Buscar

2 AcionamentoecomandoseletrcoI

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 41 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 41 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 41 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

ACIONAMENTO E COMANDOS ELÉTRICOS 
 
 
 
 
 
 
 
 
 
 
46 
 
INTRODUÇÃO 
 
Antes de começar a falar sobre as diversas formas de acionar e controlar o funcionamento de um 
motor ou outro dispositivo, vamos primeiro fazer um breve resumo sobre motores. 
Em geral, as maquinas convertem uma energia em outra. Um motor a combustão converte energia 
química em energia mecânica, um motor elétrico converte a energia elétrica em energia mecânica. 
Onde então utilizamos estas conversões de energias para gerar diversos tipos de trabalho. Ex. um 
motor acoplado a uma bomba, faz a movimentação da água no interior de uma tubulação. 
 
MOTORES ELÉTRICOS 
 
Com uma construção simples, versátil e de baixo custo, aliado ao fato de utilizar uma fonte de 
alimentação, a energia elétrica, o motor elétrico é hoje o meio mais indicado para a transformação de 
energia elétrica em energia mecânica (movimento rotativo). 
 
 
47 
 
 
Tipos de motores elétricos 
 
 
 
48 
 
 
Motor trifásico (site WEG motores) 
 
Elementos básicos de um motor 
 
Para entender os elementos de um motor, vamos definir os tipos de motores quando ao tipo de 
alimentação. Na figura abaixo podemos identificar estes elementos. 
 
Vista explodida (site WEG motores) 
 
49 
 
 
TIPOS DE ACIONAMENTOS 
 
 ACIONAMENTO CONVENCIONAL – Conhecido como partidas convencionais de motores 
utilizam-se de dispositivos eletromecânicos para o acionamento (partida) do motor (ex. 
contatores eletromecânico, interruptores mecânicos, etc.). 
 ACIONAMENTO ELETRÔNICO – conhecido como partidas eletrônicas de motores 
utilizam-se de dispositivos eletrônicos que realizam o acionamento do motor (ex. soft-
starters, inversores de frequência, etc.). 
Os sistemas de acionamento têm como funções básicas: 
 A conexão e desconexão do motor à rede de alimentação; 
 O comando e o controle das características de desempenho durante a partida. 
 
Para acionamento de forma segura e precisa destes motores são aplicadas os seguintes tipos de 
partidas: 
 Partida Direta/ Reversora: Acionamento de pequenos motores; 
 Partida Estrela Triângulo: Acionamento de grandes motores sem carga; 
 Partida Compensadora: Acionamento de grandes motores com carga; 
 Partida com Soft-Starter: Acionamento de grandes motores com carga; 
 Partida com Inversor de Frequência: Acionamento de pequenos e grandes motores 
 
Características de partida 
 
O termo “partida” é definido como sendo a passagem de uma maquina do estado de repouso ao 
movimento em regime de velocidade, incluindo a energização, arranque, aceleração e se necessário à 
sincronização com a fonte de alimentação. A figura abaixo apresenta a sequencia para acionamento 
de um motor trifásico de corrente alternada. 
 
50 
 
 
 
 
 
ACIONAMENTO CONVENCIONAL 
 
Partida Direta/Reversora(plena tensão) 
 
Por se tratar de acionamentos de pequenos motores este tipo de partida pode ser manual ou 
magnética. 
A partida manual consiste em manobrar um dispositivo que liga e desliga o motor à rede de 
alimentação. Figura abaixo. 
 
51 
 
 
 
Partida com chave magnética 
 
A partida com chave magnética (contadora): Consiste em ligar e desligar o motor à rede de 
alimentação. Este dispositivo contém um mecanismo de abertura e fechamento de contados no 
circuito do motor, que por sua vez pode ser manobrado a distância eletricamente. A figura abaixo 
apresenta o circuito de força para este tipo de partida. 
 
