Buscar

moduloraclogico_20120120191307 (1)

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 32 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 32 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 32 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

1 
LÓGICA PROPOSICIONAL 
 
 
Proposição Lógica – Sentença lógica: 
 
São afirmativas lógicas com sentido completo que pode assumir um valor lógico (V ou F). 
Pode assumir apenas um dos valores lógicos. 
Normalmente são indicados por letras minúsculas do alfabeto. 
Ex.: p, q, r, s, t, etc. 
 
Negação ~p ou p 
 
 
 
 
 
 
Tabela verdade ou tabela de verdade 
 
 
 
 
 
 
 
 
 
 Proposição Composta 
 
São ligados através de conectivos ou condicionais: 
 
Conectivos: 
 
a) conjunção “ ” = “e” 
 
p q 
 
 
 
 
 
 
 
 
 
b) disjunção “ ” “ou” pelo menos uma for verdadeira. (ou inclusivo) 
 
p q 
 
 
~p: não p 
não é verdade que... 
é falso que... 
não é o caso... 
não se dá que... 
p q: p e q, 
p, mas q, 
p, embora q, 
tanto p como q, 
não só p, mas também q, 
p, apesar de q. 
 
Teoria dos conjuntos 
p q: p ou q, 
 p ou q ou ambos, 
p e/ou q (nos documentos legais). 
Teoria dos conjuntos 
p q p q 
V V V 
V F V 
F V V 
F F F 
 
p q p q 
V V V 
V F F 
F V F 
F F F 
 
 2 
 
 
 
 
 
 
 
 
p q, p q, p q (exclusiva, apenas uma é verdadeira), ou p ou q 
 
 
 
 
 
 
 
 
 
 
Ex.: 
Quando você ligou, eu estava no trabalho ou no mercado 
Canto ou assovio. 
 
 
 
Exercícios: 
 
Passe para a linguagem escrita as preposições abaixo 
 
p = eu estudo q = vou passar 
 
a) p q b) p q c) ~p ~q d) ~p ~q 
 
 
 
 
 
 CONDICIONAIS 
Condicional (simples) 
 
 
 
 
 
 
 
 
 
 
p q p q 
V V F 
V F V 
F V V 
F F F 
 
Teoria dos conjuntos 
. 
p q: se p então q, 
 p implica q, 
 p é suficiente e para q, 
 q é necessário para p. 
p A 
q B 
p q: se p, então q, 
 quando p. q, 
 no caso de p, q, 
 q, contanto que p, 
 p é condição suficiente para q, 
 q é condição necessária para p, 
 q, se p, 
 q, quando p, 
 q, no caso de p, 
 p somente quando q, 
 p, só se q, 
 p só no caso de q, 
 p implica q. 
Teoria dos conjuntos 
 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 BICONDICIONAL 
 
p se e somente se q 
p somente q 
 
p q (p q) (q p) 
 
 
1) Represente na linguagem contrária: 
 
a) ~p q 
b) ~p ~q 
c) p q 
d) ~q ~p 
e) ~p ~q 
f) passo ou não passo 
g) se eu não passo então em não estudo 
 
 
2) Faça a negação: 
 
 a) (~p) b) (p q) c) (p q) d) (p q) e) 
(p q) 
 
 
3) (ICMS_SP_FCC) Das cinco frases abaixo, quatro delas têm uma mesma característica 
lógica em comum, enquanto uma delas não tem essa característica. 
I. Que belo dia! 
II. Um excelente livro de raciocínio lógico. 
III. O jogo terminou empatado? 
IV. Existe vida em outros planetas do universo. 
V. Escreva uma poesia. 
A frase que não possui essa característica comum é a 
(A) I. 
(B) II. 
(C) III. 
(D)) IV. 
(E) V. 
Teoria dos conjuntos 
p q p q 
V V V 
V F F 
F V F 
F F V 
 
 OBS: a preposição só será falsa quando p for verdade e q falso. 
 
 4 
 
4) (ICMS_SP_FCC) Considere a proposição “Paula estuda, mas não passa no concurso”. 
Nessa proposição, o conectivo lógico é 
(A) disjunção inclusiva. 
(B)) conjunção. 
(C) disjunção exclusiva. 
(D) condicional. 
(E) bicondicional. 
 
5) (ICMS_SP_FCC) Considere as seguintes frases: 
I. Ele foi o melhor jogador do mundo em 2005. 
II. (x + y)/5 é um número inteiro. 
III. João da Silva foi o Secretário da Fazenda do Estado de São Paulo em 2000. 
É verdade que APENAS 
(A)) I e II são sentenças abertas. 
(B) I e III são sentenças abertas. 
(C) II e III são sentenças abertas. 
(D) I é uma sentença aberta. 
(E) II é uma sentença aberta. 
 5 
RELAÇÕES LÓGICAS 
 
 
Implicação: p q, hipótese Tese, , h T. 
 
p q ( ) a relação é verdadeira quando o condicional simples for verdadeiro. 
 
Equivalência: p q, (p é equivalente a q), p q ( ) 
 
Tautologia = Proposição logicamente verdadeira. 
Contradição = Proposição logicamente falsa. 
Contingência = A proposição não é logicamente verdadeira nem falsa. 
 
Verifique pela tabela: 
 
(p q) = (~p q) (V) 
(p q) (q p) = (p q) (V) 
(p q) = (q p) (recíproca) (F) 
(~p ~q) = (p q) (inversa) (F) 
(p q) = (~q ~p) (Contrapositiva / Contraposta) (V) 
 
~(p q) = ~p ~q 
~(p q) = ~p ~q 
 
Ex.: Qual é a negação de: 
 
Se você comer meu doce então eu fico com raiva é: 
Resp.: Você come meu doce e eu não fico com raiva. 
 
Negue: Eu tenho poder somente quando eu tenho dinheiro. 
Resp.: Ou eu tenho poder ou eu tenho dinheiro 
 
OBS: Transitividade da implicação: (p q) (q r) = p r. 
 
