Ed
ano passado
Para calcular a aceleração da partícula, podemos usar a segunda lei de Newton, que é dada pela fórmula: \[ F = m \cdot a \] Onde: - \( F \) é a força, - \( m \) é a massa, - \( a \) é a aceleração. A força \( F \) que atua sobre a partícula em um campo elétrico é dada por: \[ F = q \cdot E \] Onde: - \( q \) é a carga da partícula, - \( E \) é a intensidade do campo elétrico. Substituindo os valores: - \( q = 2 \, \mu C = 2 \times 10^{-6} \, C \) - \( E = 300 \, N/C \) Calculando a força: \[ F = (2 \times 10^{-6}) \cdot 300 = 6 \times 10^{-4} \, N \] Agora, usando a massa da partícula: - \( m = 0.01 \, kg \) Substituindo na fórmula da segunda lei de Newton para encontrar a aceleração: \[ a = \frac{F}{m} = \frac{6 \times 10^{-4}}{0.01} = 0.06 \, m/s² \] Parece que houve um erro na interpretação dos dados ou nas opções, pois a aceleração calculada não corresponde a nenhuma das alternativas. Por favor, verifique os dados ou as opções novamente.
Já tem uma conta?
Ao continuar, você aceita os Termos de Uso e Política de Privacidade
Mais perguntas desse material