Buscar

Interpretação de Análise de Solo para Cerrado

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 39 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 39 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 39 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

1 
www.integraragro.com.br 
 
 
 
 
 
 
 
 
 
Apostila do Curso 
 
 
INTERPRETAÇÃO DA ANÁLISE DE SOLO 
PARA CONDIÇÕES DE CERRADO 
 
 
 
 
 
 
2 
www.integraragro.com.br 
Integrar Consultoria e Assessoria Agronômica 
Cuiabá – Mato Grosso 
 
Apostila do Curso 
INTERPRETAÇÃO DA ANÁLISE DE SOLO PARA CONDIÇÕES DE CERRADO 
 
 
Elaboração do arquivo PDF 
Msc. Wellington de Azambuja Magalhães 
Msc. Débora Curado Jardini 
 
Revisão: 
Drª Sânia Lúcia Camargos 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Conforme a Lei 9.610/98, é proibida a reprodução total e parcial ou divulgação comercial sem a autorização prévia e 
expressa do autor (artigo 29). ® Todos os direitos reservados. 
 
3 
www.integraragro.com.br 
APRESENTAÇÃO 
 
 
A Integrar Consultoria e Assessoria Agronômica é uma empresa criada para 
atender o meio rural, oferecendo suporte, consultorias e cursos 
profissionalizantes. 
Dedicação, suporte e compartilhamento de ideias faz da Integrar Consultoria 
Agronômica uma empresa diferenciada no mercado de trabalho. 
As soluções desenvolvidas pela Integrar atendem desde o profissional que 
pretende se qualificar para o mercado de trabalho até propriedades rurais que 
buscam soluções técnicas no meio agronômico. 
 
 
4 
www.integraragro.com.br 
INTRODUÇÃO 
 
Os solos de cerrado, em geral, apresentam baixa fertilidade. Apesar disso, vários 
fatores colaboram para o aumento na produção de alimentos e energia, desde que o 
emprego de tecnologias e ações no manejo permitam melhorar os rendimentos e 
minimizar os custos de produção. 
A recomendação de fertilizantes e corretivos por meio da análise de solo baseia-
se fundamentalmente no conhecimento da relação existente entre a disponibilidade de 
um determinado nutriente no solo, medida por extrator químico, e a resposta da planta à 
aplicação deste nutriente. A partir deste conhecimento é possível estabelecer classes de 
teores do nutriente no solo para as quais se determina à quantidade do nutriente a ser 
aplicada para uma determinada cultura, visando a obtenção da máxima eficiência 
econômica da atividade. 
Um bom programa de calagem, gessagem e adubação visa obter retorno 
econômico compatível com os investimentos realizados. Para isso, um bom planejamento 
é indispensável estando atento para as seguintes etapas: 
 
1. Área de cultivo 
1.1. Plano de amostragem 
1.2. Coleta 
1.3. Análise laboratorial 
1.4. Interpretação 
1.5. Recomendação 
1.6. Aplicação 
1.7. Análise foliar 
1.8. Avaliação final 
 
5 
www.integraragro.com.br 
SOLOS DO CERRADO 
 
Os solos do Cerrado caracterizam-se pelo acentuado grau de intemperismo e pela 
sua acidez. O fato de o relevo do Cerrado ser antigo significa que os seus solos foram 
bastante trabalhados pelos agentes intempéricos (clima, água, vento). Esse processo de 
intemperismo ocorreu por meio da lixiviação, o que diminuiu, em elevado grau, a sua 
fertilidade ao longo do tempo. 
A maioria dos solos desta região constitui-se de Latossolos altamente 
intemperizados e Argissolos, com sérias limitações à produção de alimentos, no que diz 
respeito à baixa fertilidade natural do solo. São solos ácidos que apresentam baixa 
disponibilidade de nitrogênio (N), fósforo (P), potássio (K), cálcio (Ca), magnésio (Mg), 
zinco (Zn), boro (B) e cobre (Cu). Possuem ainda alta saturação por alumínio (m%) bem 
como alta capacidade de fixação de fósforo (Lopes, 1994). 
Além dessas características, os principais aspectos dos solos do Cerrado são a 
sua elevada profundidade e porosidade, o que permite uma maior infiltração da água, 
embora o escoamento superficial também seja elevado em tempos de chuva. A ausência 
de fertilidade dos solos do Cerrado foi resolvida na agricultura por intermédio da aplicação 
de técnicas específicas, como a calagem (correção da acidez por meio do calcário), a 
adubação fosfatada, a adubação potássica e outras. 
 A paisagem predominante no Planalto Central é de chapadas com vegetação 
arbustiva dos Cerrados, ocorrendo também algumas áreas de campos e mesmo algumas 
florestas. 
 A maioria dos solos da região dos Cerrados são os Latossolos, cobrindo 46% da 
área. Os Latossolos sob vegetação de cerrado são ácidos e pobres em nutrientes. Essa 
acidez (relacionada ao alumínio tóxico) e a escassez de nutrientes estão entre as 
principais causas do aparecimento do cerrado como vegetação natural, em vez de 
floresta (Lepsch, 2011). 
 Embora haja baixa fertilidade natural, boa parte dos solos dessas áreas podem ser 
utilizadas para a agricultura intensiva, desde que se faça a neutralização da acidez, 
prejudicial às plantas cultivadas, com a aplicação de calcário e a adição de quantidades 
adequadas de nutrientes, e a aplicação de fertilizantes, especialmente os fosfatados. 
 
 
 
6 
www.integraragro.com.br 
 Latossolos 
Solos de intemperização intensa chamados popularmente de solos velhos, sendo 
definidos pelo SiBCS (Embrapa, 2006) pela presença de horizonte diagnóstico latossólico 
e características gerais como: argilas com predominância de óxidos de ferro, alumínio, 
silício e titânio, argilas de baixa atividade (baixa CTC), fortemente ácidos e baixa 
saturação de bases. Apresenta normalmente baixa fertilidade, exceto quando originados 
de rochas mais ricas em minerais essenciais às plantas, acidez e teor de alumínio 
elevados. Possuem boas condições físicas para o uso agrícola, associadas a uma boa 
permeabilidade por serem solos bem estruturados e muito porosos. O manejo dos 
Latossolos requer, de um modo geral, a adoção de correção de acidez, adubação e, nos 
climas mais secos, de irrigação em função da exigência da cultura. 
 
 Argissolos 
Os Argissolos compõe 26,84% dos solos brasileiros, segundo o segundo maior 
tipo de solo atrás apenas dos Latossolos. Sua principal característica é o gradiente 
textural e a nítida separação entre horizontes quanto à cor, estrutura e textura. São muito 
susceptíveis a erosão quando o gradiente textural é acentuado (textura arenosa/média), 
principalmente quando há presença de cascalhos e relevo com fortes declives (caso onde 
indica-se apenas para uso em pastagem, reflorestamento ou área de preservação) já que 
sua fertilidade química é predominantemente baixa. Quando na forma de textura 
média/argilosa e argilosa são indicados à exploração agrícolas pois possuem elevada 
capacidade de água disponível e boa reserva de minerais. Assim como os latossolos 
apresentam grande acidez, mas se diferem por apresentar teores de Fe2O3. 
 
 Neossolos 
Solos constituídos por material mineral pouco espesso, com insuficiência de 
manifestação dos atributos diagnósticos que caracterizam os diversos processos de 
formação dos solos, seja em razão de maior resistência do material de origem ou dos 
demais fatores de formação (clima, relevo ou tempo) que podem impedir ou limitar a 
evolução dos solos. Os Neossolos podem apresentar alta (eutróficos) ou baixa 
(distróficos) saturação por bases, acidez e altos teores de alumínio e de sódio. Variam de 
solos rasos até profundos e de baixa a alta permeabilidade (Santos & Zaroni, 2016). 
 
