Buscar

Apostila QGExp 2020 2 (1)

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 43 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 43 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 43 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Química Geral Experimental
Faculdade UnB Gama
Universidade de Brasília
γ
Roteiro de Práticas
Química Geral Experimental 114634
2020 2
Roteiro Original
Francisca de Paula Fernandes
Sandra Maria da Luz
Vanderlan Bittencourt Rodrigues
Yovanka Pérez Ginoris
Adaptação
Andréia Alves Costa 
Juliana Petrocchi Rodrigues
Felix Martin Carbajal Gamarra 
Francisca de Paula Fernandes
Marcelo Bento da Silva 
Maria Del Pilar Hidalgo Falla 
Patricia Regina Sobral Braga 
Roseany de Vasconcelos Vieira Lopes 
Yuri Guimarães Dias
Docentes
Andréia Alves Costa 
Juliana Petrocchi Rodrigues
Felix Martin Carbajal Gamarra 
Marcelo Bento da Silva 
Maria Del Pilar Hidalgo Falla 
Patricia Regina Sobral Braga 
Roseany de Vasconcelos Vieira Lopes 
Técnicas(o) de Laboratório
Camila Dourado
Francisca de Paula Fernandes
Yuri Guimarães Dias
INFORMAÇÕES GERAIS
INTRODUÇÃO
As atividades propostas para a disciplina Química Geral Experimental visam proporcionar ao aluno a oportunidade para trabalhar com autonomia e segurança em um laboratório. Procurar-se-á, para isto, não apenas desenvolver a habilidade no manuseio de reagentes e aparelhagens, mas também criar condições para uma avaliação crítica dos experimentos realizados.
Dinâmica das aulas práticas
· Leitura com antecedência, pelos alunos, do assunto a ser abordado na aula
· Discussão inicial, com o professor, de aspectos teóricos e práticos relevantes
· Execução pelos alunos dos experimentos utilizando a apostila
· Interpretação e discussão dos resultados juntamente com o professor
· Apresentação dos resultados de cada experimento
O aproveitamento de uma aula prática depende de maneira geral do cumprimento destas etapas. Como trabalho complementar, os alunos são estimulados a responder aos questionários referentes a cada um dos assuntos estudados, visando uma revisão dos conhecimentos adquiridos e preparação para as avaliações programadas para o curso.
Prática 1 – Normas de Segurança e Apresentação dos Principais Equipamentos e Vidrarias de um Laboratório de Química
Objetivos
Nesta aula será apresentado aos alunos perigos e cuidados existentes no laboratório de Química, bem como a postura que devem ser adotadas de forma a garantir o máximo de aproveitamento com o máximo de segurança possível. Os pontos importantes a serem assimilados pelos alunos são:
· Normas gerais para aulas práticas de Química Geral Experimental
· Normas de utilização de equipamentos de proteção individual e conduta no laboratório de Química
Introdução
Normas gerais para aulas práticas de Química Geral Experimental
1. O prazo de tolerância para o atraso nas aulas é de 10 minutos, após esse prazo o aluno não poderá assistir à aula prática. No início de cada aula prática o professor fará uma explanação teórica sobre o assunto e discutirá os pontos relevantes, inclusive em relação à segurança dos experimentos. IMPORTANTE: um aluno que não tenha assistido a pelo menos uma parte dessa discussão irá atrasar seus colegas e poderá até mesmo colocá-los em risco;
2. As aulas práticas serão executadas, de forma geral, em duplas;
3. É proibido o uso de “short”, “saia” e/ou “mini-saia”, “chinelos” ou “sandálias”, “lentes de contato” e “bonés” ou “chapéus” de qualquer espécie;
4. Não serão toleradas brincadeiras durante as aulas. O grupo deve se concentrar na realização das atividades propostas, pois o tempo é ajustado ao experimento que exige máxima atenção. IMPORTANTE: Acidentes em laboratório de ensino advêm da falta de atenção por parte do aluno experimentador;
5. Cada grupo será responsável pelo material utilizado durante a aula prática e ao final do experimento o material deverá ser lavado, enxaguado com água destilada e ordenado em bancada, exatamente como foi inicialmente encontrado;
6. Para poder participar da aula prática o aluno deverá portar o jaleco, óculos de segurança e luvas de látex. A falta de algum desses itens impedirá o aluno de participar da aula prática;
7. Cada dupla terá um caderno de laboratório (onde fará todas as anotações sobre o experimento) e o roteiro da prática;
8. O aluno deverá realizar antes da aula prática um pré-laboratório que deverá estar contido no caderno de laboratório. Caso o aluno não tenha feito o pré- laboratório este ficará impedido de assistir à aula;
9. O caderno de laboratório deve conter todo o registro das atividades realizadas no laboratório, numa linguagem direta e resumida, mas de forma COMPLETA. Estas anotações devem ser realizadas, durante a própria aula. Os preparativos pré-laboratoriais devem ser feitos antes da realização do experimento, enquanto que os dados, observações bem como discussões e conclusões serão registradas durante a aula prática. Ao final da aula o professor responsável verificará os resultados e discussões obtidos pelos grupos de trabalho.
10. Caso o aluno falte a uma aula prática não haverá reposição da mesma. Isso acarretará a perda da pontuação referente a essa aula;
11. A nota do aluno se dará pela presença e participação, a apresentação do caderno de laboratório contendo todas as informações anotadas sobre a prática, bem como o pré-laboratório e a discussão pós-laboratório;
Normas de utilização de equipamentos de proteção individual
 e conduta no laboratório de Química
A ocorrência de acidente em laboratório, infelizmente, não é tão rara como pode aparentar. Para diminuir a frequência e até evitar os acidentes, torna-se necessário seguir as seguintes regras:
1. Os trabalhos de laboratório devem ser sempre executados com todo o rigor da técnica, a fim de que os resultados obtidos sejam dignos de confiança. Portanto, sempre, leia cada roteiro e as precauções de segurança;
2. Siga sempre as instruções do professor ou do técnico; não brinque no laboratório, nem fale alto para não prejudicar o raciocínio dos colegas. Locomova-se o mínimo necessário para não tumultuar o ambiente de trabalho;
3. É terminantemente proibido fumar em laboratório;
4. Amarre cabelos longos;
5. Proibido entrar no laboratório sem o jaleco e sem os óculos de segurança. O jaleco deverá ter mangas compridas e cerca de quatro dedos abaixo do joelho;
6. Não beba, não coma, não mastigue chicletes ou aplique cosméticos no laboratório. Evite passar as mãos sobre os olhos ou próximo dos lábios quando estiver realizando experiências;
7. Leia o rótulo duas vezes antes de retirar qualquer substância de um frasco;
8. Faça somente o que está no procedimento da prática ou o que for orientado pelo professor. Use somente as quantidades recomendadas e não mais;
9. Jamais retorne uma substância para o frasco original;
10. Antes de utilizar uma solução, agite o frasco que a contem para homogeneizá-la, se assim for orientado pelo professor;
11. Quando for testar o odor de uma substância siga as instruções no roteiro, isto é, segure o frasco (ou o tubo de ensaio) longe de você e abane com a mão um pouco de vapor em sua direção. Nunca leve qualquer substância à boca para testar seu gosto, pois pode tratar-se de um veneno;
12. Evite o contato de qualquer substância com a pele. Evite também usar materiais com defeito, principalmente vidrarias;
13. Não coloque a tampa dos frascos sobre a mesa de trabalho. Segure-a adequadamente ou coloque-a sobre a bancada com a boca para cima;
14. Apague todos os bicos de Bunsen e qualquer outra chama, antes de usar substâncias inflamáveis como etanol;
15. Se um líquido contido em um frasco se inflamar acidentalmente, cubra calmamente a boca com um pano de algodão ou pedaço de papelão (provoca ausência de oxigênio inibindo o fogo);
16. Manuseie material de vidro quente com pinças ou conforme descrito no procedimento. Lembre-se que, vidro quente e vidro frio se parecem;
17. Saiba onde está o extintor de incêndio, as pias e todas as portas do laboratório e esteja certo de como utilizar o extintor;
18. Não aqueça bruscamente qualquer sólido ou liquido;
19. Não perca de vista um aparelho que está em atividade, mas não aproxime muito os olhos dele;
20. Provetas, buretase frascos de reagentes vazios não devem ir ao fogo porque se quebram com facilidade. Os próprios tubos de ensaio não devem ir à chama acima do nível do líquido;
21. Qualquer acidente envolvendo dano pessoal ou material deve ser comunicado imediatamente ao professor;
22. Não aponte o tubo de ensaio para seu vizinho de trabalho ou para si mesmo quando estiver aquecendo substâncias. Bolhas formadas rapidamente podem ejetar o conteúdo violentamente;
23. Não pipete nada com a boca. Utilize aparelhos adequados para este fim;
24. Não use a mesma pipeta para medir ao mesmo tempo soluções diferentes;
25. Na diluição de ácidos, coloque lenta e cuidadosamente sobre a água, com agitação constante. Nunca adicione água sobre ácido;
26. Ao adaptar rolhas ou tubos de borracha à vidraria, umedeça a peça de vidro enrole-a em tecido para proteger as mãos;
27. Evite fazer montagens instáveis de aparelhos, tais como as que utilizam suportes como livros, lápis, caixas de fósforo, etc. Use, sempre que possível, garras, anéis e suportes apropriados para cada situação;
28. Não jogue detritos na pia ou ralos. Utilize para isso lixeiras existentes no laboratório;
29. Não jogue restos de reagentes ou soluções na pia sem antes consultar o professor ou responsável;
30. Antes de deixar o laboratório, lave a vidraria utilizada, limpe a bancada e lave bem as mãos;
31. SEJA, EM TODO TRABALHO, METÓDICO, ASSEADO, SERENO E PRUDENTE.
1
4
1.0 - APRESENTAÇÃO DAS VIDRARIAS E EQUIPAMENTOS
Vários equipamentos e vidrarias são utilizados em um laboratório de Química e o manuseio adequado destes é fundamental para o analista. Porém, o completo domínio de sua manipulação advém da experiência adquirida com sua utilização. A Figura 1 relaciona alguns equipamentos de uso comum no laboratório de química e suas aplicações.