Ex.: “Se o gato mia, ele está vivo” e “se ele está vivo, ele como”, então “se o gato mia, ele 
como”. 
“Se o gato mia então ele está vivo” = “Se o gato não está vivo então ele não mia” 
(p q) = (~q ~p) 
 
1. (ESAF-AFC/2002) Dizer que não é verdade que Pedro é pobre e Alberto é alto, é 
logicamente equivalente a dizer que é verdade que: 
 
a) Pedro não é pobre ou Alberto não é alto; 
b) Pedro não é pobre e Alberto não é alto; 
c) Pedro é pobre ou Alberto não é alto; 
d) Se Pedro não é pobre, então Alberto é alto; 
e) Se Pedro não é pobre, então Alberto não é alto; 
 
01 – A 
p implica q 
Leis de Morgan 
 6 
 
 
TAUTOLOGIAS, CONTRADIÇÕES, CONTINGÊNCIAS: 
 
a) p v ~p c) p p 
b) p ~p d) (p q) ~p v q 
 
 SENTENÇAS ABERTAS FUNÇÃO PROPOSICIONAL 
QUANTIFICAÇÃO LÓGICA 
 
x + 1 > 8 
x + 5 = 9 
x + 1 = x + 1 
x2 – 5x + 6 = 0 
 
 
 
 
 
Para ter valor lógico temos que atribuir valor à variável ou usar quantificadores, 
 
Ex.: a) conjunto verdade = {x / x N; x + 1 > 8} = {8, 9, 10, ....} N; 
 b) {x N; x + 5 = 9} = { 4 } N; 
 c) {x N; x + 1 = x + 1} = N; 
 d) {x N; x2 – 5x + 6 = 0} = { 2,3 } 
 
 
 QUANTIFICADOR UNIVERSAL 
 
 (x) = qualquer que seja x (x) U; P(x) = 2x – 4 = 2x – 4 
 
( x U) (P(x)) ou ( x U), P(x) ou x U; P(x) 
 
 
 QUANTIFICADOR EXISTENCIAL “ ” “ I” 
 
 “ ” “ I” 
Existe, Existe um único 
Existe pelo menos um, 
Existe um, 
Alguns. 
 
Q(x) = x + 5 = 9 I (x); x + 5 = 9 ou I (x), Q(x) 
R(x) = x2 – 5x + 6 = 0 (x); x2 – 5x + 6 = 0 ou (x); R(x). 
 
Faça a negação de: 
 
I) Todos os advogados são honestos, 
Existem advogados desonestos ou, 
em N 
 7 
Alguns advogados são desonestos. 
 
II) Existem mulheres bonitas, 
Não existem mulheres bonitas, 
Todas as mulheres são feias. 
 
 x ; x2 > 4 
 x ; x2 4 
 
IV) x; x + 1 = 5 
 x; x + 1 5 ou x; x+1 = 5 
 
 8 
QUESTÕES DE CONCURSOS 
 
 
1. Em um grupo de amigos, todas as meninas loiras são, também, altas e magras, mas 
nenhuma menina alta e magra tem olhos azuis. Todas as meninas alegres possuem 
cabelos crespos, e algumas meninas de cabelos crespos têm também olhos azuis. 
Como nenhuma menina de cabelo crespos é alta e magra, e como neste grupo de 
amigas não existe nenhuma menina que tenha cabelos crespos, olhos azuis e seja 
alegre, então: 
 
a) pelo menos uma menina alegre tem olhos azuis; 
b) pelo menos uma menina loira tem olhos azuis; 
c) todas as meninas que possuem cabelos crespos são loiras; 
d) todas as meninas de cabelos crespos são alegres; 
e) nenhuma menina alegre é loira. 
 
2. Na formatura de Hélcio, todos os que foram à solenidade de colação de grau 
estiveram, antes, no casamento de Hélio. Como nem todos os amigos de Hélcio 
estiveram no casamento de Hélio, conclui-se que, dos amigos de Hélcio: 
 
a) todos foram à solenidade de colação de grau de Hélcio e alguns não foram ao 
casamento de Hélio; 
b) pelo menos um não foi à solenidade de colação de graude Hélcio, mas não 
foram ao casamento de Hélio; 
c) alguns foram à solenidade de colação de grau de Hélcio, mas não foram ao 
casamento de Hélio; 
d) alguns foram à solenidade de colação de grau de Hélcio e nenhum foi ao 
casamento de Hélio; 
e) todos foram à solenidade de colação de grau de Hélcio e nenhum foi ao 
casamento de Hélio. 
 
3. Dizer que a afirmação “todos os economistas são médicos” é falsa, do ponto de vista 
lógico, equivale a dizer que a seguinte afirmação é verdadeira: 
 
a) pelos menos um economista não é médico; 
b) nenhum economista é médico; 
c) nenhum médico é economista; 
d) pelo menos um médico não é economista; 
e) todos os não-médicos são não-economistas. 
 
4. Se é verdade que “Alguns escritores são poetas” e que “Nenhum músico é poeta”, 
então, também é necessariamente verdade que: 
 
a) nenhum músico é escritor; 
b) algum escritor é músico; 
c) algum músico é escritor; 
d) algum escritor não é músico; 
e) nenhum escritor é músico. 
 
 
 9 
5. Se é verdade que “Alguns A são R” e que “Nenhum G é R”, então é necessariamente 
verdadeiro que: 
 
a) algum A não é G; 
b) algum A é G; 
c) nenhum A é G; 
d) algum G é A; 
e) nenhum G é A. 
 
6. Uma escola de arte oferece aulas de canto, dança, teatro, violão e piano. Todos os 
professores de canto são, também, professores de dança, mas nenhum professor de 
dança é professor de teatro. Todos os professores de violão são, também, professores 
de teatro. Sabe-se que nenhum professor de piano é professor de dança, e como as 
aulas de piano, violão e teatro não têm nenhum professor em comum, então: 
 
a) nenhum professor de violão é professore de canto; 
b) pelo menos um professor de violão é professor de teatro; 
c) pelo menos um professor de canto é professor de teatro; 
d) todos os professores de piano são professores de canto; 
e) todos os professores de piano são professores de violão. 
 
 
GABARITO 
 
 04 – D 
01 – E 05 – A 
02 – B 06 – A 
03 – A 
 
ARGUMENTAÇÃO LÓGICA: 
 
Argumento é uma proposição, oriunda de outras chamadas de premissas para obtermos 
uma conclusão. 
O argumento é válido se a conjunção das premissas implica a conclusão: 
 
...321 ppp
 C 
 
OBS: Não podemos classificar um argumento em V ou F, apenas como válido ou não 
válido (falácia). 
 
