Quais são as cinco fases num projeto de PO? Formulação do problema; Construção do modelo; Obtenção da solução; Teste do modelo e avaliação da solução e Implantação e acompanhamento da solução (manutenção) Resolução do problema; Construção do modelo; Obtenção da solução; Teste do modelo e avaliação da solução e Implantação e acompanhamento da solução (manutenção) Formulação da resolução; finalização do modelo; Obtenção das análises; Efetivação do modelo e avaliação da solução e Implantação e acompanhamento da solução (manutenção) Formulação do problema; Construção do modelo; Obtenção da solução; Teste do modelo e solução e Implantação sem acompanhamento da solução (manutenção) Formar um problema; Resolução do modelo; Obtenção da solução; Teste do modelo e avaliação da solução e Implantação e acompanhamento da solução (manutenção)
Certa empresa fabrica 2 produtos P1 e P2. O lucro por unidade de P1 é de 100 u.m. e o lucro unitário por P2 é de 150 u.m. A empresa necessita de 2 horas para fabricar uma unidade de P1 e 3 horas para fabricar uma unidade de P2. O tempo mensal disponível para essas atividades é de 120 horas. As demandas esperadas para os 2 produtos levaram a empresa a decidir que os montantes produzidos de P1 e P2 não devem ultrapassar 40 unidades de P1 e 30 unidades de P2 por mês. Elabore o modelo. Max Z=150x1+100x2 Sujeito a: 2x1+x2≤120 x1≤40 x2≤30 x1≥0 x2≥0 Max Z=100x1+150x2 Sujeito a: 2x1+3x2≤120 x1≤40 x2≤30 x1≥0 x2≥0 Max Z=100x1+150x2 Sujeito a: 3x1+2x2≤120 x1≤40 x2≤30 x1≥0 x2≥0 Max Z=150x1+100x2 Sujeito a: 2x1+3x2≤120 x1≤40 x2≤30 x1≥0 x2≥0 Max Z=100x1+150x2 Sujeito a: 3x1+2x2≤120 2x1≤40 x2≤30 x1≥0 x2≥0
Resolvendo graficamente o Problema de Programação Linear (PPL) abaixo, obtemos como solução ótima: minimizar -2x1 - x2 sujeito a: x1 + x2 ≤ 5 -6x1 + 2x2 ≤ 6 -2x1 + 4x2 ≥ -4 x1, x2 ≥ 0 No ponto de L máximo, os valores para as variáveis x1 e x2 são, respectivamente: x1=4, x2=1 e Z*=9 x1=1, x2=4 e Z*=-9 x1=4, x2=1 e Z*=-9 x1=4, x2=4 e Z*=-9 x1=1, x2=4 e Z*=9
Seja o seguinte modelo de PL: Max L = 2x1 + 3x2 sujeito a -x1 + 2x2 ≤ 4 x1 + 2x2 ≤ 6 x1 + 3x2 ≤ 9 x1, x2 ≥ 0 No ponto de L máximo, os valores para as variáveis x1 e x2 são, respectivamente: 1 e 2 0 e 6 6 e 1 6 e 0 2 e 1