Prévia do material em texto
Fundamentals of Analytical Chemistry: 8Fundamentals of Analytical Chemistry: 8 thth ed. ed. Chapter Chapter 44 Chapter 4Chapter 4 4-14-1 (a)(a) The The millimolemillimole is an amount of a chemical species, such as an atom, an ion, a molecule is an amount of a chemical species, such as an atom, an ion, a molecule or or an an electron. electron. A A millimolmillimole e containscontains millimolemillimole particlesparticles 10100202..66 millimolemillimole molemole 1010 molemole particlesparticles 10100202..66 2020332323 ××==∗∗×× −− (b)(b) The The molar massmolar mass is the mass in grams of one mole of a chemical species. is the mass in grams of one mole of a chemical species. (c)(c) TheThe millimolar massmillimolar mass is the mass in grams of one millimole of a chemical species. is the mass in grams of one millimole of a chemical species. (d)(d) Parts per million, c Parts per million, cppmppm, is a term expressing the concentration of very dilute solutions., is a term expressing the concentration of very dilute solutions. Thus,Thus, ccppmppm ppmppm1010 solutionsolutionof of massmass solutesoluteof of massmass 66 ××== The units of mass in the numerator and the denominator must be the same.The units of mass in the numerator and the denominator must be the same. 4-24-2 The species molarity of a solution expresses the equilibrium concentration of a chemicalThe species molarity of a solution expresses the equilibrium concentration of a chemical species in terms of species in terms of moles per liter. moles per liter. The analytical molarity of a The analytical molarity of a solution gives the totalsolution gives the total number of moles of number of moles of a solute in one a solute in one liter. liter. The species molarity takes into accountThe species molarity takes into account chemical reactions that occur chemical reactions that occur in solution. in solution. The analytical molarity specifies how The analytical molarity specifies how thethe solution was prepared, but does not account for any subsequent reactions.solution was prepared, but does not account for any subsequent reactions. 4-34-3 3333 33 33 mm1010 cmcm100100 mm mLmL cmcm11 LL11 mLmL10001000 1L1L −−== ××××== 33333333 mm1010 molemole11 mm1010 LL LL molemole11 MM11 −−−− ==××== Fundamentals of Analytical Chemistry: 8Fundamentals of Analytical Chemistry: 8 thth ed. ed. Chapter Chapter 44 4-44-4 (a)(a) kHzkHz320320 HzHz10001000 kHzkHz HzHz101022..33 55 ==×××× (b)(b) ngng66..4545 gg ngng1010 gg10105656..44 99 88 ==×××× −− (c)(c) mmol mmol843843 molmol1010 mmolmmol molmol10104343..88 33 55 == µµ ××µµ×× (d)(d) MsMs55..66 ss1010 MsMs ss101055..66 66 66 ==×××× (e)(e) mm66..8989 nmnm1010 mm nmnm10109696..88 33 44 µµ== µµ ×××× (f)(f) kgkg7272 gg10001000 kgkg gg000000,,7272 ==×× 4-54-5 ++ ++ ++++ ××== ×× ×××××× NaNa10109898..55 NaNamolmol NaNa10100202..66 POPONaNamolmol NaNamolmol33 gg9494..163163 POPONaNamolmol11 POPONaNagg4343..55 2222 2323 4433 4433 4433 4-64-6 ++ ++ ++++ ××== ×× ×××× KK10102222..11 KKmolmol KK10100202..66 POPOKKmolmol KKmolmol33 POPOKKmolmol7676..66 2525 2323 4433 4433 4-74-7 (a)(a) 3322 3322 3322 3322 OOBBmolmol07120712..00 OOBBgg6262..6969 OOBBmolmol OOBBgg9696..44 ==×× (b)(b) OO10H10HOOBBNaNamolmol10107373..88 381.37g381.37g OO10H10HOOBBNaNamolmol mgmg10001000 gg OOHH1010OOBBNaNamgmg333333 22774422 44 22774422 22774422 ⋅⋅××== ⋅⋅ ×××ו• −− (c)(c) 4433 4433 4433 4433 OOMnMnmolmol03820382..00 OOMnMngg8181..228228 OOMnMnmolmol OOMnMngg7575..88 ==×× (d)(d) 4422 33 4422 4422 4422 OOCaCCaCmolmol10103131..11 OOCaCCaCgg128.10128.10 OOCaCCaCmolmol mgmg10001000 gg OOCaCCaCmgmg22..167167 −−××==×××× Fundamentals of Analytical Chemistry: 8Fundamentals of Analytical Chemistry: 8 thth ed. ed. Chapter Chapter 44 4-84-8 (a)(a) 5522 5522 5522 5522 OOPPmmolmmol4040..00 molmol mmolmmol10001000 OOPPgg9494..141141 OOPPmolmol mgmg10001000 gg OOPPmgmg5757 ==×××××× (b)(b) 22 22 22 22 COCOmmolmmol66..293293 molmol mmolmmol10001000 COCOgg0101..4444 COCOmolmol COCOgg9292..1212 ==×××× (c)(c) 33 33 33 33 NaHCONaHCOmmolmmol476476 molmol mmolmmol10001000 NaHCONaHCOgg0101..8484 NaHCONaHCOmolmol NaHCONaHCOgg00..4040 ==×××× (d)(d) 4444 4444 4444 4444 POPOMgNHMgNHmmolmmol22..66 molmol mmolmmol10001000 POPOMgNHMgNHgg137.32137.32 POPOMgNHMgNHmolmol mgmg10001000 gg POPOMgNHMgNHmgmg850850 == ×××××× 4-94-9 (a)(a) 44 44 33 44 33 KMnOKMnOmmolmmol5050..66 LL0000..22 molmol mmolmmol10001000 LL KMnOKMnOmolmol10102525..33 M KMnOM KMnO10102525..33 == ×××× ×× ≡≡×× −− −− (b)(b) KSCNKSCNmmolmmol66..4141 mLmL750750 mLmL10001000 LL molmol mmolmmol10001000 LL KSCNKSCNmolmol05550555..00 M KSCN M KSCN05550555..00 == ××××××≡≡ (c)(c) 44 33 44 4444 44 CuSOCuSOmmolmmol10104747..88mLmL250250 mLmL10001000 LL molmol mmolmmol10001000 CuSOCuSOgg6161..159159 CuSOCuSOmolmol mgmg10001000 gg LL CuSOCuSOmgmg4141..55 CuSOCuSOppmppm4141..55 −− ××==×××× ××××××≡≡ (d)(d) KClKClmmolmmol66..11651165LL5050..33 molmol mmolmmol10001000 LL KClKClmolmol333333..00 M KCl M KCl333333..00 ==××××≡≡ Fundamentals of Analytical Chemistry: 8Fundamentals of Analytical Chemistry: 8 thth ed. ed. Chapter Chapter 44 4-104-10 (a)(a) 44 44 44 HClOHClOmmolmmol00..5656 mLmL175175 mLmL10001000 LL molmol mmolmmol10001000 LL HClOHClOmolmol320320..00 HClOHClOMM320320..00 == ××××××≡≡ (b)(b) 4422 4422 33 4422 33 CrOCrOKKmmolmmol121121 LL00..1515 molmol mmolmmol10001000 LL CrOCrOKKmolmol10100505..88 CrOCrOKKMM10100505..88 == ×××× ×× ≡≡×× −− −− (c)(c) 33 33 3333 33 AgNOAgNOmmolmmol199199..00LL0000..55 molmol mmolmmol10001000 AgNOAgNOgg8787..169169 AgNOAgNOmolmol mgmg10001000 gg LL AgNOAgNOmgmg7575..66 AgNOAgNOppmppm7575..66 == ××××××××≡≡ (d)(d) KOHKOHmmolmmol00..1717 mLmL851851 mLmL10001000 LL molmol mmolmmol10001000 LL KOHKOHmolmol02000200..00 KOHKOHMM02000200..00 == ××××××≡≡ 4-114-11 (a)(a) 33 44 33 33 33 HNOHNOmgmg10109090..44 gg mgmg10001000 HNOHNOmolmol HNOHNOgg0101..6363 HNOHNOmolmol777777..00 ××==×××× (b)(b) MgOMgOmgmg1010015015..22 gg mgmg10001000 MgOMgOmolmol MgOMgOgg40.3040.30 mmolmmol10001000 molmol MgOMgOmmolmmol500500 44××==×××××× (c)(c) 3344 66 3344 3344 3344 NONONHNHmgmg10108080..11 gg mgmg10001000 NONONHNHmolmol NONONHNHgg0404..8080 NONONHNHmolmol55..2222 ××==×××× (d)(d) 66332244 66 66332244 66332244 66332244 ))NONO((CeCe))NHNH((mgmg10103737..22 gg mgmg10001000 ))NONO((CeCe))NHNH((molmol ))NONO((CeCe))NHNH((gg2323..548548 ))NONO((CeCe))NHNH((molmol3232..44 ××== ×××× Fundamentals of Analytical Chemistry: 8Fundamentals of Analytical Chemistry: 8 thth ed. ed. Chapter Chapter 44 4-124-12 (a)(a) KBrKBrgg840840 KBrKBrmolmol KBrKBrgg00..119119 KBrKBrmolmol11..77 ==×× (b)(b) PbOPbOgg4949..44 PbOPbOmolmol PbOPbOgg2020..223223 mmolmmol10001000 molmol PbOPbOmmolmmol11..2020 ==×××× (c)(c) 44 44 44 44 MgSOMgSOgg452452 MgSOMgSOmolmol MgSOMgSOgg3737..120120 MgSOMgSOmolmol7676..33 ==×× (d)(d) OOHH66))SOSO(())NHNH((FeFegg88..33 OOHH66))SOSO(())NHNH((FeFemolmol OOHH66))SOSO(())NHNH((FeFegg2323..392392 mmolmmol10001000 molmol OOHH66))SOSO(())NHNH((FeFemmolmmol66..99 2222442244 2222442244 2222442244 2222442244 ⋅⋅== ⋅⋅ ⋅⋅ ××××⋅⋅ 4-134-13 (a)(a) sucrosesucrosemgmg10102222..22 mLmL00..2626 gg mgmg10001000 sucrosesucrosemolmol sucrosesucrosegg342342 mLmL10001000 LL LL sucrosesucrosemolmol250250..00 sucrosesucroseMM250250..00 33 ××== ××××××××≡≡ (b)(b) 2222 2222 22222222 33 2222 33 OOHHmgmg88..472472 LL9292..22 gg mgmg10001000 OOHHmolmol OOHHgg0202..3434 LL OOHHmolmol10107676..44 OOHHMM10107676..44 == ×××××× ×× ≡≡×× −− −− (c)(c) 2233 2233 2233 ))NONO((PbPbmgmg2525..33mLmL656656 mLmL10001000 LL LL ))NONO((PbPbmgmg9696..44 ))NONO((PbPbppmppm9696..44 ==××××≡≡ (d)(d) 33 3333 33 KNOKNOmgmg22..4242 mLmL7575..66 mLmL10001000 LL gg mgmg10001000 molmol KNOKNOgg1010..101101LL KNOKNOmolmol06190619..00 KNOKNOMM06190619..00 == ××××××××≡≡ Fundamentals of Analytical Chemistry: 8Fundamentals of Analytical Chemistry: 8 thth ed. ed. Chapter Chapter 44 4-144-14 (a)(a) 2222 2222 22222222 2222 OOHHgg5151..22 mLmL450450 OOHHmolmol OOHHgg34.0234.02 mLmL10001000 LL LL OOHHmolmol0.1640.164 OOHHMM164164..00 == ××××××≡≡ (b)(b) acidacidbenzoicbenzoicgg10108888..22mLmL00..2727 acidacidbenzoicbenzoicmolmol acidacidbenzoicbenzoicgg122122 mLmL10001000 LL LL acidacidbenzoicbenzoicmolmol10107575..88 acidacidbenzoicbenzoicMM10107575..88 33 44 44 −− −− −− ××== ×××××× ×× ≡≡×× (c)(c) 22 22 22 SnClSnClgg07600760..00LL5050..33 mgmg10001000 gg LL SnClSnClmgmg77..2121 SnClSnClppmppm77..2121 ==××××≡≡ (d)(d) 33 33 3333 33 KBrOKBrOgg04530453..00 mLmL77..2121 KBrOKBrOmolmol KBrOKBrOgg167167 mLmL10001000 LL LL KBrOKBrOmolmol01250125..00 KBrOKBrOMM01250125..00 == ××××××≡≡ 4-154-15 (a)(a) 077077..11))22((923923..00 ))1010log(log())3838..88log(log( ))MM10103838..88log(log())MM08380838..00log(log())MM05030503..00MM03350335..00log(log(pNapNa 22 22 ==−−−−−−== −−−−== ××−−==−−==++−−== −− −− 475475..11))22((525525..00 ))1010log(log())3535..33log(log( ))MM10103535..33log(log())MM03350335..00log(log(pClpCl 22 22 ==−−−−−−== −−−−== ××−−==−−== −− −− 298298..11))22((702702..00 ))1010log(log())0303..55log(log( ))MM10100303..55log(log())MM05030503..00log(log(pOHpOH 22 22 ==−−−−−−== −−−−== ××−−==−−== −− −− Fundamentals of Analytical Chemistry: 8 th ed. Chapter 4 (b) 116.2)3(884.0 )10log()65.7log( )M1065.7log(pBa 3 3 =−−−= −−= ×−= − − 188.0)M54.1log(pMn −=−= 490.0)M08.3log())M54.12(M1065.7log(pCl 3 −=−=×+×−= − (c) 222.0)1(778.0 )10log()00.6log( )M1000.6log()M600.0log(pH 1 1 =−−−= −−= ×−=−= − − 096.0)1(904.0 )10log()02.8log( )M1002.8log()M802.0log())M101.02(M600.0log(pCl 1 1 =−−= −−= ×−=−=×+−= − − 996.0)1(00432.0 )10log()01.1log( )M1001.1log()M101.0log(pZn 1 1 =−−−= −−= ×−=−= − − (d) 320.1)2(679.0 )10log()78.4log( )M1078.4log(pCu 2 2 =−−−= −−= ×−= − − 983.0)1(0170.0 )10log()04.1log( )M1004.1log()M104.0log(pZn 1 1 =−−−= −−= ×−=−= − − 517.0)1(483.0 )10log()04.3log( )M1004.3log()M304.0log())M104.02()M0478.02log((pNO 1 1 3 =−−−= −−= ×−=−=×+×−= − − Fundamentals of Analytical Chemistry: 8th ed. Chapter 4 (e) 836.5)6(164.0 )10log()46.1log( )M1046.1log()M1012.4))M1062.2(4log((pK 6 677 =−−−= −−= ×−=×+××−= − −−− 385.6)7(615.0 )10log()12.4log( )M1012.4log(pOH 7 7 =−−−= −−= ×−= − − 582.6)7(418.0 )10log()62.2log( )M1062.2log()CN(pFe 7 7 6 =−−−= −−= ×−= − − (f) 171.3)4(829.0 )10log()75.6log( )M1075.6log(pH 4 4 =−−−= −−= ×−= − −+ 475.3)4(525.0 )10log()35.3log( )M1035.3log(pBa 4 4 =−−−= −−= ×−= − − 873.2)3(127.0 )10log()34.1log( )M1034.1log()M1075.6)M1035.3(2log(pClO 3 344 4 =−−−= −−= ×−=×+××−= − −−− 4-16 (a) M107.1)5(antilog)240.0(antilog]OH[ 53 −+ ×=−×= as in part (a) (b) M106.2]OH[ 53 −+ ×= (c) M30.0]OH[ 3 = + Fundamentals of Analytical Chemistry: 8th ed. Chapter 4 (d) M104.2]OH[ 143 −+ ×= (e) M108.4]OH[ 83 −+ ×= (f) M107.1]OH[ 63 −+ ×= (g) M04.2]OH[ 3 = + (h) M3.3]OH[ 3 = + 4-17 (a) 699.1)2(301.0 )10log()00.2log()M0200.0log(pBrpNa 2 =−−−= −−=−== −− pH = pOH = - log(1.0×10-7M) = 7.00 (b) 000.2)2(000.0 )10log()00.1log()M0100.0log(pBa 2 =−−= −−=−= − 699.1)2(301.0 )10log()00.2log()M0100.02log(pBr 2 =−−−= −−=×−= − pH = pOH = - log(1.0×10 -7M) = 7.00 (c) 46.2)3(54.0 )10log()5.3log()M105.3log(pBa 33 =−−−= −−=×−= −− 15.2)3(84.0 )10log()0.7log()M100.7log()M105.3(2log(pOH 333 =−−−= −−=×−=××−= −−− pH = 14.00 – pOH = (14.00 – 2.15) = 11.85 Fundamentals of Analytical Chemistry: 8th ed. Chapter 4 (d) 40.1)2(60.0 )10log()0.4log()M100.4log()M040.0log(pH 22 =−−−= −−=×−=−= −− 70.1)2(30.0 )10log()0.2log()M100.2log()M020.0log(pNa 22 =−−−= −−=×−=−= −− 22.1)2(78.0 )10log()0.6log( )M100.6log()M060.0log()M020.0M040.0log(pCl 2 2 =−−−= −−= ×−=−=+−= − − pOH = 14.00 – 1.40 = 12.60 (e) 17.2)3(83.0 )10log()7.6log()M107.6log(pCa 33 =−−−= −−=×= −− 12.2)3(88.0 )10log()6.7log()M106.7log(pBa 33 =−−−= −−=×−= −− 54.1)2(46.0 )10log()9.2log( )M109.2log()))M106.7(2())M107.6(2log((pCl 2 233 =−−−= −−= ×−=××+××−= − −−− pH = pOH = - log(1.0×10 -7M) = 7.00 (f) 32.7)8(68.0 )10log()8.4log()M108.4log(pZn 88 =−−−= −−=×−= −− 25.6)7(75.0 )10log()6.5log()M106.5log(pCd 77 =−−−= −−=×−= −− Fundamentals of Analytical Chemistry: 8 th ed. Chapter 4 4-38 A balanced chemical equation can be written as shown below. −+ ++→+ 3 3 434223 NO6Al2BaSO3)SO(Al)NO(Ba3 (a) 342 3 342 342 23 3 23 623 )SO(Almol1018.6 mL0.200 mL1000 L L )SO(Almol03090.0 )SO(AlM03090.0 )NO(Bamol1038.1 g34.261 )NO(Bamol mL0.750 mL g ppm10 1 )NO(Bappm4.480 − − ×= ××≡ ×= ×××× The Ba(NO3)2 is the limiting reagent. Thus, formedBaSOg322.0 mol BaSOg39.233 )NO(Bamol3 BaSOmol3 )NO(Bamol1038.1 4 4 23 4 23 3 =××× − (b) 342 3342 3 342 333 342 )SO(AlM1002.6 L mL1000 mL0.950 )SO(Almol1072.5 )SO(Almol1072.5))1038.1( 3 1(1018.6(unreacted)SO(Almol − − −−− ×=× × ×=××−×= Fundamentals of Analytical Chemistry: 8 th ed. Chapter 5 Chapter 5 5-1 (a) Constant errors are the same magnitude regardless of sample size. Proportional errors are proportional in size to sample size. (b) Random error causes data to be scattered more or less symmetrically around a mean value. Systematic error causes the mean of a data set to differ from the accepted value. (c) The mean is the sum of the results in a set divided by the number of results. The median is the central value for a set of data. (d) The absolute error of a measurement is the difference between the measured value and the true value. The relative error is the absolute error divided by the true value. 5-2 (1) Random temperature fluctuations causing random changes in the length of the metal rule; (2) uncertainties from moving and positioning the rule twice; (3) personal judgment in reading the rule; (4) vibrations in the table and/or rule; (5) uncertainty in locating the rule perpendicular to the edge of the table. 5-3 (1) Instrumental errors (2) Method errors (3) Personal errors 5-4 (1) The analytical balance is miscalibrated; (2) after weighing an empty vial, fingerprints are placed on the vial while adding sample to the vial; (3) a hygroscopic sample absorbs water from the atmosphere while placing it in a weighing vial. 5-5 (1) Incorrect calibration of the pipet; (2) temperature different from calibration temperature; (3) incorrect filling of the pipet (overshooting or undershooting the mark). Fundamentals of Analytical Chemistry: 8 th ed. Chapter 5 5-6 Systematic method errors are detected by application of the method to the analysis of a standard reference material having one or more analytes at exactly known concentrations. 5-7 Constant and proportional errors. 5-8 (a) (– 0.4/700) × 100% = – 0.06% As in part (a) (b) – 0.09% (c) – 0.2% (d) – 1% 5-9 (a) First determine how much gold is needed to achieve the desired relative error. (– 0.4/– 0.2%) × 100% = 200 mg gold Then determine how much ore is needed to yield the required amount of gold. (200/1.2%) × 100% = 17,000 mg ore or 17 g ore (b) 7 g ore (c) 4 g ore (d) 3 g ore 5-10 (a) (0.04/50.00) × 100% = 0.08% As in part (a) (b) 0.4% (c) 0.16% (d) 0.1% Fundamentals of Analytical Chemistry: 8 th ed. Chapter 5 5-11 (a) (– 0.4/40) × 100% = – 1.0% As in part (a) (b) – 0.23% (c) – 0.10% (d) – 0.07% 5-12 mean = 0106.001063.0 3 0105.00104.00110.0 ≈= ++ Arranging the numbers in increasing value the median is: 0.0104 0.0105 ← median 0.0110 The deviations from the mean are: 0004.00106.00110.0 0001.00106.00105.0 0002.00106.00104.0 =− =− =− mean deviation = 0002.000023.0 3 0004.00001.00002.0 ≈= ++ Fundamentals of Analytical Chemistry: 8th ed. Chapter 7 reject H 0 andconclude that the laboratories differ at 95% confidence. We can also be 99% confident that the laboratories differ, but we cannot be 99.9% confident that the laboratories differ. (c) Based on the calculated LSD value laboratories A, C and E differ from laboratory D, but laboratory B does not. Laboratories E and A differ from laboratory B, but laboratory C does not. No significant difference exists between laboratories E and A. Fundamentals of Analytical Chemistry: 8th ed. Chapter 7 7-28 (a) H 0: µ Analyst1 = µ Analyst2 = µ Analyst3 = µ Analyst4; H a: at least two of the means differ. (b) A B C D E F 1 Result No. A1 A2 A3 A4 2 1 10.24 10.14 10.19 10.19 3 2 10.26 10.12 10.1 10.15 4 3 10.29 10.04 10.15 10.16 5 4 10.23 10.07 10.12 10.1 6 7 Average = 10.26 10.09 10.14 10.15 8 Stan. Dev. = 0.02646 0.04573 0.03594 0.03742 9 Variance = 0.00070 0.00209 0.00129 0.00140 10 11 Grand Mean = 10.160 12 SSF = 0.05595 13 SSE = 0.01645 14 SST = 0.07240 10.26 - 10.09 = 0.17 (a significant difference) 15 10.15 - 10.09 = 0.06 (a significant difference) 16 MSF = 0.01865 10.14 - 10.09 = 0.05 (no significant difference) 17 MSE = 0.00137 18 10.26 - 10.14 = 0.12 (a significant difference) 19 F = 13.60486 10.15 - 10.14 = 0.01 (no significant difference) 20 21 LSD = 0.057 10.26 - 10.15 = 0.11 (a significant difference) 22 23 24 Spreadsheet Documentation 25 B7 = AVERAGE(B2:B5) 26 B8 = STDEV(B2:B5) 27 B9 = B8^2 28 B11 = SUM(B2:E5)/16 29 B12 = 4*((B7-B11)^2+(C7-B11)^2+(D7-B11)^2+(E7-B11)^2) 30 B13 = 3*SUM(B9:F9) 31 B14 = B12+B13 32 B16 = B12/3 33 B17 = B13/12 34 B19 = B16/B17 35 B21 = 2.19*SQRT(2*B17/4) From Table 7-4 the F value for 3 degrees of freedom in the numerator and 12 degrees of freedom in the denominator at 95% is 3.49. Since F calculated exceeds F tabulated we Fundamentals of Analytical Chemistry: 8th ed. Chapter 7 reject H 0 and conclude that the analysts differ at 95% confidence. We can also be 99% and 99.9% confident that the analysts differ. (c) Based on the calculated LSD value there is a significant difference between analyst 2 and analysts 1 and 4, but not analyst 3. There is a significant difference between analyst 3 and analyst 1, but not analyst 4. There is a significant difference between analyst 1 and analyst 4. Fundamentals of Analytical Chemistry: 8th ed. Chapter 7 7-29 (a) H 0: µ Des1 = µ Des2 = µ Des3 = µ Des4; H a: at least two of the means differ. (b) A B C D E 1 Result No. Des 1 Des 2 Des 3 Des 4 2 1 72 93 96 100 3 2 93 88 95.0 84 4 3 76 97 79 91 5 4 90 74 82 94 6 7 Average = 82.75 88.00 88.00 92.25 8 Stan. Dev. = 10.30776 10.03328 8.75595 6.65207 9 Variance = 106.2500 100.6667 76.6667 44.2500 10 11 Grand Mean = 87.750 12 SSF = 181.5 13 SSE = 983.5 14 SST = 1165 15 16 MSF = 60.50000 17 MSE = 81.95833 18 19 F = 0.73818 20 21 22 Spreadsheet Documentation 23 B7 = AVERAGE(B2:B5) 24 B8 = STDEV(B2:B5) 25 B9 = B8^2 26 B11 = SUM(B2:E5)/16 27 B12 = 4*((B7-B11)^2+(C7-B11)^2+(D7-B11)^2+(E7-B11)^2) 28 B13 = 3*SUM(B9:F9) 29 B14 = B12+B13 30 B16 = B12/3 31 B17 = B13/12 32 B19 = B16/B17 33 B21 = 2.19*SQRT(2*B17/4) From Table 7-4 the F value for 3 degrees of freedom in the numerator and 12 degrees of freedom in the denominator at 95% is 3.49. Since F calculated is less than F tabulated we accept H 0 and conclude that 4 flow cell designs give the same results at 95% Fundamentals of Analytical Chemistry: 8th ed. Chapter 7 confidence. (c) No differences. 