 
Diagrama principal com partida direta com chave magnética 
 
 
52 
 
Partida Estrela-triangulo 
 
Este circuito possibilita uma redução de até 1/3 da corrente de partida do motor. Para isso, o motor 
devera possuir dupla tensão. A menor tensão deverá ser igual à tensão de rede e a outra √3 vezes 
maior. 
É fundamental para a partida com a chave estrela - triângulo que o motor tem a possibilidade de 
ligação em dupla tensão, ou seja, em 220 / 380 v, em 380/660 v ou 440/760 v. Os motores deverão 
ter no mínimo 6 bornes de ligação acessíveis. A partida estrela- triângulo poderá ser usada quando a 
curva de conjugados(torques) do motor é suficientemente elevada para poder garantir a aceleração da 
carga com a corrente de partida na ligação triângulo. Também a curva do conjugado (torque) é 
reduzida na mesma proporção. Por este motivo, sempre que for necessária uma partida estrela - 
triângulo deverá ser usado um motor com curva de conjugado elevado. Antes de se decidir por uma 
partida estrela- triângulo será necessário verificar se o conjugado de partida será suficiente para 
operar a carga. O conjugado resistente da carga não poderá ultrapassar o conjugado de partida do 
motor, nem a corrente no instante da mudança para triângulos poderá ser de valor inaceitável. A 
chave estrela - triângulo em geral só pode ser empregada em partidas da máquina em vazio, isto é, 
sem carga. Somente depois de ter atingido a rotação nominal, a carga poderá ser aplicada. 
Relação entre tensões da rede e do motor que permitem a ligação estrela-triangulo 
Motor 
Rede de alimentação 
Ligação 
220/380 volts 
220 volts 
∆ Ү 
380/660 volts 
380 volts 
∆ Ү 
440/760 volts 
440 volts 
∆ Ү 
 
 
53 
 
O esquema principal abaixo apresenta a ligação do motor em estrela-triangulo. 
 
 
Partida compensadora 
 
Esse tipo de partida é normalmente utilizado em circuitos onde a limitação da corrente de partida e 
importante, ele possibilita baixa corrente de linha e baixas perdas durante as partidas. Este circuito 
utiliza um autotransformador de potência elevada com vários tapes de saída, normalmente 50%, 65% 
e 80%. O motor nesse caso pode ter apenas 3 terminais de saída, pois o autotransformador é ligado 
na alimentação do motor. 
Nessa partida o motor pode partir com carga e vai acelerando conforme a comutação dos tapes do 
autotransformador que pode ser manual ou por meio de contatores. 
A seguir é apresentado o esquema principal de um motor acionado por uma chave compensadora. 
 
 
 
 
54 
 
 
 
 
ACIONAMENTO ELETRÔNICO 
 
Partida com Soft-Starter 
 
São conhecidas como partidas em rampa, adequada para partidas e paradas suaves, ideais para locais 
onde não aceitas frenagens bruscas. Este dispositivo tem base eletrônica, o que permite uma serie de 
ajustes dos parâmetros de funcionamento. É largamente utilizado em cargas acionadas por motores 
de potências superiores e cargas com grande momento de inercia. Ex. ventiladores de grande porte, 
esteiras transportadoras, bombas, compressores e outros semelhantes. 
 
55 
 
 
 
Partida com Inversor de Frequência 
 
Atualmente este dispositivo tem ganhado espaço no uso em sistema de grande porte, pois é cada vez 
mais comum a necessidade de automação de processos alinhada ao aumento da produção. Com isso 
uma infinidade de equipamentos foi desenvolvida para as mais diversas aplicações, dentre eles, está 
o Inversor de frequência, um equipamento versátil e dinâmico e de fácil compatibilidade com outras 
tecnologias. 
Um Inversor de frequência é um dispositivo capaz de gerar uma tensão e frequência trifásicas 
ajustáveis, com finalidade de controlar a velocidade de um motor de indução trifásico. Sua 
programação e controle são feitos através de IHM( Interface Homem Maquina), entradas digitais 
e/ou analógicas e ainda pode ser acessado via rede industrial. 
 