Exemplos: 
 
a) Se o gelo é preto, então a neve é azul, o gelo é preto. Logo a neve é azul. 
 
 
 
b) Se 10 é um número par, então a metade de 10 é ímpar. A metade de 10 é ímpar. Logo 
10 e um número par. 
 
 
 1
0 
c) Se chove, Marcos fica resfriado. Marcos não ficou resfriado. Logo, não choveu. 
 
 ~q ~p 
 
 
 
 
 
 
 
 
 
 
 
 
 
d) Se um homem é careca, ele é infeliz. Se um homem é infeliz, ele morre jovem. Logo, 
se um homem é careca então ele morre jovem. 
 
 p q, q r p r (é válido) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e) p q, r p, ~q logo ~r 
 
f) Se os preços sobem, a inflação é inevitável. Os preços sobem e a economia se 
descontrola 
 Logo, a inflação é inevitável. 
 
 
 
 
 
 
 
p q 
~q 
~p 
p q p q ~q ~p 
V V V F F 
V F F V F 
F V V F V 
F F V V V 
 
p q 
q r 
p r 
p q r p q q r p r 
V V V V V V 
V V F V F F 
V F V F V V 
V F F F V F 
F V V V V V 
F V F V F V 
F F V V V V 
F F F V V V 
 
 1
1 
 EXERCÍCIOS 
 
1) Se bebo demasiado me embriago, se me embriago, então acabo dormindo. Logo, se 
bebo demasiado, então acabo dormindo. 
 
 
 
 
2) João ou Pedro estiveram aqui. Se fosse João, o quadro-negro estava cheio de poesias. 
Mas como isso não aconteceu foi Pedro quem esteve aqui. 
 
 
 
 
3) Se o professor não se atrasar a aula começará na hora certa. Assim, se os alunos e o 
professor não se atrasar, a aula começará na hora certa. 
 
 
 
 
 
 
QUESTÕES DE CONCURSOS 
 
 
2. (ESAF-AFC/2002) Se Carina é amiga de Carol, então Carmem é cunhada de Carol. 
Carmem não é cunhada de Carol. Se Carina não é cunhada de Carol, então Carina é 
amiga de Carol. Logo: 
 
a) Carina é cunhada de Carmem e é amiga de Carol; 
b) Carina não é amiga de Carol ou não é cunhada de Carmem; 
c) Carina é amiga de Carol ou não é cunhada de Carol; 
d) Carina é amiga de Carmem e é amiga de Carol; 
e) Carina é amiga de Carol e não é cunhada de Carmem. 
 
3. (ESAF-TCU/2002) O rei ir a caça é condição necessária para o duque sair do castelo, 
e é condição suficiente para a duquesa ir ao jardim. Por outro lado, o conde encontrar 
a princesa é condição necessária e suficiente para o barão sorrir e é condição 
necessária para a duquesa ir ao jardim. O barão não sorriu. Logo: 
 
a) a duquesa foi ao jardim ou o conde encontrou a princesa; 
b) se o duque não saiu do castelo, então o conde encontrou a princesa; 
c) o rei não foi à caça e o conde não encontrou a princesa; 
d) o rei foi à caça e a duquesa não foi ao jardim; 
e) o duque saiu do castelo e o rei não foi à caça. 
 
 
 
 1
2 
4. (ESAF-AFC/2002) Ou Lógica é fácil, ou Artur não gosta de Lógica. Por outro lado, se 
Geografia não é difícil, então Lógica é difícil. Daí segue-se que, se Artur gosta de 
Lógica, então: 
 
a) se Geografia é difícil, então Lógica é difícil; 
b) Lógica é fácil e Geografia é difícil; 
c) Lógica é fácil e Geografia é fácil; 
d) Lógica é difícil e Geografia é difícil; 
e) Lógica é difícil ou Geografia é fácil. 
 
5. (Fiscal do Trabalho/97) Ou A = B ou B = C, mas não ambos. Se B = D, então A = D. 
Ora, B = D, logo: 
 
a) B diferente de C; 
b) B diferente de A; 
c) C igual a A; 
d) C igual a D; 
e) D diferente de A; 
 
 
6. (ESAF-MPU/2004) Se Fulano é culpado, então Beltrano é culpado. Se Fulano é 
inocente, então ou Beltrano é culpado, ou Sicrano é culpado, ou ambos, Beltrano e 
Sicrano, são culpados. Se Sicrano é inocente, então Beltrano é inocente. Se Sicrano é 
culpado, então Fulano é culpado. Logo: 
 
a) Fulano é inocente, e Beltrano é inocente, e Sicrano é inocente; 
b) Fulano é culpado, e Beltrano é culpado, e Sicrano é inocente; 
c) Fulano é culpado, e Beltrano é inocente, e Sicrano é inocente; 
d) Fulano é inocente, e Beltrano é culpado, e Sicrano é culpado; 
e) Fulano é culpado, e Beltrano é culpado, e Sicrano é culpado. 
 
7. (ESAF-TCU/1999) Se Flávia é filha de Fernanda, então Ana não é filha de Alice. Ou 
Ana é filha de Alice, ou Ênia é filha de Elisa. Se Paula não é filha de Paulete, então 
Flávia é filha de Fernanda. Ora, nem Ênia é filha de Elisa nem Inês é filha de Isa. 
 
a) Paula é filha de Paulete e Flávia é filha de Fernanda. 
b) Paula é filha de Paulete e Ana é filha de Alice. 
c) Paula não é filha de Paulete e Ana a é filha de Alice. 
d) Ênia é filha de Elisa ou Flávia é filha de Fernanda. 
e) Se Ana é filha de Alice, Flávia é filha de Fernanda. 
 
8. (ESAF-FTN/1996) Se Nestor disse a verdade, Júlia e Raul mentiram. Se Raul mentiu, 
Lauro falou a verdade. Se Lauro falou a verdade, há um leão feroz nesta sala. Ora, 
não há um leão feroz nesta sala. Logo: 
 
a) Nestor e Júlia disseram a verdade; 
b) Nestor e Lauro mentiram; 
c) Raul e Lauro mentiram; 
d) Raul mentiu ou Lauro disse a verdade; 
e) Raul e Júlia mentiram. 
 