 Figura 1: Relação de Equipamentos e Vidrarias em Laboratório de Química.
 Figura 1: (Continuação).
 Figura 1: (continuação).
 Figura 1: (continuação).
 Figura 1: (continuação).
Química Geral Experimental
Química Geral Experimental
6
10
Prática 2 – Utilização de Vidrarias e Calibração das Pipetas Graduada e Volumétrica
USO OBRIGATÓRIO: JALECO, ÓCULOS de PROTEÇÃO e LUVAS
1 - Introdução
A execução de qualquer tarefa em um Laboratório de Química envolve geralmente uma variedade de equipamentos que devem ser empregados de modo adequado a fim de evitar danos materiais e pessoais. A escolha de um determinado aparelho, vidraria ou material depende dos objetivos e das condições em que o experimento será executado. Entretanto, na maioria dos casos, o experimentador deve fazer a associação entre equipamento e finalidade.
A calibração é um importante procedimento laboratorial que permite estimar o erro de medida da vidraria. Essa metodologia visa verificar a confiabilidade dos valores fornecidos pelo fabricante do volume de pipetas, buretas e balões. Todo material de vidro, volumétrico ou graduado, é calibrado pela medida da massa do líquido contido no recipiente, geralmente, se utiliza água destilada ou deionizada e tomando-se a densidade tabelada, na temperatura em que o experimento foi realizado. A Tabela 1 relaciona a densidade no intervalo de temperatura entre 10 e 29 ºC.
Tabela 1: Valores da densidade da água em diferentes temperaturas
	T (ºC)
	Densidade (g cm-3)
	T (ºC)
	Densidade (g cm-3)
	10
	0,999700
	20
	0,998203
	11
	0,999605
	21
	0,997992
	12
	0,999498
	22
	0,997770
	13
	0,999377
	23
	0,997538
	14
	0,999244
	24
	0,997296
	15
	0,999099
	25
	0,997044
	16
	0,998943
	26
	0,996783
	17
	0,998774
	27
	0,996512
	18
	0,998595
	28
	0,996232
	19
	0,998405
	29
	0,995944
Existem dois tipos de números em um trabalho científico: números exatos e números inexatos. Números exatos são aqueles cujos valores são conhecidos com exatidão. Números inexatos são aqueles cujos valores têm alguma incerteza. Os números obtidos a partir de medidas são sempre inexatos, pois existem sempre limitações intrínsecas nos equipamentos usados para medir grandezas (erro de equipamentos) e diferenças em medições realizadas com o mesmo instrumento por pessoas diferentes (erro humano).
Os termos precisão e exatidão são normalmente usados na análise de incertezas de valores de medidas. Precisão é uma medida do grau de aproximação entre os valores das medidas individuais. Exatidão ou Acurácia indica o grau de aproximação entre medidas individuais e o valor correto ou verdadeiro.
Em geral, para estimar o erro de medida da vidraria são calculados o desvio padrão (s) e o desvio padrão relativo (CV - coeficiente de variação). O desvio padrão (s) baseia-se nos desvios dos dados individuais em relação à média (Equação 1) e o coeficiente de variação (CV) representa a incerteza em termos de porcentagem (Equação 2). A unidade do desvio padrão é a mesma da grandeza que está sendo medida, sendo, muitas vezes, indicada como a precisão da medida. Já o coeficiente de variação analisa a dispersão em termos relativos, portanto será dado em %.
(2)
(1)
onde:
 xi = valor medido e = média dos valores medidos;
n – 1 = “n” é o número de repetições e “n - 1” é o número de graus de liberdade, ou o número de medidas independentes;
Neste experimento esses parâmetros serão utilizados para verificar o erro associado às vidrarias utilizadas no laboratório.
2.0 - OBJETIVOS
Explorar vidrarias e equipamentos básicos de um laboratório de Química, bem como aprender a manuseá-los corretamente tornando-os aptos a desenvolverem quaisquer procedimentos experimentais futuros. Os pontos importantes a serem assimilados são:
· Utilização de vidrarias para medição de volumes;
· Utilização de balança analítica digital;
· Correto procedimento na calibração de vidrarias.
3.0 – PROCEDIMENTO EXPERIMENTAL
3.1 - Calibração de pipetas graduada e volumétrica
3.1.1 - Materiais e reagentes
· Frasco limpo e seco
· Pipeta graduada (5 mL)
· Pipeta volumétrica (5 mL)
· Termômetro
· Água destilada
3.1.2 - Procedimento
a) Pesar um frasco de Béquer, limpo e seco, em uma balança e anotar sua massa.
b) Utilizar a pipeta graduada a ser calibrada e pipetar água destilada até a marca do volume indicado na vidraria (ATENÇÃO: ajuste o menisco como orientado pelo professor).
c) Transferir o volume para o frasco de Béquer anteriormente pesado.
d) Pesar o frasco de Béquer contendo a água destilada.
e) Determinar a massa da água destilada transferida a partir da diferença das duas pesagens.
f) Verificar a temperatura da água com o auxílio de um termômetro.
g) Repetir o mesmo procedimento (duplicata).
h) Repetir o mesmo procedimento utilizando a pipeta volumétrica a ser calibrada. Também realizar o experimento em duplicata.
DISPOSITIVOS DE PIPETAGEM
São dispositivos para auxiliar a sucção em pipetas. Nunca se deve utilizar a boca para pipetar, porque além do risco de aspiração ou de ingestão, torna fácil a inalação de aerossóis. Utilizar um dos vários tipos de bulbos, pêra ou pipetadores. São considerados equipamentos de proteção coletiva (EPCs).
PIPETADOR TIPO Pi-PUMP
Apresenta roldana móvel para aspiração do líquido e válvula de pressão para dispensa total ou parcial do volume (Figura 1).
PÊRAS
Pêras são dispositivos de borracha e possuem três vias com as letras “A”, “S” e “E” (Figura 1). A partir do processo de vácuo realizado pressionando a via (“A”), que serve para retirar todo o ar no interior da pera antes desta ser aplicada à pipeta; a via (“S”) serve para succionar líquido ou amostra desejada enquanto a via (“E”) é destinada para expulsão do líquido pipetado. Além disso, para expulsar a última gota, quando se está trabalhando com pipetas totais, é só apertar o orifício na extremidade lateral da pêra (ao lado da via “E”).
Figura 1: Pipetador tipo Pi-Pump (esquerda) e Pêra de borracha (direita).
ATENÇÃO: Cada grupo é responsável pelo material utilizado durante a aula prática, ao final do experimento o material deverá ser lavado, enxaguado eordenado na bancada, exatamente como foi inicialmente encontrado; na dúvida peça orientação ao técnico de laboratório.
DESCARTE DOS RESÍDUOS: Descarte adequadamente nos frascos identificados no laboratório, na dúvida peça orientação ao técnico de laboratório.
4.0 – DIRECIONAMENTO DO RELATÓRIO
a) Calcule o volume real das pipetas para cada replicata de acordo com equação 3 (consultar a Tabela 1 para verificar a densidade da água correspondente a da temperatura encontrada no experimento).
b) Calcule o desvio-padrão e o coeficiente de variação para cada pipeta. 
c) Descreva como é o procedimento para utilização da balança analítica digital.
d) Quais são as vidrarias básicas e equipamentos necessários a um laboratório de Química.
(3)
onde:
V = volume de amostra pipetado (coletado na pipeta)
mH2O transferida = massa da água transferida
dH2O = densidade da água na temperatura observada
5.0 – REFERÊNCIAS
[1] Baccan, N.; Aleixo, L. M.; Stein, E.; Godinho, O. E. S. Introdução à Semimicroanálise Quantitativa. Editora da Unicamp. Campinas, 1995.
[2] Neto, B. B.; Scarminio, I. E. & Bruns, R. E. Como Fazer Experimentos. Editora da Unicamp. Campinas, 2001.
11
13
Prática 3 - Estrutura Atômica – Ensaio de Coloração de Chama
USO OBRIGATÓRIO: JALECO, ÓCULOS de PROTEÇÃO e LUVAS
1.0 - Introdução
	 A medida que a estrutura atômica era deduzida, novos experimentos sugeriam que o núcleo do átomo fosse carregado positivamente enquanto os elétrons, que permeavam a parte externa desse núcleo, teriam uma carga negativa. Esse modelo, quando proposto inicialmente, apresentava algumas dúvidas. A atração entre partículas carregadas opostamente parecia indicar que os elétrons deviam entrar em colapso com o núcleo carregado positivamente. Niels Bohr tratou essa questão através de seu modelo atômico sugerindo que os elétrons ocupariam órbitas estáveis das quais eles não poderiam se desviar sem primeiro absorver ou emitir energia na forma de luz. Essa suposição de tais órbitas nunca tinha sido feita antes, mas por meio desse modelo foi capaz de explicar observações que nenhuma outra hipótese havia levantado anteriormente.
	Elétrons da camada de valência dos átomos podem absorver energia passando para níveis energéticos mais elevados do que os anteriores à absorção produzindo estados atômicos excitados. Ao retornarem ao estado inicial, anterior à absorção, também chamado de estado fundamental podem emitir a energia absorvida na forma de radiação eletromagnética, com comprimentos de onda característicos da transição eletrônica sofrida. Os comprimentos de onda da radiação emitida podem pertencer a qualquer parte do espectro, porém, aqueles que se situarem na faixa entre 700 nm (vermelho) e 400 nm (violeta) formarão a região da luz visível.
	De acordo com o modelo da mecânica quântica da estrutura dos átomos, cada elétron pode ser descrito como ocupando um orbital em particular (níveis de energia). A radiação emitida no retorno aos correspondentes estados fundamentais, quando os elementos presentes em uma amostra de composição desconhecida forem excitados pela absorção de calor, por exemplo, de uma chama, apresenta características que podem ser utilizadas para identificar tais elementos. O teste da chama é usado para identificar elementos químicos de alguns íons metálicos. A temperatura da chama de um bico de Bunsen é suficiente para excitar uma quantidade de elétron desses íons de maneira que quando retornarem aos respectivos estados fundamentais emita radiação luminosa com cor e intensidade observáveis visualmente.