56 
 
 
 
 
COMANDOS ELEÉTRICOS 
 
Desenvolver um esquema de comando para motores 
 
Como vimos anteriormente motores são acionados eletricamente a distancia, ou seja, aciona um 
botão ou liga uma chave e pronto o parte contato com circuito de força, que é um grande avanço em 
relação à segurança e produtividade. 
Para entendermos melhor o que é um circuito de comando, vamos estudar um processo de um 
sistema de ar condicionado da figura abaixo. 
 
57 
 
 
Observa-se que para funcionar de acordo com as especificações do equipamento, o circuito deveseguir uma ordem de acionamento de cada um dos motores, motor ventilador e compressor. Para o 
correto funcionamento, o circuito de comando deve ligar o motor do ventilador e após o compressor, 
realizada esta sequencia o sistema funciona normalmente. 
Como pode ser notado para fazer esta sequencia é preciso desenvolver um circuito de comando para 
acionar os motores no tempo certo e evitar o mau funcionamento. Estes esquemas facilita a 
visualização do funcionamento de um processo e das condições ao especialista em manutenção 
reparar, testar, acompanhar o processo sem perda de tempo ou riscos de acidentes e/ou danos 
materiais. 
O esquema abaixo faz uma sequencia de ligação de motor de pequeno com partida direta. 
 
Esquema Principal Esquema de Comando 
 
 
58 
 
Como pode ser viso no esquema principal de força, trata de um motor monofásico, com acionamento 
direto, já no esquema de comando temos vários componentes interligados que juntos vão acionar o 
motor e ao mesmo tempo proteger contra picos de corrente. 
 
Dispositivos de comandos e proteção 
 
Quando um simples toque em um botão um operador da inicio a um processo que gera uma 
diversidade de produtos ou inicia o funcionamento de um sistema de ar condicionado de edifício ou 
centro comercial. Neste seguimento vamos conhecer cada dispositivo de comando e de proteção de 
um circuito de comando. 
 
 
DISPOSITIVOS DE PROTEÇÃO PARA MOTORES: 
 Fusíveis; 
 Relé Térmico; 
 Disjuntores. 
DISPOSITIVOS DE COMANDO, SINALIZAÇÃO E AUXILIARES: 
 Botoeiras e Chaves Manuais; 
 Contatores; 
 Relés Temporizadores; 
 
59 
 
 Relés Protetores; 
 Sinalizadores Visuais e Sonoros. 
A seguir vamos conhecer um pouco de cada dispositivo e sua função no circuito elétrico. 
DISPOSITIVOS DE COMANDO, SINALIZAÇÃO E AUXILIARES. 
 
Chaves de partida Manual 
 
É o método mais simples de acionar uma maquina geralmente utilizada em pequenos motores sem 
carga, circuito de sinalização e equipamentos de baixa potencia. 
 
Por se tratar de um dispositivo de manobra manual, este deve ser apenas para abertura e 
desligamento de equipamentos, manobrar este dispositivo com cargas elevadas gera arcos voltaicos 
de altas temperaturas. Na figura acima o exemplo é de uma chave tripolar e seu desligamento deve 
ser simultâneo paras as três fases. 
 
Chave liga-desliga ou interruptores 
 
A Chave LIGA-DESLIGA geralmente tem a função de conectar o desconectar dois pontos, 
interrompe o cabo de ligação de um determinado equipamento. A chave tem dois terminais, sendo 
uma de entrada e outro a saída. Sua aplicação em circuitos elétricos é bem difundida. 
 