 1
3 
9. (ESAF-MPU/2004) Quando não vejo Carlos, não passeio ou fico deprimida. Quando 
chove, não passeio e fico deprimida. Quando não faz calor e passeio, não vejo Carlos. 
Quando não chove e estou deprimida, não passeio. Hoje, passeio. Portanto, hoje: 
 
a) vejo Carlos, e não estou deprimida, e chove, e faz calor; 
b) não vejo Carlos, e estou deprimida, e chove e faz calor; 
c) vejo Carlos, e não estou deprimida, e não chove, e faz calor; 
d) não vejo Carlos, e estou deprimida, e não chove e não faz calor; 
e) vejo Carlos, e estou deprimida, e não chove e faz calorGABARITO 
 
01 – B 
02 – C 
03 – C 
04 – A 
05 – E 
06 – B 
07 – B 
08 – C 
 
 
 1
4 
CORRELAÇÃO LÓGICA 
 
São questões de raciocínio lógico que envolvem situações de correlacionamento entre os 
dados. 
Uma importante característica é que para cada situação, a quantidade de dados é sempre 
a mesma. 
Ex.: três pessoas, três marcas de carros, três cores diferentes, etc. 
 
 
QUESTÕES DE CONCURSOS 
 
01. Em torno de uma mesa quadrada, encontram-se sentados quatro sindicalistas. 
Oliveira, o mais antigo entre eles, é mineiro. Há também um paulista, um carioca e um 
baiano. Paulo está sentado à direita de Oliveira. Norton, à direita do paulista. Por sua 
vez, Vasconcelos, que não é carioca, encontra-se à frente de Paulo. Assim, 
 
a) Paulo é baiano e Vasconcelos é paulista. 
b) Paulo é paulista e Vasconcelos é baiano 
c) Norton é baiano e Vasconcelos é paulista. 
d) Norton é carioca e Vasconcelos é paulista. 
e) Paulo é carioca e Vasconcelos é baiano 
 
02. (ESAF/AFTN/96) Os carros de Artur, Bernardo e César são, necessariamente nesta 
ordem, uma Brasília, uma Parati e um Santana. Um dos carros é cinza, um outro é 
verde, e o outro é azul. O carro de Artur é cinza; o carro de César é o Santana; o carro 
de Bernardo não é verde e não é Brasília. As cores da Brasília, da Parati e do Santana 
são, respectivamente: 
 
a) cinza, verde e azul; 
b) azul, cinza e verde; 
c) azul, verde e cinza; 
d) cinza, azul e verde; 
e) verde, azul e cinza. 
 
03. (ESAF-AFC.2002) Um agente de viagens atende três amigas. Uma delas é loura, 
outra é morena e a outra é ruiva. O agente sabe que uma delas se chama Bete, outra 
se chama Elza e a outra se chama Sara. Sabe, ainda, que cada uma delas fará uma 
viagem a um país diferente DA Europa: uma delas irá à Alemanha, outra irá à frança e 
a outra irá à espanha. Ao agente de viagens, que queria identificar o nome e o destino 
de cada uma, elas deram as seguintes informações: 
 
 a loura: “Não vou à França nem à espanha”; 
 a morena” “Meu nome não é Elza nem Sara”; 
 a ruiva: ”Nem eu nem Elza vamos à França”. 
 
 O agente de viagens concluiu, então, acertadamente, que: 
 
a) a loura é Sara e vai à Espanha; 
b) a ruiva é Sara e vai à França: 
c) a ruiva é Bete e vai à Espanha; 
 1
5 
d) a morena é Bete e vai à Espanha; 
e) a loura é Elza e vai à Alemanha. 
 
 
04 (TCE-SP/FCC 2010/Aux. fiscalização) - Oito carros, de marcas e cores distintas, estão 
alinhados, lado a lado, aguardando o momento da largada para a disputa de uma corrida. 
Considere as seguintes informações: 
 
− o Volkswagen está entre os carros vermelho e branco; 
− o carro branco é o primeiro à esquerda do Honda; 
− o Audi é o segundo carro à esquerda do Volkswagen e o primeiro à direita do carro azul; 
− o Subaru está imediatamente ao lado do de cor preta e não tem carro à sua direita; 
− o carro preto está entre o Subaru e o de cor amarela; 
− o Fiat está à esquerda do carro verde e não tem carro à sua esquerda; 
− à direita do carro verde está o Chevrolet; 
− o Honda é o segundo carro à direita do de cor creme e o segundo carro à esquerda do 
de cor marron; 
− o Renault é o segundo carro à esquerda do Ford. 
Com base nessas informações, é correto afirmar que as cores dos carros das marcas 
Ford, Renault e Volkswagen são, respectivamente, 
 
(A) verde, branca e azul. 
(B) preta, creme e amarela. 
(C) preta, branca e creme. 
(D) branca, creme e verde. 
(E) amarela, vermelha e creme. 
 
GABARITO 
 
1 – B 
2 – D 
3 – E 
4 – B 
 
 1
6 
CONTRADIÇÃO LÓGICA 
 
As situações que envolvem contradição lógica ou verdade ou mentira, usam o raciocínio 
lógico para descobrir as contradições, tentando descobrir quem mente ou fala a verdade. 
 
Vamos treinar: 
 
01. (TCE-GO/FCC 2009/Téc. Controle Externo) - Serena está muito preocupada com sua 
amiga Corina, pois descobriu que todas as quartas, quintas e sextas-feiras ela só fala 
mentiras e nos demais dias da semana ela fala apenas a verdade. Certo dia em que 
foram almoçar juntas, Corina disse a Serena: 
 
− “Ontem foi meu dia de mentir, mas só voltarei a fazê-lo daqui a três dias.“ 
 
Com base na afirmação de Corina, tal almoço só pode ter ocorrido em 
 
(A) uma segunda-feira. 
(B) uma quarta-feira. 
(C) uma sexta-feira. 
(D) um sábado. 
(E) um domingo. 
 
 
02. (MRE/FCC 2009/Oficial de Chancelaria) - Questionados sobre a falta ao trabalho no 
dia anterior, três funcionários do Ministério das Relações Exteriores prestaram os 
seguintes depoimentos: 
 
− Aristeu: “Se Boris faltou, então Celimar compareceu.” 
− Boris: “Aristeu compareceu e Celimar faltou.” 
− Celimar: “Com certeza eu compareci, mas pelo menos um dos outros dois faltou.” 
 