7 
www.integraragro.com.br 
AMOSTRAGEM DO SOLO 
 
Amostragem consiste em obter uma porção (elementos ou indivíduos) 
representativa de uma população em estudo. População é qualquer conjunto de 
elementos ou indivíduos que tenha, entre si, uma característica em comum. As 
populações podem ser homogêneas, quando constituída de elementos ou unidades 
idênticas, ou heterogênea, quando constituída de elementos que diferem entre si. 
A amostragem tem como finalidade estimar os parâmetros de uma população com 
uma precisão que satisfaça às necessidades do uso das informações ou do estudo 
específico a um custo mínimo. 
 O solo como um corpo tridimensional apresenta suas características químicas (teor 
de elementos, por exemplo) e físicas (textura, por exemplo) distribuídas de uma maneiranão uniforme, tanto superficialmente como em profundidade. 
 O processo de estratificação é feito considerando-se a uniformidade da vegetação, 
da topografia, da drenagem, da cor do solo, da textura, e independe da área (tamanho) 
que possa ocupar cada estrato ou unidade de amostragem. Ao se fazer a estratificação, 
elimina-se, em parte a macro variação superficial que há nos solos. 
 
 
Figura 1. Estratificação de uma paisagem em unidades (extratos) de amostragem. 
 
8 
www.integraragro.com.br 
A vegetação é um dos principais fatores de estratificação, porque ao mesmo 
tempo que é um fator pedogenético, permite estimar as diferenças entre solos. A 
topografia é um fator tão importante que poderá determinar a presença de diferentes 
solos, por exemplo a nível de grande grupo, além de determinar variações em fertilidade 
e de disponibilidade de água. A cor do solo pode indicar diferenças no material parental, 
na quantidade e qualidade de matéria orgânica, nos teores de Mn, Fe e Al. A textura, 
que é de difícil avaliação, deve ser considerada com muito cuidado para não agrupar 
unidades de solo de textura diferente. A textura, além de influenciar na variabilidade das 
características químicas dentro das unidades de amostragem, será considerada como 
um critério específico na interpretação dos resultados e na recomendação do uso de 
fertilizantes. 
 
 
 
Figura 2. Amostragem do solo por zona de manejo considerando a textura. 
9 
www.integraragro.com.br 
O primeiro passo no procedimento da amostragem é a estratificação da paisagem, 
com o propósito de reduzir a heterogeneidade do universo, controlando as macro 
variações. Os principais fatores a serem considerados na estratificação são a vegetação 
natural, o relevo, o uso passado atual e futuro e características do solo como textura e 
cor. Não há uma indicação de tamanho (m2 ou ha) para cada extrato ou unidade de 
amostragem. Recomenda-se, no entanto, que, extratos muito grandes sejam 
subdivididos em sub extratos para facilitar a operação de amostragem. Assim, para 
grandes unidades de amostragens áreas entre 10 e 20 ha são consideradas as mais 
adequadas. 
A definição do número de amostras simples por extrato é a preocupação seguinte. 
De modo geral, recomenda-se a coleta de 20 a 40 amostras simples por unidade 
experimental (ALVAREZ V. & CARRARO, 1976; BARRETO et al., 1974; JACKSON, 
1970). A escolha do número exato de amostras simples dependerá das condições que 
determinam a intensidade de variabilidade (micro variações) do extrato. Assim 
dependendo das características a analisar deve se decidir por um maior número de 
amostras simples em áreas de pastagem e intensamente agricultadas, do que em áreas 
com vegetação natural ou com exploração florestal. 
A retirada da amostra simples é feita utilizando-se enxada, enxadão, pá ou 
instrumentos próprios denominados de trados ou sondas. Independente do instrumento 
a ser utilizando é importante a padronização do volume de solo coletado em cada amostra 
simples. Maiores cuidados são requeridos quando se utiliza enxada, enxadão ou pá. Com 
a utilização de sondas o volume de solo em cada amostra é mais uniforme. 
Durante o procedimento de amostragem as amostras simples são agrupadas em 
uma vasilha limpa, um balde, por exemplo. Ao final o solo deve ser totalmente 
destorroado e intensamente misturado para uma perfeita homogeneização. Desta retira-
se aproximadamente, 500 g (0,5 L) de solo que se constitui na amostra composta, que 
deve ser devidamente embalada e identificada para ser enviada ao laboratório. 
A amostra deve ser acompanhada por um formulário preparado pelo laboratório 
onde se encontram o nome e endereço do remetente, a identificação das amostras e 
informações complementares tais como: cultura a ser feita, cultura anterior, adubação 
anterior, topografia, etc. 
10 
www.integraragro.com.br 
 
Figura 3. Equipamentos mais comuns utilizados na coleta de amostras de solo. 
 
 
11 
www.integraragro.com.br 
TEXTURA: Areia, Silte e Argila 
 
Esta determinação define a relação entre as partículas unitárias (areia, silte e 
argila), presentes na fração terra fina do solo (partículas menores que 2,0 mm). Trata-se, 
portanto, de uma análise física de separação das partículas por tamanho. 
 
A seguir apresentam-se as partículas unitárias presentes na fração terra fina: 
Diâmetro da 
partícula (mm) 
Argila Silte Areia 
< 0,002 0,002 a 0,2 0,2 a 2 
 
Os resultados da análise textural podem ser expressos em porcentagem (%), 
dag/kg de solo ou g/kg de solo. 
Após obtenção dos valores de areia, silte e argila pode-se definir a classe textural 
a que pertence o solo. Duas classificações podem ser usadas. A classificação detalhada 
(Figura 4), e a classificação simplificada (Figura 5). 
 
 
Figura 4. Diagrama textural baseado no sistema Norte Americano de classificação do 
tamanho das partículas, adotado pela SBCS. 
 
 
 
12 
www.integraragro.com.br 
 
Figura 5. Guia para grupamento de classes de textura (EMBRAPA, 2014). 
 
De acordo com Santos et al. (2008), a textura do solo influencia diretamente na 
disponibilização de nutrientes para as plantas, principalmente P, S e Zn, visto que solos 
mais intemperizados (com alto teor de argila), tem maior poder tampão de P, e ocorre 
menor disponibilização destes nutrientes na solução do solo. A disponibilização aumenta 
em teores maiores de argila juntamente com o aumento da disponibilidade de água, e por 
consequência, maior transporte. Solos de textura arenosa, de menor poder tampão, a 
passagem do P, S e Zn para a solução é facilitada, permitindo maior absorção destes 
nutrientes pelas plantas. 
 
 
13 
www.integraragro.com.br 
TRANSFORMAÇÕES DE UNIDADES 
 
A interpretação de análise de solo exige atenção e cuidado necessitando algumas 
vezes a busca pelo conversor de unidades. Nem todos os laboratórios seguem um padrão 
para divulgação dos resultados em unidades especificas. Segue abaixo as conversões 
mais usadas para facilitar o trabalho. 
 
Conversão de Unidades 
De Para Conversão 
g/dm³ mg/dm³ g/dm³ x 1.000 
g/kg g/dm³ g/kg x 1.000 
g/kg kg/ha g/kg x 2.000 
g/kg t/ha g/kg x 2 
mg/dm³ g/dm³; g/kg mg/dm³ x 0,001 
mg/dm³ kg/ha mg/dm³ x 2 
mg/dm³ t/ha mg/dm³ x 20 
kg/ha g/kg kg/ha x 0,0005 
kg/ha mg/dm³ kg/ha x 0,5 
kg/ha t/ha kg/ha x 0,001 
t/ha g/kg t/ha x 0,5 
t/ha mg/dm³ t/ha x 500 
t/ha kg/ha t/ha x 1.000 
mmolc/dm³ cmolc/dm³ mmolc/dm³ / 10 
cmolc/dm³ mmolc/dm³ cmolc/dm³ x 10 
Fonte: http://agronomiacomgismonti.blogspot.com.br/ 
 
Unidade dag/kg g/kg mg/dm3 kg/ha t/ha 
dag/kg 1 10 10.000 20.000 20 
g/kg 0,1 1 1.000 2.000 2 
mg/dm3 0,0001 0,001 1 2 0,002 
kg/ha 0,00005 0,0005 0,5 1 0,001 
t/ha 0,05 0,5 500 1000 1 
 
