Logo Passei Direto
Buscar
Determine o volume de um cone com raio da base 6 cm e altura 10 cm (use π = 3,14).
Volume = (π × raio² × altura) / 3 = (3,14 × (6 cm)² × 10 cm) / 3 ≈ 376,8 cm³.
O volume de um cone é um terço da área da base multiplicada pela altura.
User badge image
Matematicamente

ano passado

Respostas

User badge image

Ed Verified user icon

há 6 meses

Para determinar o volume de um cone, você pode usar a fórmula: \[ V = \frac{\pi \times r^2 \times h}{3} \] onde: - \( V \) é o volume, - \( \pi \) é aproximadamente 3,14, - \( r \) é o raio da base, - \( h \) é a altura. Substituindo os valores: 1. Raio \( r = 6 \) cm 2. Altura \( h = 10 \) cm Agora, calcule: \[ V = \frac{3,14 \times (6)^2 \times 10}{3} \] \[ V = \frac{3,14 \times 36 \times 10}{3} \] \[ V = \frac{3,14 \times 360}{3} \] \[ V = \frac{1130,4}{3} \] \[ V \approx 376,8 \, \text{cm}^3 \] Portanto, o volume do cone é aproximadamente 376,8 cm³.

Essa resposta te ajudou?

0
Dislike0

Experimente
o Premium! 🤩

Libere respostas sem pagar

User badge image

Ed Verified user icon

ano passado

Para determinar o volume de um cone, você pode utilizar a fórmula: Volume = (π × raio² × altura) / 3. Substituindo os valores dados, temos: Volume = (3,14 × (6 cm)² × 10 cm) / 3 ≈ 376,8 cm³. Portanto, o volume do cone com raio da base 6 cm e altura 10 cm é aproximadamente 376,8 cm³.

Essa resposta te ajudou?

0
Dislike0

Ainda com dúvidas?

Envie uma pergunta e tenha sua dúvida de estudo respondida!

Essa pergunta também está no material:

Mais perguntas desse material

Determine o perímetro de um hexágono regular com lado 9 cm.
Perímetro = 6 × lado = 6 × 9 cm = 54 cm.
O perímetro de um polígono regular é calculado multiplicando o número de lados pelo comprimento de um lado.

Qual é o volume de uma pirâmide quadrangular regular com base de lado 10 cm e altura da pirâmide 15 cm?
Volume = (área da base × altura) / 3 = (10 cm × 10 cm × 15 cm) / 3 = 500 cm³.
O volume de uma pirâmide é um terço da área da base multiplicada pela altura.

Calcule a área da base de um cilindro cuja área lateral é 100 cm² e altura é 8 cm.
Área da base = área lateral / altura = 100 cm² / 8 cm = 12,5 cm².
A área da base de um cilindro pode ser encontrada dividindo a área lateral pela altura.

Determine o volume de um paralelepípedo retângulo com dimensões 4 cm, 7 cm e 10 cm.
Volume = comprimento × largura × altura = 4 cm × 7 cm × 10 cm = 280 cm³.
O volume de um paralelepípedo é calculado multiplicando suas três dimensões.

Mais conteúdos dessa disciplina