60 
 
 
Fonte: Catálogo Steck 
 
Botoeiras e Chaves Manuais 
 
 
As botoeiras, como são conhecidas, são outra forma de acionamento de motores por meio manual e 
servem para energizar ou desenergizar contatores, a partir da comutação de seus contatos NA ou NF. 
Existem diversos modelos e podem variar quanto ao formato, cor, tipo de proteção do acionador, 
quantidade e tipos de contatos. 
As botoeiras podem ser do tipo pulsante ou com intertravamento. As botoeiras com intertravamento 
mantém a posição de NA ou NF toda vez que é acionada (pressionada), ou seja, permanecem na nova 
posição até o próximo acionamento. 
Já as botoeiras pulsantes apenas durante o tempo que o botão está pressionado mantêm os contatos 
em NA ou NF, ou seja, Quando liberados retornam a posição anterior. 
 
Fonte: Catálogo Metaltex 
 
 
 
 
 
 
61 
 
Contatores 
 
Contator é um dispositivo eletromagnético, constituído de uma bobina que quando alimenta cria um 
campo magnético no núcleo fixo que por sua vez atrai o núcleo móvel que fecha o circuito. Cessando 
alimentação da bobina, desaparece o campo magnético, provocando o retorno do núcleo através de 
molas. 
Em um circuito de força e controle temos dois tipos de contatores, com funções e características 
diferentes. Os contatores principais tem a função de suportar a corrente drenada pela carga (motor), 
também pode ser utilizado para comandar parte do circuito, desde que seja especificado para este 
fim. Contator auxiliar, como o próprio nome já diz, ele faz parte apenas do circuito de comando, 
onde auxilia outros componentes a fazer a sequencia de acionamento da maquina. O principio de 
funcionando é o mesmo. 
 
 
A bobina é ligada através dos terminais A1 e A2 e a carga no caso do contator principal circula pelos 
terminais conforme figura abaixo. 
 
62 
 
 
Fonte: Catálogo WEG 
 
Os terminais de contado auxiliar devem ser identificados no diagrama esquemático, com números 
que informe qual a sua função no circuito. A figura abaixo representa o como identificar esta função. 
O primeiro numero diz a sequencia e o segundo numero diz sua função. Os números 1 e 2 na posição 
função indicam que o contato esta selado(contador desligado), e os números 3 e 4 na posição função 
indica aberto(contator desligado). 
 
 
Fonte: Catálogo WEG 
 
A figura acima exemplifica um contator auxiliar com vários contatos auxiliares. 
Especificar um contator para uma aplicação deve ser feita sempre baseada em critérios bem 
definidos, pois uma escolha errada pode causar danos irreparáveis ao contator ou superdimensionar 
pode gerar um custo além do necessário na aplicação. 
 
63 
 
Temporizadores 
 
Os temporizadores, também conhecidos como relés de tempo, são dispositivos elétricos utilizados 
em circuitos de comando com a função de causar o acionamento de um determinado componente 
após um tempo predeterminado. Aplicado em partidas dividida de motores, retardado o acionamento 
do segundo estagio do circuito. Dispositivo de baixo custo e possibilita varias outras aplicações. 
A seguir é apresentada a foto de um modelo de relé temporizador. 
 
 
Fonte: Catálogo Siemens 
 
Reles temporizadores utilizados nos circuitos de comandos constituídos por circuitos eletrônicos, que 
temporizam e acionam um relé magnético com contatos abertos e fechados. Esse dispositivo tem 
várias utilidades nos circuitos de comandos, tais como; temporização em lógicas de comandos, 
partidas sequenciais de motores elétricos, sistemas de partida de motores e muitas outras utilidades. 
A especificação de um temporizador é feita utilizando um catálogo de fabricante. A seguir é 
apresentado o esquema elétrico e um diagrama de passo do funcionamento de um relé. Para partida 
de motores em estrela-triângulo existe um modelo específico de relé temporizador. 
A seguir é apresentado a foto e os diagramas de funcionamento desse dispositivo. 
 