2.0 – OBjetivos
· Identificar, através do ensaio de coloração da chama, o cátion presente em soluções previamente preparadas.
· Interpretar o modelo atômico de Bohr.
3.0 - PROCEDIMENTO Experimental
3.1 – Teste da Chama
3.1.1 - Materiais e Reagentes
· Cabo de Kole
· Alça de Ni/Cr
· Bico de Bunsen
· Vidro de relógio
· Amostra desconhecida
· Solução de ácido clorídrico 1 mol L-1
· Soluções de LiCl, CaCl2, BaCl2, todas 1 mol L-1, ou as que forem apresentadas pelo professor durante a introdução teórica
· Solução NaCl 0,1 mol L-1 (este teste será realizado de forma demonstrativa pelo professor ou técnico)
3.1.2 – Procedimento
a) Fixe a alça de Ni/Cr na extremidade do cabo de Kole
b) Limpe a alça de Ni/Cr imergindo a extremidade do fio em solução de ácido clorídrico 6 mol L-1 contida em béquer. Em seguida, leve a alça à região oxidante da chama do bico de Bunsen até a total evaporação da solução. Repetir o procedimento até que o fio esteja completamente limpo (o fio estará limpo quando não mais transmitir coloração à chama).
c) Mergulhe o fio novamente na solução de ácido clorídrico contida no vidro de relógio e posteriormente na solução da substância em análise, de modo que esta fique aderida ao fio. Leve o fio contendo a amostra à zona oxidante da chama e observe a cor transmitida à chama.
d) Repita os itens a, b e c para os demais sais seguindo em todos eles o procedimento de limpeza do fio antes de testar outro sal.
Teste da chama de amostra desconhecida
e) Trata-se de uma amostra que tem como aníon o cloreto. Efetue o teste da chama como descrito nas etapas b e c. Identifique o cátion presente na amostra.
ATENÇÃO: Cada grupo é responsável pelo material utilizado durante a aula prática, ao final do experimento o material deverá ser lavado, enxaguado e ordenado na bancada, exatamente como foi inicialmente encontrado; na dúvida peça orientação ao técnico de laboratório.
DESCARTE DOS RESÍDUOS: Descarte adequadamente nos frascos identificados no laboratório, na dúvida peça orientação ao técnico de laboratório.
4.0 – DIRECIONAMENTO DO RELATÓRIO
a) Apresentar os resultados e discussões a respeito dos experimentos realizados nesta prática.
b) Interpretar e explicar o fenômeno de emissão de luz a partir da teoria atômica proposta por Bohr.
c) Descreva o uso do bico de Bunsen no laboratório de Química e quais as precauções que devem ser tomadas quando da sua utilização.
5.0 – REFERÊNCIAS
[1] Atkins, P.W.; Jones, L. Princípios de Química: Questionando a Vida Moderna e o Meio Ambiente. Ed. Bookman. Porto Alegre, 2006.
[2] Baccan, N.; Aleixo, L. M.; Stein, E.; Godinho, O. E. S. Introdução à Semimicroanálise Quantitativa. Editora da Unicamp. Campinas, 1995.
[3] Brown, L. S.; Holme, T. A. Química Geral Aplicada à Engenharia. Cengage Learning. São Paulo, 2009.
Prática 4 - Propriedades Físicas de Espécies Químicas
USO OBRIGATÓRIO: JALECO, ÓCULOS de PROTEÇÃO e LUVAS
1.0 - INTRODUÇÃO
As propriedades da matéria podem ser classificadas como físicas ou químicas. As propriedades físicas podem ser medidas sem alterar a identidade e a composição das substâncias (cor, odor, densidade, ponto de fusão, ponto de ebulição e dureza). As propriedades químicas descrevem como uma substância pode se alterar ou reagir para formar outras (combustão, por exemplo).
Do mesmo modo que suas propriedades as mudanças que as substâncias sofrem também podem ser classificadas como físicas ou químicas. Mudanças físicas apresentam alteração apenas na sua aparência física, mas não em sua composição e nas mudanças químicas uma substância é transformada em outra substância quimicamente diferente. Sendo assim, mudanças de estado são mudanças físicas.
Poucos elementos e compostos ocorrem na natureza em estado puro. Normalmente eles são encontrados em misturas com outras substâncias. Dessa forma, uma alternativa muito utilizada pelos químicos é tirar proveito das propriedades químicas e físicas para manipulação das substâncias. Diferenças em propriedades como ponto de ebulição, solubilidade ou miscibilidade permitem que componentes sejam separados de uma mistura e posteriormente quantificados.
Um dos métodos mais utilizados para separação de líquidos ou líquidos e sólidos é a destilação que se baseia em um processo de vaporização sob condições nas quais o vapor produzido, condensado e coletado. A fração coletada, na maioria dos casos, apresenta elevada pureza promovendo assim a separação da mistura original.
Outras propriedades físicas altamenteexploradas pelos pesquisadores são tensão superficial e viscosidade. Tensão superficial é a energia existente na superfície de um líquido necessária para definir sua área superficial e viscosidade é a resistência de um líquido em fluir.
2.0 - OBjetivos
Neste experimento conceitos de miscibilidade, viscosidade, tensão superficial e ponto de ebulição serão abordados. Serão explorados tópicos que por meio do entendimento da natureza e da intensidade das forças intermoleculares relacionam diferentes propriedades físicas das substâncias com a composição e as propriedades químicas das moléculas. Os principais objetivos são:
· Determinar a porcentagem de álcool na gasolina
· Analisar a viscosidade de diferentes substâncias
· Verificar a tensão superficial da água e a ação de um agente perturbador
· Promover a separação de uma mistura através de uma destilação simples
3.0 - PROCEDIMENTO Experimental
3.1 - Quantificação do etanol na gasolina mediante uma análise absoluta
A gasolina é uma mistura de hidrocarbonetos líquidos inflamáveis e voláteis, derivados do petróleo. Além de ser utilizada como combustível em motores de combustão interna é também usada como solvente na indústria de óleos e gorduras.
No Brasil o uso de etanol (álcool etílico) como aditivo à gasolina é obrigatório. Seu principal papel é atuar como antidetonante em substituição ao chumbo tetraetila, que está sendo banido devido à sua elevada toxicidade.
A quantidade de etanol presente na gasolina deve respeitar os limites estabelecidos pela Agência Nacional do Petróleo, Gás Natural e Biocombustíveis – ANP, que varia de acordo com a própria agência e outros órgãos governamentais em comum acordo. A falta ou excesso de álcool em relação aos limites estabelecidos pela ANP compromete a qualidade do produto que chega aos consumidores brasileiros. Assim, avaliar a composição da gasolina, verificando se o teor de álcool está adequado, é uma prática muito importante.
3.1.1 - Materiais e Reagentes
· Proveta graduada de 50 mL com tampa.
· Gasolina comum
· Água destilada
3.1.2 – Procedimento
a. Colocar 25 mL da amostra de gasolina na proveta de 50 mL previamente limpa, desengordurada e seca, observando o ajuste do menisco (a parte inferior do menisco deve tangenciar a marcação de 25 mL).
b. Adicionar 25 mL de água, até completar o volume de 50 mL.
c. Tampar de forma adequada a proveta.
d. Misturar as camadas de água e gasolina através de 5 inversões sucessivas da proveta.
e. Deixar a proveta em repouso por 15 minutos de modo a permitir a separação completa das duas fases.
f. Anotar o aumento da fase aquosa em mililitros.
Disposição de resíduos
A gasolina deve ser decantada da fase aquosa e recolhida em recipiente adequado para coleta de solventes orgânicos.
3.2 - Estimando as viscosidades relativas da água, diesel, biodiesel e óleo vegetal
A viscosidade é uma medida da fluidez de um líquido: quanto maior a viscosidade de um determinado líquido, menor sua fluidez.
A viscosidade dos líquidos tem importantes implicações técnicas, por exemplo, na transferência e bombeamento de líquidos, eficiência de agitação e dimensionamento de agitadores em reatores industriais, além da eficiência de lubrificação de óleos, por exemplo.
3.2.1 - Materiais e Reagentes
· Bureta de 25 mL
· Cronômetro
· Água
· Diesel
· Biodiesel
· Óleo vegetal
3.2.2 – Procedimento
a) A título de adaptação da técnica de utilização da bureta, será primeiramente estimada a viscosidade da água e posteriormente a dos outros líquidos. Para tal, preencher toda a bureta de 25 mL com água.
b) Retirar o ar da pare inferior da bureta (bico da bureta) abrindo rapidamente a torneira para que o líquido expulse todo ar remanescente.
c) Preencher novamente a bureta e preparar o cronômetro.
d) Abrir completamente a torneira e aguardar o menisco descer até a marca de 10 mL. Neste momento dispare o cronômetro.
e) Parar o cronômetro quando o menisco atingir a marca de 20 mL.
f) Anotar o tempo de escoamento.
g) Realizar o experimento em triplicata.
h) Repetir o procedimento (etapas 1 a 6) para o biodiesel, diesel e óleo vegetal.
Disposição de resíduos
Os líquidos dos experimentos devem ser recolhidos separadamente (Béquer) para posterior reutilização.
3.3 - Tensão superficial da água
As moléculas presentes em um líquido são atraídas igualmente por suas vizinhanças. Essa força direcional presente entre as moléculas para o interior do líquido contrai a superfície do mesmo. Essa resistência criada na superfície é chamada de tensão superficial.