7-30 (a) H 0: µ Colorimetry = µ EDTA Tit = µ AA; H a: at least two of the means differ. (b) A B C D E F G 1 Result No. Color. EDTA AA 2 1 3.92 2.99 4.40 3 2 3.28 2.87 4.92 4 3 4.18 2.17 3.51 5 4 3.53 3.40 3.97 6 5 3.35 3.92 4.59 7 8 Average = 3.65 3.07 4.28 9 Stan. Dev. = 0.38571 0.64958 0.54979 10 Variance = 0.1488 0.42195 0.3023 11 12 Grand Mean = 3.667 13 SSF = 3.649773 14 SSE = 3.49196 15 SST = 7.141733 16 17 MSF = 1.82489 4.28 - 3.07 = 1.21 (a significant difference) 18 MSE = 0.29100 3.65 - 3.07 = 0.58 (no significant difference) 19 20 F = 6.27116 4.28 - 3.65 = 0.63 (no significant difference) 21 22 LSD = 0.747 23 24 25 Spreadsheet Documentation 26 B8 = AVERAGE(B2:B6) 27 B9 = STDEV(B2:B6) 28 B10 = B9^2 29 B12 = SUM(B2:D6)/15 30 B13 = 5*((B8-B12)^2+(C8-B12)^2+(D8-B12)^2) 31 B14 = 4*SUM(B10:D10) 32 B15 = B13+B14 33 B17 = B13/2 34 B18 = B14/12 35 B20 = B17/B18 36 B22 = 2.19*SQRT(2*B18/5) Fundamentals of Analytical Chemistry: 8th ed. Chapter 7 From Table 7-4 the F value for 2 degrees of freedom in the numerator and 12 degrees of freedom in the denominator at 95% is 3.89. Since F calculated is greater than F tabulated we reject H 0 and conclude that the 3 methods give different results at 95% confidence. (c) Based on the calculated LSD value there is a significant difference between the atomic absorption method and the EDTA titration. There is no significant difference between the EDTA titration method and the colorimetry method and there is no significant difference between the atomic absorption method and the colorimetry method. 7-31 (a) 596.0 27.4184.41 61.4127.41 = − − =Q and Qcrit for 4 observations at 95% confidence = 0.829. Since Q < Qcrit the outlier value 41.27 cannot be rejected with 95% confidence. (b) 894.0 284.7388.7 295.7388.7 = − − =Q and Qcrit for 4 observations at 95% confidence = 0.829. Since Q > Qcrit the outlier value 7.388 can be rejected with 95% confidence. 7-32 (a) 833.0 62.8410.85 70.8410.85 = − − =Q and Qcrit for 3 observations at 95% confidence = 0.970. Since Q < Qcrit the outlier value 85.10 cannot be rejected with 95% confidence. (b) 833.0 62.8410.85 70.8410.85 = − − =Q and Qcrit for 4 observations at 95% confidence = 0.829. Since Q > Qcrit the outlier value 85.10 can be rejected with 95% confidence. 7-33 5.0 40.460.4 50.460.4 = − − =Q and Qcrit for 5 observations at 95% confidence = 0.710. Since Q < Qcrit the outlier value 4.60 ppm cannot be rejected with 95% confidence. Fundamentals of Analytical Chemistry: 8th ed. Chapter 9 (c) M101.1)M102.2( 2 1 ]F[ 2 1 S M102.2 050.0 105.2 ]F[ ]M)[F050.0(]][F[Sr 105.2 44 4 9 2229 sp −−− − − − −−+− ×=××== ×= × = ==×=K (d) M104.9)M108.3( 4 1 ]OH[ 4 1 S M108.3 050.0 100.1 ]OH[ ]M)[OH050.0(]][OHTh[100.1 54 44 15 44415 sp −−− − − − −−+− ×=××== ×= × = ==×=K 9-12 (a) M100.4 050.0 1002.2 ]Cu[S )](0.050MCu[]][SeOCu[1002.2 7 8 2 22 3 28 sp − − + +−+− ×= × == ==×=K (b) M103.1 )050.0( 102.3 ]Pb[S )](0.050MPb[]][IOPb[102.3 10 2 13 2 222 3 213 sp − − + +−+− ×= × == ==×=K (c) K sp = 2.5×10-9 = [Sr 2+][F-]2 = [Sr 2+](0.050 M)2 S = [Sr 2+] = M100.1 )050.0( 105.2 6 2 9 − − ×= × Fundamentals of Analytical Chemistry: 8th ed. Chapter 9 (d) K sp = 1.0×10 -15 = [Th4+][OH-]4 = [Th4+](0.050 M)4 S = [Th4+] = M106.1 )050.0( 100.1 10 4 15 − − ×= × 9-13 ][CrO]Ag[102.1CrO2Ag)(CrOAg 2 4 212 sp 2 442 −+−−+ ← → =×=+ K s (a) M100.1 )1041.3( 102.1 ]CrO[ 9 22 12 2 4 − − − − ×= × × = (b) M30.0 )1000.2( 102.1 ]CrO[ 26 12 2 4 =× × = − − − 9-14 3334sp 3 3 ]][OHAl[100.33OHAl)(Al(OH) −+−−+ ← → =×=+ K s 3432 sp 23 3 100.3][OH][OH 3 1 M105.0 ][OH 3 1 M105.0][Al ][OH 3 1 Al(OH)of solubilityMolar −−−− −−+ − ×=⎟ ⎠ ⎞ ⎜ ⎝ ⎛ +×= +×= = K (a) Because the K sp is so small, we can assume the solubility of Al(OH)3 is not large. Therefore, it is reasonable that the [Al3+] ≈ 5.0 X 10 -2 M. The K sp equation then simplifies to K sp = (5.0×10 -2 M)[OH - ] 3 = 3.0×10-34 [OH-] = M100.2 M100.5 100.3 113 1 2 34 − − − ×=⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ × × Fundamentals of Analytical Chemistry: 8th ed. Chapter 9 (b) As in part (a), M101.1 M1000.2 100.3 ]OH[ 9 3 1 7 34 − − − − ×=⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ × × = 9-15 10333 3 sp 102.3)S3(S]][IOCe[ −−+ ×===K (a) M0125.0 L mL1000 )mL0.50mL0.50( mole1025.1 mole1025.1mL0.50 mL1000 L L mole 105.2CeM0250.0 3 323 =× + × ×=×××≡ − −−+ (b) mole100.2mL0.50mL1000 L L mole 100.4IOM040.0 323 −−− ×=×××≡ ( ) mole10833.5mole100.2 3 1 mole1025.1unreactedCemoles 4333 −−−+ ×=×−×= ( ) SM10833.5S L mL1000 mL0.50mL0.50 mole10833.5 ]Ce[ 3 4 3 +×=+⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ × + × = − − + where S is derived iteratively using the equation 33 sp )S3()S10833.5( +×= −K We start by solving for S assuming no contribution to [Ce 3+ ] other than from the dissociation of Ce(IO3)3. In this case, S equals 1.855 × 10-3. Now, we substitute 1.855 × 10-3 back into the K sp equation above and solve for K iterative. K iterative equals 1.3259 × 10-9. S is too large; we choose a smaller S (i.e., 1 × 10-3) and recalculate K iterative. Iteration continues until K iterative ≈ K sp. The results of this approach are shown in the Table below. Fundamentals of Analytical Chemistry: 8th ed. Chapter 9 Iteration S K iterative 1 1.855×10-3 1.3259×10-9 2 1×10-3 1.8449×10-10 3 1.2×10-3 3.2813×10-10 4 1.19×10-3 3.1954×10-10 We now substitute S = 1.19 × 10-3 into the equation below, M100.71019.1M10833.5]Ce[ 3333 −−−+ ×=×+×= (c) mole0125.0mL0.50 mL1000 L L mole 105.2IOM250.0 13 =×××≡ −− The Ce3+ is completely consumed; thus, 103 sp 3 3 33 3 102.3)S3M0875.0(S S3M0875.0S3 L mL1000 mL0.100 mole1075.8 ]IO[ mole1075.8)mole1025.1(3mole0125.0unreactedIOmoles − − − −−− ×=+= +=+⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ × × = ×=×−= K Make the assumption that 3S << 0.0375 M. M108.4 )M0875.0( 102.3 S]Ce[ 102.3)M0875.0(S 7 3 10 3 103 sp − − + − ×=⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ × == ×==K (d) mole105.7mL0.50 mL1000 L L mole 105.1IOM150.0 313 −−− ×=×××≡ Fundamentals of Analytical Chemistry: 8Fundamentals of Analytical Chemistry: 8thth ed. ed. Chapter Chapter 99 The CeThe Ce3+3+ is completely consumed; thus, is completely consumed; thus, 101033 spsp 33 33 333333 33 101022..33))SS33MM03750375..00((SS SS33MM03750375..00SS33 LL mLmL10001000 mLmL00..100100 molemole10107575..33 ]]IOIO[[ molemole10107575..33))molemole10102525..11((33molemole101055..77unreactedunreactedIOIOmolesmoles −− −− −− −−−−−−−− ××==++== ++==++⎟⎟⎟⎟ ⎠ ⎠ ⎞ ⎞ ⎜⎜⎜⎜ ⎝ ⎝ ⎛ ⎛ ×× ×× == ××==××−−××== K K Make the assumption that 3S << 0.0375 M.Make the assumption that 3S << 0.0375 M. MM101011..66 ))MM03750375..00(( 101022..33 SS]]CeCe[[ 101022..33))MM03750375..00((SS 66 33 1010 33 101033 spsp −− −− ++ −− ××==⎟⎟⎟⎟ ⎠ ⎠ ⎞ ⎞ ⎜⎜⎜⎜ ⎝ ⎝ ⎛ ⎛ ×× ==== ××====K K 9-169-16 6622 22 66 22 spsp 101000..66))SS(())SS22((]][PdCl[PdCl]]K K [[ −−−−++ ××======K K MM100100..00 LL mLmL10001000 ))mLmL00..5050mLmL00..5050(( molemole10100000..11 molemole01000100..00mLmL00..5050 mLmL10001000 LL LL molemole 101000..22K K MM200200..00 22 11 ==×× ++ ×× ==××××××≡≡ −− −−++ (a)(a) molemole101055..22mLmL00..5050 mLmL10001000 LL LL molemole 101000..55PdClPdClMM05000500..00 3322 22 66 −−−−−− ××==××××××≡≡ )) MM050050..00 LL mLmL10001000 ))mLmL00..5050mLmL00..5050(( molemole101000..55 molemole101000..55molemole101055..2222molemole10100000..11unreactedunreactedK K molesmoles 33 333322 ==×× ++ ×× ××==××−−××== −− −−−−−−++ The [K The [K ++] is 0.05 M plus the con] is 0.05 M plus the contribution from the dissociation of the precipitate,tribution from the dissociation of the precipitate, x x, or, or [K [K ++] = 0.05 M + 2] = 0.05 M + 2 x x Substituting the equation above into Substituting the equation above into the equilibrium expression, we findthe equilibrium expression, we find 66332233 2222 66 22 spsp 101000..66))101055..22((2020..0044 ))220505..00((]]PdClPdCl[[]]K K [[ −−−− −−++ ××==××++++ ++==== x x x x x x x x x xK K We use an iterative approach to solve forWe use an iterative approach to solve for x x. . We begin by We begin by ignoring the contributiignoring the contribution to [K on to [K ++]] from the dissociation of the precipitate.from the dissociation of the precipitate. Fundamentals of Analytical Chemistry: 8Fundamentals of Analytical Chemistry: 8thth ed. ed. Chapter Chapter 99 011447011447..00 44 101000..66 33 66 == ×× == −− x x Substituting this value back into theSubstituting this value back into theK K spsp equation above, we obtain equation above, we obtainK K iterativeiterative equal to equal to 6.08246.0824 ×× 10 10-5-5,, which is too lwhich is too large. arge. We now proceed by We now proceed by choosing a smaller choosing a smaller value ofvalue of x x equal equal 11 ×× 10 10-3-3 and obtain and obtain K K iterativeiterative equals to 2.7040 equals to 2.7040×× 10 10-6-6. . We continue We continue the iterative the iterative approachapproach untiluntil K K iterativeiterative ≈≈ K K spsp as shown in the table below. as shown in the table below. IterationIteration x x K K iterativeiterative 1 0.0114471 0.011447 6.08146.0814 ×× 10 10-5-5 22 11 ×× 10 10-3-3 2.70402.7040 ××1010-6-6 33 22 ×× 10 10-3-3 5.83205.8320 ××1010-6-6 SubstitutingSubstituting x x equals 2 equals 2 ×× 10 10-3-3 into the [K into the [K ++] equation, we find] equation, we find [K [K ++] = 0.05 M + 2(2] = 0.05 M + 2(2 ×× 10 10-3-3M) = 0.054 MM) = 0.054 M (b)(b) molemole10100000..55mLmL00..5050 mLmL10001000 LL LL molemole 101000..11PdClPdClMM100100..00 3311 22 66 −−−−−− ××==××××××≡≡ The [K The [K ++] is determined directly from] is determined directly from K K spsp; thus,; thus, MM022022..00))MM011011..00((22SS22]]K K [[ 011011..00 44 101000..66 SS 101000..66SS44SS))SS22(( SS]]PdClPdCl[[SS22]]K K [[ 33 11 66 663322 spsp 22 66 ====== ==⎟⎟⎟⎟ ⎠ ⎠ ⎞ ⎞ ⎜⎜⎜⎜ ⎝ ⎝ ⎛ ⎛ ×× == ××====== ==== ++ −− −− −−++ K K Fundamentals of Analytical Chemistry: 8Fundamentals of Analytical Chemistry: 8thth ed. ed. Chapter Chapter 99 (c)(c) molemole010010..00mLmL00..5050 mLmL10001000 LL LL molemole 101000..22PdClPdClMM200200..00 11 22 66 ==××××××≡≡ −−−− The K The K ++ is completely consumed; thus, is completely consumed; thus, MM011011..00))MM1010477477..55((22SS22]]K K [[ MM1010477477..55 ))0505..00((44 101000..66 SS 101000..66))MM0505..00((SS44 MM0505..00]]PdClPdCl[[ MM0505..00SSthatthatAssumeAssume SSMM0505..00SS LL mLmL10001000 mLmL100.0100.0 molemole10105.05.0 ]][PdCl[PdCl molemole10105.05.0mole)mole)1010(1.00(1.00 22 11 molemole10101.01.0unreactedunreactedPdClPdClmolesmoles 33 33 22 11 66 6622 spsp 22 66 33 22 66 33--222222 66 ==××==== ××==⎟⎟⎟⎟ ⎠ ⎠ ⎞ ⎞ ⎜⎜⎜⎜ ⎝ ⎝ ⎛ ⎛ ×× == ××==== == <<<< ++==++⎟⎟⎟⎟ ⎠ ⎠ ⎞ ⎞ ⎜⎜⎜⎜ ⎝ ⎝ ⎛ ⎛ ×× ×× == ××==××−−××== −−++ −− −− −− −− −− −− −−−−−− K K 9-179-17 CuI(CuI(ss)) Cu Cu++ + I + I-- K K spsp = [Cu = [Cu ++][I][I--] = 1] = 1××1010-12-12 AgI(AgI(ss)) Ag Ag++ + I + I-- K K spsp = [Ag = [Ag ++][I][I--] = 8.3] = 8.3××1010-17-17 PbIPbI22((ss)) Pb Pb 2+2+ + 2I + 2I-- K K spsp = [Pb = [Pb 2+2+][I][I--]]22 = 7.1 = 7.1××1010-9-9 = = S(2S)S(2S)22 = 4S = 4S33 BiIBiI33((ss)) Bi Bi 3+3+ + 3I + 3I -- K K spsp = [Bi = [Bi 3+3+ ][I][I -- ]] 33 = 8.1 = 8.1××1010-19-19 = = S(3S)S(3S)33 = 27S = 27S44 (a)(a) water water ininAgIAgICuICuIBiIBiIPbIPbI 101033..11 2727 ))101011..88(( SS]]II[[ 33 11 ]]BiBi[[SS 101022..11 44 ))101011..77(( SS]]II[[ 22 11 ]]PbPb[[SS 101011..99101033..88SS]][I[I]]AgAg[[SS 101011101011SS]][I[I]]CuCu[[SS 3322 5544 1919 33 BiIBiI 3333 99 22 PbIPbI 991717 AgIAgI 661212 CuICuI 33 22 >>>>>> ××== ×× ====== ××== ×× ====== ××==××====== ××==××====== −− −− −−++ −− −− −−++ −−−−−−++ −−−−−−++ Fundamentals of Analytical Chemistry: 8Fundamentals of Analytical Chemistry: 8thth ed. ed. Chapter Chapter 99 (b)(b) NaI NaIMM1010..00ininBiIBiIAgIAgICuICuIPbIPbI 101011..88 ))MM1010..00(( 101011..88 SS 101011..77 ))MM1010..00(( 101011..77 SS 101033..88 MM1010..00 101033..88 SS 101011 MM1010..00 101011 SS 3322 1616 33 1919 BiIBiI 77 22 99 PbIPbI 1616 1717 AgIAgI 1111 1212 CuICuI 33 22 >>>>>> ××== ×× == ××== ×× == ××== ×× == ××== ×× == −− −− −− −− −− −− −− −− (c)(c) cationcationsolutesolutethetheof of solutionsolutionMM0.0100.010aaininAgIAgICuICuIBiIBiIPbIPbI101044..11 MM010010..00 101011..88 33 11 SS 101022..44 MM010010..00 101011..77 22 11 SS 101033..88 MM010010..00 101033..88 SS 101011 MM010010..00 101011 SS 3322 66 33 1919 BiIBiI 44 99 PbIPbI 1515 1717 AgIAgI 1010 1212 CuICuI 33 22 >>>>>> ××== ×× == ××== ×× == ××== ×× == ××== ×× == −− −− −− −− −− −− −− −− 9-189-18 BiOOH(BiOOH(ss)) BiO BiO++ + OH + OH-- K K spsp = [BiO = [BiO ++][OH][OH--] = 4.0] = 4.0××1010-10-10 Be(OH)Be(OH)22((ss)) Be Be 2+2+ + 2OH + 2OH-- K K spsp = [Be = [Be 2+2+][OH][OH--]]22 = 7.0 = 7.0××1010-22-22 = S(2S) = S(2S)22 = 4S = 4S33 Tm(OH)Tm(OH)33((ss)) Tm Tm 3+3+ + 3OH + 3OH-- K K spsp = [Tm = [Tm 3+3+][OH][OH--]]33 = 3.0 = 3.0××1010-24-24 = S(3S) = S(3S)33 = 27S = 27S44 Hf(OH)Hf(OH)44((ss)) Hf Hf 4+4+ + 4OH + 4OH-- K K spsp = [Hf = [Hf 4+4+][OH][OH--]]44 = 4.0 = 4.0××1010-26-26 = S(4S) = S(4S)44 = 256S = 256S55 Fundamentals of Analytical Chemistry: 8Fundamentals of Analytical Chemistry: 8thth ed. ed. Chapter Chapter 99 (a)(a) water.water.ininsolubilitysolubilitylowestlowestthethehashasBe(OH)Be(OH) 101077..22 256256 101000..44 SS]][OH[OH 44 11 ]]Hf Hf [[SS 101088..55 2727 101000..33 SS]][OH[OH 33 11 ]]TmTm[[SS 101066..55 44 101000..77 SS]][OH[OH 22 11 ]]BeBe[[SS 101000..22101000..44SS]][OH[OH]]BiOBiO[[SS 22 6655 2626 44 ))OHOH((Hf Hf 7744 2424 33 ))OHOH((TmTm 8833 2222 22 ))OHOH((BeBe 551010 BiOOHBiOOH 44 33 22 −− −− −−++ −− −− −−++ −− −− −−++ −−−−−−++ ××== ×× ====== ××== ×× ====== ××== ×× ====== ××==××====== (b)(b) .. NaOH NaOHMM0.100.10ininsolubilitysolubilitylowestlowestthethehashasHf(OH)Hf(OH) 101000..44 ))MM1010..00(( 101000..44 SS 101000..33 ))MM1010..00(( 101000..33 SS 101000..77 ))MM1010..00(( 101000..77 SS 101000..44 MM1010..00 101000..44 SS 44 2222 44 2626 ))OHOH((Hf Hf 2121 33 2424 ))OHOH((TmTm 2020 22 2222 ))OHOH((BeBe 99 1010 BiOOHBiOOH 44 33 22 −− −− −− −− −− −− −− −− ××== ×× == ××== ×× == ××== ×× == ××== ×× == 9-199-19 At 0ºC,At 0ºC, 7.4727.472M)M)1010log(3.38log(3.38]]OOlog[Hlog[H pH pH MM10103.383.3810100.1440.144]][OH[OH]]OO[H[H10100.1140.114]]][OH][OHOOHH[[ 88 33 881414 33 1414 33spsp ==××−−==−−== ××==××====××==== −−++ −−−−−−++−−−−++K K At 100ºC,At 100ºC, 155155..66M)M)1010log(7.00log(7.00]]OOlog[Hlog[H pH pH MM10107.007.0010104949]][OH[OH]]OO[H[H10104949]]][OH][OHOOHH[[ 77 33 771414 33 1414 33spsp ==××−−==−−== ××==××====××==== −−++ −−−−−−++−−−−++K K Fundamentals of Analytical Chemistry: 8Fundamentals of Analytical Chemistry: 8thth ed. ed. Chapter Chapter 99 9-209-20 (a)(a) MM10103.33.3 MM10103.03.0 10101.01.0 ]][OH[OH MM10103.03.0 22 ))10104(9.04(9.0))1010(3.0(3.010103.03.0 ]]OO[H[H 0010109.09.0]]OO[H[H10103.03.0]]OO[H[H ])])OO[H[HMM(0.0300(0.030010103.03.0]]OO[H[H10103.03.0 ])])OO[H[HMM(0.0300(0.0300 ]]OO[H[H ]]OO[H[HMM0.03000.0300[HOCl][HOCl]]][OCl[OCl]]OOHH[[ 101000..33 [HOCl][HOCl] ]]OO][H][H[OCl[OCl OOHHOClOClOOHHHOClHOCl 1010 55 1414 55 1010228888 33 1010 33 8822 33 33 8822 33 88 33 22 33 3333 8833 aa3322 −− −− −− −− −− −−−−−− ++ −−++−−++ ++−−++−− ++ ++ ++−−++ −− ++−− ++−− ←← →→ ××== ×× ×× == ××== ××++××++×× −−== ==××−−××++ −−××==××== −− −−==== ××====++++ K K (b)(b) MM10101.061.06 MM10109.479.47 10101.01.0 ]][OH[OH MM10109.479.47 22 ))10104(9.124(9.12))1010(1.52(1.5210101.521.52 ]]OO[H[H 0010109.129.12]]OO[H[H10101.521.52]]OO[H[H ])])OO[H[HMM(0.0600(0.060010101.521.52]]OO[H[H10101.521.52 ])])OO[H[HMM(0.0600(0.0600 ]]OO[H[H ]]OO[H[HMM0.06000.0600COOH]COOH]CHCHCHCH[CH[CH]]COOCOOCHCHCHCH[CH[CH]]OO[H[H 10105252..11 COOH]COOH]CHCHCHCH[CH[CH ]]OO][H][HCOOCOOCHCHCHCH[CH[CH OOHHCOOCOOCHCHCHCHCHCHOOHHCOOHCOOHCHCHCHCHCHCH 1111 44 1414 44 77225555 33 77 33 5522 33 33 5522 33 55 33 22 33 3322223322223333 55 222233 33222233 aa 3322223322222233 −− −− −− −− −− −−−−−− ++ −−++−−++ ++−−++−− ++ ++ ++−−++ −− ++−− ++−− ←← →→ ××== ×× ×× == ××== ××++××++×× −−== ==××−−××++ −−××==××== −− −−==== ××==== ++++ K K Fundamentals of Analytical Chemistry: 8Fundamentals of Analytical Chemistry: 8thth ed. ed. Chapter Chapter 99 (c)(c) MM10101.61.6 MM10106.376.37 10101.01.0 ]]OO[H[H MM10106.46.4 22 ))10104(4.334(4.33))1010(4.33(4.3310104.334.33 ]][OH[OH 0010104.334.33]][OH[OH10104.334.33]][OH[OH ])])[OH[OHMM(0.100(0.10010104.334.33]][OH[OH10104.334.33 ])])[OH[OHMM(0.100(0.100 ]][OH[OH ]][OH[OHMM0.1000.100]] NH NHHH[C[C]] NH NHHH[C[C]][OH[OH 10103333..44 10103131..22 101000..11 ]] NH NHHH[C[C ]]][OH][OH NH NHHH[C[C OHOH NH NHHHCCOOHH NH NHHHCC 1212 33 1414 33 33 55224444 554422 442244 22 225522335522 44 1111 1414 aa ww 225522 335522 b b 33552222225522 −− −− −− ++ −− −−−−−− −− −−−−−−−− −−−−−−−− −− −− −−++−− −− −− −−−−++ −−++ ←← →→ ××== ×× ×× == ××== ××++××++×× −−== ==××−−××++ −−××==××== −− −−==== ××== ×× ×× ====== ++++ K K K K K K (d)(d) MM10102.832.83 MM10103.533.53 10101.01.0 ]]OO[H[H MM10103.533.53 22 ))10104(1.274(1.27))1010(6.33(6.3310106.336.33 ]][OH[OH 0010101.271.27]][OH[OH10106.336.33]][OH[OH ])])[OH[OHMM(0.200(0.20010106.336.33]][OH[OH10106.336.33 ])])[OH[OHMM(0.200(0.200 ]][OH[OH ]][OH[OHMM0.2000.200 N] N]))[(CH[(CH]] NH NH))[(CH[(CH]][OH[OH 10103333..66 10105858..11 101000..11 N] N]))[(CH[(CH ]]][OH][OH NH NH))[(CH[(CH OHOH NH NH))(CH(CHOOHH N N))(CH(CH 1212 33 1414 33 33 55225555 555522 552255 22 33333333 55 1010 1414 aa ww 3333 3333 b b 3333223333 −− −− −− ++ −− −−−−−− −− −−−−−−−− −−−−−−−− −− −− −−++−− −− −− −−−−++ −−++ ←← →→ ××== ×× ×× == ××== ××++××++×× −−== ==××−−××++ −−××==××== −− −−==== ××== ×× ×× ====== ++++ K K K K K K Fundamentals of Analytical Chemistry: 8Fundamentals of Analytical Chemistry: 8thth ed. ed. Chapter Chapter 99 (e)(e) MM10103.93.9 MM10102.62.6 10101.01.0 ]]OO[H[H