 Admitindo que os três compareceram ao trabalho em tal dia, é correto afirmar que 
 
(A) Aristeu e Boris mentiram. 
(B) os três depoimentos foram verdadeiros. 
(C) apenas Celimar mentiu. 
(D) apenas Aristeu falou a verdade. 
(E) apenas Aristeu e Celimar falaram a verdade. 
 
 
03. Uma empresa produz andróides de dois tipos: os de tipo V, que sempre dizem a 
verdade, e os de tipo M, que sempre mentem. Dr. Turing, um especialista em Inteligência 
Artificial, está examinando um grupo de cinco andróides – rotulados de Alfa, Beta, Gama, Delta 
e Épsilon –, fabricados por essa empresa, para determinar quantos entre os cinco são do tipo 
V. Ele pergunta a Alfa: “Você é do tipo M?” Alfa responde mas Dr. Turing, distraído, não ouve a 
resposta. Os andróides restantes fazem, então, as seguintes declarações: 
 
Beta: “Alfa respondeu que sim”. 
Gama: “Beta está mentindo”. 
Delta: “Gama está mentindo”. 
Épsilon: “Alfa é do tipo M”. 
 1
7 
 
Mesmo sem ter prestado atenção à resposta de Alfa, Dr. Turing pôde, então, concluir 
corretamente que o número de andróides do tipo V, naquele grupo, era igual a 
 
a) 1. 
b) 2. 
c) 3. 
d) 4. 
e) 5. 
 
 
04. Numa ilha dos mares do sul convivem três raças distintas de ilhéus: os zel(s) só mentem, os 
del(s) só falam a verdade e os mel(s) alternadamente falam verdades e mentiras − ou seja, uma 
verdade, uma mentira, uma 
verdade, uma mentira −, mas não se sabe se começaram falando uma ou outra. 
Nos encontramos com três nativos, Sr. A, Sr. B, Sr. C, um de cada uma das raças. 
Observe bem o diálogo que travamos com o Sr. C 
Nós: − Sr. C, o senhor é da raça zel, del ou mel? 
Sr. C: − Eu sou mel. (1a resposta) 
Nós: − Sr. C, e o senhor A, de que raça é? 
Sr. C: − Ele é zel. (2a resposta) 
Nós: − Mas então o Sr. B é del, não é isso, Sr. C? 
Sr. C: − Claro, senhor! (3a resposta) 
Nessas condições, é verdade que os senhores A, B e C 
são, respectivamente, 
(A) del, zel, mel. 
(B) del, mel, zel. 
(C) mel, del, zel. 
(D) zel, del, mel. 
(E) zel, mel, del. 
 
GABARITO 
1 – D 
2 – D 
3 – B 
4 - B 
 
 
 
 
 
 
 
 
 
 
 
 
 1
8 
Seqüências Numéricas 
 
 
 
Um tipo de teste de raciocínio numérico apresenta uma seqüência numérica, em 
que se é pedido o próximo número da seqüência. Neste caso, a relação de 
unidade entre os números dados é a chave. Este teste necessita de aprendizagem 
anterior de aritmética. 
Para determinarmos a lógica de formação de uma seqüência numérica, devemos 
observar se: 
a) A seqüência é formada por elementos que não podem ser obtidos por 
cálculo. 
Nesse caso só conheceremos o próximo elemento da seqüência se soubermos 
qual é a sua característica, por exemplo, os números Primos. Veja alguns 
números Primos. 
2 3 5 7 11 13 17 19 23 29 31 ..... 
b) A seqüência é formada por elementos que podem ser obtidos por cálculo 
ou por uma característica. 
Nesse caso incluímos os números pares, os números impares e as potências dos 
números naturais. 
Números Pares: 0 2 4 6 8 10 ..... 
O próximo número da seqüência é o 12 = 10 +2, ou 12 por que é o próximo 
número par. 
NúmerosÍmpares: 1 3 5 7 9 11 ..... 
O próximo número da seqüência é o 13 = 11 +2, ou 13 por que é o próximo 
número ímpar. 
 Observe que em ambas as seqüencias o acréscimo é sempre constante e 
igual a 2. 
 Potências com expoente 2 dos números naturais. 
 0 (02) 1 (12) 4 (22) 9(32) 16(42) 25(52) 
 Os acréscimos são previsíveis, porem não são constantes 
 1 – 0 = 1; 4 – 1 = 3; 9 – 4 = 5; 16 – 9 = 7; 25 – 16 = 9; 
 c) A seqüência é formada por elementos que só podem ser obtidos por 
cálculo 
 Nesse caso devemos observar se os elementos estão em ordem crescente, 
em ordem decrescente ou se nem é crescente ou decrescente. 
 Nas seqüencias estritamente crescente ou decrescente, precisamos definir 
os acréscimos ou decréscimos. 
 Nas seqüencias que não apresentam esses comportamentos, uma 
estratégia é a de se separar os elementos contínuos, formando varias seqüencias. 
 
 
 
Por exemplo, para completarmos os espaços da seqüência abaixo: 
20 23 22 25 24 27 .... .... 
Vamos separar a seqüência da seguinte forma: 
 1
9 
S1 20 22 24 ....... 
S2 23 25 27 ..... 
A seqüência (S2) é formada pelo numero pares iniciados no 20, logo a seqüência 
será 20, 22, 24 então o primeiro espaço será preenchido pelo 26. 
A seqüência (S3) é formada pelo numero impares iniciados no 23, logo a 
seqüência será: 23, 25,27 então o segundo espaço será preenchido pelo 29. 
Uma mesma seqüência poderá ter várias interpretações, como esse nossos 
exemplo, pois poderíamos pensar da seguinte forma: 20 + 3 = 23, 23 – 1 = 22, 22 
+ 3 = 25, 25 – 1 = 24, 24 + 3 = 27 
Então os próximos seriam: 27 – 1 = 26, 26 + 3 = 29. 
d) A seqüência é formada por elementos que com aparência de tabuada 
 Nesse caso sugerimos, escrever a seqüência na forma de tabuada, para 
facilitar a visualização. 
 Por exemplo, a seqüência 3, 9, 18, 30, ...., poderá ser reescrita da forma: 
 3 x 1, 3 x 3, 3 x 6, 3 x 10, .... 
Exercícios 
01. (BACEN_94) ....
....
;
49
64
;
36
25
;
9
16
;
4
1
 
a) 90
82
 b) 100
81
 c) 72
100
 d) 72
99
 e) 81
100
 
02. (BACEN_98) O próximo termo da sucessão 1, 3, 6, 8, 11, 13, 16,.. é 
a) 18 b) 19 c) 22 d) 23 e) 25 
03 (ICMS_SP_97_VUNESP) Continuando a seqüência 47, 42, 37, 33, 29, 26,..., 
temos 
a) 21 b) 22 c) 23 d) 24 e) 25 
04. (ICMS_SP_97) Continuando a seqüência 4, 10, 28, 82, ..., temos 
a) 236 b) 244 c) 246 d) 254 e) 256 
 
