possibilidades da gleba – o 
ambiente passa a apresentar sinais característicos de degradação, como deficiências 
nutricionais das culturas, maiores riscos de perdas por eventos climáticos, erosão 
acelerada do solo, com conseqüente comprometimento da qualidade da água dos 
mananciais superficiais, redução da produtividade agrícola (CASTRO FILHO & 
MUZILLI, 1999). 
A identificação do grau de capacidade de uso irá indicar qual a intensidade 
máxima de cultivo que pode ser aplicada a determinado solo, sem que este se degrade, 
ou sofra diminuição permanente da sua produtividade, por efeito da erosão. Um sistema 
de classificação técnica, baseado nas classes de capacidade de uso das terras, pode ser 
muito útil para decisões a respeito do planejamento de uso do solo (LEPSCH, 2002). 
 Neste método de conservação do solo são executados, para cada propriedade, 
mapas das características do terreno (topografia, uso atual, erosões existentes, tipo de 
solo, etc.). A interpretação destes mapas temáticos é o que distinguirá as diferentes 
classes de capacidade de uso, úteis para a decisão das atividades futuras do terreno. 
29 
 
 LEPSCH (2002) agrupou oito classes de capacidade de uso, para melhor 
interpretação, dando origem a seguinte tabela: 
Tabela 02: Identificação do grau de capacidade de uso. 
 
Fonte: Lepsch (2002). 
3.9 CONSERVAÇÃO DO SOLO 
Já são de grande conhecimento os danos sociais, ambientais e econômicos 
causados pela erosão. No entanto, esses efeitos podem ser amenizados ou até mesmo 
liquidados, caso o terreno seja utilizado de forma adequada. Essa adequação das 
atividades com o tipo de solo do terreno ocupado é denominada conservação do solo. 
Conservação do solo é evitar o desprendimento de partículas do solo e seu 
arrastamento (ZOCCAL, 1995). 
Segundo GALETI (1973), conservação do solo é o uso inteligente do solo; é o 
uso racional do solo, objetivando alcançar o máximo rendimento de maneira 
permanente. Para tanto, é comum a execução de práticas conservacionistas. 
Ainda segundo GALETI (1973), práticas conservacionistas são procedimentos 
ou trabalhos realizados com o objetivo de manter o solo produtivo, ou de dar a ele, 
condições para que se torne produtivo. Segundo LEPSCH (2002), essas práticas fazem 
parte da tecnologia moderna e permitem controlar a erosão, ainda que não a anulem 
completamente, mas reduzindo-a a proporções insignificantes. 
30 
 
Os solos brasileiros são, em sua maioria, pobres química e mineralogicamente, 
razão por que, necessitam de sistemas de manejo que apliquem, harmonicamente, os 
elementos que compõem o manejo do solo, ou seja, a correção da acidez superficial e 
subsuperficial, a adubação corretiva e de manutenção, a dinâmica de sistemas de 
preparo, culminando com o plantio direto, e a rotação de culturas, incluindo-se as 
práticas culturais, a pastagem e a floresta. Os elementos do manejo, harmonicamente 
aplicados ao solo, são os pilares que sustentam a agricultura produtiva e estável. 
(RESCK, s/d). É fundamental o seu controle por meio de técnicas e práticas 
conservacionistas adequadas às especificidades de cada gleba (SOUZA & 
DOMINGUES, 2006). 
As práticas conservacionistas evitam, entre outras vantagens, o impacto da 
chuva e/ou o escoamento das enxurradas. Evitando as enxurradas, a água das chuvas 
mais fortes infiltra-se no solo, enriquecendo os mananciais subterrâneos e, não havendo 
o escoamento súbito, os rios não são perigosamente sobrecarregados, evitando 
inundações dos campos de cultivo e de cidades (LEPSCH, 2002). 
As práticas conservacionistas envolvem todas as técnicas utilizadas para 
aumentar a resistência do solo ou diminuir as forças dos processos erosivos, dividindo-
se em vegetativas, edáficas e mecânicas (BERTONI & LOMBARDI NETO, 1999). 
Entre elas destacam-se a rotação de culturas, o plantio em contorno, o plantio direto, as 
faixas vegetativas de retenção,as bacias de captação de enxurradas, a locação adequada 
de estradas internas e o terraceamento. Tais práticas devem ser utilizadas de forma 
integrada para se alcançarem maior sinergia e melhores resultados (SOUZA & 
DOMINGUES, 2006). 
As intervenções antrópicas com a finalidade de conservar o solo podem se 
processar de três formas: prevenção, controle ao avanço e recuperação da área. Vale 
ressaltar que a prevenção é a forma menos onerosa, além de evitar os principais efeitos 
maléficos da erosão, tanto em áreas rurais quanto urbanas. 
 