14 
www.integraragro.com.br 
Conversão de Unidades antigas para as novas Unidades do Sistema 
Internacional (SI) 
Antigas Unidades (SI) Fator de conversão 
SOLO 
% g/kg; g/dm³; g/L 10 
meq/100cm³ 
meq/100g 
meq/L 
cmolc/dm³ 
cmolc/kg 
cmolc/L 
1 
mmolc/dm³ 
mmolc/kg 
mmolc/L 
10 
ppm mg/dm³; mg/kg; mg/L 1 
PLANTA 
% g/kg 10 
ppm mg/kg 1 
Fonte: http://agronomiacomgismonti.blogspot.com.br/ 
 
 Lembrando que 1 ha equivale a 2.000.000 dm3 (considerando a profundidade 0,20 
m e densidade do solo igual a 1,00 kg/dm3. 
 dag/kg = % 
 g/m3 = mg/dm3 
Entre as grandezas derivadas, a área e o volume são de uso frequente em 
fertilidade do solo. A unidade de área (superfície) é o metro quadrado. No entanto, na 
maioria das situações relacionadas a ciências agrárias o uso do hectare (1ha = 10.000 
m2) é mais conveniente. Embora hectare seja uma unidade de área (superfície), quando 
tratamos de aspectos relativos à fertilidade de solo, tais como determinação de doses de 
adubação e de corretivos, está unidade, intuitivamente, refere-se a volume de solo. Isto 
porque, o solo é um corpo tridimensional, as plantas exploraram, de fato, um volume de 
solo e porque os métodos analíticos,que geram as recomendações de adubação e 
corretivos, são calibradas com base em um volume de solo. Usualmente as amostras são 
coletadas na camada de 0 a 20 cm solo. Assim, conforme ilustra a figura abaixo, o volume 
da amostra que é representativo do volume de um hectare corresponde a 2.000 m3: 
 
15 
www.integraragro.com.br 
TABELAS DE INTERPRETAÇÃO 1 
 2 
1. pH (potencial hidrogeniônico) 3 
 4 
Representa a concentração de hidrogênio na solução do solo (H+), também 5 
conhecido como acidez ativa do solo. 6 
Unidade: mols de H+/litro de solução. 7 
Exemplo: 10-6 mols de H+/litro de solução. 8 
Cálculo: pH = log 1/ (H+)  pH = log 1/ (10-6)  pH = 6 9 
 10 
A maioria dos laboratórios determinam pH em água, sendo que alguns utilizam 11 
outras formas de determinação do pH, como por exemplo, cloreto de cálcio (CaCl2) 1M, 12 
cloreto de potássio (KCl) 1N. Assim, é importante observar a metodologia utilizada. 13 
 14 
Para pH, utiliza-se a seguinte interpretação: 15 
 16 
Tabela 1. Interpretação da análise de solo do Cerrado, da camada de 0 a 20 cm, para o 17 
pH H2O e pH CaCl2 (Souza & Lobato, 2004). 18 
Classificação química 
Acidez muito 
elevada 
Acidez 
elevada 
Acidez 
média 
Acidez 
fraca 
Neutra 
Alcalinidade 
fraca 
Alcalinidade 
< 4,5 4,5 a 5,0 5,1 a 6,0 6,1 a 6,9 7,0 7,1 a 7,8 > 7,8 
Classificação agronômica 
pH H2O 
Baixo Médio Adequado Alto Muito alto 
< 5,1 5,2 a 5,5 5,6 a 6,3 6,4 a 6,6 > 6,7 
pH CaCl2 
Baixo Médio Adequado Alto Muito alto 
< 4,4 4,5 a 4,8 4,9 a 5,5 5,6 a 5,8 > 5,9 
 19 
 20 
 21 
 22 
 23 
16 
www.integraragro.com.br 
2. Fósforo e Potássio disponíveis 24 
 25 
Na quantificação do fósforo (P) e potássio (K) disponíveis adotam-se dois 26 
procedimentos: extração do solo, realizada com extrator North Carolina ou Mehlich 1 27 
(H2SO4 0,025 N + HCl 0,05 N) e determinação dos teores desses dois nutrientes, 28 
utilizando colorímetro (P) e fotômetro de chama (K). 29 
Unidade: mg/dm3 de solo, que corresponde ao antigo ppm (não recomendado no 30 
Sistema Internacional de Unidades), e pode ser transformada em kg/ha, utilizando a 31 
fórmula a seguir: 32 
mg/dm3 de solo = ppm 33 
mg/dm3 de solo x 2 = kg/ha 34 
Exemplo: 5 mg de P/dm3 de solo. 35 
1 dm3 = 10 cm x 10 cm x 10 cm = 1.000 cm3 = 1 litro de solo. 36 
Como a densidade do solo é próxima a 1, então 1 litro equivale a 1 kg de solo, 37 
portanto, tem-se: 38 
5 mg de P em 1 kg de solo, ou, 0,000005 kg de P em 1 kg de solo. 39 
Em 1 hectare, considerando a camada arável de 0 a 20 cm tem-se 2.000 m3 de 40 
solo ou 2.000.000 kg, por regra de três, tem-se: 41 
0,000005 kg de P  1 kg de solo 42 
X kg de P  2.000.000 kg de solo (1 ha) 43 
X = 10 kg de P / ha 44 
 45 
Tabela 2. Interpretação da análise de solo da camada de 0 a 20 cm, para P extraído pelo 46 
extrator Mehlich 1, de acordo com o teor de argila, para sistemas de sequeiro em solos 47 
do Cerrado (Souza & Lobato, 2004). 48 
Teor de 
argila 
Teor de P no solo 
Muito baixo Baixo Médio Adequado Alto 
% ---------------------------------- mg/dm3 ---------------------------------- 
≤ 15 0 a 6,0 6,1 a 12,0 12,1 a 18,0 18,1 a 25,0 > 25,0 
16 a 35 0 a 5,0 5,1 a 10,0 10,1 a 15,0 15,1 a 20,0 > 20,0 
36 a 60 0 a 3,0 3,1 a 5,0 5,1 a 8,0 8,1 a 12,0 > 12,0 
> 60 0 a 2,0 2,1 a 3,0 3,1 a 4,0 4,1 a 6,0 > 6,0 
 49 
 50 
17 
www.integraragro.com.br 
Tabela 3. Interpretação da análise de solo da camada de 0 a 20 cm, para P extraído pelo 51 
extrator Mehlich 1, de acordo com o teor de argila, para sistemas irrigados em solos do 52 
Cerrado (Souza & Lobato, 2004). 53 
Teor de 
argila 
Teor de P no solo 
Muito baixo Baixo Médio Adequado Alto 
% ---------------------------------- mg/dm3 ---------------------------------- 
≤ 15 0 a 12,0 12,1 a 18,0 18,1 a 25,0 25,1 a 40,0 > 40,0 
16 a 35 0 a 10,0 10,1 a 15,0 15,1 a 20,0 20,1 a 30,0 > 30,0 
36 a 60 0 a 5,0 5,1 a 8,0 8,1 a 12,0 12,1 a 18,0 > 18,0 
> 60 0 a 3,0 3,1 a 4,0 4,1 a 6,0 6,1 a 9,0 > 9,0 
 54 
Tabela 4. Interpretação da análise de solo da camada de 0 a 20 cm, para P extraído pela 55 
resina trocadora de íons para sistemas agrícolas de sequeiro e irrigado em solos do 56 
Cerrado (Souza & Lobato, 2004). 57 
Sistema 
agrícola 
Teor de P no solo 
Muito baixo Baixo Médio Adequado Alto 
 ---------------------------------- mg/dm3 ---------------------------------- 
Sequeiro 0 a 5 6 a 8 9 a 14 15 a 20 > 20 
Irrigado 0 a 8 9 a 14 15 a 20 21 a 35 > 35 
 58 
 59 
 Fósforo remanescente é a concentração de P da solução de equilíbrio, após agitar, 60 
durante 1 h, 5 cm3 TFSA com 50 mL de solução de CaCl2 10 mmol/L, contendo 60 mg/L 61 
de P. A disponibilidade de fósforo varia de acordo com a dinâmica das fontes deste 62 
nutriente quando adicionado ao solo. A capacidade tampão de fosfatos do solo, tem 63 
grande influência na eficiência de extração do fósforo disponível pelo método Mehlich-1 e 64 
na absorção pelas plantas. Por isso, na interpretação da disponibilidade de fósforo, 65 
devem ser utilizadas medidas relacionadas com a capacidade tampão, como o teor de 66 
argila ou o valor de fósforo remanescente dos solos. 67 
 Observe na tabela abaixo que o nível crítico de P no solo depende do P-68 
remanescente (rem). 69 
 70 
 71 
 72 
18 
www.integraragro.com.br 
Tabela 5. Classes de interpretação da disponibilidade para o fósforo de acordo com o 73 
valor de fósforo remanescente (P-rem) (Ribeiro, Guimarães & Alvarez (1999). 74 
P-rem 
Teor de P no solo 
Muito baixo Baixo Médio Adequado Alto 
Mg/L ---------------------------------- mg/dm3 ---------------------------------- 
0 – 4 ≤ 3,0 3,1 a 4,3 4,4 a 6,0 6,1 a 9,0 > 9,0 
4 – 10 ≤ 4,0 4,1 a 6,0 6,1 a 8,3 8,4 a 12,5 > 12,5 
10 – 19 ≤ 6,0 6,1 a 8,3 8,4 a 11,4 11,5 a 17,5 > 17,5 
19 – 30 ≤ 8,0 8,1 a 11,4 11,5 a 15,8 15,9 a 24,0 > 24,0 
30 – 44 ≤ 11,0 11,1 a 15,8 15,9 a 21,8 21,9 a 33,0 > 33,0 
44 – 60 ≤ 15,0 15,1 a 21,8 21,9 a 30,0 30,1 a 45,0 > 45,0 
mg/dm3 = ppm. 75 
 76 
 Considerando três solos com um mesmo teor de P disponível, porém, valores 77 
diferentes de P-rem: 78 
 79 
Solo 
P disponível P-rem 
Interpretação 
mg/dm3 mg/L 
1 
12 
0 – 19 Alto / Muito alto 
2 19,1 – 30 Médio 
3 30,1 – 60 Baixo / Muito baixo 
 80 
 Neste caso, pode-se afirmar que embora os solos apresentem o mesmo teor de P 81 
disponível, o solo 1 deverá receber uma menor dose de adubo fosfatado do que o solo 82 
2 e, este, menos que o solo 3. 83 
 84 
 85 
 86 
Os valores relativos ao P-rem não representam níveis de P no solo, e 
sim uma estimativa da capacidade tampão do mesmo e, depende não 
só do teor de argila, mas também da sua mineralogia e teor de MO do 
solo. Os resultados do P-rem podem variar de 0 a 60 e permitem 
determinar o valor “Y” para calagem (capacidade tampão para variação 
do pH), além dos níveis de P disponível e enxofre (S) no solo. 
19 
www.integraragro.com.br 
Tabela 6. Interpretação da análise de solo do Cerrado, da camada de 0 a 20 cm, para K 87 
extraído pelo extrator de Mehlich 1 (Souza & Lobato, 2004). 88 
Interpretação 
Teor de K no solo 
mg/dm3 
Solos com CTC a pH 7 menor que 4 cmolc/dm3 
Baixo ≤ 15 
Médio 16 a 30 
Adequado 31 a 40 
Alto > 40 
Solos com CTC a pH 7 igual ou maior que 4 cmolc/dm3 
Baixo ≤ 25 
Médio 26 a 50 
Adequado 51 a 80 
Alto > 80 
Obs.: Para expressar o teor de potássio em cmolc/dm3 basta multiplicar o valor em mg/dm3 por 0,00256. 89 
 90 
A transformação do K de mg/dm3 de solo para cmolc/dm3 de solo, pode ser feito 91 
utilizando a seguinte fórmula: 92 
K (cmolc/dm3) = K (mg/dm3) / 391 93 
 94 
 95 
 96 
 97 
 98 
 99 
 100 
cmol
c
/dm
3
 e mmol
c
/dm
3
 