 
05. Assinale a alternativa que substitui a letra x. 
 
(A) 29 (B) 7 (C) 6 (D) 5 (E) 3 
 
Dominós 
06) As pedras de dominó mostradas abaixo foram dispostas, sucessivamente e no 
sentido horário, de modo que os pontos marcados obedeçam a um determinado 
critério. 
 2
0 
 
Com base nesse critério, a pedra de dominó que completa corretamente a 
sucessão é 
 
07) Para formar a seguinte seqüência de pedras de dominó, considere que elas 
foram dispostas sucessivamente e da esquerda para a direita, seguindo um 
determinado critério. 
 
Segundo esse critério, a pedra que deve corresponder àquela que tem os pontos 
de interrogação é: 
 
08) As pedras de dominó abaixo foram, sucessivamente, colocadas da esquerda 
para a direita, de modo que tanto a sua parte superior como a inferior seguem 
determinados padrões. 
 
A pedra de dominó que substitui a que tem os pontos de interrogação é: 
 
 
 
 
 
 2
1 
 
SEQÜÊNCIAS ALFABÉTICAS 
1.1. Ordenação dos elementos de uma seqüência alfabética 
Introdução: Situações nas quais os elementos da seqüência são letras do 
alfabeto. 
Estratégia: Associar um número a cada letra do alfabeto, e verificar a variação 
numérica, para identificar a variação alfabética. Podemos dividir as letras em dois 
grupos: consoantes e vogais. 
Cuidados 
1º. Verificar se o alfabeto a ser usado é o oficial com 26 letras, sem k, w e y ou se 
é o alfabeto incompleto com 23 letras, sem as letras k, w e y. 
Para alguns exercícios que envolvem seqüências alfabéticas, relacionando a letra 
com a posição que ela ocupa, poderá facilitar o entendimento da Lei de Formação 
usada 
Alfabeto oficial com 23 letras 
a b c d e f 
1 2 3 4 5 6 
g h i j l m 
7 8 9 10 11 12 
n o p q r s 
13 14 15 16 17 18 
t u v x z 
19 20 21 22 23 
 
 
Exemplo 
Complete a série: 
B D G L Q ..... 
a) R b) T c) V d) X e) Z 
Exercícios de Fixação 
09 Continuando a seqüência de letras F, N, G, M, H .... temos, respectivamente: 
a) O, P. b) I, O. c) E, P. d) L, I. e) D, L. 
10 (TRF_RJ_07_FCC). Considere que a seqüência (C, E, G, F, H, J, I, L, N, M, O, 
Q, ...) foi formada a partir de certo critério. Se o alfabeto usado é o oficial, que tem 
23 letras, então, de acordo com esse critério, a próxima letra dessa seqüência 
deve ser 
(A) P (B) R (C) S (D) T (E) U 
Considerando que a ordem alfabética é a oficial e exclui as letras K, W e Y, então, 
se as letras foram dispostas obedecendo a determinado critério, a letra que 
deveria ocupar o lugar do ponto de interrogação é: 
11) (TRT) 
 
a) J; b) L; c) M; d) N; e) O. 
 2
2 
12) (TCE-PB) 
 
a) T; d) P; b) Q; e) R. c) S; 13. 
 
 
a) 19T 
b) 20U 
c) 21V 
d) 22Xe) 23Z 
 
 
 
 
14. Considere a seqüência de retângulos com os respectivos números e letras, 
obedecendo a uma lei de formação. 
 
Considerando as letras do alfabeto, excluindo-se K , W e Y, a alternativa que 
corresponde ao sexto retângulo é 
 
15. Segundo um determinado critério, foi construída a sucessão seguinte em que 
cada termo é composto de uma letra seguida de um número: A1 - C2 - F3 - J4 - 
?5 
Considerando que na ordem alfabética usada são excluídas as letras K, Y e W; 
então, de acordo com esse critério, a letra que deverá substituir o ponto de 
interrogação é: 
a) M; b) N; c) O; d) P; e) Q. 
16. (TRF) Assinale a alternativa que completa a série seguinte: C3, 6G, L10,... 
a) C4. b) 13M. c) 9I. d)15R. e) 6Y. 
 
 
Gabarito: 
01.B 02.A 03.C 04.B 05.D 06.E 07.A 08.C 
09.D 10.A 11.E 12C 13ª. 14.B 15.D 16.D 
 
 
 
 
 
 
 2
3 
 
CONJUNTOS 
 
No estudo da teoria dos Conjuntos, certas noções são consideradas primitivas, 
aceitas sem definição. 
Conjunto não se define, da idéia de grupo, coleção. 
 
Ex.: Quando dizemos: “Conjunto dos Estados Brasileiros” – Bahia é um Estado 
Brasileiro. 
 Então Bahia é um elemento deste conjunto. Quando falamos em “Conjunto” 
automaticamente lembramos “elemento”. Elemento caracteriza um conjunto. 
 
Indicamos conjunto com letras maiúsculas do alfabeto: A, B, C, ... 
E os elementos com letras minúsculas do alfabeto: a, b, c, ... 
 
Representação: 
 
Basicamente, usamos três maneiras pra representar os elementos de um 
conjunto. 
 
1. Quando um conjunto é dado pela enumeração de seus elementos. 
(Mesmo quando possui infinitivos elementos), indicamo-lo escrevendo 
seus elementos entre chaves e separados por vírgulas. 
 