31 
 
3.10 PRÁTICAS CONSERVACIONISTAS 
 Como já foi dito, existem três formas de práticas conservacionistas: vegetativas, 
edáficas e mecânicas. Segundo GUERRA (2005), as técnicas de caráter vegetativo e 
edáfico são de mais fácil aplicação, menos dispendiosas e mantêm os terrenos 
cultivados em condições próximas ao seu estado natural, devendo, portanto, ser 
privilegiadas. Recomenda-se a adoção das técnicas mecânicas em terrenos muito 
suscetíveis à erosão, em complementação às técnicas vegetativas e edáficas. 
3.10.1 Práticas de Caráter Vegetativo 
 São práticas que se utilizam da cobertura vegetal na contenção da erosão. Dentre 
as principais práticas de caráter vegetativo destacam-se: 
3.10.1.1 Plantas de Cobertura 
Em espaços do terreno, entre as culturas, mantêm o solo coberto durante o 
período chuvoso. Tem sido normalmente utilizadas em culturas permanentes, tais como 
plantio de café, laranja e fruticultura em geral, cobrindo os claros deixados no terreno 
por suas copas (GUERRA, 2005). 
3.10.1.2 Culturas em Faixas 
Plantio em faixas de exploração contínua ou em rotação, intercalado em geral 
com culturas anuais ou semiperenes (cana-de-açúcar, mandioca e sisal), tendo por 
principal objetivo interceptar a velocidade das enxurradas e dos ventos, facilitar a 
infiltração das águas e permitir a contenção do solo parcialmente erodido (GUERRA, 
2005). Pode-se considerá-la como uma prática complexa, pois combina o plantio em 
contorno, a rotação de culturas, as plantas de cobertura e em muitos casos, os terraços 
(FONTES, 1995). 
AMARAL (1984) relata que essa prática controla relativamente bem a erosão na 
faixa de declividade entre 3 a 6%. Deve-se planejar muito bem a rotação a ser 
empregada, para que se obtenha um bom resultado. 
3.10.1.3 Cordões de Vegetação Permanente 
Fileiras de plantas perenes ou semiperenes e de crescimento denso (cana-de-
açúcar, por exemplo), dispostas com determinado espaçamento e sempre em contorno. 
32 
 
Apresentam comportamento de controle da erosão semelhante a culturas em faixa 
(GUERRA, 2005). 
Quebrando a velocidade de escorrimento da enxurrada, o cordão de vegetação 
permanente provocará a deposição de sedimentos transportados e facilitará a infiltração 
da água que escorre no terreno, concorrendo, pois, para diminuir a erosão do solo 
(FONTES, 1995). 
3.10.1.4 Alternância de Capinas 
Intercalação das capinas de maneira a manter parcelas da área em cultivo, com 
mato, imediatamente abaixo de outra recém-capinada. Seu efeito no controle da erosão é 
semelhante ao observado na cultura em faixas e cordões de vegetação permanente 
(GUERRA, 2005). De acordo com FONTES (1995), é a maneira praticamente sem 
despesa, de reduzir as perdas de solo por erosão tanto em culturas anuais como perenes. 
A terra perdida pelas ruas limpas de mato será retida pelas ruas com mato que ficam 
imediatamente abaixo. 
3.10.1.5 Quebra-ventos 
Barreira densa de árvores visando interceptar a ação dos ventos, controlando a 
erosão eólica (GUERRA, 2005). 
3.10.2 Práticas de Caráter Edáfico 
 São práticas que procuram manter e melhorar a fertilidade do solo, 
principalmente no diz respeito à adequada disponibilidade de nutrientes para as plantas. 
Essas práticas baseiam-se na eliminação ou controle das queimadas, adubações 
(incluindo calagem) e rotação de culturas. Entre as práticas de caráter edáfico destacam-
se: 
3.10.2.1 Controle do Fogo 
De acordo com GUERRA (2005), o fogo, prática muito comum na agricultura 
brasileira, é muito prejudicial ao solo, pela destruição da matéria orgânica e do 
nitrogênio, destruição da estrutura ou organização das partículas constituintes do solo, 
condicionando a diminuição da capacidade de absorção e retenção de umidade. 
Portanto, esta prática diminui a resistência do solo à erosão. 
33 
 