É o centésimo do número de mols de carga ou milésimo do número de 
mols de carga. Pelo SI, a massa molecular deve ser expressa pelo número 
de mols da substância (ou seus múltiplos e submúltiplos). Para estudos do 
solo pode ser usado o centimol (centésima parte do mol) ou o milimol 
(milésima parte do mol). Assim, a quantidade de Ca deveser expressa 
como cmol (Ca
++
). Na análise de solo interessa mais a soma da carga dos 
cátions trocáveis do que suas quantidades, para que se possa calcular a 
sua capacidade de troca. O correto seria, então, se expressar a 
quantidade de Ca como cmol ( ½ Ca
++
), cmol (½Mg
++
), cmol (1/3 Al
+++
) e 
assim por diante. Para simplificar, criou-se o centimol de cargas ou milimol 
de cargas, cujos símbolos são, respectivamente cmolc e mmolc. 
20 
www.integraragro.com.br 
3. Cálcio, magnésio e alumínio trocáveis 101 
 102 
O cálcio (Ca) e o magnésio (Mg) são considerados macronutrientes e na maioria 103 
dos solos tropicais encontram-se em níveis baixos. Já o alumínio (Al), é um elemento 104 
tóxico para as plantas e está associado à acidez. São denominados trocáveis por estarem 105 
adsorvidos (ligados) às cargas negativas das argilas – capacidade de troca catiônica 106 
(CTC) e estão em equilíbrio com a solução do solo. 107 
A extração desses elementos do solo é feita com uma solução de KCl na 108 
concentração de 1N e a determinação pode ser feita por titulometria ou espectrofotômetro 109 
de absorção atômica. 110 
Unidade: cmolc/dm3 de solo. O centimol de carga (cmolc) é um submúltiplo do mol 111 
(mol/100) e pode ser quantificado utilizando o peso molecular e a valência do elemento 112 
em questão, utilizando os valores da fórmula: 113 
 114 
𝐶𝑚𝑜𝑙𝑐 =
𝑃𝑒𝑠𝑜 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟
𝑉𝑎𝑙ê𝑛𝑐𝑖𝑎 𝑥 100
 (𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑜 𝑒𝑚 𝑔𝑟𝑎𝑚𝑎𝑠) 115 
 116 
Elemento Peso molecular Valência 
Ca 40 +2 
Mg 24 +2 
Al 27 +3 
 117 
Esta unidade de concentração pode ser transformada em kg/ha. 118 
 119 
1,0 cmolc/dm3 de solo 120 
40 / (2 x 100)  0,2 g de Ca++ por kg de solo 121 
0,0002 kg de Ca++  1 kg de solo 122 
X kg de Ca++  2.000.000 kg (1 ha) 123 
X = 400 kg de Ca++/ ha 124 
 125 
 126 
 127 
 128 
 129 
21 
www.integraragro.com.br 
A interpretação para Ca, Mg e Al: 130 
 131 
Tabela 7. Interpretação dos resultados da análise de análise de Ca e Mg em amostras 132 
de solo do Cerrado da camada de 0 a 20 cm (Souza & Lobato, 2004). 133 
Interpretação 
Ca Mg 
---------- cmolc/dm3 ---------- 
Baixo < 1,5 < 0,5 
Adequado 1,5 a 7,0 0,5 a 2,0 
Alto > 7,0 > 2,0 
Obs.: As relações Ca:Mg devem estar no intervalo 1:1 a um máximo de 10:1, respeitando-se sempre o teor 134 
mínimo de 0,5 cmolc/dm3 para o Mg. As relações Ca:Mg podem ser interpretadas como estreita (< 2), 135 
adequada (2 a 10) e alta (> 10), repeitando-se sempre o teor mínimo de 0,5 cmolc/dm3 para o Mg. 136 
 137 
Tabela 8. Interpretação dos resultados da análise de análise de Ca em amostras de solo 138 
do Cerrado das camadas abaixo de 20 cm (Souza & Lobato, 2004). 139 
Interpretação 
Ca 
---------- cmolc/dm3 ---------- 
Muito baixo < 0,1 
Baixo 0,1 a 0,5 
Adequado > 0,5 
 140 
 141 
Tabela 9. Interpretação dos resultados da determinação da saturação por alumínio em 142 
solos do Cerrado amostrados de 0 a 20 cm ou em camadas mais profundas (Souza & 143 
Lobato, 2004). 144 
Interpretação 
Saturação por alumínio 
% 
Baixa < 20 
Alta 20 a 60 
Muita alta > 60 
 145 
 146 
 147 
 148 
 149 
 150 
22 
www.integraragro.com.br 
4. Micronutrientes 151 
 152 
Os micronutrientes são elementos químicos essenciais para os vegetais, porém 153 
em pequenas quantidades, quando comparados com os macronutrientes. São divididos 154 
em dois grupos, de acordo com a forma de absorção: catiônicos – zinco (Zn), cobre (Cu), 155 
ferro (Fe), manganês (Mn), cobalto (Co) e níquel (Ni) – e aniônicos – boro (B), cloro (Cl) 156 
e molibdênio (Mo). Embora existam metodologias para determinação de todos eles, na 157 
rotina só se determina B (água quente), Cu, Zn, Fe e Mn (Mehlich 1). 158 
Unidade: mg/dm3, mesma unidade usada para P e K disponíveis. 159 
 160 
Tabela 10. Interpretação da análise de solo do Cerrado, da camada de 0 a 20 cm, a pH 161 
H2O 6,0 para B, Cu, Mn, Zn e Fe (Souza & Lobato, 2004). 162 
Interpretação 
Boro1 Cobre2 Manganês2 Zinco2 Ferro3 
-------------------------------- mg/dm3 -------------------------------- 
Baixo < 0,2 < 0,4 < 1,9 < 1,0 < 19,0 
Médio 0,3 a 0,5 0,5 a 0,8 2,0 a 5,0 1,1 a 1,6 19,1 a 30,0 
Alto > 0,5 > 0,8 > 5,0 > 1,6 > 30,0 
1 Extraído com água quente. 2 Extraído com extrator Mehlich 1. 163 
 164 
 165 
5. Enxofre 166 
 167 
O S, assim como o Ca e o Mg, é considerado um macronutriente secundário. 168 
 169 
Tabela 11. Interpretação da análise de enxofre em solos do Cerrado, considerando a 170 
média aritmética dos teores nas profundidades de 0 a 20 e 20 a 40 cm (Souza & Lobato, 171 
2004). 172 
Interpretação 
S 
------------------------- mg/dm3 ------------------------- 
Baixo ≤ 4 
Médio 5 a 9 
Alto ≥ 10 
1 Extraído com Ca(H2PO4)2 0,01 mol/L em água (relação solo:solução extratora de 1:2,5). 173 
S = (teor na camada de 0 a 20 + teor na camada de 20 a 40 cm) / 2. 174 
 175 
 176 
23 
www.integraragro.com.br 
6. Matéria Orgânica 177 
 178 
Para estimar os teores de Matéria Orgânica do solo, primeiramente deve-se 179 
determinar o teor de carbono orgânico (Unidade: dag/kg). 180 
Esta unidade substitui a porcentagem (%) e se equivalem (1 dag/kg é igual a 1%), 181 
que não é mais recomendada no Sistema Internacional de Unidades. Alguns laboratórios 182 
utilizam o submúltiplo g/kg (1 dag/kg é igual a 10 g/kg). 183 
Estimativa da MO: basta multiplicar o carbono orgânico pelo fator 1,724, como na 184 
fórmula: 185 
MO = CO x 1,724 186 
 187 
Tabela 12. Interpretação dos resultados da análise da matéria orgânica em amostras de 188 
solos do Cerrado da camada de 0 a 20 cm (Souza & Lobato, 2004). 189 
Matéria orgânica do solo (%) 
Textura 
Classif. 
Arenosa Média Argilosa Muito Argilosa 
Baixa < 0,8 < 1,6 < 2,4 < 2,8 
Média 0,8 a 1 1,6 a 2,0 2,4 a 3,0 2,8 a 3,5 
Adequada 1,1 a 1,5 2,1 a 3,0 3,1 a 4,5 3,6 a 5,2 
Alta > 1,5 > 3,0 > 4,5 > 5,2 
 190 
7. Soma de bases 191 
 192 
São considerados bases do solo o Ca, o Mg e o K. Para os solos salinos deve-se 193 
considerar, ainda, o sódio (Na). O cálculo da SB é feita utilizando a seguinte fórmula: 194 
 195 
SB = Ca++ + Mg++ + K+ + Na+ 196 
 197 
Os termos devem estar na unidade de cmolc/dm3 de solo (lembre-se de que o K 198 
aparece em mg/dm3 em algumas análises de solo). 199 
 200 
 201 
 202 
 203 
 204 
24 
www.integraragro.com.br 
8. Capacidade de Troca Catiônica efetiva (t) 205 
 206 
A CTC efetiva (t) mede a quantidade de cargas negativas que estão presentes no 207 
solo, considerando o pH em que este se encontra, podendo ser calculada pela seguinte 208 
fórmula: 209 
t = SB + Al+++ 210 
Os termos devem estar na unidade de cmolc/dm3 de solo. 211 
 212 
9. Capacidade de Troca Catiônica a pH 7,0 (T) 213 
 214 
A CTC a pH 7 (T) considera todas as cargas do solo (permanentes e dependentes 215 
do pH), caso o pH do solo seja ajustado a 7 é calculada somando a SB com a acidez 216 
potencial utilizando a fórmula: 217 
T = SB + (H+ + Al+++) 218 
Os termos devem estar na unidade de cmolc/dm3 de solo. 219 
 220 
Tabela 13. Interpretação dos resultados da determinação da Capacidade de troca de 221 
cátions (CTC) a pH 7 em amostras de solos do Cerrado da camada de 0 a 20 cm (Souza 222 
& Lobato, 2004). 223 
Classes 
Arenosa Média Argilosa Muito Argilosa 
CTC (cmolc/dm3) 
Baixa < 3,2 < 4,8 < 7,2 < 9,6 
Média 3,2 a 4,0 4,8 a 6,0 7,2 a 9,0 9,7 a 12,0 
Adequada 4,1 a 6,0 6,1 a 9,0 9,1 a 13,5 12,1 a 18,0 
Alta > 6,0 > 9,0 > 13,5 > 18,0 
 224 
 225 
10. Porcentagem de saturação por bases (V%) 226 
 227 
Indica a proporção de bases com relação à CTC a pH 7 (T). É calculada pela 228 
fórmula: 229 
V (%) = (SB / T) x 100 230 
 231 
25 
www.integraragro.com.br 
Tabela 14. Interação da análise de solo do Cerrado, da camada de 0 a 20 cm, para pH 232 
H2O, pH CaCl2 e saturação por bases (Souza & Lobato, 2004). 233 
Interpretação pH H2O pH CaCl2 Saturação por bases (V%) 
Baixo (a) ≤ 5,1 ≤ 4,4 ≤ 20 
Médio (a) 5,2 a 5,5 4,5 a 4,821 a 35 
Adequado (a) 5,6 a 6,3 4,9 a 5,5 36 a 60 
Alto (a) 6,4 a 6,6 5,6 a 5,8 61 a 70 
Muito alto (a) > 6,6 > 5,8 > 70 
 234 
 235 
 236 
 237 
 238 
 239 
 240 
 241 
 242 
 243 
 244 
 245 
11. Porcentagem de saturação por alumínio 246 
 247 
Indica a proporção de Al com relação à CTC efetiva (t) e é calculada utilizando 248 
a fórmula: 249 
m (%) = (Al+++ / t) x 100 250 
 251 
Tabela 15. Interpretação dos resultados da determinação da saturação por alumínio em 252 
solos do Cerrado amostrados de 0 a 20 cm camadas mais profundas (Souza & Lobato, 253 
2004). 254 
Saturação por alumínio (%) 
Baixo Alta Muito alta 
< 20 20 a 60 > 60 
 255 
 256 
 257 
26 
www.integraragro.com.br 
12. Relações entre bases 258 
 259 
A atenção a estas relações é bastante importante, uma vez que estes nutrientes 260 
disputam os mesmos pontos de troca da CTC. Assim, o excesso de um pode levar à 261 
deficiência induzida dos outros. Cada espécie vegetal exige uma relação específica entre 262 
as bases, de acordo com sua necessidade nutricional. 263 
De modo geral, pode-se considerar como ideais as relações descritas a seguir: 264 
Relação ideal 
Ca / Mg Ca / K Mg / K 
3 : 1 9 : 1 3 : 1 
 265 
 266 
 267 
27 
www.integraragro.com.br 
CALAGEM 
 