EXEMPLO: 
 
Conjunto de vogais: { a, e, i, o, u } 
 
2. Podemos também representar um conjunto enunciando uma 
propriedade comum aos seus elementos: 
A = {x | x possui tal propriedade} = {x | x é vogal} 
3. Um terceiro modo é representar seus elementos por pontos dentro de 
uma linha fechada que não se entrelaça. 
 
 
 
 
 
 
 
 
 
Conjunto Unitário 
 
É aquele que tem um só elemento. 
Ex.: a) { 1 } b) { 20 } c) { x | x é mês com inicial f } 
 
 2
4 
Conjunto Vazio 
 
Chamamos de conjunto vazio aquele que não possui elemento. Indicamos 
conjunto vazio pelo símbolo Ø ou por um par de chaves sem elementos entre elas: 
{ }. 
Ex.: A = { x / x + 1 = x }. Portanto, A = Ø ou A = { }, pois não existe número que 
somado com 1 resulte ele mesmo. 
 
Conjunto Universo 
 
É o maior conjunto que estamos trabalhando, dele retiramos os conjuntos que 
iremos necessitar. 
Ex.: a) O conjunto de meninas da sala de aula. b) O conjunto dasmeninas 
da cidade 
- O conjunto universo é a sala de aula em a) e a cidade em b). 
 
Relação de Pertinência 
 
Relaciona elemento com conjunto. 
Utilizam-se os símbolos: 
 
 = pertence Ex.: a) a {a, e, i, o, u} 
 = não pertence Ex.: b) d {a, e, i, o, u} 
 
Relação de Inclusão 
 
Relaciona conjunto com conjunto. 
Utilizam-se os símbolos: 
 
 = está contido = contém 
 = não está contido = não contém 
 
a) { a } {a, b, c} 
b) { b } {a, c, d} 
c) { vogais do alfabeto } { a } 
 
Subconjuntos 
 
Quando todos os elementos de um conjunto A qualquer pertencem a um conjunto 
B, diz-se então que A é um subconjunto de B, ou seja: 
A B (A está contido em B) ou A B (A não está contido em B). 
Obs.: A A e A. 
 
Conjunto das Partes 
 
 2
5 
O conjunto das partes de A representado por p ( A ) é o conjunto formado por 
todos os subconjuntos de A, inclusive o e o próprio A. 
Obs.: O e o conjunto A, são chamados partes IMPRÓPRIAS: 
a) Se A = { m, p }, então p(A) = { , {m}, {b}, {m, b} } 
b) Se M = { 1, 2, 3 }, então p(M) = { . {1}, {2}, {3}, {1, 2}, {1, 3}, {2,3}, {1, 2, 3}} 
 
IMPORTANTE: Se o conjunto A possui n elementos, então o conjunto A conterá “
n2
” subconjuntos ou partes. 
 
 Nº. de elementos de p(A) = n (p (A)) = 2n (A) 
 
Conjuntos Iguais 
 
Dois conjuntos A e B são iguais quando todo elemento A for elemento de B e todo 
elemento de B for elemento de A. 
 
A = B (
x
; x A X B) 
Ex.: a) {1, 5, 7, 9} = {9, 7, 5, 1} b) {2, 4, 2, 2} = {2, 4} 
 
 
 
 
 
 
 
 
Operações com Conjuntos 
 
REUNIÃO (OU UNIÃO) DE CONJUNTOS – A B 
 
Dados conjuntos A e B, chama-se conjunto união (ou reunião) de A e B ao 
conjunto C dos elementos que pertencem a A ou a B. 
 
C = A B = { x / x A ou x B} 
 
Exemplos: 
a) {1. 2} {3, 4} = {1, 2, 3, 4} c) {1, 2, 3} = {1, 2, 3} 
b) {1, 2, 3} {3, 2, 5} = {1, 2, 3, 5} d) {1, 2} {4, 6} {3, 4} = {1, 2, 3, 
4, 6} 
 
 
 
 
 2
6 
Em diagrama: A B 
 
 
 
 
 
 
 
 
 
 
Interseção de Conjuntos 
 
Dados dois conjuntos A e B, chama-se de interseção de A e B ao conjunto C 
formado por elementos que pertençam a A e B simultaneamente. 
Simbolicamente: C = A B lê-se: “A inter B” 
 
C = A B = { x / x A e x B } 
 
Exemplos: 
a) {1, 2, 3} {2, 3, 4} = {2, 3} c) {2, 4, 6} {2, 4, 6} = {2, 4, 6} 
b) {a, b, c, d} {a} = {a} d) {1, 3, 5} {2, 4, 6} {2, 4, 6} = { } 
 
Em diagrama: A B 
 
 
 
 
Número de elementos de um conjunto 
 
Dado um conjunto A, representa-se o número de elementos de A por n(a). 
Então para a união, podemos escrever: 
n (A B) = n (A) + n (B) – n (A B) 
 
 
 
 
 
 
 
 
 
 2
7 
 
Diferença de Conjuntos 
 
Dados dois conjuntos A e B, chama-se diferença entre dois conjuntos A e B (nesta 
ordem) ao conjunto formados pelos elementos que pertençam a A e não 
pertençam a B. 
 
Simbolicamente: A – B = {x / x A e x B} 
 
a) A = {a, b, f} b) {2, 4} – {2, 4, 6} = { 
} 
B = {b, c, d, e} c) { } – {2, 4} = { } 
A – B = {a, f} d) {2, 4} – { } = {2, 4} 
 
Em diagrama: A – B 
 
 
 
 
Diferença Complementar: 
 
Dados dois conjuntos A e B, com a condição de B está contido em A, chama-se 
complementar de B em relação a A ao conjunto A – B e escrevemos: 
 
B
AC
 = A – B se B A. 
 