Fonte: Catálogo Siemens 
DISPOSITIVOS DE PROTEÇÃO PARA MOTORES 
 
64 
 
 
Fusíveis 
 
São os elementos mais tradicionais para proteção contra curto-circuito de sistemas elétricos. Sua 
operação é baseada na fusão do “elemento fusível”, contido no seu interior. O “elemento fusível” é 
um condutor de pequena seção transversal, que sofre, devido a sua alta resistência, um aquecimento 
maior que o dos outros condutores, à passagem da corrente. 
O “elemento fusível” é um fio ou uma lâmina, geralmente, prata, estanho, chumbo ou liga, colocado 
no interior de um corpo, em geral de porcelana, hermeticamente fechado. Possuem um indicador, que 
permite verificar se operou ou não; ele é um fio ligado em paralelo com o elemento fusível e que 
libera uma mola que atua sobre uma plaqueta ou botão, ou mesmo um parafuso, preso na tampa do 
corpo. Os fusíveis contêm em seu interior, envolvendo por completo o elemento, material granulado 
extintor; para isso utiliza-se, em geral, areia de quartzo de granulometria conveniente. A figura 
abaixo mostra a composição de um fusível (no caso mais geral). 
O elemento fusível pode ter diversas formas. Em função da corrente nominal do fusível, ele compõe-
se de um ou mais fios ou lâminas em paralelo, com trecho(s) de seção reduzida. Nele existe ainda um 
ponto de solda, cujatemperatura de fusão é bem menor que a do elemento e que atua por sobrecargas 
de longa duração. 
 
 
Fusível NH 
 
65 
 
 
 
Termostato ou protetor térmico 
 
Instalados entre as bobinas ele monitora a temperatura do embobinado que caso atinja a temperatura 
de deformação do bimetalico ele abre o enrolamento e desliga o motor, este quando esfria, volta à 
forma anterior e religa o motor. Estes elementos em alguns casos fazem parte do enrolamento do 
motor. 
 
 
66 
 
 
As figuras acima apresentam algumas das formas de proteção de motores com uso de termostatos e 
reles. 
 
Relé bimetálico de sobrecarga 
 
Estes dispositivos utilizam o princípio da dilatação de partes termoelétricas (bi metálicos). Sua 
operação está baseada nas diferentes dilatações que os metais apresentam, quando submetidos a uma 
variação de temperatura. 
Relés de sobrecarga são usados para proteger indiretamente equipamentos elétricos, como os 
motores, de um possível superaquecimento. Estes dispositivos geralmente são utilizados na proteção 
de motores contra variações na temperatura do motor. 
O superaquecimento de um motor pode, por exemplo, ser causado por: 
• Sobrecarga mecânica na ponta do eixo; 
• Tempo de partida muito alto; 
• Rotor bloqueado; 
• Falta de uma fase; 
• Desvios excessivos de tensão e frequência da rede. 
Em todos estes casos citados acima, o incremento de corrente (sobre corrente) no motor é 
monitorado em todas as fases pelo relé de sobrecarga. 
Os terminais do circuito principal dos relés de sobrecarga são marcados da mesma forma que os 
terminais de potência dos contatores. 
Os terminais dos circuitos auxiliares do relé são marcados da mesma forma que os de contatores, 
com funções específicas, conforme exemplos a seguir. 
O número de sequência deve ser `9' (nove) e, se uma segunda sequência existir, será identificada com 
o zero. Estes dispositivos são acoplados ao contatores principais, pois funcionam monitorando a 
corrente do motor que caso necessário desliga o equipamento. 
 
67 
 
OBS. Este dispositivo deve ser especificado conforme o modelo do contator principal e a corrente 
nominal do motor. 
 
 
 
 
Disjuntores 
 
Os disjuntores atualmente são dispositivos utilizados com melhor eficácia nas instalações, pois este 
dispositivo pode substituir outro em uma mesma instalação, ou seja, um disjuntor no circuito elimina 
a necessidade de instalar interruptores, rele térmico e rele eletromagnético. 
São dispositivos que realizam a proteção contra curto-circuito e sobrecarga (proteção térmica e 
magnética). Existem disjuntores que Possuem knob para o ajuste da proteção da intensidade de 
corrente (ajuste da proteção térmica). Que deixa este tipo de dispositivo cada vez mais usado em 
comandos para proteção da rede e carga de sistema ou equipamento. 
 