Os sabões e detergentes modernos são misturas complexas que se baseiam na propriedade tensoativa ou surfactante, isto é, na capacidade de diminuir a tensão superficial da água. Tanto os sabões como os surfactantes sintéticos apresentam moléculas que possuem uma extremidade polar, ou hidrofílica, sendo o restante da molécula apolar, ou hidrofóbico (lipofílico). Nos sabões, a propriedade polar é gerada por um grupo carboxilato (-CCO-) e, em detergentes sintéticos, por grupos sulfatos (-OSO3-) ou sulfonatos (-SO3-), dentre outros. A parte lipofílica geralmente é representada por cadeias hidrocarbônicas lineares [CH3(CH2)n-].
Seria esperado que esses sais fossem solúveis em água e formassem “soluções”. Entretanto, quando se mistura água e sabão, por exemplo, forma-se uma dispersão coloidal e não uma solução verdadeira. Tais dispersões, também conhecidas como emulsões, contêm agregados esféricos de moléculas chamadas micelas, cada uma das quais contendo centenas de moléculas de sabão (Figura 1).
Figura 1: Estrutura micelar.
A redução da tensão superficial da água se deve ao fato das moléculas anfifílicas se posicionarem na superfície da “solução” com a extremidade polar submersa e a parte apolar, hidrofóbica, flutuando acima da superfície (Figura 2). Tal orientação destrói a teia de moléculas de água, altamente associadas por ligações hidrogênio na superfície do líquido.
Figura 2: Redução da tensão superficial pela presença de detergente.
3.3.1 - Materiais e Reagentes
· Béquer
· Água
· Carvão ativado
· Detergente
3.3.2 – Procedimento
a) Preencher um béquer com água até a metade.
b) Adicionar uma quantidade mínima de carvão ativado, de modo que o mesmo cubra a superfície.
c) Observar o ocorrido.
d) Adicionar 1 gota de detergente.
e) Observar a ação perturbadora do detergente.
3.4 - Destilação simples (experimento demonstrativo)
As misturas homogêneas de líquidos podem ser separadas através de destilação. A propriedade física que está envolvida neste processo é o ponto de ebulição, na qual os diferentes líquidos devem ter pontos de ebulição diferentes. A fração com ponto de ebulição mais baixo é coletada primeiro.
O aparelho utilizado para a separação dessas misturas está mostrado na Figura 3.
Figura 3: Sistema de destilação simples.
3.5.1 - Materiais e Reagentes
· Balão de destilação
· Balão de recolhimento
· Condensador
· Termômetro
· Rolhas
· Pedaço de mangueira de aproximadamente 5 cm de comprimento
· Manta ou placa de aquecimento
· Suporte universal
· Garras para suporte universal
· Pedras de destilação
· Substância (ou solução) a ser destilada
3.5.2 – Procedimento (Demonstrativo)
a) Observar a aparelhagem do sistema de destilação simples.
b) Com o auxílio de um funil de vidro, transferir 100 mL da substância a ser destilada para o balão de destilação.
c) Colocar algumas pedras de destilação dentro do balão.
d) Ligar a manta de aquecimento.
e) Ligar o termômetro (se for digital).
f) Ligar a água que passará pelo condensador.
g) Observar o comportamento das pedras de destilação.
h) Verificar o aumento da temperatura.
i) Desligar a manta de aquecimento, após a temperatura de ebulição ser atingida.
ATENÇÃO: Cada grupo é responsável pelo material utilizado durante a aula prática, ao final do experimento o material deverá ser lavado, enxaguado e ordenado na bancada, exatamente como foi inicialmente encontrado; na dúvida peça orientação ao técnico de laboratório.
DESCARTE DOS RESÍDUOS: Descarte adequadamente nos frascos identificados no laboratório,na dúvida peça orientação ao técnico de laboratório.
4.0 – DIRECIONAMENTO DO RELATÓRIO
a. Por que a água extrai o álcool presente na amostra de gasolina?
b. Qual o teor de etanol encontrado na amostra de gasolina (expresse o resultado em % (v/v) (Equação 1)? Qual o teor de etanol anidro preconizado atualmente pela ANP na composição da gasolina comum? A amostra estudada estava em acordo com esse valor da ANP?
	(1)
onde:
	 = volume final da fase aquosa (mL)
 = volume inicial da fase aquosa (mL)
 = volume inicial de gasolina (25 mL)
c. Relacione os tempos observados com as viscosidades relativas dos líquidos estudados e coloque os líquidos estudados em ordem crescente de viscosidade. Estabeleça uma correlação dessa ordem a partir da composição molecular química dos líquidos estudados.
d. Explique detalhadamente a mudança observada após a adição do detergente na amostra água + carvão ativado.
e. Em que se baseia o princípio da destilação simples? Em quais tipos de amostra essa técnica pode ser utilizada? Quais os processos industriais que envolvem a técnica de destilação? Qual a função das pedras de destilação?
f. Defina ponto de ebulição e pressão de vapor de uma substância?
5.0 – REFERÊNCIAS
[1] Atkins, P.W.; Jones, L. Princípios de Química: Questionando a Vida Moderna e o Meio Ambiente. Ed. Bookman. Porto Alegre, 2006.
[2] Brown, L. S.; Holme, T. A. Química Geral Aplicada à Engenharia. Cengage Learning. São Paulo, 2009.
[3] Koltz, J. C.; Treichel, P. M.; Weaver, G. C. Química Geral e Reações Químicas. Cengage Learning. São Paulo, 2009.
Química Geral Experimental
14
20
Prática 5 – Balanceamento de Equação Química a partir de Titulação
USO OBRIGATÓRIO: JALECO, ÓCULOS de PROTEÇÃO e LUVAS
1.0 - INTRODUÇÃO
1.1 - Titulação
Uma titulação consiste num procedimento analítico, no qual uma quantidade desconhecida de um composto é determinada através da reação deste com um reagente padrão ou padronizado. Quando em uma titulação o volume de uma determinada solução é monitorado (uso de bureta, por exemplo) o procedimento é chamado de volumetria (BARBOSA, 2000).
Na titulação existem dois componentes fundamentais que são: titulante, reagente ou solução cuja concentração é conhecida e, o titulado, composto ou solução cuja concentração é desconhecida. Normalmente, a titulação é feita adicionando-se, controladamente, o reagente de concentração conhecida (titulante) à solução da substância com concentração desconhecida (titulado), ou vice-versa, até que se julgue que ela reagiu por completo. Então, através do volume de reagente adicionado (titulante) e da sua concentração, determina-se a quantidade de matéria de reagente consumido; em seguida, através da estequiometria da reação (equação química balanceada), determina-se a quantidade de matéria da substância e, se conhecido o volume da solução que a continha, pode-se também determinar a concentração da mesma.
O ponto de equivalência de uma titulação ácido-base (Figura 1) ocorre quando as quantidades de ácido e base estão nas proporções estequiométricas evidenciadas pela respectiva reação química. Do ponto de vista prático, a detecção do ponto de equivalência pode fazer-se usando um indicador apropriado, que, mudando de cor para um valor de pH (o mais próximo possível do ponto de equivalência), assinala o fim da titulação (VOGEL,1992; BACCAN, 1987).
Figura 1: Esquema de titulação ácido-base
1.2. Indicadores
Os indicadores são substâncias sintéticas que exibem cores que dependem do pH da solução na que estão dissolvidas. Os indicadores ácido/base é um ácido ou base orgânicos fracos cujo equilíbrio é descrito:
HIn + H2O 		 In- + H3O+
 (cor da forma ácida) 	 	 (cor da forma básica)
Chega-se então a: 
[H3O+] = Ka [HIn]/[In-]
É possível observar que a concentração do íon hidrônio determina a razão entre a forma ácida e forma conjugada e forma conjugada básica do indicador, que por sua vez, controla a cor da solução (Tabela 1) [Skoog et.al., 2010].
Tabela 1: Alguns Indicadores ácido/ base importantes
	Nome comum
	Faixa de transição (pH)
	pKa
	Mudança de cor
	Amarelo de metila
	2,9 – 4,0
	-
	vermelho – amarelo
	Alaranjando de metila
	3,1 – 4,4
	3,46
	vermelho – laranja
	Azul de bromotimol
	6,2 – 7,6
	7,10
	amarelo – azul
	Fenolftaleína
	8,2 – 10,0
	-
	Incolor – rosa
2.0 - OBJETIVOS
· Determinação da concentração exata de soluções aquosas de base fortes e ácidos fracos, utilizando-se a titulação volumétrica, e a estequiometria da equação química respectivas.
· Especificamente, utilizando-se a partir da técnica de titulação volumétrica e cálculos estequiométricos, a determinação da concentração de ácido acético (% m/v) e (mol L-1) presente na amostra de vinagre comercial.
3.0 - PROCEDIMENTO Experimental
3.1 – Preparo da Solução de NaOH
a) Determinar previamente a massa necessária para o preparo de 100 mL de solução 0,05 mol L-1 NaOH. A partir dessa massa e utilizando-se de um béquer de 50 mL, pese a massa NAOH e posteriormente adicione cerca de 30 mL de água destilada ao béquer dissolvendo completamente o NaOH.
b) Transfira para um balão volumétrico de 100 mL o volume anteriormente obtido (NaOH + água destilada), com cuidado para não derramar para fora do balão. Adicione pequenas quantidades de água destilada ao béquer, a título de “limpar o mesmo” de modo a transferir completamente o conteúdo pesado, despejando a água de lavagem no balão volumétrico. Atenção: o volume transferido não pode exceder o volume indicado (menisco).
c) Para finalizar o preparo, adicione água destilada até o ajuste completo da linha do menisco.
d) Verifique o funcionamento da torneira da bureta certificando-se que a mesma encontra-se fechada. Transfira a solução de NaOH preparada anteriormente para a bureta ajustando o menisco.
	
	
	3.2.1 - Materiais e Reagentes
· 2 Erlenmeyers de 250 mL
· Pipeta volumétrica de 1 mL
· Pêra ou pipetador tipo Pi-Pump
· Proveta de 50 mL
· Béquer de 50 mL
· Solução Indicadora de fenolftaleína 1%
· Solução de NaOH 0,05 mol L-1 do item 3.1.
