Ed
há 10 meses
Um operador hermitiano é um conceito importante na mecânica quântica e na álgebra linear. Ele é definido como um operador que é igual ao seu próprio adjunto. Isso significa que, para um operador \( \hat{A} \), temos \( \hat{A} = \hat{A}^\dagger \). Analisando as alternativas: A) Um operador que não tem valores próprios - Incorreto, pois operadores hermitianos têm valores próprios reais. B) Um operador cujos valores próprios são complexos - Incorreto, pois os valores próprios de um operador hermitiano são sempre reais. C) Um operador que é igual ao seu próprio adjunto - Correto, esta é a definição de um operador hermitiano. D) Um operador que não pode ser diagonalizado - Incorreto, pois operadores hermitianos podem ser diagonalizados. Portanto, a alternativa correta é: C) Um operador que é igual ao seu próprio adjunto.
Já tem uma conta?
Ao continuar, você aceita os Termos de Uso e Política de Privacidade
Mais perguntas desse material