DIAGRAMAS ESQUEMATICOS 
 
Analisar e projetar um circuito de força e controle 
 
Destinado a facilitar o estudo e a compreensão do funcionamento de uma instalação ou parte dela. Os 
elementos do diagrama dispõem-se de forma que possam facilitar sua interpretação e não seguindo a 
 
68 
 
disposição espacial real. Isto quer dizer que diversos elementos condutores de corrente e os 
dispositivos de comando e proteção estão representados conforme a sua posição no circuito elétrico e 
independente da relação construtiva destes elementos. Diagramas de comando são esquemas 
elétricos com a finalidade de ilustrar um sistema elétrico industrial de forma padronizada e de fácil 
interpretação de qualquer usuário, na instalação e manutenção desse sistema. 
 
Os diagramas de comando permite a interpretação de um sistema industrial, pois: 
• demonstra a sequência de funcionamento do circuito; 
• representa os componentes e funções; 
• permite uma rápida localização dos componentes. 
O diagrama de comando mais utilizado é o diagrama funcional, pois esse diagrama representa os 
sistemas elétricos de forma prática com fácil compreensão. Nesse tipo de diagrama, o comando 
lógico é separado da parte de acionamento e são chamados de “Diagrama de Comando” e “Diagrama 
Principal”. 
A seguir é apresentado um exemplo de diagrama de comando funcional. 
 
 
Diagrama principal ou força Diagrama unifilar 
 
 
69 
 
 
 
Legenda 
bo – botoeira desliga 
b1 – botoeira liga 
F7 – rele de sobrecarga 
F21 – fusivel de comando 
F22 – fusivel de comando 
K1 – contator principal(contato auxiliar) 
K1 – contator principal(bobina) 
 
 
 
 
 
O Funcionamento do circuito de força: O circuito sempre inicia desligado, as linhas R S T são as 
fases do circuito interruptas por um contator entre ela e o motor, impedindo o funcionamento do 
mesmo. Quando esta carga é solicitada vamos ao circuito de comado, é acionamos o botão b1, nisso 
possibilitou a reconexão do caminho interrupto pela botoeira, que por sua vez aciona o motor. O 
contato K1 também e acionado e mantem o circuito conectado. 
Em comandos mais complexos, a localização dos contatos dos contatores e relés são identificados 
logo abaixo dos componentes com o número da linha em que os contatos estão localizados. Além da 
localização, a identificação dos contatos é feita em colunas “A” para contatos abertos (NA) e “F” 
para contatos fechados (NF). 
 
 
70 
 
 
 
 
 
 
 
 
 
 
 
 
 
Analisando o circuito acima podemos verificar que o mesmo possui um contato de selo, que garante 
a ele ficar ligado mesmo após o operador liberar a botoeira b1, a localização física do contato de 
selo, para este circuito é no contator principal C1. A função e manter o contador atracado enquanto a 
botoeira b0 não for acionada. O que ocorre para esta conexão se manter é que é criado um caminho 
pelo contador, e quando aciona b0 interrompe este caminho. 
Como pode ser visto anteriormente, quando analisamos um circuito, conseguimos projetar de forma 
clara como deve ser o funcionamento do sistema. Esta técnica também pode ser utilizada para 
projetar e montar um circuito funcional que atenda a uma especificação solicitada. 
As siglas abaixo geralmente são utilizadas para identificar as especificações de motores e 
dispositivos de controle e proteção. 
 