· Vinagre comercial
· Bureta e suporte unível com garras
3.2.2 – Procedimento
a. Pipete 1 mL de vinagre com pipeta volumétrica em um erlenmeyer de 250 mL.
b. Adicione 50 mL de água destilada com a proveta.
c. Acrescente 3 gotas de solução indicadora de fenolftaleína.
d. Titule com a solução preparada anteriormente de NaOH 0,05 mol L-1 até o aparecimento de uma coloração levemente rosa.
e. ANOTE o volume gasto.
f. Repita o procedimento (duplicata).
	
ATENÇÃO: Cada grupo é responsável pelo material utilizado durante a aula prática, ao final do experimento o material deverá ser lavado, enxaguado e ordenado na bancada, exatamente como foi inicialmente encontrado; na dúvida peça orientação ao técnico de laboratório.
DESCARTE DOS RESÍDUOS: Descarte adequadamente nos frascos identificados no laboratório, na dúvida peça orientação ao técnico de laboratório.
4.0 – DIRECIONAMENTO DO RELATÓRIO
a. Calcule a concentração (mol L-1) e a composição percentual (m/v) do ácido acético presente na amostra de vinagre. Para tal, expresse a equação química que representa esse processo.
b. A partir da reação não balanceada abaixo calcule a concentração de 50 ml de solução de HCl (titulado), sendo que o volume gasto de Ca(OH)2 0,25 mol L-1 foi 40 mL (titulante):
HCl(aq) + Ca(OH)2(aq) CaCl2(aq) + H2O
c. Uma amostra de 25 mL de uma solução aquosa de Fe(OH)3 foi titulada com H2Cr2O7 0,10 mol L-1. Determinou-se que o volume da solução ácida necessária para atingir o ponto de viragem do indicador foi 40 mL. Determine a concentração (mol L-1) de Fe(OH)3 na amostra titulada.
5.0 – REFERÊNCIAS
[1] BACCAN, N.; ANDRADE J. C.; GODINHO, O. E. S. & BARONE, J. S. Introdução á Semimicroanálise Quantitativa. Editora da Unicamp. Campinas, 1987.
[2] BARBOSA, A. L. Dicionário de Química. AB Editora. Goiânia, 2000.
[3] CAMÕES. F. M. Zona de Viragem. Folhas de Química. V 18, n 100, 23-27, 2006.
[4]SKOOG, D. A.; WEST, D. M.; HOLLER, F. J. & CROUCH, S. R. Fundamentos de Química Analítica. Cengage Learning. São Paulo, 2010.
[5] VOGEL, A. I. Análise Química Quantitativa. LTC. Rio de Janeiro, 1992.
PRIMEIRA PROVA
Prática 6 – Equilíbrio Químico
USO OBRIGATÓRIO: JALECO, ÓCULOS de PROTEÇÃO e LUVAS
1.0 - Introdução
	Todas as reações químicas tendem a alcançar um equilíbrio entre reagentes e produtos, mesmo que isto nem sempre seja evidente. No estado de equilíbrio a razão entre a concentração de reagentes e produtos é constante, o que significa dizer que a velocidade da reação direta é igual à velocidade da reação inversa e, por isso, não são mais observadas modificações macroscópicas do sistema em estudo. O equilíbrio químico é dinâmico, pois as reações direta e inversa ocorrem com velocidades iguais, porém opostas.
	A relação da concentração no equilíbrio químico é independente da forma como este equilíbrio foi alcançado. O estado de equilíbrio de um sistema pode ser alterado por variações tais como a temperatura, pressão e concentração dos reagentes. Esta alteração pode ser prevista pelo princípio de Lê Chatelier: "Quando um sistema em equilíbrio é submetido a uma ação, o equilíbrio se desloca no sentido de contrabalançar esta ação". Os principais fatores que influenciam no deslocamento do equilíbrio são temperatura, pressão e concentração de reagentes ou produtos.
	Neste experimento serão abordadas as reações que ocorrem no sistema cromato-dicromato devido à fácil observação do deslocamento, por meio da diferença de cor do íon cromato e do íon dicromato. Deve-se observar que mesmo predominando a cor amarela (deslocamento no sentido do íon cromato) pode existir pequena quantidade de íon dicromato e vice-versa. a mudança na posição de equilíbrio neste sistema é observada, visto que o íon cromato é amarelo e o íon dicromato é laranja, o que facilitará a observação de qualquer deslocamento da posição de equilíbrio. Serão investigados o efeito da temperatura e da adição ou retirada de íons hidrogênio, na posição do equilíbrio. Além de investigar a reação acima na presença do íon Ba2+, pois os íons dicromato e cromato formam sais: BaCr2O7 (solúvel) e BaCrO4 (insolúvel).
2.0 - OBjetivos
· Demonstrar experimentalmente as características fundamentais do equilíbrio químico e do Princípio de Le Chatelier empregando exemplos simples de reações.
3.0 – PROCEDIMENTO Experimental
3.1 – Influência da concentração de H+ no equilíbrio químico
3.1.1 – Materiais e Reagentes
· 6 Tubos de ensaio
· 5 Pipetas de 5 mL
· Solução de Cromato de potássio 0,1 mol L-1
· Solução de Dicromato de Potássio 0,1 mol L-1
· Solução de Ácido Clorídrico 1 mol L-1
· Solução de Hidróxido de Sodio 1 mol L-1
· Solução de Cloreto de Bário 0,1 mol L-1
3.1.2 – Procedimento
a) Preparar 6 tubos de ensaio e numerá-los de 1 a 6;
b) Adicionar 2 mL de solução de cromato de potássio aos tubos 1, 2 e 3. Aos tubos 4, 5 e 6, adicionar 2 mL de dicromato de potássio. Observar suas cores. Observar os equilíbrios presentes em cada tubo. Um mais deslocado a direita, o cromato, e outro mais a esquerda o dicromato;
c) Agitando continuamente, adicionar gota a gota:
d) 2 mL de solução de ácido clorídrico ao tubo 1
e) 2 mL de solução de hidróxido de sódio ao tubo 4
f) 2 mL de solução de cloreto de bário aos tubos, 2, 3, 5 e 6
g) Mais 2 mL de solução de ácido clorídrico ao tubo 2
h) Mais 2 mL de solução de hidróxido de sódio ao tubo 3
i) Mais 2 mL de solução de solução de ácido clorídrico ao tubo 5
j) Mais 2 mL de solução de hidróxido de sódio ao tubo 6
l) Após a adição de cada reagente, observar atentamente em cada tubo de ensaio se ocorre mudança de cor, formação ou dissolução de precipitado.
ATENÇÃO: Cada grupo é responsável pelo material utilizado durante a aula prática, ao final do experimento o material deverá ser lavado, enxaguado e ordenado na bancada, exatamente como foi inicialmente encontrado; na dúvida peça orientação ao técnico de laboratório.
DESCARTE DOS RESÍDUOS: Descarte adequadamente nos frascos identificados no laboratório, na dúvida peça orientação ao técnico de laboratório.
4.0 – Direcionamento do relatório
a) Faça uma tabela mostrando o observado em cada tubo de ensaio (aparência, cor, estado...).
b) Apresente as reações químicas balanceadas dos seis tubos após sofrerem a adição de agentes perturbadores e discuta em cada uma o porquê da ocorrência do deslocamento do equilíbrio e a formação ou não de precipitado.
5.0 – REFERÊNCIAS
[1] Atkins, P.W.; Jones, L. Princípios de Química: Questionando a Vida Moderna e o Meio Ambiente. Ed. Bookman. Porto Alegre, 2006.
[2] Brown, L. S.; Holme, T. A. Química Geral Aplicada à Engenharia. Cengage Learning. São Paulo, 2009.
[3] Koltz, J. C.; Treichel, P. M.; Weaver, G. C. Química Geral e Reações Químicas. Cengage Learning. São Paulo, 2009.
Prática 7 – Eletroquímica
USO OBRIGATÓRIO: JALECO, ÓCULOS de PROTEÇÃO e LUVAS
1.0 – Introdução
	Os processos eletroquímicos são responsáveis por inúmeros fenômenos da vida cotidiana, pois toda reação química onde há perda e ganho de elétrons é um processo eletroquímico. Quando um átomo, íon ou molécula recebe elétrons, diz-se que ocorreu uma redução e a espécie química que perdeu o(s) elétron(s) sofreu uma oxidação. As reações eletroquímicas são também referidas como reações redox.
	A formação de ferrugem na superfície do aço, a coloração esverdeada desenvolvida em peças de cobre expostas às intempéries, as pilhas e baterias utilizadas em carros, telefones celulares e laptops são todas baseadas em processos eletroquímicos. Estes eventos ocorrem naturalmente e, portanto, são espontâneos.
A transferência espontânea de elétrons envolvida nestas reações químicas pode ser transformada em um fluxo contínuo de elétrons em um condutor metálico e a corrente elétrica resultante aproveitada para realizar trabalho. Toda pilha é baseada em uma reação eletroquímica espontânea.
As reações redox ocorrem devido à diferença de potencial elétrico que se forma entre diferentes materiais e a medida desta diferença de potencial (ddp), fornece informações a respeito da espontaneidade de uma reação eletroquímica, das concentrações das espécies químicas durante a reação e da razão entre reagentes e produtos após a reação ter atingido o equilíbrio. Tabelas de potencial-padrão de redução, E°, informam os valores em volts de diversas semi-reações redox, considerando as condições de 25°C e concentrações de 1 mol L-1. Fora destas condições o potencial elétrico pode ser calculado aplicando-se a equação de Nernst para uma semi-reação.
Uma das semi-reações responsáveis pela oxidação de metais expostos às adversidades climáticas está apresentada a seguir.
O2(g) + H2O(l) + 4e―	→	4OH―(aq)		E°red = + 0,40 V
A ddp para esta semi-reação é de 0,40 V, ou seja, qualquer metal que possua uma semi-reação com valor de ddp°red menor que 0,40 V sofrerá um processo de oxidação quando exposto ao oxigênio e à umidade. Uma forma de contornar este problema é realizar a galvanização do metal.