O Cerrado se caracteriza por apresentar solos ácidos, presença de alumínio e 
pobres em bases trocáveis, como Ca, Mg e K. A correção da acidez com a consequente 
elevação dos teores de cátions básicos proporciona aumento de produtividade da cultura 
econômica explorada, como por exemplo a soja. 
Acima de 5,6 não há mais presença de alumínio (Al+++) tóxico para as plantas. O 
pH acima de 6,0 deve ser monitorado para evitar a indisponibilidade de micronutrientes, 
tão comum de acontecer nessa faixa. A calagem é recomendada para ser incorporada 
na camada de 0-20 cm de solo. Em profundidades maiores, a aplicação de gesso visa 
adicionar cálcio, insolubilizar o alumínio e criar condições favoráveis para um melhor 
desenvolvimento radicular da planta, tanto em profundidade como em extensão, de 
maneira que a planta possa suportar melhor os veranicos e as raízes possam ir mais 
longe buscar os nutrientes (Gismonti, 2013). 
 Segundo Souza & Lobato (2004), a quantidade de calcário a ser utilizada em 
determinada área depende do tipo de solo e do sistema de produção a ser desenvolvido. 
Na região do Cerrado, o método que foi mais utilizado para determinar a necessidade de 
calcário (N.C.) é o que se baseia nos teores de Al, Ca e Mg trocáveis, e o cálculo da N.C. 
varia em função do teor de argila dos solos. 
 Para solos com capacidade de troca de cátions (CTC ou valor T) maior que 4 
cmolc/dm3, teor de argila acima de 15% e teor de Ca + Mg menor que 2,0 cmolc/dm3, é a 
seguinte fórmula: 
N.C. (t/ha) = [(2 x Al) + 2 – (Ca + Mg)] x f 
onde f é um fator de correção para a qualidade do calcário. 
 Para solos com CTC maior que 4,0 cmolc/dm3, teor de argila maior que 15% e teor 
de Ca + Mg maior que 2,0 cmolc/dm3, a fórmula utilizada é: 
N.C. (t/ha) = (2 x Al) x f 
 A ficha de análise dos calcários inclui o índice chamado PRNT (Poder Relativo de 
Neutralização Total) que indica a qualidade efetiva do calcário. Esse índice é, 
normalmente, diferente de 100%, devendo-se, portanto, corrigir essa diferença, usando 
o fator f que é determinado pela fórmula: 
f = 100 / PRNT 
 Assim, se o valor do PRNT for 90%, o valor de f será 100/90 = 1,11; quando for 
80% o valor de f será 100/80 = 1,25. 
28 
www.integraragro.com.br 
 Quando se tratar de Areias Quartzosas: 
N.C. (t/ha) = (2 x Al) x f 
N.C. (t/ha) = 2 – (Ca + Mg) x f 
 Deve-se ressaltar que Areias Quartzosas têm, em geral, uso agrícola limitado, 
devido ao fato de apresentar baixa capacidade de troca de cátions, baixa capacidade de 
retenção de água e grande suscetibilidade à erosão. 
 A fórmula que tanto conhecemos é aquela em que buscamos elevar o V2 para 50 
a 70%. Ou seja: 
N.C. (t/ha) = (V2 – V1) x T x f 
V2 = Saturação por bases que se deseja; 
V1 = Saturação por bases atual; 
T = (H + Al) + Ca + Mg + K; 
f = fator de correção do calcário. 
 