MM10102.62.6 22 ))10104(6.74(6.7))1010(3.3(3.310103.33.3 ]][OH[OH 0010106.76.7]][OH[OH10103.33.3]][OH[OH ])])[OH[OHMM(0.200(0.20010103.33.3]][OH[OH10103.33.3 ])])[OH[OHMM(0.200(0.200 ]][OH[OH ]][OH[OHMM0.2000.200]][OCl[OCl[HOCl][HOCl]]][OH[OH 101033..33 101000..33 101000..11 ]][OCl[OCl ]][HOCl][OH[HOCl][OH OHOHHOClHOClOOHHOClOCl 1111 44 1414 33 44 88227777 887722 772277 22 77 88 1414 aa ww b b22 −− −− −− ++ −− −−−−−− −− −−−−−−−− −−−−−−−− −− −− −−−−−− −− −− −− −− −− −− ←← →→−− ××== ×× ×× == ××== ××++××++×× −−== ==××−−××++ −−××==××== −− −−==== ××== ×× ×× ======++++ K K K K K K (f)(f) MM10101.251.25 MM10108.018.01 10101.01.0 ]]OO[H[H MM10108.018.01 22 ))10104(6.424(6.42))1010(7.42(7.4210107.427.42 ]][OH[OH 0010106.426.42]][OH[OH10107.427.42]][OH[OH ])])[OH[OHMM(0.0860(0.086010107.427.42]][OH[OH10107.427.42 ])])[OH[OHMM(0.0860(0.0860 ]][OH[OH ]][OH[OHMM0.08600.0860]]COOCOOHH[C[CCOOH]COOH]HH[C[C]][OH[OH 10104242..77 10103434..11 101000..11 ]]COOCOOHH[C[C ]]COOH][OHCOOH][OHHH[C[C OHOHCOOHCOOHHHCCOOHHCOOCOOHHCC 99 66 1414 33 66 11112210101010 1111101022 1010221010 22 55225522 1010 55 1414 aa ww 5522 5522 b b 5522225522 −− −− −− ++ −− −−−−−− −− −−−−−−−− −−−−−−−− −− −− −−−−−− −− −− −− −− −− −− ←← →→−− ××== ×× ×× == ××== ××++××++×× −−== ==××−−××++ −−××==××== −− −−==== ××== ×× ×× ====== ++++ K K K K K K Fundamentals of Analytical Chemistry: 8Fundamentals of Analytical Chemistry: 8thth ed. ed. Chapter Chapter 99 (g)(g) MM10101.911.91 MM10105.245.24 10101.01.0 ]][OH[OH MM10105.245.24 22 ))10104(2.754(2.75))1010(1.10(1.1010101.101.10 ]]OO[H[H 0010102.752.75]]OO[H[H10101.101.10]]OO[H[H ])])OO[H[HMM(0.250(0.25010101.101.10]]OO[H[H10101.101.10 ])])OO[H[HMM(0.250(0.250 ]]OO[H[H ]]OO[H[HMM0.2500.250]][HONH[HONH]][HONH[HONH]]OO[H[H 10101010..11 ]][HONH[HONH ]]OO][H][H[HONH[HONH OOHHHONHHONHOOHHHONHHONH 1111 44 1414 44 77226666 33 77 33 6622 33 33 6622 33 66 33 22 33 33332233 66 33 3322 aa33222233 −− −− −− −− −− −−−−−− ++ −−++−−++ ++−−++−− ++ ++ ++++++ −− ++ ++++ ←← →→++ ××== ×× ×× == ××== ××++××++×× −−== ==××−−××++ −−××==××== −− −−==== ××====++++ K K (h)(h) MM10103.553.55 MM10102.822.82 10101.01.0 ]][OH[OH MM10102.822.82 22 ))10104(7.954(7.95))1010(3.18(3.1810103.183.18 ]]OO[H[H 0010107.957.95]]OO[H[H10103.183.18]]OO[H[H ])])OO[H[HMM(0.0250(0.025010103.183.18]]OO[H[H10103.183.18 ])])OO[H[HMM(0.0250(0.0250 ]]OO[H[H ]]OO[H[HMM0.02500.0250]] NH NHHH[HOC[HOC]] NH NHHH[HOC[HOC]]OO[H[H 10101818..33 ]] NH NHHH[HOC[HOC ]]OO][H][H NH NHHH[OHC[OHC OOHH NH NHHHHOCHOCOOHH NH NHHHHOCHOC 99 66 1414 66 12122210101010 33 1212 33 101022 33 33 101022 33 1010 33 22 33 3333442222442233 1010 334422 33224422 aa3322442222334422 −− −− −− −− −− −−−−−− ++ −−++−−++ ++−−++−− ++ ++ ++++++ −− ++ ++ ++ ←← →→++ ××== ×× ×× == ××== ××++××++×× −−== ==××−−××++ −−××==××== −− −−==== ××====++++ K K Fundamentals of Analytical Chemistry: 8th ed. Chapter 9 9-21 (a) M1100.0 2 )104(1.36)10(1.36101.36 ]O[H 0101.36]O[H101.36]O[H ])O[HM(0.100101.36]O[H101.36 ])O[HM(0.100 ]O[H ]O[HM0.100COOH][ClCH]COO[ClCH]O[H 1036.1 COOH][ClCH ]O][HCOO[ClCH OHCOOClCHOHCOOHClCH 4233 3 4 3 32 3 3 32 3 3 3 2 3 3223 3 2 32 a3222 = ×+×+× −= =×−×+ −×=×= − −== ×==++ −−− + −+−+ +−+− + + +−+ − +− +− ← → K (b) M101.17 M108.57 101.0 ]O[H M108.57 2 )104(7.35)10(7.35107.35 ][OH 0107.35][OH107.35][OH ])[OHM(0.100107.35][OH107.35 ])[OHM(0.100 ][OH ][OHM0.100]COO[ClCHCOOH][ClCH][OH 1035.7 1036.1 100.1 ]COO[ClCH ]COOH][OH[ClCH OHCOOHClCHOHCOOClCH 8 7 14 3 7 1321212 13122 12212 2 22 12 3 14 a w 2 2 b 222 − − − + − −−− − −−−− −−−− − − −−− − − − − − − ← →− ×= × × = ×= ×+×+× −= =×−×+ −×=×= − −== ×= × × === ++ K K K Fundamentals of Analytical Chemistry: 8th ed. Chapter 9 (c) M105.32 M101.88 101.0 ]O[H M101.88 2 )104(4.35)10(4.35104.35 ][OH 0104.35][OH104.35][OH ])[OHM(0.0100104.35][OH104.35 ])[OHM(0.0100 ][OH ][OHM0.0100] NH[CH] NH[CH][OH 1035.4 103.2 100.1 ] NH[CH ]][OH NH[CH OH NHCHOH NHCH 12 3 14 3 3 6244 642 424 2 2333 4 11 14 a w 23 33 b 33223 − − − + − −−− − −−−− −−−− − − −+− − − −−+ −+ ← → ×= × × = ×= ×+×+× −= =×−×+ −×=×= − −== ×= × × === ++ K K K (d) M104.8 2 )104(2.3)10(2.3102.3 ]O[H 0102.3]O[H102.3]O[H ])O[HM(0.0100102.3]O[H102.3 ])O[HM(0.0100 ]O[H ]O[HM0.0100] NH[CH] NH[CH]O[H 103.2 ] NH[CH ]O][H NH[CH OH NHCHOH NHCH 7 1321111 3 13 3 112 3 3 112 3 11 3 2 3 333233 11 33 323 a323233 − −−− + −+−+ +−+− + + +++ − + + + ← →+ ×= ×+×+× −= =×−×+ −×=×= − −== ×==++ K (e) M101.46 2 )104(2.51)10(2.51102.51 ]O[H 0102.51]O[H102.51]O[H ])O[HM(0.0010102.51]O[H102.51 ])O[HM(0.0010 ]O[H ]O[HM0.0010] NHH[C] NHH[C]O[H 1051.2 ] NHH[C ]O][H NHH[C OH NHHCOH NHHC 4 8-255 3 8 3 52 3 3 52 3 5 3 2 3 33562563 5 356 3256 a32562356 − −− + −+−+ +−+− + + +++ − + + + ← →+ ×= ×+×+× −= =×−×+ −×=×= − −== ×==++ K Fundamentals of Analytical Chemistry: 8th ed. Chapter 9 (f) 0.12M 2 4(0.034))10(1.7101.7 ]O[H 00.034]O[H101.7]O[H ])O[HM(0.200101.7]O[H101.7 ])O[HM(0.200 ]O[H ]O[HM0.200][HIO][IO]OH[ 107.1 ][HIO ]O][H[IO OHIOOHHIO 211 3 3 12 3 3 12 3 1 3 2 3 3333 1 3 33 a3323 = +×+× −= =−×+ −×=×= − −== ×==++ −− + +−+ +−+− + + +−+ − +− +− ← → K 9-22 A buffer solution resists changes in pH with dilution or with addition of acids or bases. A buffer is composed of a mixture of a weak acid and its conjugate base. 9-23 Buffer capacity of a solution is defined as the number of moles of a strong acid (or a strong base) that causes 1.00 L of a buffer to undergo a 1.00-unit change in pH. 9-24 (a) 943.8 (0.200M) (0.100M) log)107.5log( ][NH ][NH log p pH 10 4 3 a =+×−=+= − +K (b) 943.8 (0.100M) (0.050M) log)107.5log( ][NH ][NH log p pH 10 4 3 a =+×−=+= − +K The solutions have identical pH values, but the solution in part (a) has the greater buffer capacity because it has the higher concentration of weak acid and conjugate base. Fundamentals of Analytical Chemistry: 8th ed. Chapter 9 9-30 ( ) NaOHmL3.89 L mL1000 mole00.2 L mole179.0 NaOHvolume mole179.0 47.2 )mole300.0(47.1 47.2 )COOHOCHmole(47.1 NaOHmole ) NaOHmoleCOOHHOCHmole(47.1 NaOHmole 47.1 ) NaOHmoleCOOHHOCHmole( NaOHmole 47.1 COOHHOCHmole COOHOCHmole 47.110 ]COOHHOCH[ ]COOHOCH[ 167.0 ]COOHHOCH[ ]COOHOCH[ log ]COOHHOCH[ ]COOHOCH[ log83.3 ]COOHHOCH[ ]COOHOCH[ log1047.1log ]COOHHOCH[ ]COOHOCH[ log pK 00.4 pH COOHHOCHmole300.0mL0.300 mL1000 L L mole00.1 COOHHOCHM00.1 2 2 2 2 2 1067.1 2 2 2 2 2 2 2 24 2 2 a 22 1 =××= = × = × = −×= = − = === +=+×−= +== =××≡ − − × −− −− − − − x x x x x 9-31 The statement “A buffer maintains the pH of a solution constant” is false. The change in pH of a buffered solution is relatively small with the addition of a small volume of acid or base as shown in the example below. ]HA[ ] NaA[ log p pH a += K mL of 0.050M NaOH ]HA[ ] NaA[ ∆ pH 1.48 0.170 100 1.59 0.200 200 1.70 0.230 300 1.83 0.262 Fundamentals of Analytical Chemistry: 8th ed. Chapter 10 Chapter 10 10-1 (a) Activity, aA, is the effective concentration of a chemical species A in solution. The activity coefficient , γA, is the numerical factor necessary to convert the molar concentration of the chemical species A to activity as shown below: aA=γA[A] (b) The thermodynamic equilibrium constant refers to an ideal system within which each chemical species is unaffected by any others. A concentration equilibrium constant takes into account the influence exerted by solute species upon one another. The thermodynamic equilibrium constant is numerically constant and independent of ionic strength; the concentration equilibrium constant depends upon molar concentrations of reactants and products as well as other chemical species that may not participate in the equilibrium. 10-2 Activity coefficients have the following properties: 1. The activity coefficient depends on the solution ionic strength. 2. In very dilute solutions, the activity coefficient approaches unity. 3. For a given ionic strength, the activity coefficient becomes smaller as the charge of the chemical species increases. 4. At any ionic strength, the activity coefficients are approximately equal for chemical species having the same charge state. 10-3 (a) NaCl2)()OH(Mg NaOH2MgCl 22 ++ ← → s Replacing divalent-Mg 2+ with Na + causes the activity coefficient to increase (i.e., Fundamentals of Analytical Chemistry: 8th ed. Chapter 10 approach 1.0). Thus, the ionic strength decreases. (b) NaClOH NaOHHCl 2 ++ ← → The activity coefficient remains relatively constant when the NaOH (strong base) is added to HCl (strong acid). There is no change in the charge states of the ions present in the solution equilibria. The ionic strength is unchanged. (c) NaOAcOH NaOHHOAc 2 ++ ← → The activity coefficient will decrease when the NaOH (strong base) is added to the acetic acid (weak acid) generating water, Na+ and OAc- (conjugate base). Thus, the ionic strength increases. 10-4 (a) The ionic strength will increase when FeCl3 is added to HCl. (b) NaCl3)()OH(FeFeCl NaOH3 33 ++ ← → s Addition of FeCl3 to NaOH replaces a univalent OH - with univalent Cl-; thus, the ionic strength is unchanged. (c) )(AgCl3) NO(FeFeClAgNO3 3333 s++ ← → Addition of FeCl3 replaces the univalent Ag + with the trivalent Fe3+; thus, the ionic strength increases. 10-5 The initial slope of the change of activity coefficient for Ca 2+ is steeper than that for K + because activity coefficients for multiply-charged ions deviate from ideality (unity) more than activity coefficients for singly-charged ions. 10-6 The chemical species NH3 is not charged; therefore, the activity coefficient is unity. Fundamentals of Analytical Chemistry: 8th ed. Chapter 10 %46%100 103.2 103.2102.1 error relative M102.1 27 106 S)2(M103.2 27 103.7 S 109.2S)S3( 6 66 6 4 1 23 6 4 1 22 223 −=× × ×−× = ×=⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ × = ×=⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ × = ×= − −− − − − − − 10-15 (a) ( )( ) 200.0)1(200.01200.0 2 1 22 =+=µ %32%100 100.1 100.11032.1 error relative M1032.1)10.0)(1075.1(]OH[ M1000.1)10.0)(1001.1(]OH[ 1001.1)1075.1)(724.0)(798.0( ]HOAc[ ]OAc[]OH[ ' 724.0140.0 20.0)425.0)(3.3(1 20.0)1)(51.0( log 798.00979.0 20.0)9.0)(3.3(1 20.0)1)(51.0( log 3 33 35 3 35 3 55 aOAcOH OAc3OH a OAc 2 OAc OH 2 OH 3 3 33 =× × ×−× = ×=×= ×=×= ×=×=γγ= γγ = =γ= + =γ− =γ= + =γ− − −− −−+ −−+ −− −+ −+ −+ −− ++ K K (b) ( )( ) 200.0)1(200.01200.0 2 1 22 =+=µ 708.0150.0 20.0)35.0)(3.3(1 20.0)1)(51.0( log 681.0167.0 20.0)25.0)(3.3(1 20.0)1)(51.0( log OAc 2 OH OH 2 NH 34 =γ= + =γ− =γ= + =γ− −− ++ Fundamentals of Analytical Chemistry: 8th ed. Chapter 10 %27%100 1046.1 1046.11007.1 error relative M1007.1 1036.9 100.1 ]OH[M1036.9)050.0)(1075.1(]OH[ M1046.1 1083.6 100.1 ]OH[M1083.6)050.0)(1032.9(]OH[ 1032.9 1070.5 100.1 )708.0)(681.0( ] NH[ ]OH[] NH[ ' 11 1111 11 4 14 3 45 11 4 14 3 46 6 10 14 bOH NH 3 OH4 NH b 4 4 =× × ×−× = ×= × × =×=×= ×= × × =×=×= ×=⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ × × =γγ= γγ = − −− − − − +−−− − − − +−−− − − −− + −+ −+ K K (c) ( )( ) 060.0)1(0600.010600.0 2 1 22 =+=µ 807.00930.0 060.0)425.0)(3.3(1 060.0)1)(51.0( log 847.007232.0 060.0)9.0)(3.3(1 060.0)1)(51.0( log COOClCH 2 COOClCH OH 2 OH 22 33 =γ= + =γ− =γ= + =γ− −− ++ %21%100 1005.3 1005.31069.3 error relative M1069.3)01.0)(1036.1(]OH[ M1005.3)01.0)(103.9(]OH[ 1030.9)1036.1)(807.0)(847.0( ]COOHClCH[ ]COOClCH[]OH[ ' 3 33 33 3 34 3 43 aCOOClCHOH 2 2OAc3OH a 23 3 =× × ×−× = ×=×= ×=×= ×=×= γγ= γγ = − −− −−+ −−+ −− −+ −+ −+ K K Fundamentals of Analytical Chemistry: 8th ed. Chapter 10 10-16 A B C D E F G H I 1 Prob lem 10-16(a) 2 3 Ksp(AgIO3) 4 3.10E-08 5 6 c(Ba(NO3)2) pc(Ba(NO3)2) s(conc) ps(conc) s(act) ps(act) +) ) 7 0.0001 4.00 1.76E-04 3.75 1.81E-04 3.74 4.76E-04 0.975 0.975 8 0.0002 3.70 1.76E-04 3.75 1.82E-04 3.74 7.76E-04 0.969 0.969 9 0.0004 3.40 1.76E-04 3.75 1.84E-04 3.74 1.38E-03 0.959 0.959 10 0.0008 3.10 1.76E-04 3.75 1.86E-04 3.73 2.58E-03 0.944 0.946 11 0.001 3.00 1.76E-04 3.75 1.87E-04 3.73 3.18E-03 0.939 0.941 12 0.002 2.70 1.76E-04 3.75 1.92E-04 3.72 6.18E-03 0.917 0.920 13 0.004 2.40 1.76E-04 3.75 1.98E-04 3.70 1.22E-02 0.888 0.894 14 0.008 2.10 1.76E-04 3.75 2.06E-04 3.69 2.42E-02 0.851 0.861 15 0.01 2.00 1.76E-04 3.75 2.09E-04 3.68 3.02E-02 0.837 0.849 16 0.02 1.70 1.76E-04 3.75 2.21E-04 3.66 6.02E-02 0.787 0.807 17 0.04 1.40 1.76E-04 3.75 2.37E-04 3.63 1.20E-01 0.729 0.760 18 0.08 1.10 1.76E-04 3.75 2.56E-04 3.59 2.40E-01 0.664 0.711 19 0.1 1.00 1.76E-04 3.75 2.64E-04 3.58 3.00E-01 0.642 0.695 20 0.2 0.70 1.76E-04 3.75 2.89E-04 3.54 6.00E-01 0.574 0.647 21 0.4 0.40 1.76E-04 3.75 3.18E-04 3.50 1.20E+00 0.509 0.602 22 0.8 0.10 1.76E-04 3.75 3.50E-04 3.46 2.40E+00 0.450 0.564 23 1 0.00 1.76E-04 3.75 3.60E-04 3.44 3.00E+00 0.433 0.553 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 Spreadsheet Documentation 40 B7=-LOG(A7) F7=-LOG(E7) 41 C7=SQRT(A$4) G7=0.5((A7)*(2)*(2)+(2*A7)*(1)*(1)+(C7)*(1)*(1)+(C7)*(-1)*(-1)) 42 D7=-LOG(C7) H7=10^(-0.51*(1)*(1)*SQRT(G7)/(1+(3.3*0.25*SQRT(G7))) 43 E7=SQRT(A$4/(H7*I7)) I7=10^(-0.51*(-1)*(-1)*SQRT(G7)/(1+(3.3*0.425*SQRT(G7))) (Ag (IO3 - Fundamentals of Analytical Chemistry: 8Fundamentals of Analytical Chemistry: 8thth ed. ed. Chapter Chapter 1010 A A B B C C D D E E F F G G H H II 1 1 ProbProb lem lem 10-1610-16(c)(c) 22 33 KKspsp(BaSO(BaSO44)) 44 1.10E-101.10E-10 55 66 cc(Ba(NO(Ba(NO33))22)) ppcc(Ba(NO(Ba(NO33))22)) ss((ccoonncc)) ppss(conc)(conc) ss(act)(act) ppss(act)(act) 2+2+)) 77 00..00000011 44..000 0 11..1100EE--0066 5.965.96 11..3322EE--0066 55..888 8 44..0099EE--0044 00..991122 00..991122 88 00..00000022 33..770 0 55..5500EE--0077 6.266.26 77..1100EE--0077 66..115 5 88..0044EE--0044 00..888800 00..887799 99 00..00000044 33..440 0 22..7755EE--0077 6.566.56 33..9922EE--0077 66..441 1 11..6600EE--0033 00..883388 00..883366 1010 00..00000088 33..110 0 11..3388EE--0077 6.866.86 22..2255EE--0077 66..665 5 33..2200EE--0033 00..778844 00..778811 1111 00..000011 33..000 0 11..1100EE--0077 6.966.96 11..8899EE--0077 66..772 2 44..0000EE--0033 00..776644 00..776600 1212 00..000022 22..770 0 55..5500EE--0088 7.267.26 11..1155EE--0077 66..994 4 88..0000EE--0033 00..669933 00..668877 1313 00..000044 22..440 0 22..7755EE--0088 7.567.56 77..4488EE--0088 77..113 3 11..6600EE--0022 00..661122 00..660011 1414 00..000088 22..110 0 11..3388EE--0088 7.867.86 55..1199EE--0088 77..228 8 33..2200EE--0022 00..552233 00..550077 1515 00..0011 22..000 0 11..1100EE--0088 7.967.96 44..6699EE--0088 77..333 3 44..0000EE--0022 00..449933 00..447766 1616 00..0022 11..770 0 55..5500EE--0099 8.268.26 33..5588EE--0088 77..445 5 88..0000EE--0022 00..440044 00..338800 1717 00..0044 11..440 0 22..7755EE--0099 8.568.56 22..9922EE--0088 77..554 4 11..6600EE--0011 00..332222 00..229922 1818 00..0088 11..110 0 11..3388EE--0099 8.868.86 22..4499EE--0088 77..660 0 33..2200EE--0011 00..225533 00..221188 1919 00..11 11..000 0 11..1100EE--0099 8.968.96 22..3388EE--0088 77..662 2 44..0000EE--0011 00..223344 00..119988 2020 00..22 00..770 0 55..5500EE--1100 9.269.26 22..0066EE--0088 77..669 9 88..0000EE--0011 00..118833 00..114466 2121 00..44 00..440 0 22..7755EE--1100 9.569.56 11..7744EE--0088 77..776 16 1..6600EE++0000 00..114466 00..110088 2222 00..88 00..110 0 11..3388EE--1100 9.869.86 11..4400EE--0088 77..885 35 3..2200EE++0000 00..111199 00..008822 2323 11 00..000 0 11..1100EE--1100 9.969.96 11..2299EE--0088 77..889 49 4..0000EE++0000 00..111133 00..007766 2424 2525 2626 2727 2828 2929 3030 3131 3232 3333 3434 3535 3636 3737 3838 39 39 Spreadsheet Spreadsheet DocumentDocumentationation 40 40 B7=-LB7=-LOG(A7) OG(A7) F7=-LOG(E7)F7=-LOG(E7) 41 41 C7=(A$4/(AC7=(A$4/(A7)) 7)) G7=0.5((A7)*(2)*(2)+(2*AG7=0.5((A7)*(2)*(2)+(2*A7)*(1)*(1))7)*(1)*(1)) 42 42 D7=-LOG(C7) D7=-LOG(C7) H7=10^H7=10^(-0.51*(2)*(2)*SQRT(G7)/(1+(3.3*0.50*SQRT(G7)))(-0.51*(2)*(2)*SQRT(G7)/(1+(3.3*0.50*SQRT(G7))) 43 43 E7=(A$4/(AE7=(A$4/(A7*H7*I7)) 7*H7*I7)) I7=10^I7=10^(-0.51*(-2)*(-2)*SQRT(G7)/(1+(3.3*0.40*SQRT(G7)))(-0.51*(-2)*(-2)*SQRT(G7)/(1+(3.3*0.40*SQRT(G7))) (Ba(Ba (SO(SO44 2-2-)) Fundamentals of Analytical Chemistry: 8Fundamentals of Analytical Chemistry: 8thth ed. ed. Chapter Chapter 1010 A A B B C C D D E E F F G G H H II 1 1 ProbProb lem lem 10-1610-16(d)(d) 22 33 KKspsp(La(IO(La(IO33))33 44 1.00E-111.00E-11 55 66 cc(Ba(NO(Ba(NO33))22)) ppcc(Ba(NO(Ba(NO33))22)) ss((ccoonncc)) ppss(conc)(conc) ss(act)(act) ppss(act)(act) 3+3+)) 77 00..00000011 44..000 0 77..8800EE--0044 3.113.11 99..6633EE--0044 33..002 2 44..9988EE--0033 00..554400 00..992277 88 00..00000022 33..770 0 77..8800EE--0044 3.113.11 99..6699EE--0044 33..001 1 55..2288EE--0033 00..553322 00..992255 99 00..00000044 33..440 0 77..8800EE--0044 3.113.11 99..7788EE--0044 33..001 1 55..8888EE--0033 00..551177 00..992211 1010 00..00000088 33..110 0 77..8800EE--0044 3.113.11 99..9966EE--0044 33..000 0 77..0088EE--0033 00..449911 00..991155 1111 00..000011 33..000 70 7..8800EE--0044 3.113.11 11..0000EE--0033 33..000 0 77..6688EE--0033 00..448800 00..991122 1212 00..000022 22..770 70 7..8800EE--0044 3.113.11 11..0044EE--0033 22..998 8 11..0077EE--0022 00..443344 00..889999 1313 00..000044 22..440 70 7..8800EE--0044 3.113.11 11..1100EE--0033 22..996 6 11..6677EE--0022 00..337733 00..887788 1414 00..000088 22..110 70 7..8800EE--0044 3.113.11 11..1199EE--0033 22..993 3 22..8877EE--0022 00..330044 00..885500 1515 00..0011 22..000 0 77..8800EE--0044 3.113.11 11..2222EE--0033 22..991 1 33..4477EE--0022 00..228822 00..883399 161600..0022 11..770 0 77..8800EE--0044 3.113.11 11..3355EE--0033 22..887 7 66..4477EE--0022 00..221166 00..880000 1717 00..0044 11..440 0 77..8800EE--0044 3.113.11 11..5522EE--0033 22..882 2 11..2255EE--0011 00..116622 00..775544 1818 00..0088 11..110 0 77..8800EE--0044 3.113.11 11..7722EE--0033 22..776 6 22..4455EE--0011 00..112200 00..770044 1919 00..11 11..000 0 77..8800EE--0044 3.113.11 11..8800EE--0033 22..775 5 33..0055EE--0011 00..111100 00..668877 2020 00..22 00..770 0 77..8800EE--0044 3.113.11 22..0033EE--0033 22..669 9 66..0055EE--0011 00..008833 00..663377 2121 00..44 00..440 0 77..8800EE--0044 3.113.11 22..2299EE--0033 22..664 4 11..2200EE++0000 00..006666 00..559911 2222 00..88 00..110 0 77..8800EE--0044 3.113.11 22..5544EE--0033 22..660 0 22..4400EE++0000 00..005544 00..555500 2323 11 00..000 0 77..8800EE--0044 3.113.11 22..6611EE--0033 22..558 8 33..0000EE++0000 00..005511 