O aço, por exemplo, é comumente galvanizado com zinco como forma de combater a oxidação. A galvanização consiste em recobrir o material com outro metal que possua maior potencial de oxidação. Desta forma cria-se uma camada protetora que minimiza o contato do material original com o ambiente, além de atuar como um metal de sacrifício, pois primeiro ocorrerá a oxidação do metal da camada protetora devido ao maior potencial de oxidação.
2.0 - OBjetivos
· Construir uma pilha e medir a diferença de potencial produzida.
· Aproveitar a energia produzida pela pilha para o funcionamento de um dispositivo emissor de luz, LED.
· Realizar a galvanização de uma peça metálica
3.0 - PROCEDIMENTO Experimental
3.1 - Montagem de um pilha
3.1.1 - Materiais e Reagentes
· Solução de Sulfato de Cobre (1mol L-1)
· Solução de Sulfato de Zinco (1mol L-1)
· Solução de Cloreto de Sódio (1mol L-1)
· Béquer de vidro de 100 mL (2 unidades)
· Tubo de vidro em formato de “U”
3.1.2 –Procedimento-
Ponte Salina
+
Conectar ao voltímetro
Zn
ZnSO4 (aq)
Cu
CuSO4 (aq)
Figura 1: Desenho esquemático da Pilha de Daniell.
a. Coloque 50 mL de solução de Sulfato de Cobre 1 mol L-1 em um béquer de 100 mL e 50 mL de solução de sulfato de zinco 1 mol L-1 no segundo béquer.
b. Posicione os béqueres sobre a bancada.
c. Preencha completamente o tubo em formato “U” com a solução de NaCl. Em seguida tampe as extremidades com pedaços de algodão previamente embebidos na solução salina. (NÃO PODE HAVER BOLHAS NO INTERIOR DO TUBO EM FORMATO DE “U” !)
d. Conecte os cabos ao voltímetro (preto = negativo e vermelho = positivo) e selecione a escala de 2 V (c.c). Em seguida, prenda o eletrodo de cobre ao polo positivo e o eletrodo de zinco ao polo negativo.
e. Insira o eletrodo de cobre e zinco nas soluções de sulfato de cobre e zinco respectivamente.
f. Insira cada extremidade da ponte salina em um dos béqueres.
g. Observe e anote a tensão gerada.
3.2 – Montagem de uma Bateria e acendimento de um LED ( Light Emitting Diode)
3.2.1 – Procedimento
· Agrupe-se com outros 2 grupos que também tenham montado a pilha descrita no procedimento 3.1.2.
· Conecte as 3 pilhas em série de acordo com a Figura 2.
· Meça a diferença de potencial elétrico gerado e anote o resultado.
· Desconecte o voltímetro e conecte o LED aos cabos.
Atenção: Se o LED não acender, inverta a conexão dos cabos. O LED é um diodo, ou seja, só há fluxo de elétrons em um sentido.
LED
+
-
Zn
ZnSO4 (aq)
CuSO4 (aq)
Cu
Zn
ZnSO4 (aq)
CuSO4 (aq)
Cu
Zn
ZnSO4 (aq)
CuSO4 (aq)
Cu
Figura 2: Desenho esquemático da bateria de cobre e zinco, ddp(1mol L-1 , 25 °C) ≈ 3,3 Volts.
3.3 - Galvanização de uma peça metálica
3.3.1 - Materiais e Reagentes
· Solução ácida de Sulfato de Cobre (1 mol L-1) e 0,56 mol L-1 H2SO4.
· Béquer de vidro de 100 mL (1 unidade).
· Suporte universal com garra de 2 dedos (1 unidade).
· Eletrodo de cobre com dimensões aproximadas: 6 cm x 4,5 cm x 0,1 cm (1unidade).
· Peça a ser galvanizada, chave ou outra peça metálica. Na ausência destes, pode-se utilizar eletrodo de Alumínio (dimensões: 4 cm x 4,5 cm x 0,1 cm).
· Fonte elétrica, corrente contínua (c.c.) 30V/ 5A.
· Garras do tipo jacaré (1par).
3.2 - Procedimento
+
Cu
-
Al
+
Cu
-
Conectar à fonte elétrica
Conectar à fonte elétrica
(a)
(b)
Figura 3: Desenho esquemático: célula galvânica para revestimento de uma chave com cobre (a) e célula galvânica para revestimento de uma chapa de alumínio com cobre (b) (será determinado pelo professor qual das duas células será utilizada).
a. Posicione o béquer sobre a bancada.
b. Coloque 70 mL de solução ácida de CuSO4 no béquer (cuidado no manuseio da solução!).
c. Conecte os cabos à fonte elétrica (preto = negativo e vermelho = positivo), em seguida conecte o eletrodo de cobre ao pólo positivo e a peça metálica ao pólo negativo.
d. Gire os controles da fonte de forma a zerar os ajustes de voltagem e corrente.
e. Insira o eletrodo de cobre na solução, utilize a garra presa à haste do suporte para segurar o cabo conectado ao eletrodo, fazendo com que o eletrodo permaneça imóvel no béquer.
f. Com a fonte DESLIGADA, insira a peça metálica no béquer. Se for a chave, submergi-la completamente. Atenção para não permitir o contato entre os polos.
g. Ligue a fonte e gradualmente ajuste os controles de tensão e corrente até alcançar a densidade de corrente adequada (geralmente não mais que 6,0 V e 400 mA; isso em função das áreas tanto da chave que receberá a eletrodeposição de Cu quanto da própria placa de cobre).
h. Aguarde aproximadamente 1 minutos, em seguida DESLIGUE a fonte, retire a peça metálica (cuidado para que não haja respingos da solução!) e então lave-a com água corrente, seque-a e observe.
3.4 – Estudo do Processo de Corrosão e Emprego de Metal de Sacrifício (proteção catódica) 
3.4.1 - Materiais e Reagentes
· Placa de Petri (2 unidades).
· Gel ágar-ágar ou gelatina incolor e sem flavorizantes.
· Solução indicadora de fenolftaleína.
· Ferricianeto de Potássio.
· Cloreto de Sódio.
· Prego limpo em HCl concentrado para remoção da camada de zinco. Guardado imerso em acetona (2 unidades).
3.3.2 – Procedimento (Demonstrativo: todo aparato já estará montado, inclusive o preparo das soluções)
a) Pese 3,9 g de gel ágar-ágar em um béquer de 150 mL, adicione 150 mg de ferricianeto de potássio e 1,2 g de cloreto de sódio. Dissolva o material em 80 mL de água quente, adicione 10 gotas de fenolftaleína e complete o volume para 120 mL.
b) Retire da acetona o prego limpo com HClconc., posicione-o na primeira placa de Petri e preencha com a solução de forma a imergir o prego. Realize este procedimento na gaveta do congelador, aguarde 3 minutos antes de retirar a placa. 
c) Posicione o segundo prego na segunda placa de Petri e preencha com a solução de forma a deixar metade do prego exposto ao ar. Realize este procedimento na gaveta do congelador, aguarde 3 minutos antes de retirar a placa.
d) Deixe os sistemas em repouso por 12 h antes de realizar as primeiras observações.
ATENÇÃO: Cada grupo é responsável pelo material utilizado durante a aula prática, ao final do experimento o material deverá ser lavado, enxaguado e ordenado na bancada, exatamente como foi inicialmente encontrado; na dúvida peça orientação ao técnico de laboratório.
DESCARTE DOS RESÍDUOS: Descarte adequadamente nos frascos identificados no laboratório, na dúvida peça orientação ao técnico de laboratório.
4.0 – Direcionamento do relatório
a) Calcule a força eletromotriz (fem) da pilha montada no Experimento 1.
b) Considere uma pilha montada substituindo a semi-célula de Zn/ZnSO4 por Al/Al2(SO4)3. Calcule a fem para esta nova semi-célula.
c) O que é eletrodeposição?
d) No item 3.4 quais cátions e ânions são identificados pela fenolftaleína e pelo ferricianeto de potássio? Identifique as regiões catódicas e anódicas nas fotos das placas de Petri observadas.
5.0 – REFERÊNCIAS
[1] Vídeo: http://www.youtube.com/watch?v=OwhmwDSMANU
[2] Skoog, D. A.; Holler, F. J. & Nieman, T. A. Principles of Instrumental Analysis. Thomson Learning, fifth Edition. USA, 1998.
[3] Atkins, P.W.; Jones, L. Princípios de Química: Questionando a Vida Moderna e o Meio Ambiente. Ed. Bookman. Porto Alegre, 2006.
[4] Brown, L. S.; Holme, T. A. Química Geral Aplicada à Engenharia. Cengage Learning. São Paulo, 2009.
[5] Koltz, J. C.; Treichel, P. M. & Weaver, G. C. Química Geral e Reações Químicas. Cengage Learning. São Paulo, 2009.
Prática 8– Calorimetria
USO OBRIGATÓRIO: JALECO, ÓCULOS de PROTEÇÃO e LUVAS
1.0 - Introdução
		A termodinâmica é o estudo das transformações de energia e baseia-se em duas leis naturais: a primeira lei, que acompanha as variações de energia e que permite o cálculo da quantidade de calor que uma reação produz; e a segunda lei, que explica porque algumas reações ocorrem e outras não. A ocorrência de uma reação química sempre está associada a uma variação de energia do meio reacional. Em geral, a variação de energia interna de um sistema é o resultado dos dois tipos de transferência de energia: calor (q) e trabalho (w) (Equação 1). Combinando temos que: 
U = q + w	(1)
		A termodinâmica é essencial para a química, pois permite o estudo do calor que liberam (ou absorvem) e do trabalho que as reações químicas podem executar. Se considerarmos um sistema mantido em volume constante onde não há a possibilidade de se realizar trabalho de expansão (ou outros tipos de trabalho), sabemos que w = 0 (Equação 2). Sendo assim, em volume constante, podemos escrever: 
U = q			(2)
		Dessa forma, essa equação significa que podemos medir a variação de energia interna do sistema, em volume constante, que não realiza trabalho de qualquer tipo, pelo simples monitoramento da troca de energia entre ele e a vizinhança na forma de calor.