Obs.: O complementar de um conjunto A qualquer em relação a U pode ser 
representado por A’, ou: 
 
A = A’ = 
uC
A = U – A 
 
 
Diferença Simétrica ( ) 
 
Chama-se diferença simétrica entre dois conjuntos, A e B, e representa-se A B, 
o conjunto formado pelos elementos não comuns a A e B, isto é: 
 
A B = (A – B) (B – A) ou A B = (A B) – (A B) 
 
 
 
 2
8 
 
 
 
EXERCÍCIOS: 
 
1) Dado um conjunto A = { 0; 1; 2; {3} }, verifique a veracidade das afirmações: 
 
a) ( ) 0 A e) ( ) {0; 1} A 
b) ( ) 1 A f) ( ) A 
c) ( ) {3} A g) ( ) A 
d) ( ) {3} A h) ( ) 3 A 
 
GABARITO: 
 
1. V, F, V, F, V, V, F, F 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 2
9 
a) Percentual: 15% 
b) Fração centesimal: 
100
15
 
c) Decimal ou unitária: 0,15 
 
 
PORCENTAGEM OU PERCENTAGEM 
 
Observe a seguinte situação: 
 
Nas pesquisas eleitorais, 15% estão indecisos. A colocação feita significa que 
dentre cada 100 pessoas entrevistadas, 15 estão indecisas. 
15% é a taxa de porcentagem ou percentual, 15 é a porcentagem, admitindo-se 
100 como principal. 
 
Formas de taxa: 
 
 
 
 p = i . P p = porcentagem 
 i = taxa 
 P = principal 
Os problemas de porcentagem são tão-somente problemas de uma regra de três 
simples, onde as grandezas envolvidas são diretamente proporcionais. 
 
Exemplos: 
 
a) Numa classe de 35 alunos, compareceram 28. qual a taxa da presença? E da 
ausência? 
Solução: 
Temos: 35 alunos correspondem a 100% 
 28 alunos correspondem a x% 
Então: 35 - 100 
 
 28 - x 
 
x = 80% 
b) Em um certo dia, 200 funcionários de uma fábrica não comparreceram ao 
trabalho. Sabendo-se que 60% estiveram presentes, quantos funcionários existem 
na fábrica? 
Presentes: 60% - x 
 40% - 200 
 
40%
200 60%
x
 
x = 300 então o total é: 
 
300 + 200 = 500 funcionários. 
 
 3
0 
AUMENTOS SUCESSIVOS 
 
Imagine a seguinte situação: 
 
Um comerciante realiza dois aumentos, um após o outro, de 20% e 10%. Qual foi 
o percentual total de aumento? 
 
100 + 20% de 100 = 120 (1º aumento) e 
120 + 10% de 120 = 132 (2º aumento) 
Diferença: 132 – 100 = 32 
ou seja 
32% 
 
Utilizando uma expressão apenas para o percentual de aumento: 
(1+i1) . (1+i2) –1 = (1,2) x (1,1)=1,32–1 = 0,32 ou 32% 
Generalizando: (1+i1) . (1+i2) . (1+i3)... – 1 
 
 
ABATIMENTOS SUCESSIVOS 
 
A situação é de abatimentos, um após o outro de 20% e 10%: 
 
100 – 20% de 100 = 80 (1º desconto) e 
80 – 10% de 80 = 72 
Diferença: 100 – 72 = 28 ou seja 28% 
de abatimento total. 
 
Utilizando uma expressão para o percentual de abatimento ou desconto. 
 
1 - (1-i1) . (1-i2) = 1 - (1 - 0,2) x (1 - 0,1) =1 – (0,8) x (0,9) = 1 – 0,72 = 0,28 ou 28% 
 
Generalizando: 1 - (1-i1) . (1-i2) . (1-i3)... 
 
 3
1 
EXERCÍCIOS PROPOSTOS 
 
1) (TÉCN.JUDIC.-BAHIA-2003-FCC) Comparando as quantidades de processos 
arquivados por um técnico judiciário durante três meses consecutivos, observou-
se que, a cada mês, a quantidade aumentara em 20% com relação ao mês 
anterior. Se no terceiro mês ele arquivou 72 processos, qual o total arquivado nos 
três meses? 
(A) 182 
(B) 186 
(C) 192 
(D) 196 
(E) 198 
 
2) (TRT-21ª REGIÃO-2003-FCC) Um comerciante compra um artigo por R$ 80,00 
e pretende vendê-lo de forma a lucrar exatamente 30% sobre o valor pago, 
mesmo se der um desconto de 20% ao cliente. Esse artigo deverá ser anunciado 
por 
(A) R$ 110,00 
(B) R$ 125,00 
(C) R$ 130,00 
(D) R$ 146,00 
(E) R$ 150,00 
 
3) (AUX.SERV.CAMPO-MARANHÃO-2005-FCC) Em 02/01/2005, a fiscalização 
em certa reserva florestal acusou que o número de espécies nativas havia 
diminuído de 60%, em relação a 02/01/2004. Para que, em 02/01/2006, o número 
de espécies nativas volte a ser o mesmo observado em 02/01/2004, então, 
relativamente a 02/01/2005, será necessário um aumento de 
(A) 60% 
(B) 80% 
(C) 150% 
(D) 160% 
(E) 180% 
 
4) Um levantamento sócio-econômico entre os alunos da Federal, revelou que 
22% das famílias têm casa própria, 30% têm automóvel e 12% casa própria e 
automóvel. O percentual dos que não tem casa própria nem automóvel é de: 
a) 46% d) 40% 
b) 54% e) n. r. a. 
c) 60% 
 
5) (GUARDA CIVIL METR.-SP-2004-FCC) 
 Uma mercadoria é vendida à vista por R$ 799,00, ou em duas prestações iguais. 
Sabendoque o preço total da mercadoria a prazo é 10% superior ao preço à vista, 
cada 
prestação da compra a prazo é igual a 
(A) R$ 479,40 
 3
2 
(B) R$ 459,99 
(C) R$ 439,45 
(D) R$ 419,99 
(E) R$ 403,45 
 
6) Supondo que nos três primeiros meses do ano a inflação foi de 5%; 4%; 10% 
respectivamente determinar, em porcentagens, a inflação acumulada no trimestre: 
 
a) 20,12% d) 15% 
b) 10,18% e) n. r. a. 
c) 8% 
7) Numa loja, o preço de um par de sapatos era de R$ 140,00. para iludir os 
consumidores, o dono aumentou o preço de todos os artigos em 50% e, em 
seguida, anunciou um desconto de 20%. Esse par de sapatos ficou aumentado de: 
 
a) R$ 26,00 d) R$ 34,00 
b) R$ 28,00 e) n. r. a. 
c) R$ 31,00 
RESPOSTAS 
1. A 2. C 
3. C 4. C 
5. C 6. A 
7. B

Outros materiais