00..553388 2424 2525 2626 2727 2828 2929 3030 3131 3232 3333 3434 3535 3636 3737 3838 39 39 Spreadsheet Spreadsheet DocumentDocument ationation 40 40 B7=-LOG(A7) B7=-LOG(A7) F7=-LOG(F7=-LOG(E7)E7) 41 41 C7=(A$4/(AC7=(A$4/(A7)) 7)) G7=0.5((A7)*(2)*(2)+(2*AG7=0.5((A7)*(2)*(2)+(2*A7)*(-1)*(-1)+(C7)*(3)*(3)+(3*C7)*(-1)*(-1))7)*(-1)*(-1)+(C7)*(3)*(3)+(3*C7)*(-1)*(-1)) 42 42 D7=-LOG(C7) D7=-LOG(C7) H7=10^H7=10^(-0.51*(3)*(3)*SQRT(G7)/(1+(3.3*0.90*SQRT(G7)))(-0.51*(3)*(3)*SQRT(G7)/(1+(3.3*0.90*SQRT(G7))) 43 43 E7=(A$4/(27*H7*I7^E7=(A$4/(27*H7*I7^ 3))^3))^ (1/4) (1/4) I7=10^I7=10^(-0.51*(-1)*(-1)*SQRT(G7)/(1+(3.3*0.40*SQRT(G7)))(-0.51*(-1)*(-1)*SQRT(G7)/(1+(3.3*0.40*SQRT(G7))) (La(La (IO(IO33 --)) Fundamentals of Analytical Chemistry: 8Fundamentals of Analytical Chemistry: 8thth ed. ed. Chapter Chapter 1010 10-1710-17 A A B B C C D D E E F F GG 1 1 ProbProblem lem 10-1710-17 22 33 44 xx Z Z 0.001 0.001 0.005 0.005 0.01 0.05 0.01 0.05 0.10.1 55 0.9 0.9 1 1 0.967 0.967 0.934 0.934 0.913 0.913 0.854 0.854 0.8260.826 66 0.6 0.6 1 1 0.966 0.966 0.930 0.930 0.907 0.907 0.834 0.834 0.7960.796 77 0.425 0.425 1 1 0.965 0.965 0.927 0.927 0.902 0.902 0.819 0.819 0.7730.773 88 0.35 0.35 1 1 0.965 0.965 0.926 0.926 0.900 0.900 0.812 0.812 0.7620.762 99 0.3 0.3 1 1 0.965 0.965 0.925 0.925 0.899 0.899 0.807 0.807 0.7540.754 1010 0.25 0.25 1 1 0.964 0.964 0.925 0.925 0.897 0.897 0.801 0.801 0.7450.745 1111 0.8 0.8 2 2 0.872 0.872 0.756 0.756 0.690 0.690 0.517 0.517 0.4450.445 1212 0.6 0.6 2 2 0.870 0.870 0.747 0.747 0.676 0.676 0.483 0.483 0.4010.401 1313 0.5 0.5 2 2 0.868 0.868 0.743 0.743 0.668 0.668 0.464 0.464 0.3770.377 1414 0.45 0.45 2 2 0.868 0.868 0.740 0.740 0.664 0.664 0.455 0.455 0.3640.364 1515 0.4 0.4 2 2 0.867 0.867 0.738 0.738 0.660 0.660 0.444 0.444 0.3510.351 1616 0.9 0.9 3 3 0.737 0.737 0.539 0.539 0.443 0.443 0.242 0.242 0.1780.178 1717 0.4 0.4 3 3 0.726 0.726 0.505 0.505 0.393 0.393 0.161 0.161 0.0950.095 1818 1.1 1.1 4 4 0.587 0.587 0.347 0.347 0.252 0.252 0.098 0.098 0.0630.063 1919 0.5 0.5 4 4 0.569 0.569 0.304 0.304 0.199 0.199 0.046 0.046 0.0200.020 2020 21 21 Spreadsheet Spreadsheet DocumentDocumentationation 22 C5=10^(-0.51*$B5^2*SQRT(C$4)/(1+3.3*$A5*SQRT(C$4)))22 C5=10^(-0.51*$B5^2*SQRT(C$4)/(1+3.3*$A5*SQRT(C$4))) Fundamentals of Analytical Chemistry: 8Fundamentals of Analytical Chemistry: 8thth ed. ed. Chapter Chapter 1111 Chapter 11Chapter 11 11-111-1 The overall dissociation constant for HThe overall dissociation constant for H22S isS is 2211 22 --2222 33 S]S]HH[[ ]]SS[[]]OOHH[[ K K K K In a solution saturated with the gas, [HIn a solution saturated with the gas, [H22S] is constant, thereforeS] is constant, therefore 221122 33 22--22 ]]OOHH[[ S]S]HH[[ ]]SS[[ K K K K oror 22 33 --22 ]]OOHH[[ ]]SS[[ K K 11-211-2 The simplifications in equilibrium calculations involve assuming that the concentrationsThe simplifications in equilibrium calculations involve assuming that the concentrations of one or more speciof one or more species can be approximated as 0.00 M. es can be approximated as 0.00 M. Adding or subtracting aAdding or subtracting a concentration that can be approximated as concentration that can be approximated as 0.00 leads to a meaningful res0.00 leads to a meaningful result. ult. In contrast,In contrast, multiplying or dividing by 0.00 in the equilibrium multiplying or dividing by 0.00 in the equilibrium constant expression causes theconstant expression causes the constant to become equal to zero or constant to become equal to zero or infinity. infinity. Thus, the expression is meaninglThus, the expression is meaningless.ess. 11-311-3 A charge-balance equation is derived by relating the concentration of cations and anionsA charge-balance equation is derived by relating the concentration of cations and anions such thatsuch that no. mol/L positive charge = no. mol/L negative chargeno. mol/L positive charge = no. mol/L negative charge For a doubly charged ion, such as BaFor a doubly charged ion, such as Ba 2+2+ , the concentration electrons for each , the concentration electrons for each mole is twicemole is twice the molarthe molar concentrationconcentration of the Ba of the Ba2+2+. . That That is,is, mol/L positive charge = 2[Bamol/L positive charge = 2[Ba 2+2+ ]] Thus, the molar concentration of all multiply charged species is aThus, the molar concentration of all multiply charged species is a lways multiplied by thelways multiplied by the charge in a charge-balance equation.charge in a charge-balance equation. 11-411-4 (a)(a) 0.20 0.20 = = [H[H33AsOAsO44] + [H] + [H22AsOAsO44 --] + [HAsO] + [HAsO44 2-2-] + [AsO] + [AsO44 3-3-]] (b)(b) 0.10 0.10 = = [H[H33AsOAsO44] + [H] + [H22AsOAsO44 --] + [HAsO] + [HAsO44 2-2-] + [AsO] + [AsO44 3-3-]] 2(0.10) 2(0.10) = = [Na[Na ++ ] ] = = 0.200.20 Fundamentals of Analytical Chemistry: 8Fundamentals of Analytical Chemistry: 8thth ed. ed. Chapter Chapter 1111 (c)(c) 0.0500 0.0500 + + 0.100 0.100 = = [ClO[ClO--] + [HClO]] + [HClO] 0.100 0.100 = = [Na[Na ++ ]] (d)(d) [F[F--] ] + + [HF] [HF] = = 0.25 0.25 + + 2[Ca2[Ca2+2+]] [Na[Na ++ ] ] = = 0.250.25 (e)(e) 0.100 0.100 = = [Na[Na++] ] = = [OH[OH--] + 2[Zn(OH)] + 2[Zn(OH)44 2-2-]] (f)(f) [Ba[Ba2+2+] ] = = [C[C22OO44 2-2-] + [HC] + [HC22OO44 --] + [H] + [H22CC22OO44]] (g)(g) [Ca[Ca 2+2+ ] ] = = ½([F½([F -- ] + [HF])] + [HF]) 11-511-5 (a)(a) [H[H33OO ++] ] = = [OH[OH--] + [H] + [H22AsOAsO44 --] + 2[HAsO] + 2[HAsO44 2-2-] + 3[AsO] + 3[AsO44 3-3-]] (b)(b) [Na[Na ++ ] + [H] + [H33OO ++ ] ] = = [OH[OH -- ] + [H] + [H22AsOAsO44 -- ] + 2[HAsO] + 2[HAsO44 2-2- ] + 3[AsO] + 3[AsO44 3-3- ]] (c)(c) [Na[Na++] + [H] + [H33OO ++] ] = = [OH[OH--] + [ClO] + [ClO--]] (d)(d) [Na[Na ++ ] + [H] + [H33OO ++ ]+ 2[Ca]+ 2[Ca 2+2+ ] ] = = [F[F -- ] + [OH] + [OH -- ]] (e)(e) 2[Zn 2[Zn2+2+] + [Na] + [Na++] + [H] + [H33OO ++] ] = = [OH[OH--] + 2[Zn(OH)] + 2[Zn(OH)44 2-2-]] (f)(f) 2[Ba 2[Ba2+2+] + [H] + [H33OO ++] ] = = [OH[OH--] + 2[C] + 2[C22OO44 2-2-] + [HC] + [HC22OO44 --]] (g)(g) 2[Ca 2[Ca 2+2+ ] + [H] + [H33OO ++ ] ] = = [OH[OH -- ] + [F] + [F -- ]] 11-611-6 Step 1 AgStep 1 Ag22CC22OO44 2Ag2Ag ++ + + CC22OO44 2-2- HH22CC22OO44 + + HH22OO HH33OO ++ + + HCHC22OO44 -- HCHC22OO44 -- + + HH22OO HH33OO ++ + + CC22OO44 2-2- Step Step 2 S 2 S = solubility = solubility = [Ag= [Ag++]/2]/2 Step 3 [AgStep 3 [Ag++]]22[C[C22OO44 2-2-] ] == K K spsp = 3.5 = 3.51010 -11-11 (1) (1) 22 11 442222 -- 442233 10106060..55 OOCCHH ]]OOHCHC][][OOHH[[ K K (2)(2) 55 22-- 4422 --22 442233 10104242..55 ]]OOHCHC[[ ]]OOCC][][OOHH[[ K K (3)(3) Step 4 [AgStep 4 [Ag ++ ] = 2([C] = 2([C22OO44 2-2- ] + [HC] + [HC22OO44 -- ] + [H] + [H22CC22OO44]) (4)]) (4) Fundamentals of Analytical Chemistry: 8Fundamentals of Analytical Chemistry: 8thth ed. ed. Chapter Chapter 1111 [H[H33OO ++] = 1.0] = 1.0 10 10-6-6 (5)(5) Step 5 Step 5 No charge-balance equation because a buffer of unknown compositiNo charge-balanceequation because a buffer of unknown composition is present.on is present. Step 6 Unknowns: [AgStep 6 Unknowns: [Ag++], [C], [C22OO44 2-2-], [HC], [HC22OO44 --], [H], [H22CC22OO44]] Equations: Equations: (1), ((1), (2), (3) 2), (3) and (4)and (4) Step 7 Step 7 No approximations No approximations needed.needed. Step 8 Step 8 Substituting (5) Substituting (5) into (3) and reinto (3) and rearranging givesarranging gives [HC[HC22OO44 -- ] ] == 55 --22 4422 66 10104242..55 OOCC101000..11 = 0.01845[C = 0.01845[C22OO44 2-2- ]] Substituting this relationship and (5) into (2) and rearranging givesSubstituting this relationship and (5) into (2) and rearranging gives [H[H22CC22OO44] ] == 22 --22 4422 66 10106060..55 OOCC0184501845..00101000..11 = 3.29 = 3.291010 -7-7 [C[C22OO44 2-2- ]] Substituting these two relationships into (4) givesSubstituting these two relationships into (4) gives [Ag[Ag++] = 2[C] = 2[C22OO44 2-2-] ] + + 22(0.01845[C(0.01845[C22OO44 2-2-]) + 2]) + 2(3.29(3.291010-7-7[C[C22OO44 2-2-])]) [Ag[Ag ++ ] = 2.037[C] = 2.037[C22OO44 2-2- ] or] or [C[C22OO44 2-2-] = 0.4909[Ag] = 0.4909[Ag++]] Substituting this relationship into (1) and rearranging givesSubstituting this relationship into (1) and rearranging gives [Ag[Ag++] = (3.5] = (3.51010-11-11/0.4909)/0.4909)1/31/3 = 4.15 = 4.151010-4-4 M M FinallyFinally S = 4.15S = 4.151010-4-4/2 = 2.1/2 = 2.11010-4-4 Substituting other values for [HSubstituting other values for [H33OO ++ ] yields the following solubility data:] yields the following solubility data: Fundamentals of Analytical Chemistry: 8th ed. Chapter 11 [H3O +], M Solubility, M (a) 1.010 -6 2.110 -4 (b) 1.010 -7 2.110 -4 (c) 1.010-9 2.110-4 (d) 1.010 -11 2.110 -4 11-7 Proceeding as in Problem 11-6, we write BaSO4 Ba 2+ + SO4 2- K sp = 1.110 -10 HSO4 - + H2O H3O + + SO4 2- K 2 = 1.0210 -2 S = [Ba 2+ ] [Ba2+][SO4 2-] = 1.110-10 (1) ]HSO[ ]SO][OH[ 4 2 43 1.0210-2 (2) Mass balance requires that [Ba2+] = [SO4 2-] + [HSO4 -] (3) [H3O + ] = 2.5 (4) Substituting (4) into (2) gives upon rearranging [HSO4 - ] = (2.5)[SO4 2- ]/(1.0210 -2 ) = 245.1[SO4 2- ] (5) Substituting (5) into (3) gives [Ba 2+ ] = [SO4 2- ] + 245.1[SO4 2- ] = 246.1[SO4 2- ] (6) Substituting (6) into (1) gives 246.1[SO4 2- ] 2 = 1.110 -10 [SO4 2- ] = 6.710 -7 M From (6) [Ba2+] = 1.610-4 M = S Fundamentals of Analytical Chemistry: 8th ed. Chapter 11 Proceeding in a similar manner for the other [H3O +] gives [H3O + ] S, mol/L (a) 2.5 1.6510-4 (b) 1.5 1.2810-4 (c) 0.060 2.7510 -5 (d) 0.200 4.7610-5 11-8 The following derivation applies to this and the following two problems. MS( s) M 2+ + S 2- H2S + H2O H3O + + HS- K 1 = 9.610 -8 HS- + H2O - H3O + + S2- K 2 = 1.310 -14 H2S + 2H2O 2H3O + + S 2- K 1 K 2 = 9.610 -8 1.310 -14 = 1.2510 -21 S = solubility = [M2+] = [S2-] + [HS-] + [H2S] [M 2+ ][S 2- ] = K sp (1) SH ]HS][OH[ 2 3 K 2 = 1.310 -14 (2) SH ]S[]OH[ 2 22 3 K 1 K 2 = 1.2510 -21 (3) From mass-balance consideration [M2+] = [S2-] + [HS-] + [H2S] (4) Substituting (2) and (3) into (4) gives [M2+] = [S2-] + 21 2 3 2 32 21 22 3 2 2 3 ]OH[]OH[1]S[ ]S[]OH[]S][OH[ K K K K K K (5) Substituting (1) into (5) Fundamentals of Analytical Chemistry: 8th ed. Chapter 11 [M 2+ ] = 21 2 3 2 3 2 sp ]OH[]OH[ 1 ]M[ K K K K [M 2+ ] = 21 2 3 2 3 sp ]OH[]OH[ 1 K K K K [M2+] = 21 2 3 14 3 sp 1025.1 ]OH[ 103.1 ]OH[ 1 K (6) (a) Substituting K sp = 810 -37 and [H3O + ] = 2.010 -1 into (6) gives [M2+] = solubility = 21 2 14 37 1025.1 20.0 103.1 20.0 1108 = M101.5 9 (b) Substituting K sp = 810 -37 and [H3O +] = 2.010-4 into (6) gives solubility = M101.5 12 11-9 (a) Substituting K sp = 110 -27 and [H3O +] = 2.010-1 into (6) gives solubility = M102 4 (b) Substituting K sp = 110 -27 and [H3O +] = 2.010-4 into (6) gives solubility = 210 -7 M 11-10 (a) Substituting K sp = 310 -14 and [H3O +] = 2.010-5 into (6) gives solubility = 0.1 M (b) Substituting K sp = 310 -14 and [H3O +] = 2.010-7 into (6) gives solubility = 110 -3 M Fundamentals of Analytical Chemistry: 8th ed. Chapter 11 11-11 PbCO3 Pb 2+ + CO3 2- K sp = [Pb 2+][CO3 2-] = 7.410-14 H2CO3 + H2O H3O + + HCO3 - K 1 = ]COH[ ]HCO][OH[ 32 - 33 4.4510-7 HCO3 - + H2O H3O + + CO3 2- K 2 = ]HCO[ ]CO][OH[ 3 -2 33 4.6910-11 [Pb2+] = [CO3 2-] + [HCO3 -] + [H2CO3] [H3O + ] = 110 -7 Proceeding as in problem 11-8 [M2+] = 21 2 3 2 3 sp ]OH[]OH[ 1 K K K K [Pb 2+ ] = 117 27 11 7 14 1069.41045.4 100.1 1069.4 100.1 1104.7 solubility = [Pb 2+ ] = 1.410 -5 M 11-12 Ag2SO3 2Ag + + SO3 2- K sp = [Ag + ] 2 [SO3 2- ] = 1.510 -14 (1) H2SO3 + H2O H3O + + HSO3 - K 1 = ]SOH[ ]HSO][OH[ 32 - 33 1.2310 -2 (2) HSO3 - + H2O H3O + + SO3 2- K 2 = ]HSO[ ]SO][OH[ 3 -2 33 6.610 -8 (3) H2SO3 + 2H2O 2H3O + + SO3 2- K 1 K 2 = ]SOH[ ]SO[]OH[ 32 -2 3 2 3 8.110-10 (4) The mass balances are ½ [Ag+] = [SO3 2-] + [HSO3 -] + [H2SO3] (5) [H3O + ] = 110 -8 (6) Fundamentals of Analytical Chemistry: 8th ed. Chapter 11 Substituting (2), (4) and (6) into (5) gives ½ [Ag+] = [SO3 2-] + 8- -2 3 8 106.6 ]SO[101 + 10- -2 3 28 108.1 ]SO[101 ½ [Ag+] = [SO3 2-] 10 28 8- 8 101.8 101 106.6 101 1 Substituting (1) into this expression gives ½ [Ag+] = 10 28 8- 8 2 sp 101.8 101 106.6 101 1 Ag K [Ag+]3 = 21.510-14 10 28 8- 8 101.8 101 106.6 101 1 [Ag+] = 4.210-5 Solubility = 2.110 -5 M 11-13 [Cu2+][OH-]2 = 4.810-20 [Mn2+][OH-]2 = 210-13 (a) Cu(OH)2 precipitates first (b) Cu2+ begins to precipitate when [OH - ] = 050.0/108.4 20 = 9.810-10 M (c) Mn2+ begins to precipitate when [OH-] = 040.0/102 13 = 2.210-6 [Cu2+] = 4.810-20/(2.210-6)2 = 9.610-9 M 11-14 Ba(IO3)2 Ba 2+ + 2IO3 - K sp = 1.5710 -9 BaSO4 Ba 2+ + SO4 2- K sp = 1.310 -10 To initiate precipitation of Ba(IO3)2 Fundamentals of Analytical Chemistry: 8th ed. Chapter 11 [Ba2+] = 1.5710-9/(0.050)2 = 6.310-7 To initiate precipitation of BaSO4 [Ba 2+ ] = 1.310 -10 /(0.040) = 3.210 -9 M (a) BaSO4 precipitates first (b) [Ba 2+ ] = 3.210 -9 M (c) When [Ba2+] = 6.310-7 M [SO4 2-] = 1.110-10/(6.310-7) = 1.710-4 M 11-15 (a) [Ag+] = K sp/[I -] = 8.310-17/(1.010-6) = 8.310-11 M (b) [Ag + ] = K sp/[SCN - ] = 1.110 -12 /(0.070) = 1.610 -11 M (c) [I - ] when [Ag + ] = 1.610 -11 M [I-] = 8.310-17/(1.610-11) = 5.210-6 M [SCN - ]/[I - ] = 0.070/(5.210 -6 ) = 1.310 4 (d) [I - ] = 8.310 -17 /(1.010 -3 ) = 8.310 -14 M [SCN-] = 1.110-12/(1.010-3) = 1.110-9 M [SCN-]/[I-] = 1.110-9/(8.310-14) = 1.3104 Note that this ratio is independent of [Ag + ] as long as some AgSCN( s) is present. 11-16 (a) [Ba2+][SO4 2-] = 1.110-10 [Sr 2+][SO4 2-] = 3.210-7 BaSO4 precipitation is complete when [SO4 2- ] = 1.110 -10 /(1.010 -6 ) = 1.110 -4 M SrSO4 begins to precipitate when [SO4 2- ] = 3.210 -7 /(0.050) = 6.410 -6 M SrSO4 begins to precipitate before the Ba 2+ concentration is reduced to 1.010-6 M. Fundamentals of Analytical Chemistry: 8th ed. Chapter 11 (b) [Ba2+][SO4 2-] = 1.110-10 [Ag+]2[SO4 2-] = 1.610-5 BaSO4 precipitation is completewhen [SO4 2-] = 1.110-4 M Ag2SO4 begins to precipitate when [SO4 2-] = 1.610-5/(0.020)2 = 0.040 M Ag2SO4 does not precipitate before the Ba 2+ concentration is reduced to 1.010 -6 M. (c) Be2+ precipitates when [OH-] = (7.010-22/(0.020))1/2 = 1.910-10 M Hf 4+ precipitates when [OH-] = (4.010-26/(0.010))1/4 = 1.410-6 M Be precipitation complete when [OH - ] = (7.010 -22 /1.010 -6 ) 1/2 = 2.610 -8 M Hf(OH)4 does not precipitate before the Be 2+ concentration is reduced to 1.010-6 M. (d) In3+ precipitates when [IO3 -] = (3.310-11/(0.20))1/3 = 5.510-4 M Tl + precipitates when [IO3 - ] = 3.110 -6 /(0.090) = 3.410 -5 M Tl+ precipitation complete when [IO3 -] = 3.110-6/1.010-6 = 3.1 M In(IO3)3 begins to precipitate before the Tl + concentration is reduced to 1.010-6 M. 11-17 AgBr Ag+ + Br - 5.010-13 = [Ag+][Br -] (1) Ag+ + 2CN- Ag(CN)2 - 1.31021 = 2 2 ]CN][Ag[ ])CN(Ag[ (2) It is readily shown that the reaction CN - + H2O HCN + OH - proceeds to such a small extent that it can be neglected in formulating a solution to this problem. That is, [HCN] << [CN-], and only the equilibria shown need to be taken into account. Solubility = [Br -] Fundamentals of Analytical Chemistry: 8th ed. Chapter 11 Mass balance requires that [Br - ] = [Ag + ] + [Ag(CN)2 - ] (3) 0.100 = [CN-] + 2[Ag(CN)2 -] (4) We now have 4 equations and 4 unknowns. Based upon the large size of 2 let us assume that [CN - ] << 2[Ag(CN)2 - ] and [Ag + ] << [Ag(CN)2 - ] (4) becomes [Ag(CN)2 -] = 0.100/2 = 0.0500 and (3) becomes [Br - ] = [Ag(CN)2 - ] = 0.0500 To check the assumptions, we calculate [Ag+] by substituting into (1) [Ag + ] = 5.010 -13 /0.0500 110 -11 ( 110 -11 << 0.0500) To obtain [CN-] we substitute into (2) and rearrange [CN - ] = 2111 103.1101 0500.0 = 2.010 -6 ( 210 -6 << 0.100) Thus, the two assumptions are valid and Solubility = [Br -] = 0.0500 M mass AgBr/200 mL = 0.0500 AgBr mmol AgBr g0.1877 mL200 mL mmol = 1.877 g 11-18 CuCl( s) Cu + + Cl - K sp = [Cu + ][Cl - ] = 1.910 -7 (1) Cu+ + 2Cl- CuCl2 - 2 = 2- - 2 ]Cl][Cu[ ]CuCl[ = 7.9104 (2) It is convenient to multiply (1) by (2) to give ]Cl[ ]CuCl[ - - 2 = 1.910-77.9104 = 1.510-2 (3) Fundamentals of Analytical Chemistry: 8th ed. Chapter 11 From a charge balance consideration, we can write (if we assume [H3O +] = [OH-]) [Cu + ] + [Na + ] = [Cl - ] + [CuCl2 - ] (4) By rearranging (1) and (3) and substituting into (4) we obtain [Cl - ] = [Na + ] + ][Cl 109.1 - 7 - 1.510 -2 [Cl - ] which rearranges to the quadratic 0 = 1.015[Cl-]2 - [Na+][Cl-] - 1.910-7 (5) By using [Na+] = the NaCl analytical concentration, (5) can be solved to give the following [Cl-] (a) 2.0 M (c) 0.020 M (e) 5.410 -4 M (b) 0.20 M (d) 0.0021 M Note that the equilibrium [Cl - ] concentration is larger than the NaCl analytical concentration for parts (d) and (e). The reason for this apparent anomaly is that the dissolution of CuCl to give Cu + and Cl - contributes significantly to the equilibrium [Cl - ] at the lower NaCl analytical concentrations. The solubility of CuCl can be obtained from the calculated [Cl - ] and the expression S = [Cu+] + [CuCl2 -] = ]Cl[ 109.1 7 + 1.510-2[Cl-] Solution of this equation for each of the [Cl-] gives (a) 0.030 M (c) 3.110 -4 M (e) 3.610 -4 M (b) 3.010-3 M (d) 1.210-4 M Fundamentals of Analytical Chemistry: 8th ed. Chapter 11 11-19 (a) CaSO4( s) Ca 2+ + SO4 2- K sp = [Ca 2+][SO4 2-] = 2.610-5 (1) CaSO4(aq) Ca 2+ + SO4 2- K d = )](CaSO[ ]SO][Ca[ 4 -2 4 2 aq = 5.210-3 (2) CaSO4( s) CaSO4(aq) (3) The mass balance gives [Ca2+] = [SO4 2-] (4) We have 3 equations and 3 unknowns ([Ca2+], [SO4 2-], and [CaSO4(aq)] To solve we divide (1) by (2) to give [CaSO4(aq)] = K sp/ K d = (2.610 -5 )/(5.210 -3 ) = 5.010 -3 Note that this is the equilibrium constant expression for (3) and indicates that the concentration of un-ionized CaSO4 is always the same in a saturated solution of CaSO4. Substituting (4) into (1) gives [Ca2+] = (2.610-5)1/2 = 5.110-3 and since S = [CaSO4(aq)] + [Ca 2+] we obtain S = 5.010 -3 + 5.110 -3 = 0.0101 M %CaSO4(aq) = (5.010 -3/1.0110-2)100% = 49% (b) (Note: In the first printing of the text, the answer in the back of the book was in error.) Here [CaSO4(aq)] is again equal to 5.010 -3 and the mass balance gives [SO4 2- ] = 0.0100 + [Ca 2+ ] (5) Substituting (1) into (5) and rearranging gives 0 = [SO4 2- ] 2 - 0.0100[SO4 2- ] - K sp which may be solved using the quadratic equation to give [SO4 2- ] = 0.0121 and [Ca 2+ ] = 2.1410 -3 Fundamentals of Analytical Chemistry: 8th ed. Chapter 11 S = 5.010-3 + 2.1410-3 = 7.1410-3 %CaSO4(aq) = (5.010 -3/7.1410-3)100% = 70% Fundamentals of Analytical Chemistry: 8th ed. Chapter 14 14-33 In each of the parts of this problem, we are dealing with a weak base B and its conjugate acid BHCl or (BH)2SO4. The pH determining equilibrium can then be written as BH+ + H2O H3O + + B The equilibrium concentration of BH + and B are given by [BH+] = cBHCl + [OH -] – [H3O +] (1) [B] = cB - [OH -] + [H3O +] (2) In many cases [OH - ] and [H3O + ] will be much smaller than cB and cBHCl and [BH + ] ≈ cBHCl and [B] ≈ cB so that [H3O +] = B BHCl a c c K (3) (a) Amount NH4 + = 3.30 g (NH4)2SO4 424 4 424 424 SO)(NHmmol NHmmol2 SO)(NHg13214.0 SO)(NHmmol1 = 49.95 mmol Amount NaOH = 125.0 mL0.1011 mmol/mL = 12.64 mmol mL0.500 1 NaOHmmol NHmmol1 NaOHmmol64.12 3 NH3 c = 2.52810 -2 M mL0.500 1 NHmmol)64.1295.49( 4 NH4 c = 7.46210 -2 M Substituting these relationships in equation (3) gives [H3O + ] = B BHCl a c c K = 5.7010-10 7.46210-2 / (2.52810-2) = 1.68210-9 M pH = -log 1.68210 -9 = 8.77 (b) Substituting into equation (3) gives [H3O + ] = 7.510 -12 0.080 / 0.120 = 5.0010 -12 Fundamentals of Analytical Chemistry: 8th ed. Chapter 14 pH = -log 5.0010-12 = 11.30 (c) cB = 0.050 and cBHCl = 0.167 [H3O + ] = 2.3110 -11 0.167 / 0.050 = 7.71510 -11 pH = -log 7.71510-11 = 10.11 (d) Original amount B = 2.32 g B Bg0.09313 Bmmol1 = 24.91 mmol Amoung HCl = 100 mL 0.0200 mmol/mL = 2.00 mmol cB = (24.91 – 2.00)/250.0 = 9.16410 -2 M cBH+ = 2.00/250.0 = 8.0010 -3 M [H3O +] = 2.5110-5 8.0010-3 / 9.16410-2 = 2.19110-6 M pH = -log 2.19110 -6 = 5.66 14-34 (a) pH = 0.00 (b) [H3O +] changes to 0.00500 M from 0.0500 M pH = -log 0.00500 – (-log0.0500) = 2.301 – 1.301 = 1.000 (c) pH diluted solution = 14.000 – (-log 0.00500) = 11.699 pH undiluted solution = 14.000 – (-log 0.0500) = 12.699 pH = -1.000 (d) In order to get a better picture of the pH change with dilution, we will dispense with the usual approximations and write 5 - 3 a 1075.1 HOAc][ ]][OAcOH[ K [H3O +]2 + 1.7510-5[H3O +] – 0.0500 1.7510-5 = 0 Solving by the quadratic formula or by successive approximations gives Fundamentals of Analytical Chemistry: 8th ed. Chapter 14 [H3O +] = 9.26710-4 and pH = -log 9.26710-4 = 3.033 For diluted solution, the quadratic becomes [H3O + ] 2 + 1.7510 -5 – 0.005001.7510 -5 [H3O +] = 2.87210-4 and pH = 3.542 pH = 3.033 – 3.542 = -0.509 (e) OAc - + H2O HOAc + OH - 5 14 - - 1075.1 1000.1 ]OAc[ ]HOAc][OH[ = 5.7110-10 = K b Here we can use an approximation solution because K b is so very small. For the undiluted sample 0500.0 ]OH[ 2- = 5.7110-10 [OH-] = (5.7110-10 0.0500)1/2 = 5.34310-6 M pH = 14.00 – (-log 5.34310 -6 ) = 8.728 For the diluted sample [OH - ] = (5.7110 -10 0.00500) 1/2 = 1.69010 -6 M pH = 14.00 – (-log 1.69010 -6 ) = 8.228 pH = 8.228 – 8.728 = -0.500 (f) Here we must avoid the approximate solution because it will not reveal the small pHchange resulting from dilution. Thus, we write [HOAc] = cHOAc + [OH - ] – [H3O + ] ≈ cHOAc – [H3O + ] [OAc-] = c NaOAc – [OH -] + [H3O + ] ≈ c NaOAc + [H3O +] Fundamentals of Analytical Chemistry: 8th ed. Chapter 14 K a = 1.7510 -5 = ]OH[0500.0 ]OH[0500.0]OH[ 3 33 Rearranging gives [H3O +]2 + 5.001810-2[H3O +] – 8.7510-7 = 0 [H3O + ] = 1.74910 -5 and pH = 4.757 Proceeding in the same way we obtain for the diluted sample 1.7510-5 = ]OH[00500.0 ]OH[00500.0]OH[ 3 33 [H3O +]2 + 5.017510-3[H3O +] – 8.7510-8 = 0 [H3O + ] = 1.73810 -5 and pH = 4.760 pH = 4.760 – 4.757 = 0.003 (g) Proceeding as in part (f) a 10-fold dilution of this solution results in a pH change that is less than 1 in the third decimal place. Thus for all practical purposes, pH = 0.000 14-35 (a) After addition of acid, [H3O +] = 1 mmol/100 mL = 0.0100 M and pH = 2.00 Since original pH = 7.00 pH = 2.00 – 7.00 = -5.00 (b) After addition of acid cHCl = (1000.0500 + 1.00)/100 = 0.0600 M pH = -log 0.0600 – (-log 0.0500) = 1.222 – 1.301 = -0.079 (c) After addition of acid, c NaOH = (1000.0500 – 1.00)/100 = 0.0400 M [OH-] = 0.0400 M and pH = 14.00 – (-log 0.0400) = 12.602 Fundamentals of Analytical Chemistry: 8th ed. Chapter 14 From Problem 14-34 (c), original pH = 12.699 pH = -0.097 (d) From Solution 14-34 (d), original pH = 3.033 Upon adding 1 mmol HCl to the 0.0500 M HOAc, we produce a mixture that is 0.0500 M in HOAc and 1.00/100 = 0.0100 M in HCl. The pH of this solution is approximately that of a 0.0100 M HCl solution, or 2.00. Thus, pH = 2.000 – 3.033 = -1.033 (If the contribution of dissociation of HOAc to the pH is taken into account, a pH of 1.996 is obtained and pH = -1.037 is obtained.) (e) From Solution 14-34 (e), original pH = 8.728 Upon adding 1.00 mmol HCl we form a buffer having the composition cHOAc = 1.00/100 = 0.0100 c NaOAc = (0.0500 100 – 1.00)/100 = 0.0400 Applying Equation 14-xx gives [H3O +] = 1.7510-5 0.0100/0.0400 = 4.57510-6 M pH = -log 4.57510-6 = 5.359 pH = 5.359 – 8.728 = -3.369 (f) From Solution 14-34 (f), original pH = 4.757 With the addition of 1.00 mmol of HCl we have a buffer whose concentrations are cHOAc = 0.0500 + 1.00/100 = 0.0600 M c NaOAc = 0.0500 – 1.00/100 = 0.0400 M Proceeding as in part (e), we obtain [H3O +] = 2.62510-5 M and pH = 4.581 Fundamentals of Analytical Chemistry: 8th ed. Chapter 14 pH = 4.581 – 4.757 = -0.176 (g) For the original solution [H3O + ] = 1.7510 -5 0.500/0.500 = 1.7510 -5 M pH = -log 1.7510-5 = 4.757 After addition of 1.00 mmol HCl cHOAc = 0.500 + 1.00/100 = 0.510 M c NaOAc = 0.500 – 1.00/100 = 0.490 M Proceeding as in part (e), we obtain [H3O + ] = 1.7510 -5 0.510/0.490 = 1.82110 -5 M pH = -log 1.82110-5 = 4.740 pH = 4.740 – 4.757 = -0.017 14-36 (a) c NaOH = 1.00/100 = 0.0100 = [OH -] pH = 14.00 – (-log 0.0100) = 12.00 Original pH = 7.00 and pH = 12.00 – 7.00 = 5.00 (b) Original pH = 1.301 [see Problem 14-34 (b)] After addition of base, cHCl = (100 0.0500 – 1.00)/100 = 0.0400 M pH = -log 0.0400 – 1.301 = 1.398 – 1.301 = 0.097 (c) Original pH = 12.699 [see Problem 14.34 (c)] After addition of base, c NaOH = (100 0.0500 + 1.00)/100 = 0.0600 M pH = 14.00 – (-log 0.0600) = 12.778 pH = 12.778 – 12.699 = 0.079 (d) Original pH = 3.033 [see Problem 14-34 (d)] Fundamentals of Analytical Chemistry: 8th ed. Chapter 14 Addition of strong base gives a buffer of HOAc and NaOAc. c NaOAc = 1.00 mmol/100 = 0.0100 M cHOAc = 0.0500 – 1.00/100 = 0.0400 M Proceeding as in Solution 14-35 (e) we obtain [H3O +] = 1.7510-5 0.0400/0.0100 = 7.0010-5 M pH = -log 7.0010 -5 = 4.155 pH = 4.155 – 3.033 = 1.122 (e) Original pH = 8.728 [see Problem 14.34 (e)] Here, we have a mixture of NaOAc and NaOH and the pH is determined by the excess NaOH. c NaOH = 1.00 mmol/100 = 0.0100 M pH = 14.00 – (-log 0.0100) = 12.00 pH = 12.00 – 8.728 = 3.272 (f) Original pH = 4.757 [see Problem 14-34 (f)] c NaOAc = 0.0500 + 1.00/100 = 0.0600 M cHOAc = 0.0500 – 1.00/100 = 0.0400 M Proceeding as in Solution 14.35 (e) we obtain [H3O + ] = 1.16710 -5 M and pH = 4.933 pH = 4.933 – 4.757 = 0.176 (g) Original pH = 4.757 [see Problem 14-34 (f)] cHOAc = 0.500 – 1.00/100 = 0.490 M c NaOAc = 0.500 + 1.00/100 = 0.510 M Substituting into Equation 9-29 gives Fundamentals of Analytical Chemistry: 8th ed. Chapter 14 [H3O +] = 1.7510-5 0.400/0.510 = 1.68110-5 M pH = -log 1.68110-5 = 4.774 pH = 4.774 – 4.757 = 0.017 14-37 For lactic acid, K a = 1.3810 -4 = [H3O + ][A - ]/[HA] Throughout this problem we will base calculations on Equations 9-25 and 9-26. [A - ] = c NaA + [H3O + ] – [OH - ] [HA] = cHA – [H3O +] – [OH-] ]OH[ ]OH[]OH[ 3HA 3 NaA3 c c = 1.3810-4 This equation rearranges to [H3O +]2 + (1.3810-4 + 0.0800)[H3O +] – 1.3810-4 cHA = 0 (a) Before addition of acid [H3O + ] 2 + (1.3810 -4 + 0.0800)[H3O + ] – 1.3810 -4 0.0200 = 0 [H3O +] = 3.44310-5 and pH = 4.463 Upon adding 0.500 mmol of strong acid cHA = (100 0.0200 + 0.500)/100 = 0.0250 M c NaA = (100 0.0800 – 0.500)/100 = 0.0750 M [H3O + ] 2 + (1.3810 -4 + 0.0750)[H3O + ] – 1.3810 -4 0.0250 = 0 [H3O +] = 4.58910-5 and pH = 4.338 pH = 4.338 – 4.463 = -0.125 (b) Before addition of acid [H3O +]2 + (1.3810-4 + 0.0200)[H3O +] – 1.3810-4 0.0800 = 0 Fundamentals of Analytical Chemistry: 8th ed. Chapter 14 [H3O +] = 5.34110-5 and pH = 3.272 After adding acid cHA = (100 0.0800 + 0.500)/100 = 0.0850 M c NaA = (100 0.0200 – 0.500)/100 = 0.0150 M [H3O + ] 2 + (1.3810 -4 + 0.0150)[H3O + ] – 1.3810 -4 0.0850 = 0 [H3O +] = 7.38810-4 and pH = 3.131 pH = 3.131 – 3.272 = -0.141 (c) Before addition of acid [H3O +]2 + (1.3810-4 + 0.0500)[H3O +] – 1.3810-4 0.0500 = 0 [H3O +] = 1.37210-4 and pH = 3.863 After adding acid cHA = (100 0.0500 + 0.500)/100 = 0.0550 M c NaA = (100 0.0500 – 0.500)/100 = 0.0450 M [H3O + ] 2 + (1.3810 -4 + 0.0450)[H3O + ] – 1.3810 -4 0.0550 = 0 [H3O +] = 1.67510-4 and pH = 3.776 pH = 3.776 – 3.863 = -0.087 Fundamentals of Analytical Chemistry: 8th ed. Chapter 14 14-38 A B C D E F G H I 1 V i , NaOH 50.00 2 c i , NaOH 0.1000 M 3 c , HCl 0.1000 M 4 V eq. pt. 50.00 5 K w 1.00E-14 6 7 Vol. HCl, mL [H3O + ] pH 8 0.00 1.00E-13 13.000 9 10.00 1.50E-13 12.824 10 25.00 3.00E-13 12.523 11 40.00 9.00E-13 12.046 12 45.00 1.90E-12 11.721 13 49.00 9.90E-12 11.004 14 50.00 1.00E-07 7.000 15 51.00 9.90E-04 3.004 16 55.00 4.76E-03 2.322 17 60.00 9.09E-03 2.041 18 19 Spreadsheet Documentation 20 B4 = B2*B1/B3 21 B8 = $B$5/(($B$2*$B$1-A8*$B$3)/($B$1+A8)) 22 B14 = SQRT(B5) 23 B15 = (A15*$B$3-$B$1*$B$2)/(A15+$B$1) 24 C8 = -LOG(B8) 14-39 Let us calculate pH when 24.95 and 25.05 mL of reagent have been added. 24.95 mL reagent cA- 95.74 495.2 solnmL95.74 KOHmmol1000.095.24 solnvolumetotal addedKOHamount = 0.03329 M cHA [HA] = solnvolumetotal addedKOHamount-HAamountoriginal = solnmL74.95 HAmmol0.1000)24.95-0.0500(50.00 = 95.74 005.0 95.74 495.2500.2 = 6.6710 -5 M Fundamentals of Analytical Chemistry: 8th ed. Chapter 14 Substituting into Equation 9-29 [H3O + ] = K a cHA / cA- = 1.80 10 -4 6.6710 -5 / 0.03329 =3.60710 -7 M pH = -log 3.60710 -7 = 6.44 25.05 mL KOH cKOH = solnvolumetotal HAamountinitial-addedKOHamount = solnmL75.05 0.0500050.00-0.100025.05 = 6.6610 -5 = [OH - ] pH = 14.00 – (-log 6.6610 -5 ) = 9.82 Thus, the indicator should change color in the range of pH 6.5 to 9.8. Cresol purple (range 7.6 to 9.2, Table 14-1) would be quite suitable. 14-40 (See Solution 14-39) Let us calculate the pH when 49.95 and 50.05 mL of HClO4 have been added. 49.95 mL HClO4 B = C2H5 NH2 BH + = C2H5 NH3 + 95.99 995.495.99 10000.095.49 solnvolumetotal HClOmmolno. 4 BH c = 0.04998 M ≈ [BH + ] cB = 95.99 00500.0 95.99 1000.095.491000.000.50 = 5.0010 -5 M ≈ [B] [H3O + ] = 2.31 10 -11 0.04998 / 5.0010 -5 =2.30910 -8 M pH = -log 2.30910-8 = 7.64 50.05 mL HClO4 05.100 1000.000.501000.005.50 4HClO c = 4.99810-5 = [H3O+] pH = -log 4.99810-5 = 4.30 Fundamentals of Analytical Chemistry: 8th ed. Chapter 14 Indicator should change color in the pH range of 7.64 to 4.30. Bromocresol purple would be suitable. For Problems 14-41 through 14-43 we set up spreadsheets that will solve a quadratic equation to determine [H3O +] or [OH-], as needed. While approximate solutions are appropriate for many of the calculations, the approach taken represents a more general solution and is somewhat easier to incorporate in a spreadsheet. As an example consider the titration of a weak acid with a strong base. Before the equivalence point: [HA] = NaOHHAi NaOH NaOHiHAiHAi V V V cV c - [H3O +] and [A - ] = NaOHHAi NaOH NaOHi V V V c + [H3O + ] Substituting these expressions into the equilibrium expression for HA and rearranging gives 0 = [H3O + ] 2 + a NaOHHAi NaOH NaOHi K V V V c [H3O + ] - NaOHHAi NaOH NaOHiHAiHAia V V V cV c K From which [H3O +] is directly determined. At and after the equivalence point : [A - ] = NaOHHAi HAHAi V V V c - [HA] and [OH-] = NaOHHAi HAiHAi NaOH NaOHi V V V cV c + [HA] Substituting these expressions into the equilibrium expression for A - and rearranging gives 0 = [HA]2 + a w NaOHHAi HAiHAi NaOH NaOHi K K V V V cV c [HA] - NaOHHAia HAHAiw V V K V c K From which [HA] can be determined and [OH-] and [H3O +] subsequently calculated. A similar approach is taken for the titration of a weak base with a strong acid. Fundamentals of Analytical Chemistry: 8th ed. Chapter 14 14-41 A B C D E F 1 Part (a) 2 V i , HNO2 50.00 3 c i , HNO2 0.1000 4 K a, HNO2 7.10E-04 5 K w, H2O 1.00E-14 6 7 c , NaOH 0.1000 8 V eq. pt. 50.00 9 10 Vol. NaOH, mL b c [OH-] [H3O + ] pH 11 0.00 7.1000E-04 -7.1000E-05 8.0786E-03 2.0927 12 5.00 9.8009E-03 -5.8091E-05 4.1607E-03 2.3808 13 15.00 2.3787E-02 -3.8231E-05 1.5112E-03 2.8207 14 25.00 3.4043E-02 -2.3667E-05 6.8155E-04 3.1665 15 40.00 4.5154E-02 -7.8889E-06 1.7404E-04 3.7594 16 45.00 4.8078E-02 -3.7368E-06 7.7599E-05 4.1101 17 49.00 5.0205E-02 -7.1717E-07 1.4281E-05 4.8452 18 50.00 1.4085E-11 -7.0423E-13 8.3917E-07 1.1916E-08 7.9239 19 51.00 9.9010E-04 -6.9725E-13 9.9010E-04 1.0100E-11 10.9957 20 55.00 4.7619E-03 -6.7069E-13 4.7619E-03 2.1000E-12 11.6778 21 60.00 9.0909E-03 -6.4020E-13 9.0909E-03 1.1000E-12 11.9586 22 23 Spreadsheet Documentation 24 C8 = C2*C3/C7 25 B11 = $C$7*A11/($C$2+A11)+$C$4 26 C11 = -$C$4*($C$3*$C$2-$C$7*A11)/($C$2+A11) 27 E11 = (-B11+SQRT(B11^2-4*C11))/2 28 F11 = -LOG(E11) 29 B18 = ($C$7*A18-$C$3*$C$2)/($C$2+A18)+$C$5/$C$4 30 C18 = -($C$5/$C$4)*($C$2*$C$3/($C$2+A18)) 31 D18 = (-B18+SQRT(B18^2-4*C18))/2+($C$7*A18-$C$2*$C$3)/($C$2+A18) 32 E18 = $C$5/D18 Fundamentals of Analytical Chemistry: 8th ed. Chapter 14 A B C D E F 1 Part (b) 2 V i , Lactic Acid 50.00 3 c i , Lactic Acid 0.1000 4 K a, Lactic Acid 1.38E-04 5 K w, H2O 1.00E-14 6 7 c , NaOH 0.1000 8 V eq. pt. 50.00 9 10 Vol. NaOH, mL b c [OH-] [H3O + ] pH 11 0.00 1.3800E-04 -1.3800E-05 3.6465E-03 2.4381 12 5.00 9.2289E-03 -1.1291E-05 1.0938E-03 2.9611 13 15.00 2.3215E-02 -7.4308E-06 3.1579E-04 3.5006 14 25.00 3.3471E-02 -4.6000E-06 1.3687E-04 3.8637 15 40.00 4.4582E-02 -1.5333E-06 3.4367E-05 4.4639 16 45.00 4.7506E-02 -7.2632E-07 1.5284E-05 4.8158 17 49.00 4.9633E-02 -1.3939E-07 2.8083E-06 5.5516 18 50.00 7.2464E-11 -3.6232E-12 1.9034E-06 5.2537E-09 8.2795 19 51.00 9.9010E-04 -3.5873E-12 9.9010E-04 1.0100E-11 10.9957 20 55.00 4.7619E-03 -3.4507E-12 4.7619E-03 2.1000E-12 11.6778 21 60.00 9.0909E-03 -3.2938E-12 9.0909E-03 1.1000E-12 11.9586 A B C D E F 1 Part (c) 2 V i , C5H5NH + 50.00 3 c i , C5H5NH + 0.1000 4 K a, C5H5NH + 5.90E-06 5 K w, H2O 1.00E-14 6 7 c , NaOH 0.1000 8 V eq. pt. 50.00 9 10 Vol. NaOH, mL b c [OH-] [H3O + ] pH 11 0.00 5.9000E-06 -5.9000E-07 7.6517E-04 3.1162 12 5.00 9.0968E-03 -4.8273E-07 5.2760E-05 4.2777 13 15.00 2.3083E-02 -3.1769E-07 1.3755E-05 4.8615 14 25.00 3.3339E-02 -1.9667E-07 5.8979E-06 5.2293 15 40.00 4.4450E-02 -6.5556E-08 1.4748E-06 5.8313 16 45.00 4.7374E-02 -3.1053E-08 6.5546E-07 6.1835 17 49.00 4.9501E-02 -5.9596E-09 1.2039E-07 6.9194 18 50.00 1.6949E-09 -8.4746E-11 9.2049E-06 1.0864E-09 8.9640 19 51.00 9.9010E-04 -8.3907E-11 9.9018E-04 1.0099E-11 10.9957 20 55.00 4.7619E-03 -8.0710E-11 4.7619E-03 2.1000E-12 11.6778 21 60.00 9.0909E-03 -7.7042E-11 9.0909E-03 1.1000E-12 11.9586 Fundamentals of Analytical Chemistry: 8th ed. Chapter 14 14-42 A B C D E F 1 Part (a) 2 V i , NH3 50.00 3 c i , NH3 0.1000 4 K a, NH4 + 5.70E-10 5 K w, H2O 1.00E-14 6 7 c , HCl 0.1000 8 V eq. pt. 50.00 9 10 Vol. HCl, mL b c [OH-] [H3O + ] pH 11 0.00 1.7544E-05 -1.7544E-06 1.3158E-03 7.6000E-12 11.1192 12 5.00 9.1085E-03 -1.4354E-06 1.5495E-04 6.4535E-11 10.1902 13 15.00 2.3094E-02 -9.4467E-07 4.0832E-05 2.4490E-10 9.6110 14 25.00 3.3351E-02 -5.8480E-07 1.7525E-05 5.7060E-10 9.2437 15 40.00 4.4462E-02 -1.9493E-07 4.3838E-06 2.2811E-09 8.6419 16 45.00 4.7386E-02 -9.2336E-08 1.9485E-06 5.1321E-09 8.2897 17 49.00 4.9512E-02 -1.7721E-08 3.5791E-07 2.7940E-08 7.5538 18 50.00 5.7000E-10 -2.8500E-11 5.3383E-06 5.2726 19 51.00 9.9010E-04 -2.8218E-11 9.9013E-04 3.0043 20 55.00 4.7619E-03 -2.7143E-11 4.7619E-03 2.3222 21 60.00 9.0909E-03 -2.5909E-11 9.0909E-03 2.0414 22 23 Spreadsheet Documentation 24 C8 = C2*C3/C7 25 B11 = $C$7*A11/($C$2+A11)+$C$5/$C$4 26 C11 = -$C$5/$C$4*($C$3*$C$2-$C$7*A11)/($C$2+A11) 27 D11 = (-B11+SQRT(B11^2-4*C11))/2 28 E11 = $C$5/D11 29 F11 = -LOG(E11) 30 B18 = ($C$7*A18-$C$3*$C$2)/($C$2+A18)+$C$4 31 C18 = -($C$4)*($C$2*$C$3/($C$2+A18)) 32 E18 = (-B18+SQRT(B18^2-4*C18))/2+($C$7*A18-$C$2*$C$3)/($C$2+A18) Fundamentals of Analytical Chemistry: 8th ed. Chapter 14 A B C D E F 1 Part (b) 2 V i , H2NNH2 50.00 3 c i , H2NNH2 0.1000 4 K a, H2NNH3 + 1.05E-08 5 K w, H2O 1.00E-14 6 7 c , HCl 0.1000 8 V eq. pt. 50.00 9 10 Vol. HCl, mL b c [OH-] [H3O + ] pH 11 0.00 9.5238E-07 -9.5238E-08 3.0813E-04 3.2454E-11 10.4887 12 5.00 9.0919E-03 -7.7922E-08 8.5625E-06 1.1679E-09 8.9326 13 15.00 2.3078E-02 -5.1282E-08 2.2219E-06 4.5006E-09 8.3467 14 25.00 3.3334E-02 -3.1746E-08 9.5233E-07 1.0501E-08 7.9788 15 40.00 4.4445E-02 -1.0582E-08 2.3809E-07 4.2001E-08 7.3767 16 45.00 4.7369E-02 -5.0125E-09 1.0582E-07 9.4502E-08 7.0246 17 49.00 4.9496E-02 -9.6200E-10 1.9436E-08 5.1451E-07 6.2886 18 50.00 1.0500E-08 -5.2500E-10 2.2908E-05 4.6400 19 51.00 9.9011E-04 -5.1980E-10 9.9062E-04 3.0041 20 55.00 4.7619E-03 -5.0000E-10 4.7620E-03 2.3222 21 60.00 9.0909E-03 -4.7727E-10 9.0910E-03 2.0414 A B C D E F 1 Part (c) 2 V i , NaCN 50.00 3 c i , NaCN 0.1000 4 K a, HCN 6.20E-10 5 K w, H2O 1.00E-14 6 7 c , HCl 0.1000 8 V eq. pt. 50.00 9 10 Vol. HCl, mL b c [OH-] [H3O + ] pH 11 0.00 1.6129E-05 -1.6129E-06 1.2620E-03 7.9242E-12 11.1010 12 5.00 9.1070E-03 -1.3196E-06 1.4267E-04 7.0092E-11 10.1543 13 15.00 2.3093E-02 -8.6849E-07 3.7547E-05 2.6633E-10 9.5746 14 25.00 3.3349E-02 -5.3763E-07 1.6113E-05 6.2060E-10 9.2072 15 40.00 4.4461E-02 -1.7921E-07 4.0304E-06 2.4811E-09 8.6054 16 45.00 4.7385E-02 -8.4890E-08 1.7914E-06 5.5821E-09 8.2532 17 49.00 4.9511E-02 -1.6292E-08 3.2905E-07 3.0390E-08 7.5173 18 50.00 6.2000E-10 -3.1000E-11 5.5675E-06 5.2543 19 51.00 9.9010E-04 -3.0693E-11 9.9013E-04 3.0043 20 55.00 4.7619E-03 -2.9524E-11 4.7619E-03 2.3222 21 60.00 9.0909E-03 -2.8182E-11 9.0909E-03 2.0414 Fundamentals of Analytical Chemistry: 8th ed. Chapter 14 A B C D E F 1 Part (c)2 V i , HOCl 50.00 3 c i , HOCl 0.1000 4 K a, HOCl 3.00E-08 5 K w, H2O 1.00E-14 6 7 c , NaOH 0.1000 8 V eq. pt. 50.00 9 10 Vol. NaOH, mL b c [OH-] [H3O + ] pH 11 0.00 3.0000E-08 -3.0000E-09 5.4757E-05 4.2616 12 5.00 9.0909E-03 -2.4545E-09 2.6999E-07 6.5687 13 15.00 2.3077E-02 -1.6154E-09 7.0000E-08 7.1549 14 25.00 3.3333E-02 -1.0000E-09 3.0000E-08 7.5229 15 40.00 4.4444E-02 -3.3333E-10 7.5000E-09 8.1249 16 45.00 4.7368E-02 -1.5789E-10 3.3333E-09 8.4771 17 49.00 4.9495E-02 -3.0303E-11 6.1224E-10 9.2131 18 50.00 3.3333E-07 -1.6667E-08 1.2893E-04 7.7560E-11 10.1104 19 51.00 9.9043E-04 -1.6502E-08 1.0065E-03 9.9355E-12 11.0028 20 55.00 4.7622E-03 -1.5873E-08 4.7652E-03 2.0985E-12 11.6781 21 60.00 9.0912E-03 -1.5152E-08 9.0926E-03 1.0998E-12 11.9587 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 Fundamentals of Analytical Chemistry: 8th ed. Chapter 14 A B C D E F 1 Part (d) 2 V i , HONH3 + 50.00 3 c i , HONH3 + 0.1000 4 K a, HONH3 + 1.10E-06 5 K w, H2O 1.00E-14 6 7 c , HCl 0.1000 8 V eq. pt. 50.00 9 10 Vol. HCl, mL b c [OH-] [H3O + ] pH 11 0.00 9.0909E-09 -9.0909E-10 3.0147E-05 3.3171E-10 9.4792 12 5.00 9.0909E-03 -7.4380E-10 8.1817E-08 1.2222E-07 6.9128 13 15.00 2.3077E-02 -4.8951E-10 2.1212E-08 4.7143E-07 6.3266 14 25.00 3.3333E-02 -3.0303E-10 9.0909E-09 1.1000E-06 5.9586 15 40.00 4.4444E-02 -1.0101E-10 2.2727E-09 4.4000E-06 5.3565 16 45.00 4.7368E-02 -4.7847E-11 1.0101E-09 9.9000E-06 5.0044 17 49.00 4.9495E-02 -9.1827E-12 1.8553E-10 5.3900E-05 4.2684 18 50.00 1.1000E-06 -5.5000E-08 2.3397E-04 3.6308 19 51.00 9.9120E-04 -5.4455E-08 1.0423E-03 2.9820 20 55.00 4.7630E-03 -5.2381E-08 4.7729E-03 2.3212 21 60.00 9.0920E-03 -5.0000E-08 9.0964E-03 2.0411 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 Fundamentals of Analytical Chemistry: 8th ed. Chapter 14 14-44 A B C D E F G 1 Species pH [H3O + ] K a 0 1 2 (a) Acetic Acid 5.320 4.7863E-06 1.75E-05 0.215 0.785 3 (b) Picric Acid 1.250 5.6234E-02 4.3E-01 0.116 0.884 4 (c) HOCl 7.000 1.0000E-07 3.0E-08 0.769 0.231 5 (d) HONH3 + 5.120 7.5858E-06 1.10E-06 0.873 0.127 6 (e) Piperidine 10.080 8.3176E-11 7.50E-12 0.917 0.083 7 8 Spreadsheet Documentation 9 D2 = 10^(-C2) 10 F2 = D2/(D2+E2) 11 G2 = E2/(D2+E2) 14-45 [H3O +] = 6.31010-4 M. Substituting into Equation 9-35 gives, 0 = 44 4 1080.110310.6 10310.6 = 0.778 0850.0 HCOOHHCOOH T c = 0 [HCOOH] = 0.778 0.0850 = 6.6110-2 M 14-46 [H3O +] = 3.3810-12 M. For CH3 NH3 +, Equation 9-36 takes the form, 1 = 1112 11 a3 a T 23 103.21038.3 103.2 ]OH[ ] NHCH[ K K c = 0.872 = 120.0 ] NHCH[ 23 [CH3 NH2] = 0.872 0.120 = 0.105 M 14-47 For lactic acid, K a = 1.38 10 -4 0 = ]OH[1038.1 ]OH[ ]OH[ ]OH[ 3 4 3 3a 3 K Fundamentals of Analytical Chemistry: 8th ed. Chapter 14 = 0.640 = 120.0 HAHA T c [HA] = 0.640 0.120 = 0.0768 M 1 = 1.000 – 0.640 = 0.360 [A - ] = 1 0.120 = (1.000 – 0.640) 0.120 = 0.0432 M [H3O +] = K a cHA / cA- = 1.38 10 -4 0.640 / (1 – 0.640) = 2.45310-4 M pH = -log 2.45310-4 = 3.61 The remaining data are obtained in the same way. Acid cT pH [HA] [A - ] 0 1 Lactic 0.120 3.61 0.0768 0.0432 0.640 0.360 Iodic 0.200 1.28 0.0470 0.153 0.235 0.765 Butanoic 0.162 5.00 0.0644 0.0979 0.397 0.604 Nitrous 0.179 3.30 0.0739 0.105 0.413 0.587 HCN 0.366 9.39 0.145 0.221 0.396 0.604 Sulfamic 0.250 1.20 0.095 0.155 0.380 0.620 Fundamentals of Analytical Chemistry: 8th ed. Chapter 15 Chapter 15 15-1 The HPO4 2- is such a weak acid ( K a3 = 4.510 -13) that the change in pH in the vicinity of the third equivalence point is too small to be observable. 15-2 (a) NH4 + + H2O NH3 + H3O + K a = 5.7010 -10 OAc - + H2O HOAc + OH - K b = 10 5 14 a 1071.5 1075.1 1000.1 K K w Since the K ’s are essentially identical, the solution should be approximately neutral. (b) NO2 - + H2O HNO2 + OH - Solution will be basic (c) Neither K + nor NO3 - reacts with H2O. Solution will be neutral (d) HC2O4 - + H2O C2O4 2- + H3O + K a2 = 5.4210 -5 HC2O4 - + H2O H2C2O4 + OH - K b2 = 13 2 14 1079.1 1060.5 1000.1 Solution will be acidic (e) C2O4 2- + H2O HC2O4 - + OH- K b = 10 5 14 1084.1 1042.5 1000.1 Solution will be basic (f) HAsO4 2- + H2O AsO4 3- + H3O + K a3 = 3.210 -12 HAsO4 2- + H2O H2AsO4 - + OH- K b2 = 8 7 14 101.9 101.1 1000.1 Solution will be basic (g) H2AsO4 - + H2O HAsO4 2- + H3O + K a2 = 1.110 -7 H2AsO4 - + H2O H3AsO4 + OH - K b3 = 12 3 14 107.1 108.5 1000.1 Solution will be acidic Fundamentals of Analytical Chemistry: 8th ed. Chapter 15 (h) AsO4 3- + H2O HAsO4 2- + OH - K b1 = 3 12 14 101.3 102.3 1000.1 Solution will basic 15-3 H3PO4 + H2O H2PO4 - + H3O + K a1 = 7.1110 -3 H2PO4 - + H2O HPO4 2- + H3O + K a2 = 6.3210 -8 Here both K a2 and K w /K a1 are small and we may assume that [H2PO4 -] >> [H3PO4] and [HPO4 2- ] at the first equivalence point. If we further assume that K w << K a2[H2PO4 - ] and [H2PO4 -]/ K a1 >> 1 we may use equation 15-16 to give [H3O + ] = (7.1110 -3 6.3210 -8 ) 1/2 = 2.1210 -5 pH = -log(2.1210 -5 ) = 4.674 Bromocresol green would be satisfactory 15-4 (Note: In the first printing of the text, the answer in the back of the book was in error.) H2PO4 - + H2O HPO4 2- + H3O + K a2 = 6.3210 -8 HPO4 2- + H2O PO4 3- + H3O + K a3 = 4.510 -13 Here again both K a3 and K w /K a2 are small and we may assume that [HPO4 2- ] >> [H2PO4 - ] and [PO4 3-] at the first equivalence point. However, the further approximation K w << K a3[HPO4 2- ] is likely not valid and we should use equation 15-15. If we assume, for example, [HPO4 2-] = 0.01 M we obtain [H3O +] = 8 1413 1032.6/01.01 100.1105.401.0 = 3.010-10 pH = -log(3.010-10) = 9.52 Phenolphthalein or Thymolphthalein would work. Fundamentals of Analytical Chemistry: 8th ed. Chapter 15 15-5 Curve A in figure 15-4 is the titration curve for H3PO4. Note that one end point occurs at about pH 4.5 and a second at about pH 9.5. Thus, H3PO4 would be determined by titration with bromocresol green as an indicator (pH 3.8 to 5.4). A titration to the second end point with phenolphthalein would give the number of millimoes of NaH2PO4 plus twice the number of millimoles of H3PO4. Thus, the concentration of NaH2PO4 is obtained from the difference in volume for the two titrations. 15-6 (a) For this system we should use equation 15-15 since the approximation [H2AsO4 - ]/5.810 -3 >> 1 is not valid. [H3O + ] = )108.5/(05.01 100.1101.105.0 3 147 = 2.410 -5 pH = -log(2.410 -5 ) = 4.62 Bromocresol green (3.8 to 5.4) (b) P 2- + H2O HP - + OH- K b1 = 9 6 14 -2 -- 1056.2 1091.3 1000.1 ]P[ ]][HPOH[ [OH-] = [HP-] and we assume [P2-] = 0.05 – [OH-] 0.05 [OH - ] = (0.052.5610 -9 ) 1/2 = 1.1310 -5 pH = 14.00 – (-log(1.1310 -5)) = 9.05 Phenolphthalein (8.3 to 10) (c) As in part (b) [OH-] = (0.051.0010-14/4.3110-5)1/2 = 3.4110-6 pH = 14.00 – (-log(3.4110 -6 )) = 8.53 Cresol purple (7.6 to9.2) Fundamentals of Analytical Chemistry: 8th ed. Chapter 15 (d) Here we are able to use equation 15-16 [H3O + ] = (1.4210 -7 1.1810 -10 ) 1/2 = 4.0910 -9 pH = -log(4.0910 -9 ) = 8.39 Cresol purple (7.6 to 9.2) (e) NH3C2H4 NH3 2+ + H2O NH3C2H4 NH2 + + H3O + K a1 = 1.4210 -7 [H3O +] = (0.051.4210 -7)1/2 = 8.4310 -5 pH = -log(8.4310-5) = 4.07 Bromocresol green (3.8 to 5.4) (f) Proceeding as in part (a) [H3O + ] = )1023.1/(05.01 100.1106.605.0 2 148 = 2.5510 -5 pH = -log(2.5510 -5 ) = 4.59 Bromocresol green (3.8 to 5.4) (g) Proceeding as in part (b) we obtain pH = 9.94 Phenolphthalein(8.5 to 10.0) 15-7 (a) H3AsO4 + H2O H2AsO4 - + H3O + K a1 = 5.810 -3 3 3 2 3 43 - 423 108.5 ]OH[0400.0 ]OH[ ]AsOH[ ]AsO][HOH[ 0 = [H3O +]2 + 5.810-3[H3O +] – 5.810-30.0400 Solving using the quadratic formula gives [H3O +] = 1.2610-2 and pH = 1.90 Proceeding in the same way we obtain (b) 2.20 Fundamentals of Analytical Chemistry: 8th ed. Chapter 15 (c) 1.64 (d) 1.77 (e) 4.21 (f) NH2C2H4 NH2 + H2O NH3C2H4 NH2 + + OH - K b1 = 5 10 14 1047.8 1018.1 1000.1 0400.0 ]OH[ 2- 8.4710 -5 [OH - ] = (0.04008.4710 -5 ) 1/2 = 1.8410 -3 pH = 14.00 – (-log(1.8410 -3 )) = 11.26 15-8 (a) [H3O + ] = )108.5/(0400.01 100.1101.10400.0 3 147 = 2.3610 -5 pH = -log(2.3610 -5 ) = 4.63 Proceeding as in part (a) we obtain (b) pH = 2.95 (c) pH = 4.28 (d) pH = 4.60 (e) pH = 9.80 (f) pH = 8.39 15-9 (a) AsO4 3- + H2O HAsO4 2- + OH - K b1 = 3 12 14 1012.3 102.3 1000.1 3 - 2- -3 4 -2 4 - 1012.3 ]OH[0400.0 ]OH[ ]AsO[ ]][HAsOOH[ 0 = [OH-]2 + 3.1210 -3[OH-] – 3.1210 -3 0.0400 Solving using the quadratic formula gives Fundamentals of Analytical Chemistry: 8th ed. Chapter 15 [OH-] = 9.7210 -3 and pH = 14.00 – (-log(9.7210 -3)) = 11.99 (b) C2O4 2- + H2O HC2O4 - + OH- K b1 = 10 5 14 1084.1 1042.5 1000.1 [OH-] = (0.04001.8410-10)1/2 = 2.7210-6 and pH = 8.43 Proceeding as in part (b) we obtain (c) pH = 9.70 (d) pH = 9.89 (e) Proceeding as in part (a) gives pH = 12.58 (f) NH3C2H4 NH3 2+ + H2O NH3C2H4 NH2 + + H3O + K a1 = 1.4210 -7 [H3O +] = (0.04001.4210-7)1/2 = 7.5410-5 and pH = 4.12 15-10 (a) H3PO4 + H2O H2PO4 - + H3O + K a1 = 7.1110 -3 7.1110-3 = ]OH[0500.0 ]OH)[]OH[0200.0( ]POH[ ]PO][HOH[ 3 33 43 - 423 Rearranging gives 0 = [H3O +]2 +(0.0200+7.1110-3)[H3O +] – (7.1110-3)(0.0500) and solving the quadratic gives [H3O + ] = 9.6710 -3 and pH = 2.01 (b) H2AsO4 - + H2O HAsO4 2- + H3O + K a2 = 1.1110 -7 1.1110 -7 = 0300.0 ]OH)[0500.0( ]OH[0300.0 ]OH)[]OH[0500.0( ]AsOH[ ]][HAsOOH[ 3 3 33 - 42 -2 43 [H3O +] = 6.6610 -8 and pH = 7.18 (c) HCO3 - + H2O CO3 2- + H3O + K a2 = 4.6910 -11 Proceeding as in part (b) we obtain [H3O + ] = 2.3410 -11 and pH = 10.63 (d) H3PO4 + HPO4 2- 2H2PO4 - For each milliliter of solution, 0.0200 mmol Na2HPO4 reacts with 0.0200 mmol Fundamentals of Analytical Chemistry: 8th ed. Chapter 15 H3PO4 to give 0.0400 mmol NaH2PO4 and to leave 0.0200 mmol H3PO4. Thus, we have a buffer that is 0.0200 M in H3PO4 and 0.0400 M in NaH2PO4. Proceeding as in part (a) we obtain [H3O +] = 2.8210 -3 and pH = 2.55 (e) HSO4 - + H2O SO4 2- + H3O + K a2 = 1.0210 -2 Proceeding as in part (a) we obtain [H3O + ] = 8.6610 -3 and pH = 2.06 15-11 (a) Proceeding as in 15-10(a) we obtain [H3O + ] = 3.4810 -3 and pH = 2.46 (b) Proceeding as in 15-10(b) we obtain [H3O + ] = 3.1010 -8 and pH = 7.51 (c) HOC2H4 NH3 + + H2O HOC2H4 NH2 + H3O + K a = 3.1810 -10 Proceeding as in 15-10(b) we obtain [H3O + ] = 3.7310 -10 and pH = 9.43 (d) H2C2O4 + C2O4 2- 2HC2O4 - For each milliliter of solution, 0.0240 mmol H2HPO4 reacts with 0.0240 mmol C2O4 2- to give 0.0480 mmol HC2O4 - and to leave 0.0120 mmol C2O4 2- . Thus, we have a buffer that is 0.0480 M in HC2O4 - and 0.0120 M in C2O4 2-. Proceeding as in 15-10(a) we obtain [H3O + ] = 2.1710 -4 and pH = 3.66 (e) Proceeding as in 15-10(b) we obtain [H3O +] = 2.1710-4 and pH = 3.66 15-12 (a) (NO2)3C6H2OH + H2O (NO2)3C6H2O - + H3O + K a = 0.43 0.43 = x x x 0200.0 )0100.0( OH]HC)(NO[ ]OHC)][(NOOH[ 2632 - 26323 Rearranging gives 0 = x 2 +(0.0100+0.43) x – (0.43)(0.0200) and solving the quadratic gives x = 1.8710 -2 the total [H3O + ] = 0.0100 + x = 0.0287 and pH = 1.54 (b) Proceeding as in part (a) we obtain [H3O +] = 1.01310 -2 and pH = 1.99 Fundamentals of Analytical Chemistry: 8th ed. Chapter 16 A B C D E 1 Problem 16-34 2 3 Conc. HCl, M 0.1750 4 Vol. HCl, mL 100.0 5 Conc. NaOH, M 0.1080 6 Vol. NaOH, mL 11.37 7 No. Tablets 4 8 9 mg CH5N3/tablet 80.0991169 10 11 Patient Wt, lb Proper dose No. tablets 12 (a) 100 5.67546831 6 13 (b) 150 8.51320247 9 14 (c) 275 15.6075379 16 15 16 Spreadsheet Documentation 17 B9 = (((B3*B4)-(B5*B6))*(1/3)*59.07)/B7 18 C12 = 10*B12*0.4546*(1/$B$9) 19 D12 = ROUND(C12,0) 16-35 N%92.3%100 sampleg992.0 mmol1000 Ng007.14 HClmmol Nmmol1 HClmL66.22 mL HClmmol1224.0 N% 16-36 Multiplication factor for meat is 6.25 protein/N can/ proteing0.45 tunag100 proteing48.24 oz g3.28 can tunaoz50.6 protein%48.24 N protein25.6 N%916.3 Fundamentals of Analytical Chemistry: 8th ed. Chapter 16 16-37 A B C D E F 1 16-37 Nitrogen in a plant food preparation 2 Weight sample, g 0.5843 3 Volume of HCl, mL 50.00 4 Conc. HCl, M 0.1062 5 Vol. NaOH, mL 11.89 6 Conc. NaoH, M 0.0925 In Cell B8, the mmol of HCl/g sample is calculated by subtracting 7 the mmol of NaOH used from the total mmol of HCl added and 8 mmol HCl/g sample 7.20550 dividing by the sample weight. 9 Molar masses Percentages 10 (a) N 14.007 10.09 %N 11 (b) urea 60.06 21.64 % urea 12 (c) (NH4)2SO4 132.141 47.61 % (NH4)2SO4 13 (d) (NH4)3PO4 149.09 35.81 % (NH4)3PO4 14 Spreadsheet Documentation 15 B8=($B$3*$B$4-$B$5*$B$6)/$B$2 16 C10=$B$8*1*B10/1000*100 The percentages are calculated in Cells C10:C13 from the no. of 17 C11=$B$8*1/2*B11/1000*100 mmol of HCl/g sample times the no. of mmol compound/mmol HCl 18 C12=$B$8*1/2*B12/1000*100 times the molar mass of the compound divided by 1000 (mmolar 19 C13=$B$8*1/3*B13/1000*100 mass). 16-38 protein%0.197.5%335.3 protein% N%335.3%100 g9092.0 mmol1000 g007.14 HClmmol1 Nmmol1 HClmmol165.2 N% mmol165.2mL46.7 mL mmol04917.0 mL00.50 mL mmol05063.0 consumedHClmmol Fundamentals of Analytical Chemistry: 8th ed. Chapter 16 16-39 In the first titration, HClmmol63114.1mL17.10 mL NaOHmmol08802.0 mL00.30 mL HClmmol08421.0 consumedHClmmol and 42434 SO) NH(mmol2 NO NHmmolHClmmol63114.1 The amounts of the two species in the original sample are mmol5246.6 mL50 mL200 mmol63114.1SO) NH(mmol2 NO NHmmol 42434 (1) In the second titration, HClmmol27994.1mL16.14 mL NaOHmmol08802.0 mL00.30 mL HClmmol08421.0 consumedHClmmol and 42434 SO) NH(mmol2) NO NHmmol2(HClmmol27994.1 The amounts of the two species in the original sample are mmol2395.10 mL25 mL200 mmol27994.1SO) NH(mmol2) NO NHmmol2( 42434 (2) Fundamentals of Analytical Chemistry: 8th ed. Chapter 16 Subtracting equation (1) from equation (2) gives 424 424 424 424 34 34 34 34 424424 3434 SO) NH(%23.15 %100 sampleg219.1 mmol1000 SO) NH(g14.132 SO) NH(mmol4048.1 SO) NH(% NO NH%39.24%100 sampleg219.1 mmol1000 NO NHg04.80 NO NHmmol7149.3 NO NH% SO) NH(mmol4048.1 2 )mmol7149.32(mmol2395.10 SO) NH(mmol NO NHmmol7149.3mmol52455.6mmol2395.10 NO NHmmol 16-40 For the first aliquot, mmol8854.1 NaOHmL74.4 mL NaOHmmol04983.0 HClmL00.40 mL HCLmmol05304.0 )COK mmol2(KOHmmol )COK mmol2(KOHmmol NaOHmmolconsumedHClmmol 32 32 For the second aliquot, 3232 COK mmol1853.0 2 5148.1mmol8854.1 COK mmol )KOH(HClmmol5148.1HClmL56.28 mL HClmmol05304.0 KOHmmolHClmmol OH%12.9%)04.21%84.69(%100 COK %04.21%100 mL500 mL50 g217.1 mmol1000 COK g21.138 COK mmol18530.0 COK % KOH%84.69%100 mL500 mL50 g217.1 mmol1000 KOHg11.56 KOHmmol5148.1 KOH% 2 32 32 32 32 Fundamentals of Analytical Chemistry: 8th ed. Chapter 16 16-41 For the firstaliquot, mmol6026.0 NaOHmL34.2 mL NaOHmmol01063.0 HClmL00.50 mL HClmmol01255.0 )CO Nammol2( NaHCOmmol )CO Nammol2( NaHCOmmol NaOHmmolHClmmol 323 323 For the second aliquot, 3 3 NaHCOmmol1700.0 HClmL63.7 mL HClmmol01255.0 NaOHmL00.25 mL NaOHmmol01063.0 HClmmol NaOHmmol NaHCOmmol 3232 CO Nammol2163.0 2 mmol1700.0mmol6026.0 CO Nammol OH%59.25%)85.45%56.28(%100 CO Na%85.45%100 mL0.250 mL00.25 g5000.0 mmol1000 CO Nag99.105 CO Nammol2163.0 CO Na% NaHCO%56.28%100 g0.250 g00.25 g5000.0 mmol1000 NaHCOg01.84 NaHCOmmol1700.0 NaHCO% 2 32 32 32 32 3 3 3 3 Fundamentals of Analytical Chemistry: 8th ed. Chapter 16 16-42 A B C D E 1 16-42 Titrations with 0.06122 M HCl 2 M HCl 0.06122 3 M Na3PO4 0.05555 4 (a) mL Na3PO4 mmol base mL HCl 5 Add one proton 10.00 0.55550 9.07 6 to thymolphthalein 15.00 0.83325 13.61 7 endpoint 25.00 1.38875 22.68 8 40.00 2.22200 36.30 9 (b) mL Na3PO4 mmol base mL HCl 10 Add two protons 10.00 1.11100 18.15 11 to bromocresol 15.00 1.66650 27.22 12 green endpoint 20.00 2.22200 36.30 13 25.00 2.77750 45.37 14 15 (c) mL solution mmol base mL HCl 16 M Na3PO4 0.02102 20.00 1.17180 19.14 17 M Na2HPO4 0.01655 25.00 1.46475 23.93 18 Add two protons 30.00 1.75770 28.71 19 to phosphate and 40.00 2.34360 38.28 20 one to mono- 21 hydrogen phosphate 22 (d) 0.01655mL Na3PO4 mmol base mL HCl 23 M NaOH 15.00 0.56355 9.21 24 Add one proton 20.00 0.75140 12.27 25 35.00 1.31495 21.48 26 40.00 1.50280 24.55 27 Spreadsheet Documentation 28 D5=C5*$B$3 29 D10=C10*$B$3*2 30 D16=$B$15*2*C16+$B$16*C16 31 D23=C23*$B$16+C23*$B$22 32 E5=D5/$B$2 33 E10=D10/$B$2 34 E16=D16/$B$2 35 E23=D23/$B$2 Fundamentals of Analytical Chemistry: 8th ed. Chapter 16 16-43 A B C D E 1 16-43 Titrations with 0.07731 M NaOH 2 M NaOH 0.07731 3 (a) and (b) 4 M HCl 0.03000 5 M H3PO4 0.01000 6 (a) React with one mL solution mmol acid mL NaOH 7 proton to bromo- 25.00 1.0000 12.93 8 cresol green 9 endpoint 10 (b) React with two mL solution mmol acid mL NaOH 11 protons to thymol- 25.00 1.2500 16.17 12 phthalein end point 13 14 (c) NaH2PO4 mL solution mmol acid mL NaOH 15 M NaH2PO4 0.06407 10.00 0.64070 8.29 16 One proton reacts 20.00 1.28140 16.57 17 to thymol-phthalein 30.00 1.92210 24.86 18 endpoint 40.00 2.56280 33.15 19 (d) Mixture mL solution mmol acid mL NaOH 20 M H3PO4 0.02000 20.00 1.40000 18.11 21 M NaH2PO4 0.03000 25.00 1.75000 22.64 22 30.00 2.10000 27.16 23 (d) React with two 24 protons from H3PO4 25 and one from 26 NaH2PO4 27 Spreadsheet Documentation 28 D7=C7*$B$4+C7*$B$5 29 E6=D6/$B$2 30 D11=C6*$B$4+2*C6*$B$5 31 E11=D11/$B$2 32 D15=$B$15*C15 33 E15=D15/$B$2 34 D20=2*$B$20*C20+$B$21*C20 35 E20=D20/$B$2 Fundamentals of Analytical Chemistry: 8th ed. Chapter 16 16-44 A B C D E F 1 16-44 Titrations of carbonate mixtures ol. to phenol., mL ol. to BCG, mL 2 M HCl 0.1202 (a) 22.42 22.44 3 Volume, mL 25.00 (b) 15.67 42.13 4 M NaOH 40.00 (c) 29.64 36.42 5 M Na2CO3 105.99 (d) 16.12 32.23 6 M NaHCO3 84.01 (e) 0.00 33.33 7 Table 14-2 gives the volume relationships in titrations of these mixtures. 8 9 (a) Since essentially the same volume is used for each endpoint, there is only NaOH 10 present. We use the average volume to calculate the no. of mg NaOH/mL 11 mmol NaOH mg NaOH/mL 12 2.6961 4.314 13 (b) Since V phth< ½V bcg, only carbonate and bicarbonate are present. 14 mmol carbonate mmol total mmol bicarbonate mg Na2CO3 /ml mg NaHCO3 /ml 15 1.8835 5.0640 1.2970 7.985 4.358 16 (c) Now V phth > ½V bcg, so we have a mixture of NaOH and Na2CO3 17 mmol carbonate plus NaOH mmol carbonate mmol NaOH mg Na2CO3 /ml mg NaOH/ml 18 3.5627 0.8150 2.7478 3.455 4.396 19 (d) Since V phth = ½V bcg, we have only Na2CO3 present 20 mmol carbonate mg Na2CO3 /ml 21 1.9376 8.215 22 (e) Since V phth = 0, we have only NaHCO3 present which gains one proton. 