GESSAGEM 
O gesso agrícola, sulfato de cálcio, contém cálcio e enxofre (S). Contém 32% de 
CaO e até 19% de S. Ele se dissocia em Ca²+ e SO4²-. Mas o gesso não é um corretivo 
para neutralizar a acidez do solo. Tão pouco tem a capacidade de elevar a “Capacidade 
de Troca de Cátions – CTC”. Ele é um condicionador do solo. 
O gesso deve ser aplicado quando, no mínimo, uma destas condições seja 
satisfeita: 
a) Teor de cálcio (Ca) menor ou igual a 0,5 cmolc/dm3 ou 4 mmolc/dm3. Para 
transformar cmolc em mmolc basta multiplicar por 10; 
b) Teor de alumínio (Al) maior que 0,5 cmolc/dm3 ou 5 mmolc/dm3; 
c) Saturação por alumínio (m%) maior que 20%. 
O produtor agrícola pensando em aplicar gesso deve providenciar na análise do 
solo. Neste caso, a amostragem deve ser feita na profundidade de 20-40 cm ou 30-60 
cm e não na de 0-20 cm como é feita normalmente. Lembre-se que para aplicar gesso, 
os resultados da análise devem ser de amostras retiradas das camadas mais profundas. 
Quando coletar amostras das camadas de 0-20, 20-40, 30-60 cm é preciso cuidar para 
não misturá-las. As amostras devem ser independentes de cada camada. Para isto, é 
bom ter o cuidado de não misturá-las e proceder à identificação de cada camada. Em 
geral, a profundidade mais usada é a camada de 20-40 cm. 
 
29 
www.integraragro.com.br 
 Necessidade de gessagem e quantidade de gesso: 
O gesso deve ser aplicado após o calcário. O calcário na camada de 0-20 cm e o 
gesso na camada de 20-40 cm ou 30-60 cm. O gesso pode ser aplicado em cobertura, 
pois é muito móvel. Se a camada de 0-20 cm não exige calcário, pode-se aplicar o gesso 
em cobertura. Não há necessidade de incorporação do gesso. 
a) Para culturas anuais: 
DG (kg/ha) = 50 x teor de argila (%) 
b) Para culturas perenes: 
DG (kg/ha) = 75 x teor de argila (%) 
É possível também determinar a dose de gesso agrícola com base nos dados contidos 
na Tabela abaixo, se o agricultor souber a classificação textural do solo a ser utilizado. 
 
Tabela 15. Recomendação de gesso agrícola (15% de S) em função da classificação 
textural do solo para culturas anuais e perenes. 
Textura do solo 
Doses de gesso agrícola 
Culturas anuais Culturas perenes 
 ----------------- kg/ha ----------------- 
Arenosa 700 1050 
Média 1200 1800 
Argilosa 2200 3300 
Muito argilosa 3200 4800 
 
Exemplo: Deseja-se a melhoria do ambiente radicular do milho de uma camada de 20 a 
50 cm de profundidade, com 45 % de argila. 
A NG pela tabela será de 2200 kg/ha. 
A quantidade de gesso (Q.G.) a ser recomendada depende, da espessura da 
camada a ser corrigida: 
Q.G. = N.G. x (E.C. / 20) 
Q.C. = 2200 x (30 / 20) 
Q.C. = 3300 kg/ha 
E.C.: Espessura da camada. 
30 
www.integraragro.com.br 
LAUDO COM RECOMENDAÇÕES1 
IDENTIFICAÇÃO: 
Cliente: José Carlos Silva. 
Propriedade: Fazenda Água Limpa. 
Cultura a ser instalada: Milho. 
 