3.10.2.2 Adubação Verde e Plantio Direto 
Incorporação de nitrogênio e matéria orgânica no solo, enterrando-se restos 
vegetais ainda verdes. O húmus produzido melhora as condições físicas do solo pela 
estruturação e aumento de porosidade. A porosidade do solo é bastante aumentada pela 
ação dos organismos vivos do solo (plantas e animais) (GUERRA, 2005). 
Segundo FONTES (1995) a adubação verde constitui umas das formas mais 
baratas e acessíveis de incorporar ao solo a matéria orgânica, sendo notórios seus efeitos 
na estabilização e mesmo no aumento das produções. 
Ainda segundo FONTES (1995), o plantio direto é a solução mais barata e 
econômica para uma agricultura que se deseja produtiva e não destruidora dos recursos 
naturais, especialmente o solo. 
3.10.2.3 Adubação Química 
Manutenção e restauração da fertilidade do solo, proporcionando aumento de 
produtividade e melhor cobertura vegetal, protegendo, desta forma, o solo (GUERRA, 
2005); 
3.10.2.4 Adubação Orgânica 
De acordo com FONTES (1995), a adubação orgânica com esterco de curral ou 
com um composto exerce importante papel de melhoramento das condições para o 
desenvolvimento das culturas, e, sem dúvida, dos mais destacados, é a influência na 
redução das perdas de solo e água por erosão. 
FONTES (1995) também afirma que na organização de uma propriedade 
agrícola, o aproveitamento do esterco produzido pelos animais e dos demais resíduos 
orgânicos, na forma de composto, é um programa fundamental para a manutenção e 
melhoramento da produtividade do solo; 
3.10.2.5 Rotação de Cultura 
É o plantio de diferentes tipos de lavouras (plantas que esgotam, recuperam ou 
conservam os solos), numa mesma gleba, visando o controle de doenças e pragas e 
melhoria das características físicas do solo (GUERRA, 2005). É fundamentada no fato 
de uma cultura extrair do solo para seu desenvolvimento, maiores quantidades de 
determinados elementos minerais do que outra e também, por possuírem diferentes 
34 
 
sistemas radiculares, exploram profundidades variáveis do solo, contribuindo, desta 
forma, para a manutenção de sua fertilidade natural (FONTES, 1995). 
3.10.2.6 Calagem 
Correção da acidez do solo pela aplicação de cálcio. Solos ácidos dificultam o 
aproveitamento do fósforo pelas plantas e o desenvolvimento de microorganismos 
fixadores do nitrogênio atmosférico. Portanto, a calagem proporciona melhor cobertura 
vegetal do solo, protegendo-o contra a erosão (GUERRA, 2005). 
3.10.3 Práticas de Caráter Mecânico 
 São práticas em que se recorre a estruturas artificiais mediante a disposição 
adequada de porções de terra com a finalidade de quebrar a velocidade de escoamento e 
facilitar a sua infiltração no solo (ZOCCAL, 1995). 
 Segundo AMARAL (1984), os métodos mecânicos de combate à erosão são 
importantíssimos e exigem grande perícia para os que executam estes trabalhos. 
3.10.3.1 Plantio em Contorno (em nível) 
 Marcação no terreno de curvas de nível e execução em espaços estabelecidos de 
sulcos e camalhões de terra. As fileiras de cultura e os sulcos e camalhões, 
acompanhando as curvas de nível, constituem um obstáculo que se opõe ao percurso 
livre das enxurradas, controlando a erosão (GUERRA, 2005). 
3.10.3.2 Terraceamento 
 Dentro das práticas de controle de erosão – o terraceamento é o mais utilizado e 
conhecido pelos agricultores (ZOCCAL, 1995). O terraceamento consiste na construção 
de um conjunto de terraços projetados, segundo as condições locais para controlar a 
erosão de determinada área (EMBRAPA, 2003). Sua função

Continue navegando