23 mmol NaHCO3 mg NaHCO3 /ml 24 4.0063 13.46 25 Spreadsheet Documentation 26 B12=((D2+E2)/2)*$B$2 D18=B18-C18 27 C12=B12*1*$B$4/$B$3 E18=C18*$B$5/$B$3 28 B15=D3*$B$2 F18=D18*$B$4/$B$3 29 C15=E3*$B$2 B21=$D$5*$B$2 30 D15=C15-2*B15 C21=B21*1*$B$5/$B$3 31 E15=B15*$B$5/$B$3 B24=E6*$B$2 32 F15=D15*$B$6/$B$3 C24=B24*1*$B$6/$B$3 33 B18=D4*$B$2 34 C18=($E$4-$D$4)*$B$2 Fundamentals of Analytical Chemistry: 8th ed. Chapter 16 16-45 A B C D E F 1 16-45 Titrations of Mixtures ol. to phenol., mL ol. to BCG, mL 2 M HCl 0.08601 (a) 0.00 18.15 3 Volume, mL 25.00 (b) 21.00 28.15 4 M NaOH 40.00 (c) 19.80 39.61 5 M Na3 AsO4 207.89 (d) 18.04 18.03 6 M Na2HAsO4 185.91 (e) 16.00 37.37 7 We use the method of Problem 14-44. Table 14-2 gives the volume relationships in titrations of similar mixtures. 8 (a) Since V phth = 0, we have only Na2HAsO4 present which gains one proton. 9 mmol NaHCO3 mg Na2HAsO4 /ml 10 1.5611 11.61 11 (b) Now V phth > ½V bcg, so we have a mixture of NaOH and Na3 AsO4 12 mmol Na3AsO4 plus NaOH mmol Na3AsO4 mmol NaOH mg Na3AsO4 /ml mg NaOH/ml 13 1.8062 0.6150 1.1912 5.114 1.906 14 (c) Since V phth = ½V bcg, we have only Na3 AsO4 present 15 mmol Na3AsO4 mg Na3AsO4 /ml 16 1.7030 14.16 17 (d) Since essentially the same volume is used for each endpoint, there is only NaOH 18 present. We use the average volume to calculate the no. of mg NaOH/mL 19 mmol NaOH mg NaOH/mL 20 1.5512 2.482 21 (e) Since V phth< ½V bcg, only Na3 AsO4 and Na2HAsO4 are present. 22 mmol Na3AsO4 mmol total mmol Na2HAsO4 mg Na3AsO4 /ml mg Na2HAsO4 /ml 23 1.3762 3.2142 0.4619 11.44 3.435 24 Spreadsheet Documentation 25 B10=$E2*$B$2 B16=$D$4*$B$2 26 C10=B10*1*$B$6/$B$3 C16=$E$6*$B$2 27 B13=D3*$B$2 B23=$D$6*$B$2 28 C13=($E$3-$D$3)*$B$2 C23=$E$6*$B$2 29 D13=B13-C13 D23=C23-2*B23 30 E13=C13*$B$5/$B$3 E23=B23*$B$5/$B$3 31 F13=D13*$B$4/$B$3 F23=D23*$B$6/$B$3 Fundamentals of Analytical Chemistry: 8th ed. Chapter 16 16-46 (a) The equivalent weight of an acid is that weight of the pure material that contains one mole of titratable protons in a specified reaction. (b) The equivalent weight of a base is that weight of the pure material that consumes one mole of protons in a specified reaction. 16-47 (a) With bromocresol green, only one of the two protons in the oxalic acid will react. Therefore, the equivalent mass is the molar mass, or 126.1 g. (b) When phenolphthalein is the indicator, two of the protons are consumed. Therefore, the equivalent mass of oxalic acid is one-half the molar mass, or 63.0 g. 16-48 (a) COOHCHM4598.0 mL00.10 NaOHmmol COOHCHmmol1 NaOHmL62.45 mL NaOHmmol1008.0 3 3 (b) COOHCH%75.2 %100 g004.1 COOHCHmL1 mg1000 g1 mmol COOHCHmg03.60 mL COOHCHmmol4598.0 3 333 Fundamentals of Analytical Chemistry: 8th ed. Chapter 17 Chapter 17 17-1 (a) A chelate is a cyclic complex consisting of metal ion and a reagent that contains two or more electron donor groups located in such a position that they can bond with the metal ion to form a Heterocyclic ring structure. (b) A tetradentate chelating agent is a molecule that contains four pairs of donor electron located in such positions that they all can bond to a metal ion, thus forming two rings. (c) A ligand is a species that contains one or more electron pair donor groups that tend to form bonds with metal ions. (d) The coordination number is the number of covalent bonds that a cation tends to form with electron donor groups. (e) A conditional formation constant is an equilibrium constant for the reaction between a metal ion and a complexing agent that applies only when the pH and/or the concentration of other complexing ions are carefully specified. (f) NTA is the acronym for nitrilotriacetic acid, a tetradentate complexing agent that contains three carboxylate groups and one tertiary amine. As an electron donor, NTA has found applications in the titrationof a variety of cations. (g) Water hardness is the concentration of calcium carbonate that is equivalent to the total concentration of all of the multivalent metal carbonates in the water. (h) In an EDTA displacement titration, an unmeasured excess of a solution containing the magnesium or zinc complex of EDTA is introduced into the solution of an analyte that forms a more stable complex that that of magnesium or zinc. The liberated magnesium or zinc ions are then titrated with a standard solution of EDTA. Displacement titrations are used for the determination of cations for which no good indicator exists. Fundamentals of Analytical Chemistry: 8Fundamentals of Analytical Chemistry: 8thth eedd. . CChhaapptteer r 1177 17-3117-31 A A B B C C D D E E F F G G H H II 1 1 17-317-31 1 ConConditditionional al conconstastants nts for for BaBa2+2+- EDTA complex- EDTA complex 22 Note: Note: The The conditional conditional constantconstant K K ''MYMY is the product of is the product of 44 and and K K MYMY (Equation 17-25). (Equation 17-25). 33 The The value value of of K K MYMY is found in is found in TablTable 17-3e 17-3 44 K K MYMY 5.80E+07 5.80E+07 pH pH DD 44 K K ''MYMY 55 K K 11 11..0022EE--002 2 77..0 0 11..7733EE--118 8 44..8800EE--004 4 22..88EE++0044 66 K K 22 22..1144EE--003 3 99..0 0 11..6600EE--220 0 55..2211EE--002 2 33..00EE++0066 77 K K 33 66..9922EE--007 7 1111..0 0 99..8822EE--222 2 88..4466EE--001 1 44..99EE++0077 88 K K 44 5.50E-11 5.50E-11 9 9 SprSpreadeadshesheet et DocDocumumententatioationn 1010 D5=(10^-C5)^4+$B$5*(10^-C5)^3+$B$5*$B$6*(10^-C5)^2+$B$5*$B$6*$B$7*(10^-C5)+$B$5*$B$6*$B$7*$B$8 D5=(10^-C5)^4+$B$5*(10^-C5)^3+$B$5*$B$6*(10^-C5)^2+$B$5*$B$6*$B$7*(10^-C5)+$B$5*$B$6*$B$7*$B$8 1111 E5=$B$5*$B$6*$B$7*$B$8/D5 E5=$B$5*$B$6*$B$7*$B$8/D5 1212 F5==E5*$B$4 F5==E5*$B$4 Fundamentals of Analytical Chemistry: 8Fundamentals of Analytical Chemistry: 8thth eedd. . CChhaapptteer r 1177 17-3217-32 A A B B C C D D E E F F G G HH 1 1 1717-3-32 2 TiTitrtratatioion n of of 5050.0.00 0 mL mL of of 0.00.0101000 00 M M Sr Sr 2+2+ with 0.02000 M EDTAwith 0.02000 M EDTA 22 Note: Note: The The conditiconditional onal constconstantant K K ''MYMY is the product of is the product of 44 andand K K MYMY (Equation 17-25). (Equation 17-25). 33 The The value value of of K K MYMY is found in Table 17-3. is found in Table 17-3. 44 K K MYMY 4.30E+08 4.30E+08 pH pH DD 44 K K ''MYMY 55 EDTA EDTA K K 11 11..0022EE--002 2 1111. 0 . 0 99. 8. 822EE--222 2 88. 4. 466EE--001 1 33..6644EE++0088 66 K K 22 2.14E-03 2.14E-03 77 K K 33 6.92E-07 6.92E-07 88 K K 44 5.50E-11 5.50E-11 99 Initial Initial conc. conc. Sr Sr 2+2+ 00..001100000 0 IInniittiiaal l VVooll. . 5500..0000 1010 InInititiaial l coconcnc. . EDEDTA TA 0.0.0202000000 111 1 VVooll. . EEDDTTAA, , mmLL c c Sr2+Sr2+ c c SrY2-SrY2- c c TT [Sr [Sr 2+2+] ] [[SSrrYY2-2-] ] ppSSr r 1212 00..000 0 00..001100000 0 0 0 00..001100000 0 22..0000 1313 1100..000 0 00..000055000 0 00..000033333 3 00..000055000 0 22..3300 1414 2244..000 0 00..000000227 7 00..000066449 9 00..000000227 7 33..5577 1515 2244..990 0 00..000000003 3 00..000066665 5 00..000000003 3 44..5577 1616 2255..000 0 00..000000000 0 00..000066667 7 00..000066667 7 44..2288EE--006 6 00..000066667 7 55..3377 1717 2255..110 0 00..000066666 26 2..6666EE--005 5 66..8877EE--007 7 00..000066666 6 66..1166 1818 2266..000 0 00..000066558 28 2..6633EE--004 4 66..8877EE--008 8 00..000066558 8 77..1166 1919 3300..000 0 00..000066225 15 1..2255EE--003 3 11..3377EE--008 8 00..000066225 5 77..8866 20 20 SprSpreadeadshesheet et DocDocumeumentantationtion 21 21 B12=(B12=($B$9*$B$9*$D$9-$D$9-$B$10$B$10*A12)*A12)/($D$/($D$9+A129+A12)) 22 22 C12C12=($=($B$1B$10*A0*A12)12)/($/($D$9D$9+A+A12)12) 23 23 C16C16=($=($B$1B$10*$A0*$A$16$16)/()/($D$$D$9+A9+A16)16) 24 24 D17=(D17=($B$10$B$10*A17-*A17-$D$9*$D$9*$B$9)$B$9)/($D$/($D$9+A179+A17)) 25 25 D16D16=($=($B$1B$10*$A0*$A$16$16)/()/($D$$D$9+A9+A16)16) 226 6 EE1122==BB1122 27 27 E1E16=S6=SQRQRT(T(C1C16/6/$F$$F$5)5) 28 28 E1E17=7=C1C17/7/(D(D1717*$*$F$F$5)5) 229 9 FF1166==CC1166 30 30 H1H12=2=-L-LOGOG1010(E(E1212)) 3131 3232 3333 3434 3535 3636 3737 3838 3939 Fundamentals of Analytical Chemistry: 8Fundamentals of Analytical Chemistry: 8thth eedd. . CChhaapptteer r 1177 17-3317-33 A A B B C C D D E E F F G G HH 1 1 1717-3-33 3 TiTitratratition on of of 5050.0.00 0 mL mL of of 0.00.015150 0 M M FeFe 2+2+ with 0.0300 M EDTAwith 0.0300 M EDTA 22 Note: Note: The The conditional conditional constantconstant K K ''MYMY is the product of is the product of 44 andand K K MYMY (Equation 17-25). (Equation 17-25). 33 The The value value of of K K MYMY is found in Table 17-3. is found in Table 17-3. 44 K K MYMY 2.10E+14 2.10E+14 pH pH DD 44 K K ''MYMY 55 EDTA EDTA K K 11 11..0022EE--002 2 77..0 0 11..7733EE--118 8 44..8800EE--004 1 .4 1 .0011EE++1111 66 K K 22 2.14E-03 2.14E-03 77 K K 33 6.92E-07 6.92E-07 88 K K 44 5.50E-11 5.50E-11 99 Initial Initial conc. conc. FeFe 2+2+ 00..0011550 0 IInniittiiaal l VVooll. . 5500..0000 1010 InInititiaial l coconnc. c. EEDDTA TA 0.0.03030000 111 1 VVooll. . EEDDTTAA, , mmLL c c Fe2+Fe2+ c c FeY2-FeY2- c c TT [Fe[Fe 2+2+ ] ] [[FFeeYY 2-2- ] ] ppFFee 1212 00..000 0 00..001155000 0 0 0 00..001155000 0 11..8822 1313 1100..000 0 00..000077550 0 00..000055000 0 00..000077550 0 22..1122 1414 2244..000 0 00..000000441 1 00..000099773 3 00..000000441 1 33..3399 1515 2244..990 0 00..000000004 4 00..000099997 7 00..000000004 4 44..4400 1616 2255..000 0 00..000000000 0 00..001100000 0 00..001100000 0 33..1155EE--007 7 00..001100000 0 66..5500 1717 2255..110 0 00..000099999 39 3..9999EE--005 5 22..4488EE--009 9 00..000099999 9 88..6611 1818 2266..000 0 00..000099887 37 3..9955EE--004 4 22..4488EE--110 0 00..000099887 7 99..6611 1919 3300..000 0 00..00009933775 5 11..8888EE--003 3 44..9966EE--111 1 00..000099338 8 1100..3300 20 20 SpSpreareadsdsheheet et DoDocumcumenentatatiotionn 21 21 B12=(B12=($B$9*$$B$9*$D$9-D$9-$B$10$B$10*A12)/*A12)/($D$($D$9+A129+A12)) 22 22 C1C12=(2=($B$$B$10*A10*A12)12)/($/($D$9D$9+A1+A12)2) Note: Note: The The method method is is identiidentical cal to to ProbleProblemm 23 23 C1C16=(6=($B$$B$10*10*$A$A$16$16)/()/($D$D$9+A$9+A16)16) 17-32. 17-32. 24 24 D17=(D17=($B$10*A$B$10*A17-$D$17-$D$9*$B$9*$B$9)/($9)/($D$9+AD$9+A17)17) 25 25 D1D16=(6=($B$$B$10*10*$A$A$16$16)/()/($D$D$9+A$9+A16)16) 226 6 EE1122==BB1122 27 27 E1E16=6=SQSQRTRT(C(C1616/$/$F$F$5)5) 28 28 E1E17=7=C1C17/7/(D(D1717*$*$F$F$5)5) 229 9 FF1166==CC1166 30 30 H1H12=2=-L-LOGOG1010(E(E1212)) 3131 3232 3333 3434 3535 3636 3737 3838 3939 Fundamentals of Analytical Chemistry: 8Fundamentals of Analytical Chemistry: 8thth eedd. . CChhaapptteer r 1177 17-3417-34 2222 22 22 22 2222 MgMgmmolmmol10991099..0017511751..0028502850..00MgMgmmolmmol CaCammolmmol17511751..00 EDTAEDTAmmolmmol CaCammolmmol11 EDTAEDTAmLmL5353..1414 mLmL EDTAEDTAmmolmmol0120501205..00 CaCammolmmol mmolmmol28502850..00EDTAEDTAmLmL6565..2323 mLmL EDTAEDTAmmolmmol0120501205..00 MgMgmmolmmolCaCammolmmol (a)(a) See discussSee discussion of ion of water hardneswater hardness in s in 17D-9.17D-9. 33 33 2222 33 CaCOCaCO ppm ppm55..570570 mLmL10001000 LL mLmL0000..5050 mmolmmol CaCOCaCOmgmg087087..100100 mmolmmol28502850..00 MgMgCaCa ppm ppmCaCOCaCO ppm ppmhardnesshardnessWater Water (b)(b) 33 33 22 3322 CaCOCaCO ppm ppm55..350350 mLmL10001000 LL mLmL0000..5050 mmolmmol CaCOCaCOmgmg0808..100100 CaCammolmmol CaCOCaCOmmolmmol11 CaCammolmmol17511751..00 (c)(c) 33 33 22 3322 MgCOMgCO ppm ppm33..185185 mLmL10001000 LL mLmL0000..5050 mmolmmol MgCOMgCOmgmg3030..8484 MgMgmmolmmol MgCOMgCOmmolmmol11 MgMgmmolmmol10991099..00 Fundamentals of Analytical Chemistry: 8Fundamentals of Analytical Chemistry: 8 thth ed. ed. Chapter Chapter 1818 Chapter 18Chapter 18 18-118-1 (a)(a) OxidationOxidation is a process in is a process in which a species loses one or more electrons.which a species loses one or more electrons. (b)(b) An An oxidizing agent oxidizing agent is an electron acceptor. is an electron acceptor. (c)(c) A A salt bridge salt bridge is is a device that provides electrical contact but prevents mixing of dissimilar solutions ina device that provides electrical contact but prevents mixing of dissimilar solutions in an electrochemical cell.an electrochemical cell. (d)(d) A A liquid junctionliquid junction is the is the interface between dissimilar liquids. A potential developinterface between dissimilar liquids. A potential develops across s across the interface.the interface. (e)(e) The The Nernst equati Nernst equationon relates the relates the potential to the concentrations (strictlypotential to the concentrations (strictly, activities) of , activities) of the participants inthe participants in an electrochemical reaction.an electrochemical reaction. 18-218-2 (a)(a) The The electrode potential electrode potential is is the potential of an electrochemical cell in which a the potential of an electrochemical cell in which a standard hydrogen electrodestandard hydrogen electrode acts as the reference electrode on the left and the half-cell acts as the reference electrode on the left and the half-cell of interest is on the right as written in cell of interest is on the right as written in cell notation.notation. (b)(b) The The formal poten formal potential tial of a half-reaction if the of a half-reaction if the potential of the system (measured against the standardpotential of the system (measured against the standard hydrogen electrode) when the concentration of each solute participating in the half-hydrogen electrode) when the concentration of each solute participating in the half- reaction has areaction has a concentration of exactly one molar and the concentrations of all concentration of exactly one molar and the concentrations of all other constituents of the other constituents of the solution are carefullysolution are carefully specified.specified. (c)(c) The The standard ele standard electrode potentiactrode potential l for a for a half-reaction is the potential of a cell consisting of the half-reactionhalf-reaction is the potential of a cell consisting of the half-reaction of interest on the right and a standard hyof interest on the right and a standard hydrogen electrode on the left as written in cell notadrogen electrode on the left as written in cell notation. tion. The activitiesThe activities of all of the participants in the half-reaction are specof all of the participants in the half-reaction are specified as having a value of unityified as having a value of unity. . The additionalThe additional specification that the standard hydrogen electrode is the reference electrode implies that the specification that the standard hydrogen electrode is the reference electrode implies that the standard potentialstandard potential for the half-reaction is for the half-reaction is always a reduction potential.always a reduction potential. (d)(d) A A liquid-junction potential liquid-junction potential is the is the potential that develops across the interface between two dissimilarpotential that develops across the interface between two dissimilar solutions.solutions. (e)(e) An An oxidation potential oxidation potential is the potential of an electrochemical cell in which the cathode is a standard is the potential of an electrochemical cell in which the cathode is a standard hydrogen electrode and the half-cell of interest acts as anode.hydrogen electrode and the half-cell of interest acts as anode. 18-318-3 (a)(a) Reduction Reduction is the process whereby a substance acquires electrons; a is the process whereby a substance acquires electrons; a reducing agent reducing agent is a supplier of is a supplier of electrons.electrons. Fundamentals of Analytical Chemistry: 8Fundamentals of Analytical Chemistry: 8 thth ed. ed. Chapter Chapter 1818 (b)(b) A A galvanic cell galvanic cell is one in which a is one in which a spontaneous electspontaneous electrochemical reaction occurs and is thus a source ofrochemical reaction occurs and is thus a source of energy. energy. The reaction The reaction in anin an electrolytic cell electrolytic cell is is forced in a forced in a nonspontannonspontaneous direction through application ofeous direction through application of an external source of an external source of electrical energy.electrical energy. (c)(c) The The anodeanode of an electrochemical ce of an electrochemical cell is the electrode at which oxidation oll is the electrode at which oxidation occurs. ccurs. TheThe cathode cathode is the is the electrode at which reduction occurs.electrode at which reduction occurs. (d)(d) In a In a reversible cell reversible cell , alteration of the direction of the current simply causes a reversal in the, alteration of the direction of the current simply causes a reversal in the electrochemielectrochemical procal process. cess. In anIn an irreversible cell irreversible cell , reversal of the current results in a , reversal of the current results in a different reaction at onedifferent reaction at one or both of the electrodes.or both of the electrodes. (e)(e) The The standard ele standard electrode potentiactrode potential l is is the potential of an electrochemical cell in which the the potential of an electrochemical cell in which the standardstandard hydrogen electrode acts as the reference hydrogen electrode acts as the reference electrode on the left and electrode on the left and all participants in the all participants in the right-hand electroderight-hand electrode process have unit a process have unit activity. ctivity. TheThe formal pot formal potential ential differs in that the molar concentrations of the reactants and differs in that the molar concentrations of the reactants and products are unity products are unity and the concentand the concentrations of other sperations of other species in the soluticies in the solution are carefully on are carefully specified.specified. 