Buscar

Estudos sobre Tetraciclina e sua interação com argilas

Prévia do material em texto

Referências
YE, Z. X.; SHAO, K. L., Huang, H., Yang, X. Tetracycline antibiotics as precursors of dichloroacetamide and other disinfection byproducts during chlorination and chloramination. Chemosphere, p. 128628, 2020.
Han, T., Wang, B., Wu, Z., Dai, C., Zhao, J., Mi, Z., Lv, Y., Zhang, C., Miao, X., Zhou, J., Li, X., Sun, Z., Yang, J., Zhai, W., Zheng, F., Chen, Z., Zhang, B. Providing a view for toxicity mechanism of tetracycline by analysis of the connections between metabolites and biologic endpoints of wheat. Ecotoxicology and Environmental Safety, v. 212, p. 111998, 2021.
Turbale, M., Moges, A., Dawit, M., Amare, M. Adsorptive stripping voltammetric determination of Tetracycline in pharmaceutical capsule formulation using Poly (Malachite green) modified glassy carbon electrode. Heliyon, v. 6, n. 12, p. e05782, 2020.
Rok, J., Rzepka, Z., Respondek, M., Beberok, A., Wrześniok, D. Chlortetracycline and melanin biopolymer–The risk of accumulation and implications for phototoxicity: An in vitro study on normal human melanocytes. Chemico-Biological Interactions, v. 303, p. 27-34, 2019.
Monteiro, A. F., Rato, M., Martins, C. Drug-induced photosensitivity: Photoallergic and phototoxic reactions. Clinics in dermatology, v. 34, n. 5, p. 571-581, 2016.
Dawe, R. S., Ibbotson, S. H. Drug-induced photosensitivity. Dermatologic clinics, v. 32, n. 3, p. 363-368, 2014.
Aguzzi, C., Cerezo, P., Viseras, C., Caramella, C. Use of clays as drug delivery systems: possibilities and limitations. Applied Clay Science, v. 36, n. 1-3, p. 22-36, 2007.
Ambrogi, V., Latterini, L., Nocchetti, M., Pagano, C., Ricci, M. Montmorillonite as an agent for drug photostability. Journal of Materials Chemistry, v. 22, n. 42, p. 22743-22749, 2012.
Fagundes, A. P., da Silva, A. F. V., de Morais, B. B., Macuvele, D. L. P., Nones, J., Riella, H. G., Padoin, N., Soares, C.  A Novel Application of Bentonite Modified with Copper Ions in the Tetracycline Adsorption: an experimental design study. Materials Letters, p. 129552, 2021.
Totea, A. M., Dorin, I., Laity, P. R., Conway, B. R., Waters, L., Asare-Addo, K.  Use of thermodynamics in understanding drug release from xanthan gum matrices: The influence of clay-drug complexes. Carbohydrate Polymer Technologies and Applications, v. 1, p. 100012, 2020.
Gutschmidt, D., Hazra, R. S., Zhou, X., Xu, X., Sabzi, M., Jiang, L. Electrospun, sepiolite-loaded poly (vinyl alcohol)/soy protein isolate nanofibers: Preparation, characterization, and their drug release behavior. International Journal of Pharmaceutics, v. 594, p. 120172, 2021.
Borrego-Sánchez, A., Viseras, C., Sainz-Díaz, C. I. Molecular interactions of praziquantel drug with nanosurfaces of sepiolite and montmorillonite. Applied Clay Science, v. 197, p. 105774, 2020.
Liu, W., Li, Z., Kang, Q., Wen, L. (2021). Efficient photocatalytic degradation of doxycycline by coupling α-Bi2O3/g-C3N4 composite and H2O2 under visible light. Environmental Research, p. 110925, 2021.
Jia, L., Chen, R., Xu, J., Zhang, L., Chen, X., Bi, N., Gou, J., Zhao, T. A stick-like intelligent multicolor nano-sensor for the detection of tetracycline: The integration of nano-clay and carbon dots. Journal of Hazardous Materials, v. 413, p. 125296, 2021.
Hamilton, A. R., Roberts, M., Hutcheon, G. A., Gaskell, E. E. Formulation and antibacterial properties of clay mineral-tetracycline and-doxycycline composites. Applied Clay Science, v. 179, p. 105148, 2019.
Onoue, S., Kawamura, K., Igarashi, N., Zhou, Y., Fujikawa, M., Yamada, H., Tsuda, Y., Seto, Y., Yamada, S. Reactive oxygen species assay-based risk assessment of drug-induced phototoxicity: classification criteria and application to drug candidates. Journal of pharmaceutical and biomedical analysis, v. 47, n. 4-5, p. 967-972, 2008.
Tiwari, N., Ebenazer, A., Franklyne, J. S., Sivakumar, A., Mukherjee, A., Chandrasekaran, N. Drug loaded essential oil microemulsions enhance photostability and evaluation of in vitro efficacy. Photodiagnosis and photodynamic therapy, v. 29, p. 101638, 2020.
Rivera, A., Valdés, L., Jiménez, J., Pérez, I., Lam, A., Altshuler, E., De Ménorval, L. C., Fossum, J.O., Hansen, E. L., Rozynek, Z. Smectite as ciprofloxacin delivery system: Intercalation and temperature-controlled release properties. Applied Clay Science, v. 124, p. 150-156, 2016.
Ruiz-Hitzky, E., Aranda, P., Álvarez, A., Santarén, J., Esteban-Cubillo, A. Advanced materials and new applications of sepiolite and palygorskite. In: Developments in Clay Science. Elsevier, 2011. p. 393-452.
Tian, G., Han, G., Wang, F., Liang, J. Sepiolite nanomaterials: structure, properties and functional applications. In: Nanomaterials from Clay Minerals. Elsevier, 2019. p. 135-201.
Palem, R. R., Rao, K. M., Shimoga, G., Saratale, R. G., Shinde, S. K., Ghodake, G. S., Lee, S. H. Physicochemical characterization, drug release, and biocompatibility evaluation of carboxymethyl cellulose-based hydrogels reinforced with sepiolite nanoclay. International Journal of Biological Macromolecules, 2021.
Ito, T., Sugafuji, T., Maruyama, M., Ohwa, Y., Takahashi, T. Skin penetration by indomethacin is enhanced by use of an indomethacin/smectite complex. Journal of Supramolecular Chemistry, v. 1, n. 4-6, p. 217-219, 2001.

Continue navegando