71 
 
 
 
Partida Direta 
 
Para projetar um circuito com partida direta é preciso ter os dados do motor, temos que adotar 
critérios práticos de dimensionamento baseados em: 
 Características dos componentes da chave; 
 Nas seguintes condições de serviço: Regime de serviço contínuo, fator de serviço(FS), fator 
de segurança. 
 Oscilações na rede 
 Alta corrente de partida 
 Tempo de partida muito longo 
 
72 
 
Dados do Motor: 
 In – corrente nominal 
 Tensão nominal 
Especificação do Contator: 
 K1------ In (motor) 
 IF ≥ 1,2xIn (motor); 
 IF ≤ IFmáx(K1); 
 IF ≤ IFmáx (FT1). 
Exemplo: 
Dimensionamento dos componentes de força do motor 3F 30 cv 380 v/60HZ IV polos 
Consultar catálogo para especificar dados dos componentes. 
In = 42,12 
Ip/In = 7,0 
Contador: K1 ---- Ie >= 42,12ª 
Contato auxiliar = 1 
Rele de sobrecarga - FT1 ---- In. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73 
 
 
A seguir temos parte da simbologia utilizada nos Diagramas de comando ou principal. 
 
 
Partida estrela-triângulo 
 
 
A partida estrela-triângulo é a mais utilizada nos sistemas industriais, porém para esse tipo de partida 
é imprescindível que o motor permita a alimentação em duas tensões, por exemplo; 220/380 V ou 
440/760 V. É necessário que o motor tenha no mínimo seis terminais de ligação. Na partida estrela-
triângulo, os terminais do motor são ligados para uma determinada tensão, 380 V, por exemplo, e o 
motor é alimentado com uma tensão menor, 220 V. Nesse caso, o motor parte com uma tensão 
reduzida. Como o motor está esperando uma determinada tensão, mas recebeu um valor menor de 
tensão, 
sua correntetambém será menor. Nesse caso, o conjugado de partida do motor fica reduzido para 25 
a 33 % do conjugado na tensão normal. Por isso é necessário analisar no sistema se o motor que vai 
partir em estrela-triângulo teve ter um conjugado de partida suficiente para garantir sua partida com 
essa redução de corrente. 
 
74 
 
A análise do conjugado pode ser feita utilizando o catálogo do fabricante do motor que fornece as 
curvas de conjugado. 
Na partida estrela-triângulo com contatores, são fechados nos terminais do motor na ligação estrela 
na partida e logo após um tempo predeterminado por um temporizador essa ligação é desfeita e o 
motor é fechado em triângulo. 
Como se sabe, na ligação estrela o motor é alimentado com as fases L1, L2 e L3 nos terminais 
“1”“1”, ”2” e “3” e as pontas “4”, “5” e “6” são curto-circuitadas. Na ligação triângulo, a fase de L1 
deve alimentar as pontas “1” e “6”, L2 “2” e “4” e L3 “3” e “5”, conforme ilustração a seguir. 
 
Caso o motor for conectado em triangulo e ligado numa rede de 380 v haverá um sobre aquecimento 
do motor causado pela corrente excessiva, decorrente da tensão ser maior que a nominal. Nesta 
condição, o motor poderá vir a ser danificado. Por outro lado, ligando o motor em estrela e conecta-
lo a uma rede 220 v, haverá uma tensão menor que a nominal aplicada em cada fase. Nesta condição, 
caso o motor consiga partir e atingir a rotação nominal, a corrente será menor que a nominal e o 
motor não conseguira desenvolver a sua potência nomina. Também poderá ocorrer que o motor não 
consiga partir e atingir a velocidade nominal, ficar bloqueado e aumentar a corrente que nele circula. 
 
 
75 
 
 
 
 
 
 
76 
 
SIMBOLOGIA PARA DIAGRAMAS ESQUEMATÍCOS 
 
 
 
77 
 
 
 
78 
 
 
 
79 
 
 
 
80 
 
 
 
81 
 
 
 
82 
 
 
 
83 
 
 
 
84 
 
 
 
85

Continue navegando

Outros materiais