RECOMENDAÇÃO DE CALAGEM: 
Recomenda-se a aplicação de 1,5 t/ha (PRNT de 100%) de calcário dolomítico. Caso o 
calcário a ser adquirido tenha PRNT diferente de 100%, é necessário corrigir essa dosagem 
(solicita-se novo contato após adquirir o calcário. 
O calcário deverá ser distribuído uniformemente sobre a superfície do solo e incorporado 
a 20 cm de profundidade, 3 a 4 meses antes do plantio do milho. 
 
RECOMENDAÇÃO DE ADUBAÇÃO: 
Recomenda-se a aplicação de 500kg/ha do formulado 2-18-8 no sulco de plantio, 
evitando-se o contato com as sementes. Dar preferência a um fabricante que forneça esse 
formulado contendo enxofre. 
Quando o milho apresentar-se com 8 a 10 folhas, fazer a aplicação de 110 kg/ha de uréia 
ou 250 kg/ha de sulfato de amônio. Caso se utilize a uréia, esta deverá ser aplicada com o solo 
úmido e incorporada a 5 cm de profundidade. A utilização de sulfato de amônio, embora seja mais 
cara que uso da uréia,apresenta as vantagens de não necessitar de incorporação e fornecer 
também o enxofre, além do hidrogênio. 
 
OBSERVAÇÃO: 
Todo o esforço de correção e adubação do solo pode ser perdido se ocorrer erosão. 
Assim, recomenda-se que, antes de se proceder à calagem e adubação, seja feita a conservação 
da área ou, se esta já está conservada, fazer a manutenção dos terraços. 
Somente a calagem e adubação podem não levar a altas produções se outros fatores 
estiverem desfavoráveis. Dessa forma, deve-se utilizar sementes de boa qualidade de variedades 
recomendadas para a região, realizar um bom preparo do solo, proceder corretamente o controle 
fitossanitário (pragas e doenças), etc. 
 
João Silva 
Crea: 12345-MT 
 
 
1 TOMÉ JR., J.B. Manual para interpretação de análise de solo. Guaíba: Agropecuária, 1997. 
31 
www.integraragro.com.br 
TABELAS DE RECOMENDAÇÃO 
 
Tabela 16. Recomendação de adubação fosfatada corretiva de acordo com a 
disponibilidade de fósforo e com o teor de argila do solo, em sistemas agrícolas com 
culturas anuais de sequeiro e irrigados (Souza & Lobato, 2004). 
Argila 
Sistemas de sequeiro Sistemas irrigados 
Fósforo no solo1 
Muito baixa Baixa Média Muito baixa Baixa Média 
% kg/ha de P2O5 
< 15 60 30 15 90 45 20 
16 a 35 100 50 25 150 75 40 
36 a 60 200 100 50 300 150 75 
> 60 280 140 70 420 210 105 
1Classe de disponibilidade de P no solo. Recomendação baseada para fósforo solúvel em citrato de amônio 
neutro mais água, para os fosfatos acidulados, solúvel em ácido cítrico 2% (relação 1:100) para 
termofosfatos e escórias; e total para os fosfatos naturais reativos. 
 
 
Tabela 17. Interpretação da análise de solo e recomendação de adubação corretiva de 
K para culturas anuais conforme a disponibilidade do nutriente em solos de Cerrado 
(Souza & Lobato, 2004). 
Teor de K Interpretação Corretiva total Corretiva gradual 
mg/kg kg de K2O / ha 
CTC a pH 7,0 menor do que 4,0 cmolc/dm3 
≤ 15 Baixo 50 70 
16 a 30 Médio 25 60 
31 a 40 Adequado1 0 0 
> 40 Alto2 0 0 
CTC a pH 7,0 igual ou maior do que 4,0 cmolc/dm3 
≤ 25 Baixo 100 80 
26 a 50 Médio 50 60 
51 a 80 Adequado1 0 0 
> 80 Alto2 0 0 
1Para solos com teores de potássio dentro dessa classe, recomenda-se uma adubação de manutenção de 
acordo com a expectativa de produção. 2Para solos com teores de potássio dentro dessa classe, 
recomenda-se 50% da adubação de manutenção ou da extração de potássio esperada ou estimada com 
base na última safra. 
32 
www.integraragro.com.br 
SOJA 
(Souza & Lobato, 2004) 
 Calagem 
Aplicar calcário para elevar a saturação por bases a 50% em sistemas de sequeiro 
e 60% para sistemas irrigados. Utilizar calcário que complemente o teor de Mg no solo 
para valores entre 0,5 cmolc/dm3 e 1 cmolc/dm3, pelo menos. 
 
 Adubação de semeadura 
Aplicar no sulco de semeadura, as dosagens de P2O5 e K2O, indicadas na tabela 
abaixo, em função da expectativa de rendimento e da interpretação da análise de solo. 
 
Expectativa de 
rendimento 
P extraível K extraível 
Adequado Alto Adequado Alto 
t/ha ----- kg/ha de P2O5 ----- ----- kg/ha de K2O ----- 
3 60 30 60 40 
4 80 40 80 50 
5 100 50 100 70 
 
Nas doses superiores a 60 kg/ha de K2O, aplicar a metade na semeadura e o 
restante em cobertura (30 dias após a germinação) ou o total a lanço em pré-semeadura, 
principalmente em solos com CTC menor que 4 cmolc/dm3. 
Caso não tenha sido feita gessagem na área e o solo seja deficiente em enxofre, 
aplicar 20 kg/ha de S para produtividade até 3 t/ha e 30 kg/ha de S para produtividade 
entre 3 e 5 t/ha, a cada cultivo. 
 
 Micronutrientes 
Quando os teores de micronutrientes encontrarem-se no nível baixo, aplicar 
conforme o caso, a lanço, 2,0 kg/ha de cobre, 6 kg/ha de manganês, 0,4 kg/ha de 
molibdênio e 6,0 kg/ha de zinco. No nível médio, aplicar no sulco ¼ das doses 
recomendadas, e no nível alto, não fazer nenhuma aplicação. 
Em solo virgem, quando não se dispõe de resultados de análise de solo, 
recomenda-se aplicar, a lanço, a seguinte adubação: 2,0 kg/ha de boro, 2,0 kg/ha de 
cobre, 6,0 kg/ha de manganês, 0,4 kg/ha de molibdênio e 6,0 kg/ha de zinco. 
 
33 
www.integraragro.com.br 
MILHO 
(Souza & Lobato, 2004) 
 Calagem 
Aplicar calcário para elevar a saturação por bases a 50% em sistemas de sequeiro 
e 60% para sistemas irrigados. Utilizar calcário que complemente o teor de Mg no solo 
para valores entre 0,5 cmolc/dm3 e 1 cmolc/dm3, pelo menos. 
 
 Adubação de semeadura 
Expectativa 
de 
rendimento 
N 
P extraível K extraível 
Adequado Alto Adequado Alto 
t/ha kg/ha ----- kg/ha de P2O5 ----- ----- kg/ha de K2O ----- 
6 20 60 30 60 30 
8 30 80 40 60 40 
10 30 100 50 60 50 
12 30 120 60 60 60 
 
 Adubação de cobertura 
Expectativa de rendimento N K2O 
t/ha ----------------- kg/ha ----------------- 
6 40 0 
8 70 30 
10 130 60 
12 180 90 
 
 Micronutrientes 
Quando os teores de micronutrientes encontrarem-se no nível baixo aplicar, 
conforme o caso, a lanço, 2,0 kg/ha de boro, 2,0 kg/ha de cobre, 6,0 kg/ha de manganês, 
0,4 kg/ha de molibdênio, 6,0 kg/ha de zinco. 
No nível médio, aplicar no sulco ¼ das doses recomendadas a lanço e, no nível 
alto, não fazer nenhuma aplicação. 
Em solo virgem, quando não se dispõe de resultados da análise de solo, 
recomenda-se aplicar, a lanço, a seguinte adubação: 2,0 kg/ha de boro, 2,0 kg/ha de 
cobre, 6,0 kg/ha de manganês, 0,4 kg/ha de molibdênio e 6,0 kg/ha de zinco. 
 