		A função de estado entalpia (H) é utilizada no estudo e nas transformações das reações químicas. Considerando-se o processo à pressão constante, a variação da entalpia para essas condiçõesocorre pela entalpia final e inicial representada por H e será igual ao calor trocado (q) entre a massa reacional e o exterior, desde o instante inicial até o final. Portanto, conhecendo-se a equação para o cálculo da variação da entalpia, pode-se calcular o calor trocado durante o processo. Condições experimentais que garantem H = q (por exemplo, utilizando-se um calorímetro) pode-se monitorar reações exotérmicas (Hr 0) que emitem calor para o exterior e reações endotérmicas (Hr 0) que absorvem calor do meio externo.
		A capacidade calorífica (C) de um objeto é a razão entre o calor fornecido e o aumento de temperatura observado. Consideremos o seguinte exemplo. Fornecendo a mesma quantidade de calor para uma massa m de água e para outra massa três vezes maior de água, 3m, observa-se experimentalmente que para que tenham a mesma variação de temperatura é necessário fornecer uma quantidade de calor três vezes maior para a de massa 3m que para a de massa m. Temos, portanto, que a quantidade de calor é diretamente proporcional à variação de temperatura. A constante de proporcionalidade é denominada capacidade térmica (Equação 3).
							q = C T	(3)
		Portanto, a capacidade térmica mede a quantidade de calor necessária para que haja uma variação unitária de temperatura e está relacionada diretamente com a massa do corpo. Unidade de Capacidade Térmica: 1 cal 0C-1 ou no sistema internacional de medidas SI 1 J ºC-1.
		Para que haja uma variação unitária de temperatura de uma massa unitária de água é necessário fornecer uma quantidade de calor maior que para uma massa unitária de chumbo sofrer a mesma variação unitária de temperatura. Esta quantidade de calor, que é característica do material, é denominada calor específico (c). Unidade de Calor específico 1 cal g-1 0C-1 ou no sistema internacional de medidas (SI) 1 J kg-1 ºC-1.
Introduzindo a constante de proporcionalidade c, obtém-se a equação fundamental da calorimetria (Equação 4):
							q = m c T	(4)
		A transferência de energia na forma de calor é medida com um calorímetro. Este é um sistema fechado no qual o calor transferido é monitorado pela variação de temperatura que ele provoca, usando-se a capacidade calorífica do calorímetro (Ccal) para converter a mudança de temperatura em calor produzido.
		A capacidade calorífica do calorímetro pode ser obtida experimentalmente (Equação 5) através do método das misturas. Neste método, aquecendo uma quantidade de água a uma temperatura maior que a da água contida no calorímetro que está, por exemplo, à temperatura ambiente, quando elas são misturadas no calorímetro, a água que está a uma temperatura maior irá ceder calor à água e ao calorímetro que estão a uma temperatura menor.
C(Teq – T1) + m1 c1 (Teq – T1) = m2 c2 (T2 – Teq)		(5)
onde: 
T1= temperatura ambiente da água
T2= temperatura da água quente
Teq= temperatura da água em equilíbrio
m1 e c1 = respectivamente massa e calor específico da água à temperatura ambiente
m2 e c2 = respectivamente massa e calor específico da água à temperatura quente
C= capacidade calorífica do calorímetro
	Isso é possível devido ao equilíbrio térmico que é atingido, ou seja, uma quantidade de energia térmica é transferida da substância de maior temperatura para a de menor temperatura, associada à quantidade de calor que a substância de menor energia irá receber. Esse é o princípio da conservação de energia (Equação 6):
q ganho = q perdido	(6)
	Nesse experimento o calorímetro é formado por um recipiente interno (béquer) revestido por um copo isopor com a finalidade de eliminar a propagação do calor por condução para o meio externo reacional (Figura 1).
Figura 1: Representação simplificada do calorímetro.
		Após a determinação da capacidade calorífica do calorímetro é possível converter em variação de energia o aumento ou diminuição da temperatura provocada por uma reação química. Em primeiro lugar devemos considerar o valor da capacidade calorífica do calorímetro (Equação 7):
qcal = Ccal T	(7)
		Como o calor gerado na reação será transferido para o calorímetro, podemos considerar q reação = q cal. Se não houver trabalho de expansão, U = qreação, e poderemos usar: U = qreação = qcal. Logo é possível determinar a variação da energia interna da reação (Equação 8):
U = Ccal T		(8)
		2.0 - OBjetivos
· Determinar a capacidade calorífica do calorímetro;
· Executar, observar e interpretar, utilizando-se um calorímetro, o calor de dissolução de um sal (NH4Cl) em água, o calor de neutralização da reação ácido-base (HCl(aq) + NaOH(aq)) para a interpretação dos processos endotérmico e exotérmico;
· A partir desses valores, determinar as entalpias envolvidas nos processos de dissolução de um sal e de uma reação de neutralização reação ácido-base.
3.0 - PROCEDIMENTO Experimental
3.1 – Determinação da capacidade calorífica do calorímetro
3.1.1 - Materiais e Reagentes
· 1 Calorímetro de vidro
· 1 Termômetro
· Chapa aquecedora e agitador 
· Barra magnética 
· Espátula 
· 2 Béqueres
· 3 Provetas 
· Água destilada
· Solução de HCl 0,5 mol L-1
· Solução de NaOH 0,5 mol L-1
3.1.2 – Procedimento
a) Utilizando uma proveta, medir 30 mL de água.
b) Coloque a água no calorímetro de vidro à temperatura ambiente, agite e aguarde o sistema atingir o equilíbrio térmico (T= cte). Meça e anote, após o equilíbrio térmico, a temperatura inicial da água (T1).
c) Utilizando novamente a proveta, medir 30 mL de água quente (m2), aproximadamente 50 0C (T2) anotando esse valor.
d) Adicione rapidamente a água aquecida à água disponibilizada dentro do calorímetro e tampe-o. Como você utilizou o termômetro para medir a temperatura da água quente, resfrie-o em água corrente, antes de introduzi-lo no calorímetro. Com movimentos suaves, agite a água até a temperatura permanecer constante, anotando o valor da temperatura de equilíbrio (Tequilíbrio). A partir dos dados da Tabela 1 determine as massas m1 e m2 preenchendo a Tabela 2.
 Tabela 1: Densidade da água em função da temperatura
	
	Décimos de grau
	oC
	.0
	.1
	.2
	.3
	.4
	.5
	.6
	.7
	.8
	.9
	0
	0,9999
	0,9999
	1,0000
	1,0000
	1,0000
	1,0000
	1,0000
	0,9999
	0,9999
	0,9998
	10
	0,9997
	0,9996
	0,9995
	0,9994
	0,9993
	0,9991
	0,9990
	0,9988
	0,9986
	0,9984
	20
	0,9982
	0,9980
	0,9978
	0,9976
	0.9973
	0,9971
	0,9960
	0,9965
	0,9963
	0,9960
	30
	0,9957
	0,9954
	0,9951
	0,9947
	0,9944
	0,9941
	0,9937
	0,9934
	0,9930
	0,9926
	40
	0,9922
	0,9919
	0,9915
	0,9911
	0,9907
	0,9902
	0,9898
	0,9894
	0,9890
	0,9895
	50
	0,9881
	0,9876
	0,9872
	0,9867
	0,9862
	0,9857
	0,9852
	0,9848
	0,9842
	0,9838
	60
	0,9832
	0,9827
	0,9822
	0,9817
	0,9811
	0,9806
	0,9800
	0,9765
	0,9789
	0,9784
	70
	0,9778
	0,9772
	0,9767
	0,9761
	0,9755
	0,9749
	0,9743
	0,9737
	0,9731
	0,9724
	80
	0,9718
	0,9712
	0,9706
	0,9699
	0,9693
	0,9686
	0,9680
	0,9673
	0,9667
	0,9660
	90
	0,9653
	0,9647
	0,9640
	0,9633
	0,9626
	0,9619
	0,9612
	0,9605
	0,9598
	0,9591
dados: 1cal = 4,18 J
calor específico da água = 1 cal g-1 °C-1
 Tabela 2: Temperaturas observadas durante o procedimento experimental com as respectivas massas de água
	T (0C)/ m (g)
	VH2O (mL)
	
	VH2O Tambiente= 30
	VH2O Tquente= 30
	T1/ m1
	
	-
	T2/ m2
	-
	
	Tequilíbrio
	=
3.2 – Determinação da entalpia integral de solução (Hs) do Cloreto de amônio
3.2.1 - Materiais e Reagentes
· NH4Cl p.a
· Água destilada
· Termômetro de 0 a 100 0C
· Provetas de 100 mL
· Copo béquer de 100 mL
· Calorímetro de vidro (copo béquer de 100 mL, envolto por um isopor, com tampa que possui um orifício por onde se introduz o termômetro).
3.2.2 – Procedimento
a) Meça 21 mL de água destilada em uma proveta de 25 mL.
b) Com o termômetro meça e anote a temperatura ambiente da água T1 (°C)
c) Pese aproximadamente 2,5 g de NH4Cl(s) em um segundo béquer seco de 100 mL e disponha-o no interior do copo de isopor. Importante anotar o valor exato dessa medida, pois será utilizada nos cálculos da determinação da quantidade de calor envolvida no processo.
d) Adicione rapidamente a água destilada (item a)) no calorímetrotampando o copo de isopor na sequência. Dissolva o sal contido na água com movimento circulares suaves.
e) Introduza o termômetro no calorímetro e aguarde o sistema atingir a temperatura de equilíbrio (Teq). Anote.
3.3 – Determinação do Calor de Neutralização
3.3.1 - Materiais e Reagentes
· Solução de hidróxido de sódio 0,5 mol L-1
· Solução de ácido clorídrico 0,5 mol L-1
3.3.2 – Procedimento
· a) A partir da solução de hidróxido de sódio 0,5 mol L-1 transfira para proveta 20 mL. Meça e anote a temperatura da solução (Tbase);
· b) A partir da solução de ácido clorídrico 0,5 mol L-1 transfira 20 mL para proveta. Meça e anote a temperatura da solução (Tácido);
· c) Transfira para o calorímetro misturando as soluções de NaOH e HCl. Introduza o termômetro no calorímetro e aguarde o sistema atingir a temperatura de equilíbrio (Teq). Anote.