18-418-4 The first standard potential is for a solution that is saturated with IThe first standard potential is for a solution that is saturated with I22 and has an I and has an I22 ( (aqaq) ) activity significantlyactivity significantly less than one. less than one. The second potentiaThe second potential if for a hypothetical half-cell in which the Il if for a hypothetical half-cell in which the I22 ( (aqaq) activity is unity.) activity is unity. Such a half-cell, if it existed, would have a Such a half-cell, if it existed, would have a greater potential becausgreater potential because the driving force for the re the driving force for the reductioneduction would be greater at the higher Iwould be greater at the higher I22 concentration. concentration. The second half-cell potentThe second half-cell potential, although hypial, although hypothetical, isothetical, is nevertheless useful for calculating electrode potentials for solutions that are undersaturated in nevertheless useful for calculating electrode potentials for solutions that are undersaturated in II22.. 18-518-5 It is necessary to It is necessary to bubble hydrogen through the electrolyte in a hydrogen electrode in order bubble hydrogen through the electrolyte in a hydrogen electrode in order to keep theto keep the solution saturated with the gas. solution saturated with the gas. Only underthese conditions is the hydrogen activity cOnly under these conditions is the hydrogen activity constant so that theonstant so that the electrode potential is constant and electrode potential is constant and reproducible.reproducible. 18-618-6 The potential in the presence of The potential in the presence of base would be more negative because the base would be more negative because the nickel ion activity in thisnickel ion activity in this solution would be far less than 1 M. solution would be far less than 1 M. ConsequentConsequently the driving force for the reduction if Ni (II) to thely the driving force for the reduction if Ni (II) to the metallic state woumetallic state would also be far less, and the electrode potential would also be far less, and the electrode potential would be significantly mld be significantly more negative. ore negative. (In(In Fundamentals of Analytical Chemistry: 8 th ed. Chapter 18 fact the standard electrode potential for the reaction OH2)( Nie2)OH( Ni 2 s has a value of – 0.72 V, whereas the standard electrode potential for )( Nie2 Ni2 s is – 0.250 V.) 18-7 (a) 4223 SnFe2SnFe2 (b) )(Ag3Cr Ag3)(Cr 3 s s (c) 2223 CuOH2)( NO2H4)(Cu NO2 g s (d) OH3H4SO5Mn2SOH5MnO2 2 2 4 2 324 (e) H2)CN(FeTiOOH)CN(FeTi 46 2 2 3 6 3 (f) H2Ce2)(OCe2OH 32 4 22 g (g) 24 Sn)(AgI2SnI2)(Ag2 s s (h) OH2ZnUH4)(ZnUO 2 242 2 s (i) OH3Mn2 NO5HMnO2HNO5 2 2 342 (j) OH3ICl)( NCl2H2IO NNHH 222322 g 18-8 (a) Oxidizing agent Fe3+; 23 FeeFe Reducing agent Sn2+; e2SnSn 42 (b) Oxidizing agent Ag+; )(AgeAg s Reducing agent Cr; e3Cr )(Cr 3 s (c) Oxidizing agent NO3 -; OH)( NOeH2 NO 223 g Reducing agent Cu; e2Cu)(Cu 2 s Fundamentals of Analytical Chemistry: 8 th ed. Chapter 18 (d) Oxidizing agent MnO4 -; OH4Mne5H8MnO 2 2 4 Reducing agent H2SO3; e2H4SOOHSOH 24232 (e) Oxidizing agent Fe(CN)6 3-; 46 3 6 )CN(Fee)CN(Fe Reducing agent Ti3+; eH2TiOOHTi 22 3 (f) Oxidizing agent Ce4+; 34 CeeCe Reducing agent H2O2; e2H2)(OOH 222 g (g) Oxidizing agent Sn4+; 24 Sne2Sn Reducing agent Ag; e)(AgII)(Ag s s (h) Oxidizing agent UO2 2+; OH2Ue2H4UO 2 42 2 Reducing agent Zn; e2Zn)(Zn 2 s (i) Oxidizing agent MnO4 -; OH4Mne5H8MnO 2 2 4 Reducing agent HNO2; e2H3 NOOHHNO 322 (j) Oxidizing agent IO3 -; OH3ICle4Cl2H6IO 223 Reducing agent H2 NNH2; e4H4)( N NNHH 222 g 18-9 (a) H2)OH(V5MnOH11VO5MnO 4 2 2 2 4 (b) H2)(SI2)(SHI 22 s g (c) OHUO3Cr 2H2U3OCr 2 2 2 342 72 Fundamentals of Analytical Chemistry: 8 th ed. Chapter 18 (d) OH2Mn)(ClH4)(MnOCl2 2 2 22 g s (e) OHI3I5H6IO 223 (f) OH3ICl3Cl6H6I2IO 223 (g) OH2MnO2POOH3MnO2HPO 2 2 4 3 44 2 3 (h) HBr HCNSOOHBrOSCN 2423 (i) OH5VO3H2)OH(V2V 2 2 4 2 (j) OH2)(MnO5OH4Mn3MnO2 22 2 4 s 18-10 (a) Oxidizing agent MnO4 -; OH4Mne5H8MnO 2 2 4 Reducing agent VO2+; eH2)OH(VOH3VO 42 2 (b) Oxidizing agent I2; I2e2)(I2 ag Reducing agent H2S; e2H2)(S)(SH2 s g (c) Oxidizing agent Cr 2O7 2-; OH7Cr 2e6H14OCr 2 32 72 Reducing agent U4+; e2H4UOOH2U 222 4 (d) Oxidizing agent MnO2; OH2Mne2H4)(MnO 2 2 2 s Reducing agent Cl-; e2)(ClCl2 2 g (e) Oxidizing agent 3IO ; OH3I 2 1 e5H6IO 223 Reducing agent I-; eI 2 1 I 2 (f) Oxidizing agent 3IO ; OH3ICle4Cl2H6IO 223 Fundamentals of Analytical Chemistry: 8 th ed. Chapter 18 (e) 0250.01000.41090.2 1000.4]CuY[ 103.2103.6106.3 ]Cu[ ]CuY[ 32 T 32 10189 CuY4 T 2 2 c K c V007.033.0337.0 )104.1log( 2 0592.0 337.0 1000.4 0250.0103.2 log 2 0592.0 337.0 ]CuY[ log 2 0592.0 337.0 ]Cu[ 1 log 2 0592.0 337.0 11 3 10 2 TCuY4 2Cu 2 c K E 18-14 (a) V799.0 0600.0 1 log 2 0592.0 763.0Zn E (b) 2216 )OH(Zn ]OH][Zn[100.32 K V10.1341.0763.0 )1033.3log( 2 0592.0 763.0 100.3 0100.0 log 2 0592.0 763.0 ]OH[ log 2 0592.0 763.0 ]Zn[ 1 log 2 0592.0 763.0 11 16 2 )OH(Zn 2 2Zn 2 K E (c) 4 3 2 2 438 4 ] NH][Zn[ ]) NH(Zn[ 1076.7 V01.1251.0763.0 )1003.3log( 2 0592.0 763.0 0100.0 250.01076.7 log 2 0592.0 763.0 ]) NH(Zn[ ] NH[ log 2 0592.0 763.0 ]Zn[ 1 log 2 0592.0 763.0 8 48 2 43 4 34 2Zn E Fundamentals of Analytical Chemistry: 8 th ed. Chapter 18 (d) 0395.01000.51045.4 1000.5]ZnY[ 107.1102.3102.5 ]Zn[ ]ZnY[ 32 T 32 15162 ZnY4 T 2 2 c K c V24.1477.0763.0 )103.1log( 2 0592.0 763.0 1000.5 0395.0107.1 log 2 0592.0 763.0 ]ZnY[ log 2 0592.0 763.0 ]Zn[ 1 log 2 0592.0 763.0 16 3 15 2 TZnY4 2Zn 2 c K E 18-15 )(He2H2 2 g 2 H 22 H Ho ]H[ 00.1 log 2 0592.0 00.0 p log 2 0592.0 2 a E E The ionic strength of the solution is given by 0100.010100.010100.0 2 1 22 From Table 10-2 V121.0121.000.0 913.00100.0 00.1 log 2 0592.0 00.0 913.0 22 H E 18-16 V73.0Cl4)(Pte2PtCl o 2 4 E s (a) V78.0)051.0(73.0 0263.0 1492.0 log 2 0592.0 73.0 4 Pt E (b) Fundamentals of Analytical Chemistry: 8 th ed. Chapter 18 V198.0)044.0(154.0 1050.7 1050.2 log 2 0592.0 154.0 2 3 Pt E (c) V355.0 1000.1 00.1 log 2 0592.0 000.0 26Pt E (d) V359.0OHVeH2VO o2 32 E V210.0149.0359.0 100.00353.0 20586.0 log 2 0592.0 359.0 2Pt E (e) 4223 SnFe2SnFe2 2 2 2 22 Snmmol30.2L00.25 SnClmmol Snmmol1 mL SnClmmol0918.0 consumedSnmmol 22 4 3 4 34 3 3 3 33 Snmmol340.0960.130.2remainingSnmmol Snmmol960.1 Femmol2 Snmmol1 Femmol920.3formedSnmmol Femmol920.3L00.25 FeClmmol Femmol1 mL FeClmmol1568.0 consumedFemmol V177.0)023.0(154.0 0.50/960.1 0.50/340.0 log 2 0592.0 154.0Pt E (f) OH2VO2V)OH(V 2 23 4 4 4 4 )OH(Vmmol08.2L00.25 mL )OH(Vmmol0832.0 consumed)OH(Vmmol Fundamentals of Analytical Chemistry: 8 th ed. Chapter 18 44 2 3 2 32 3 342 3 3423 )OH(Vmmol993.0087.108.2remaining)OH(Vmmol VOmmol174.2 Vmmol VOmmol2 Vmmol087.1formedVOmmol Vmmol087.1L00.50 )SO(Vmmol Vmmol2 mL )SO(Vmmol01087.0 consumedVmmol V86.0139.000.1 1000.000.75/993.0 00.75/174.2 log0592.000.1 2Pt E 18-17 (a) V29.0068.036.0 00566.0 0813.0 log0592.036.0Pt E (b) V749.0022.0771.0 200845.0 0400.0 log0592.0771.0Pt E (c) 63 1082.2]OH[55.5 pH V329.0329.0000.0 1082.2 00.1 log 2 0592.0 000.0 26Pt E (d) V894.0106.000.1 0800.01996.0 0789.0 log0592.000.1 2Pt E (e) 4 24 4 244 Cemmol04.3 L00.50 )SO(Cemmol Cemmol1 mL )SO(Cemmol0607.0 consumedCemmol 22 343 2 2 2 22 Femmol196.004.300.5remainingFemmol Femmol04.3consumedCemmolformedFemmol Femmol00.5L00.50 FeClmmol Femmol1 mL FeClmmol100.0 consumedFemmol Fundamentals of Analytical Chemistry: 8 th ed. Chapter 18 V69.0)011.0(68.0 0.100/04.3 0.100/965.1 log0592.068.0Pt E (f) OH2VO2V)OH(V 2 23 4 4 4 4 )OH(Vmmol314.0L00.50 mL )OH(Vmmol0628.0 consumed)OH(Vmmol 44 2 3 2 32 3 342 3 3423 )OH(Vmmol85.3314.016.4remaining)OH(Vmmol VOmmol628.0 Vmmol VOmmol2 Vmmol314.0formedVOmmol Vmmol16.4 L00.25 )SO(Vmmol Vmmol2 mL )SO(Vmmol0832.0 consumedVmmol V194.0165.0359.0 100.000.75/628.0 00.75/85.3 log0592.0359.0 2Pt E 18-18 (a) anodeV280.0030.0250.0 0943.0 00.1 log 2 0592.0 250.0 Ni E (b) anodeV090.0)061.0(151.00922.0log0592.0151.0Ag E (c) cathodeV003.1226.0229.1 1050.1760/780 00.1 log 4 0592.0 229.1 44O2 E (d) cathodeV171.0)017.0(154.0 350.0 0944.0 log 2 0592.0 154.0Pt E Fundamentals of Analytical Chemistry: 8th ed. Chapter 20 20-4 Amalgamation of the zinc prevents loss of reagent by reaction of the zinc with hydronium ions. 20-5 OH)(AgCl2UCl2H4)(Ag2UO 2 42 2 s s 20-6 OH2ZnTi2H4)(ZnTiO2 2 232 s 20-7 Standard solutions of reductants find somewhat limited use because of their susceptibility to air oxidation. 20-8 Standard KMnO4 solutions are seldom used to titrate solutions containing HCl because of the tendency of MnO4 - to oxidize Cl - to Cl2, thus causing overconsumption of MnO4 - . 20-9 Cerium (IV) precipitates as a basic oxide in alkaline solution. 20-10 H4)(MnO5OH2Mn3MnO2 22 2 4 s 20-11 Freshly prepared solutions of permanganate are inevitably contaminated with small amounts of solid manganese dioxide, which catalyzes the further decompositions of permanganate ion. By removing the dioxide at the outset, a much more stable standard reagent is produced. 20-12 Standard permanganate and thiosulfate solutions are generally stored in the dark because their decomposition reactions are catalyzed by light. 20-13 OH4)(O3)(MnO4OH2MnO4 2 brown 224 g s Fundamentals of Analytical Chemistry: 8th ed. Chapter 20 20-14 Solutions of K 2Cr 2O7 are used extensively for back-titrating solutions of Fe 2+ when the latter is being used as a standard reductant for the determination of oxidizing agents. 20-15 Iodine is not sufficiently soluble in water to produce a useful standard reagent. It is quite soluble in solutions containing excess I- because of formation of triiodide. 20-16 The solution concentration of I3 - becomes stronger because of air oxidation of the excess I-. The reaction is OH2I2H4)(OI6 232 g 20-17 )(SHSOHOS 3 2 32 s 20-18 When a measured volume of a standard solution of KIO3 is introduced into an acidic solution containing an excess of iodide ion, a known amount of iodine is produced as a consequence of a reaction. OH3I3H6I5IO 223 20-19 2 64 2 322 22 excess 3 OSI2OS2I OH3I3Br H6I6BrO 20-20 2 64 2 322 22 3 excess 2 72 OSI2OS2I OH7I3Cr 2H14I6OCr 20-21 I4H4)( NH NI2 2422 g Fundamentals of Analytical Chemistry: 8th ed. Chapter 20 20-22 Starch is decomposed in the presence of high concentrations of iodine to give products that do not behave satisfactorily as indicators. This reaction is prevented by delaying the addition of the starch until the iodine concentration is very small. 20-23 2 2 Femmol03961.4 g847.55 Femmol1000 sampleg2256.0 (a) 4 2 42 CeM1142.0 Femmol Cemmol1 mL37.35 Femmol03961.4 (b) 2 722 2 72 2 OCr M01904.0 Femmol6 OCr mmol1 mL37.35 Femmol03961.4 (c) 42 4 2 MnOM02284.0 Femmol5 MnOmmol1 mL37.35 Femmol03961.4 (d) 42 4 2 )OH(VM1142.0 Femmol )OH(Vmmol1 mL37.35 Femmol03961.4 (e) 32 3 2 IOM02855.0 Femmol4 IOmmol1 mL37.35 Femmol03961.4 20-24 722 722722 OCr K g677.3 mmol1000 OCr K g185.294 mL0.500 mL OCr K mmol02500.0 Dissolve 3.677 g K 2Cr 2O7 in water and dilute to 500.0 mL. 20-25 3 33 KBrOg350.8 mmol1000 KBrOg001.167 L mL1000 L000.2 mL KBrOmmol02500.0 Dissolve 8.350 g KBrO3 in water and dilute to 2.000 L. Fundamentals of Analytical Chemistry: 8th ed. Chapter 20 A B C D E F G H 1 20-54 (a) Titration of 25.00 mL of 0.025 M SnCl2 with 0.050 M FeCl3 2 Reaction: Sn 2+ + 2Fe 3+ Sn 4+ + 2Fe 2+ 3 For Fe3+/Fe2+, Eo 0.771 4 For Sn4+/Sn2+, Eo 0.154Equivalence point will be at 25.00 x 0.025 x 2/0.050=25.00 mL 5 Initial concentration Sn2+ 0.025 6 Concentration Fe3+ 0.05 7 Volume SnCl2 solution 25.00 8 Equivalence point volume 25.00 9 Percentages Vol. Fe3+, mL [Sn4+] [Sn2+] [Fe3+] [Fe2+] E, V 10 10 2.50 0.0023 0.0205 0.126 11 20 5.00 0.0042 0.0167 0.136 12 30 7.50 0.0058 0.0135 0.143 13 40 10.00 0.0071 0.0107 0.149 14 50 12.50 0.0083 0.0083 0.154 15 60 15.00 0.0094 0.0063 0.159 16 70 17.50 0.0103 0.0044 0.165 17 80 20.00 0.0111 0.0028 0.172 18 90 22.50 0.0118 0.0013 0.182 19 95 23.75 0.0122 0.000641 0.192 20 99 24.75 0.0124 0.000126 0.213 21 99.9 24.98 0.0125 0.000013 0.243 22 100 25.00 0.360 23 101 25.25 0.0002 0.0249 0.653 24 105 26.25 0.0012 0.0244 0.694 25 110 27.50 0.0024 0.0238 0.712 26 120 30.00 0.0045 0.0227 0.730 27 Spreadsheet Documentation 28 B10=(A10/11)*$B$8 G22=($B$3+2*$B$4)/3 29 C10=($B$6*B10/2)/($B$7+B10) E23=($B$6*B23-$B$5*$B$7*2)/($B$7+B23) 30 D10=($B$5*$B$7-$B$6*B10.2)/($B$7+B10) F23=($B$5*$B$7*2)/($B$7+B23) 31 G10=$B$4-(0.0592/2)*LOG10(D10/C10) G23=$B$3-0.0592*LOG10(F23/E23) 32 33 34 35 36 37 38 39 40 41 42 43 44 45 Fundamentals of Analytical Chemistry: 8th ed. Chapter 20 A B C D E F G H 1 20-54 (b) Titration of 25.00 mL of 0.08467 M Na2S2O3 with 0.10235 M I2 (I3 -) 2 Reaction: 2S2O3 2- + I3 - S4O6 2- + 3I - 3 For S2O3 2- /S4O6 2- , E o 0.08 4 For I3 - /I-, E o 0.536 Equivalence point will be at 25.00 x 0.08467 / 2 / 0.10235=10.34 mL 5 Initial concentration S2O3 2- 0.08467 6 Concentration I3 - 0.10235 7 Volume Na2S2O3 solution 25.00 8 Equivalence point volume 10.34 9 Percentages Vol. I3 -, mL [S4O6 2-] [S2O3 2-] [I3 -] [I-] E, V 10 10 1.03 0.0041 0.0732 0.076 11 20 2.07 0.0078 0.0626 0.089 12 30 3.10 0.0113 0.0527 0.098 13 40 4.14 0.0145 0.0436 0.106 14 50 5.17 0.0175 0.0351 0.114 15 60 6.20 0.0203 0.0271 0.123 16 70 7.24 0.0230 0.0197 0.132 17 80 8.27 0.0254 0.0127 0.145 18 90 9.31 0.0278 0.0062 0.165 19 95 9.82 0.0289 0.0030 0.183 20 99 10.24 0.0297 0.000605 0.225 21 99.9 10.33 0.0299 0.000064 0.283 22 100 10.34 0.384 23 101 10.44 0.000296 0.0896 0.525 24 105 10.86 0.0014736 0.0885 0.546 25 110 11.37 0.0029074 0.0873 0.555 26 120 12.41 0.00565611 0.0849 0.565 27 Spreadsheet Documentation 28 B10=(A10/11)*$B$8 G22=($B$3+2*$B$4)/3 29 C10=($B$6*B10/2)/($B$7+B10) E23=($B$6*B23-$B$5*$B$7*2)/($B$7+B23) 30 D10=($B$5*$B$7-$B$6*B10*2)/($B$7+B10) F23=($B$5*$B$7*2)/($B$7+B23) 31 G10=$B$3-(0.0592/2)*LOG10(D10^2/C10) G23=$B$3-0.0592*LOG10(F23/E23) 32 33 34 35 36 37 38 39 40 41 42 43 44 45 Fundamentals of Analytical Chemistry: 8th ed. Chapter 20 A B C D E F G H 1 20-54 (c) Titration of 0.1250 g Na2S2O3 with 0.01035 M KMnO4 2 Reaction: 2MnO4 - + 5H2C2O4 +6H + 2Mn 2+ + 2CO2 +8H2O 3 For oxalate acid, Eo -0.49 4 For MnO4 - , E o 1.51 There are 0.1250 g X 1000 mg/g/133.999 = 0.93284 mmol oxalate 5 Initial mmol oxalate 0.93284 acid initially present. Every 5 mmol of oxalate requires 2 mmol 6 Concentration MnO4 - 0.01035 MnO4 - . Equivalence point will be at (0.93284 mmol X 2 / 5) / 0.01035 7 Initialvolume solution 25.00 mmol/mL=36.05 mL KMnO4 8 Equivalence point volume 36.05 9 Percentages Vol. MnO4 -, mL pCO2 [H2C2O4] [MnO4 -] [Mn2+] [H+] E, V 10 10 3.61 1.00 0.0294 1.00 -0.44 11 20 7.21 1.00 0.0232 1.00 -0.44 12 30 10.82 1.00 0.0182 1.00 -0.44 13 40 14.42 1.00 0.0142 1.00 -0.44 14 50 18.03 1.00 0.0108 1.00 -0.43 15 60 21.63 1.00 0.0080 1.00 -0.43 16 70 25.24 1.00 0.0056 1.00 -0.42 17 80 28.84 1.00 0.0035 1.00 -0.42 18 90 32.45 1.00 0.0016 1.00 -0.41 19 95 34.25 1.00 0.000788 1.00 -0.40 20 99 35.69 1.00 0.000154 1.00 -0.38 21 99.9 36.01 1.00 0.000016 1.00 -0.35 22 100 36.05 1.00 0.0061 1.00 0.94 23 101 36.41 6.05E-05 0.0061 1.00 1.49 24 105 37.85 2.97E-04 0.0059 1.00 1.49 25 110 39.66 5.77E-04 0.0058 1.00 1.50 26 120 43.26 0.0011 0.0055 1.00 1.50 27 Spreadsheet Documentation 28 B10=(A10/11)*$B$8 F22=$B$5*(2/5)/($B$8+B22) 29 D10=($B$5-$B$6*B10*5/2)/($B$7+B10) E23=($B$6*B23-$B$5*2/5)/($B$7+B23) 30 H10=$B$3-(0.0592/2)*LOG10(D10/(C10^2*G10^2)) H23=$B$4-(0.0592/5)*LOG10(F23/(E23*G23^8)) 31 H22=((2*$B$3+5*$B$4)/7)-(0.0592/7)*LOG10(1/(C22*2*G22^10)) 32 33 34 35 36 37 38 39 40 41 42 43 44 45 Fundamentals of Analytical Chemistry: 8th ed. Chapter 20 A B C D E F G H 1 20-54 (d) Titration of 20.00 mL 0.1034 M Fe 2+ with 0.01500 M K2Cr 2O7 2 Reaction: 6Fe 2+ + Cr 2O7 2- +14H + 6Fe 3+ + 2Cr 3+ +7H2O 3 For dichromate, Eo 1.33 4 For Fe3+/Fe2+, Eo 0.771 There are 20.00 mL X 0.1034mmol/mL = 2.068 mmol Fe 2+ 5 Initial Fe2+ concentration 0.1034 initial present. Every mmol of dichromate requires 6 mmol Fe 2+. 6 Concentration Cr 2O7 2- 0.015 Equivalence point will be at (20.00 mL / 0.93284 mmol / 6) / 0.01500 7 Initial volume solution 20.00 mmol/mL=22.98 mL 8 Equivalence point volume 22.98 9 Percentages Vol. Cr 2O7 2-, mL [Fe3+] [Fe2+] [Cr 2O7 2-] [Cr 3+] [H+] E, V 10 10 2.30 0.0093 0.0835 1.00 0.715 11 20 4.60 0.0168 0.0673 1.00 0.735 12 30 6.89 0.0231 0.0538 1.00 0.749 13 40 9.19 0.0283 0.0425 1.00 0.761 14 50 11.49 0.0328 0.0328 1.00 0.771 15 60 13.79 0.0367 0.0245 1.00 0.781 16 70 16.09 0.0401 0.0172 1.00 0.793 17 80 18.38 0.0431 0.0108 1.00 0.807 18 90 20.68 0.0458 0.0051 1.00 0.828 19 95 21.83 0.0470 0.0025 1.00 0.847 20 99 22.75 0.0479 0.00047911 1.00 0.889 21 99.9 22.96 0.0481 4.349E-05 1.00 0.951 22 100 22.98 0.0160 1.00 1.26 23 101 23.21 8.05E-05 0.0160 1.00 1.33 24 105 24.13 3.91E-04 0.0156 1.00 1.33 25 110 25.28 7.62E-04 0.0152 1.00 1.34 26 120 27.58 0.0014 0.0145 1.00 1.34 27 Spreadsheet Documentation 28 B10=(A10/11)*$B$8 F22=($B$5*$B$7/3)/($B$7+B22) 29 C10=($B$6*B10*6)/($B$7+B10) H22=(($B$4+6*$B$3)/7)-(0.0592/7)*LOG10(2*F22/G22^14) 30 D10=($B$5*$B$7-$B$6*B10*6)/($B$7+B10) E23=($B$6*B23-($B$5*$B$7/6)/($B$7+B23) 31 H10=$B$4-0.0592*LOG10(D10/C10) H23=$B$3-(0.0592/6)*LOG10(F23^2/(E23*G23^14)) 32 33 34 35 36 37 38 39 40 41 42 43 44 45 Fundamentals of Analytical Chemistry: 8th ed. Chapter 20 A B C D E F G 1 20-54 (e) Titration of 35.00 mL 0.0578 M IO3 - with 0.05362 M Na2S2O3 2 Reactions: IO3 - + 5I - + 6H + 3I2 + 3H2O; I2 + 2S2O3 2- 2I - + S4O6 2- 3 For thiosulfate, Eo 0.08 4 For I2/I-, E o 0.615There are 35.00 mL X 0.0578 mmol/mL = 2.023 mmol IO3 - 5 Initial IO3 - concentration 0.0578initially present. Every mmol of IO3 - requires 6 mmol S2O3 2- . 6 Concentration S2O3 2- 0.05362Equivalence point will be at ( 2.023 mmol * 6) / 7 Initial volume solution 35.000.05362 mmol/mL=226.37 mL 8 Equivalence point volume 226.37 9 Percentages Vol. S2O3 2-, mL [I-] [I2] [S2O3 2-] [S4O6 2-] E, V 10 10 22.64 0.0211 0.0948 0.684 11 20 45.27 0.0302 0.0605 0.669 12 30 67.91 0.0354 0.0413 0.660 13 40 90.55 0.0387 0.0290 0.653 14 50 113.19 0.0410 0.0205 0.647 15 60 135.82 0.0426 0.0142 0.641 16 70 158.46 0.0439 0.0094 0.635 17 80 181.10 0.0449 0.0056 0.628 18 90 203.73 0.0458 0.0025 0.617 19 95 215.05 0.0461 0.0012 0.608 20 99 224.11 0.0464 2.34E-04 0.587 21 99.9 226.14 0.0464 2.33E-05 0.557 22 100 226.37 0.35 23 101 228.63 4.60E-04 0.0230 0.23 24 105 237.69 2.23E-03 0.0223 0.19 25 110 249.01 4.27E-03 0.0214 0.17 26 120 271.64 7.92E-03 0.0198 0.15 27 Spreadsheet Documentation 28 B10=(A10/100)*$B$8 E23=(($B$6*B23)-($B$5*$B$7*6)/($B$7+B23) 29 C10=($B$6*B10)/($B$7+B10) F23=(($B$5*$B$7*3)/($B$7+B23) 30 D10=(($B$5*$B$7*3)-($B$6*B10/2))/($B$7+B10) H22=($B$3+$B$4)/2 31 H10=$B$4-(0.0592/2)*LOG10(D10^2/C10) H23=$B$3-(0.0592/2)*LOG10(E23^2/F23) 32 33 34 35 36 37 38 39 40 41 42 43 44 45