34 
www.integraragro.com.br 
PASTAGENS 
(Souza & Lobato, 2004) 
 Interpretação 
Interpretação dos resultados da análise de fósforo no solo na profundidade de 0 a 20 cm, 
extraído pelo método Mehlich 1, para três grupos de exigências das forrageiras. 
Teor de argila 
Disponibilidade de fósforo 
Muito baixa Baixa Média Adequada 
% ------------------------- mg/dm3 ------------------------- 
Espécies pouco exigentes 
≤ 15 0 a 3,0 3,1 a 6,0 6,1 a 9,0 > 9,0 
16 a 35 0 a 2,5 2,6 a 5,0 5,1 a 7,0 > 7,0 
36 a 60 0 a 1,5 1,6 a 3,0 3,1 a 4,5 > 4,5 
> 60 0 a 0,5 0,6 a 1,5 1,6 a 3,0 > 3,0 
Espécies exigentes 
≤ 15 0 a 5,0 5,1 a 10,0 10,1 a 15,0 > 15,0 
16 a 35 0 a 4,0 4,1 a 8,0 8,1 a 12,0 > 12,0 
36 a 60 0 a 2,0 2,1 a 4,0 4,1 a 6,0 > 6,0 
> 60 0 a 1,0 1,1 a 2,5 2,6 a 4,0 > 4,0 
Espécies muito exigentes 
≤ 15 0 a 6,0 6,1 a 12,0 12,1 a 21,0 > 21,0 
16 a 35 0 a 5,0 5,1 a 10,0 10,1 a 18,0 > 18,0 
36 a 60 0 a 3,0 3,1 a 5,0 5,1 a 10,0 > 10,0 
> 60 0 a 2,0 2,1 a 3,0 3,1 a 5,0 > 5,0 
 
Interpretação dos resultados da análise de fósforo no solo na profundidade de 0 a 20 cm, 
extraído pelo método da resina (P-resina), para três grupos de exigência das forrageiras. 
Disponibilidade de fósforo 
Muito baixa Baixa Média Adequada 
------------------------- mg/dm3 ------------------------- 
Espécies pouco exigentes 
0 a 3,0 3,1 a 6,0 6,1 a 8,0 > 8,0 
Espécies exigentes 
0 a 4,0 4,1 a 8,0 8,1 a 11,0 > 11,0 
Espécies muito exigentes 
0 a 5,0 5,1 a 9,0 9,1 a 18,0 > 18,0 
35 
www.integraragro.com.br 
 Recomendação 
Recomendação de adubação fosfatada para o estabelecimento de pastagens em 
decorrência da análise do solo e da exigência das espécies forrageiras. 
Teor de argila 
Disponibilidade de fósforo no solo 
Muito baixa Baixa Média Adequada 
% ------------------------- kg/ha de P2O5 a aplicar ------------------------- 
Espécies pouco exigentes 
≤ 15 40 30 20 0 
16 a 35 60 45 30 0 
36 a 60 90 70 45 0 
> 60 120 90 60 0 
Espécies exigentes 
≤ 15 70 55 35 0 
16 a 35 90 70 45 0 
36 a 60 140 105 70 0 
> 60 180 135 90 0 
Espécies muito exigentes 
≤ 15 80 50 40 0 
16 a 35 120 75 60 0 
36 a 60 180 120 90 0 
> 60 240 150 120 0 
 
Recomendação de adubação potássica para pastagens consorciada e solteira em 
decorrência da análise de solo. 
Teor de K no solo 
Doses de potássio 
Pastagem consorciada Pastagem solteira 
mg/dm3 ----------------- kg/ha de K2O----------------- 
< 25 60 40 
25 a 50 40 20 
> 50 20 036 
www.integraragro.com.br 
BIBLIOGRAFIA 
 
SANTOS, F.C.; NOVAIS, R.F.; NEVES, J.C.L; FOLONI, J.M.; ALBUQUERQUE FILHO, 
M.R.; KER, J.C. Produtividade e aspectos nutricionais de plantas de soja cultivadas em 
solos de cerrado com diferentes texturas. Revista Brasileira de Ciência do Solo, v. 32, p. 
2015-2025, 2008. 
SOUSA, D.M.G. & LOBATO, E. Cerrado: Correção do Solo e Adubação. EMBRAPA 
Cerrados, 2004. 416p. 
TOMÉ Jr., J. B. Manual para interpretação de análise de solo. Guaíba: Agropecuária, 
1997. 247 p 
 
37 
www.integraragro.com.br 
FIXANDO OS CONCEITOS 
1. De que forma se pode avaliar o estado nutricional das plantas? 
______________________________________________________________________
_____________________________________________________________________ 
 
2. Os solos brasileiros de um modo geral apresentam baixa disponibilidade de P às 
plantas. Quais são as implicações deste fato para a agricultura nacional e quais as 
possíveis soluções, lembrando que as fontes de P no mundo podem ser limitadas? 
______________________________________________________________________
_____________________________________________________________________ 
 
3. Complete o quadro abaixo expressando os resultados da análise química do solo nas 
unidades indicadas: 
Elemento meq/100cm3 cmolc/dm3 mg/dm3 dag/kg kg/ha 
Ca2+ 0,40 
Mg2+ 0,30 
K+ 60 
Al3+ 1,20 
N-NO3- 40 
 
4. Considerando os resultados a seguir, completar os dados que faltam e definir os níveis 
dos valores obtidos: 
Característica 
pH Ca Mg Al H+Al K P P-rem C 
H2O cmolc/dm3 mg/dm3 g/kg 
Valor 4,8 2,8 0,6 0,7 6,3 78 12 27 2,3 
Nível 
 
Característica 
SB t T V m MO 
cmolc/dm3 % dag/kg 
Valor 
Nível 
 
 
38 
www.integraragro.com.br 
Relação Ca/Mg Ca/K Mg/K Ca/T K/T 
Análise 
Ideal 
 
 
 
5. Dispondo de um solo com as seguintes características, recomende calagem, P2O5, 
K2O e N para o cultivo de algodão. 
pH Al3+ Ca2+ Mg2+ P (Mehlich-1) K Argila Calcário 
 ----- cmolc dm-3 ----- -------- mg dm-3 -------- g kg-1 PRNT (%) 
4,8 1,5 0,8 0,2 4 50 320 75 
 
______________________________________________________________________
______________________________________________________________________
______________________________________________________________________
______________________________________________________________________
______________________________________________________________________
______________________________________________________________________
______________________________________________________________________
______________________________________________________________________
______________________________________________________________________
_____________________________________________________________________ 
39 
www.integraragro.com.br 
6. Na adubação de plantio do algodoeiro, você determinou a necessidade de se aplicar 
aproximadamente 15 kg N/ha, 70 kg de K2O/ha e 70 kg de P2O5. Supondo que próximo 
a região de cultivo, há viabilidade de se adquirir os seguintes fertilizantes, com os 
preços referentes ao produto posto na propriedade do agricultor, pergunta-se: 
a) Fazer a devida escolha de fertilizantes para o plantio do algodão, especificando a 
quantidade a ser adquirida para plantio de 90 ha. 
b) Considerando a resposta da letra “a” e que o algodão será plantado com 
espaçamento entre fileiras de 0,80 m, qual a quantidade de fertilizante terá de ser 
aplicado por metro linear de sulco de plantio? 
Fertilizantes % Nutriente Preço (US$/50 kg) 
Uréia 45 N 8,50 
Sulfato de amônio 20 N e 23 S 6,20 
Superfosfato simples 20 P2O5 e 12 S 12,20 
Cloreto de potássio 60 K2O 16,50 
20-05-20 + 10% PTE - 7,80 
04-14-08 - 6,70 
04-14-08 – Zn - 7,00 
04-20-20 - 10,10 
 
7. “A aplicação de gesso em solos de cerrado, para o cultivo de soja, é essencial ao 
adequado aprofundamento do sistema radicular das plantas e torná-las mais tolerantes 
aos períodos de estiagem”. O que você acha desta afirmativa? Justifique.

Outros materiais