Dados: C = 36 cal °C-1
 dNaOH (0,5 mol L-1) = 1,0190 g mL-1
 dHCl (0,5 mol L-1) = 1,0090 g mL-1
 csolução ≈ cágua = 1cal g-1 °C-1
ATENÇÃO: Cada grupo é responsável pelo material utilizado durante a aula prática, ao final do experimento o material deverá ser lavado, enxaguado e ordenado na bancada, exatamente como foi inicialmente encontrado; na dúvida peça orientação ao técnico de laboratório.
DESCARTE DOS RESÍDUOS: Descarte adequadamente nos frascos identificados no laboratório, na dúvida peça orientação ao técnico de laboratório.
4.0 – DIRECIONAMENTO DO RELATÓRIO
a) Pesquise sobre determinação da capacidade calorífica ou equivalente em água do calorímetro.
b) Para que quantidades diferentes de água tenham a mesma variação de temperatura em um mesmo intervalo de tempo, qual a relação entre as quantidades de calor fornecidas?
c) Determine a entalpia integral de solução (Hs) do NH4Cl(s) (lembre-se da massa de NH4Cl(s) que você utilizou, portanto, leve em consideração a quantidade de matéria (n) para o cálculo da variação da entalpia através da relação H= q/n.
d) Explique que modificação ocorreria na entalpia integral de solução (Hs) do NH4Cl(s), se em vez de utilizar o calorímetro simplificado tivéssemos utilizado um calorímetro ideal (pesquise).
e) A que se deve a variação de temperatura durante a determinação do calor de neutralização quando são misturadas as soluções de ácido clorídrico e hidróxido de sódio?
5.0 – REFERÊNCIAS
[1] Atkins, P.W.; Jones, L. Princípios de Química: Questionando a Vida Moderna e o Meio Ambiente. Ed. Bookman. Porto Alegre, 2006.
[2] Brown, L. S.; Holme, T. A. Química Geral Aplicada à Engenharia. Cengage Learning. São Paulo, 2009.
[3] Koltz, J. C.; Treichel, P. M.; Weaver, G. C. Química Geral e Reações Químicas. Cengage Learning. São Paulo, 2009.
[4] Maia, D. Práticas de Química para Engenharias. Ed. Átomo. Campinas, 2008.
Prática 9 – Cinética Química: Estudo da Velocidade de Reações Químicas
USO OBRIGATÓRIO: JALECO, ÓCULOS de PROTEÇÃO e LUVAS
1.0 - Introdução
A reação de Landolt, também conhecida como a “reação do relógio de iodo”, foi publicada em 1886 e continua sendo, até hoje, um dos exemplos mais adequados para demonstrar alguns aspectos fundamentais da cinética de reações químicas. Trata-se da reação entre os íons bissulfito e iodato em meio ácido, com formação de iodo. Na realidade, o mecanismo dessa reação não é trivial, envolvendo várias etapas com velocidades distintas, durante as quais espécies intermediárias são formadas e posteriormente consumidas. Todavia é possível representar a reação de Landolt por um conjunto de três equações básicas apresentadas a seguir.
Inicialmente, o bissulfito (HSO3-) reage lentamente com iodato (IO3-) formando bissulfato (HSO4-) e iodeto (I-) (Equação 1):
3 HSO-3(aq) + IO-3(aq) → 3 HSO-4(aq) + I-(aq)	(etapa lenta)	(1)
a medida que o iodeto vai sendo formado lentamente, este reage rapidamente com o iodato, ainda presente em grande quantidade, gerando iodo elementar (I2) (Equação 2):
5 I-(aq) + IO-3(aq) + 6 H+(aq) → 3 I2 + 3 H2O	(etapa rápida)	(2)
enquanto houver bissulfito na solução, este consumirá imediatamente o iodo formado, produzindo novamente iodeto (Equação 3):
3 HSO-3(aq) + I2 + H2O → 2 I-(aq) + HSO-4(aq)	 + 3 H+(aq)	(etapa muito rápida)	(3)
De acordo com essa proposta mecanicista o iodo somente será observado quando todo o bissulfito tiver sido consumido.
O tempo transcorrido a partir do momento da mistura dos reagentes (bissulfito e iodato) até o aparecimento do iodo é um parâmetro de fácil de medição, o qual permite avaliar como a velocidade da reação de Landolt pode variar em diferentes condições experimentais. Uma concentração mínima de iodo poderá ser sensivelmente detectada se houver amido presente no meio reacional, pois ocorre aí um complexo de intensa coloração azul com o iodo.
Assim, nesse experimento será observado o tempo necessário para a formação de iodo na reação de Landolt, variando-se a concentração dos reagentes e a temperatura.
2.0 - OBJETIVOS
· Demonstrar alguns aspectos fundamentais da cinética de reações químicas, especialmente o efeito da concentração dos reagentes e da temperatura sobre a velocidade das reações químicas.
3.0 - PROCEDIMENTO Experimental
3.1 – Influência da Concentração na Velocidade de uma Reação Química
3.1.1 - Materiais e Reagentes
· Cronômetro
· Banho-maria
· Termômetro
· Proveta graduada de 100 mL
· Dois erlenmeyers de 250 mL
· Gelo
· Iodato de potássio (KIO3)
· Sulfito de sódio (Na2SO3)
· Ácido sulfúrico concentrado (H2SO4)
· Etanol
· Amido solúvel
· Iodeto de mercúrio (HgI2)
ATENÇÃO: Os compostos de Hg são tóxicos. Portanto, o iodeto de mercúrio deve ser manipulado com devido cuidado, evitando seu espalhamento.
3.1.1.1 – Preparo das Soluções
Todas as soluções utilizadas no desenvolvimento desta prática serão previamente preparadas pela(o) técnica(o) de laboratório.
Observação: a eventual presença de impurezas nas vidrarias e ou soluções pode comprometer o bom desempenho do experimento.
· Solução I: 1 g de amido solúvel em 500 mL de água destilada fria (mistura-se 1 g de amido solúvel com 20 mL de água destilada fria, adiciona-se essa mistura a 500 mL de água destilada fervendo, com agitação, deixa-se esfriar, decanta-se e adicionam-se 5 mg de iodeto de mercúrio para evitar a formação de fungos).
· Solução II: (deve ser preparada com, no máximo, 24 horas de antecedência): 8 g de ácido sulfúrico concentrado, 20 mL de etanol e 2,32g de sulfito de sódio, dissolvidos em 2 L de água destilada.
· Solução III: 8,6 g de iodato de potássio em 2 L de água destilada.
3.1.2 – Procedimento
a) Coloque em um Erlenmeyer 50 mL de água destilada, 2,5 mL de solução I e 10 mL de solução II. Misture bem a solução resultante.
b) Observe a temperatura da solução.
c) Com o auxílio de outra pessoa, adicione rapidamente e com forte agitação 10 mL da solução III e, ao mesmo tempo, dispare o cronômetro.
d) Mantenha a mistura sob agitação e aguarde atentamente o momento em que aparece a coloração azul na solução.
e) Pare o cronômetro nesse momento e anote o tempo da reação.
f) Repita os procedimentos “a” até “e” utilizando 25 mL de água destilada na mistura com as soluções I, II e III.
g) Repita os procedimentos “a” até “e” utilizando 75 mL de água destilada na mistura com as soluções I, II e III.
3.2 – Influência da Temperatura na Velocidade de uma Reação Química
3.2.1 – Procedimento
a) Repita os procedimentos descritos nos itens 3.1.2-(a) até 3.1.2-(e) utilizando 50 mL de água destilada gelada na mistura com as soluções I, II e III.
b) Repita os procedimentos descritos nos itens 3.1.2-(a) até 3.1.2-(e) utilizando 50 mL de água destilada quente (não superior a 40°C) na mistura com as soluções I, II e III.
ATENÇÃO: Cada grupo é responsável pelo material utilizado durante a aula prática, ao final do experimento o material deverá ser lavado, enxaguado e ordenado na bancada, exatamente como foi inicialmente encontrado; na dúvida peça orientação ao técnico de laboratório.
DESCARTE DOS RESÍDUOS: Descarte adequadamente nos frascosidentificados no laboratório, na dúvida peça orientação ao técnico de laboratório.
4.0 – Direcionamento do relatório
a) Qual é a função do amido na reação de Landolt: catalisador, indicador, oxidante ou redutor?
b) Relate e justifique o efeito da variação da temperatura sobre a velocidade da reação estudada.
c) Relate e justifique o efeito da variação da concentração dos reagentes sobre a velocidade da reação estudada.
d) Descreva quais são os diferentes fatores que afetam a velocidade das reações químicas.
e) Descreva a função dos catalisadores na velocidade das reações químicas.
5.0 – REFERÊNCIAS
[1] Atkins, P.W.; Jones, L. Princípios de Química: Questionando a Vida Moderna e o Meio Ambiente. Ed. Bookman. Porto Alegre, 2006.
[2] Brown, L. S.; Holme, T. A. Química Geral Aplicada à Engenharia. Cengage Learning. São Paulo, 2009.
[3] Koltz, J. C.; Treichel, P. M.; Weaver, G. C. Química Geral e Reações Químicas. Cengage Learning. São Paulo, 2009.
[4] Lambert, J. L. & Fina, G. T. Iodine Clock Reaction Mechanisms. Journal of Chemical Education. 61, 12, 1037-1038. 1984.
SEGUNDA PROVA
ANOTAÇÕES
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
42
1
-
)
-
(
��
1
2
_
n
x
x
s
n
i
i
=
=
100
x
x
s
CV
-
=
-
x
V
m
d
=
aq(f)aq(i)
etanol
g(i)
(VV)
%100x
V
-
=
aq(f)
V
aq(i)
V
g(i)
V

Continue navegando