Logo Passei Direto
Buscar

Cálculo

Outros

Calcule o valor de \( \int_0^1 (2x + 3) \, dx \). a) \( 5 \) b) \( 4 \) c) \( 6 \) d) \( 3 \)

User badge image
Praticando Para Aprender

há 10 meses

Respostas

User badge image

Ed Verified user icon

há 10 meses

Para calcular a integral \( \int_0^1 (2x + 3) \, dx \), vamos seguir os passos: 1. Encontrar a antiderivada de \( 2x + 3 \): - A antiderivada de \( 2x \) é \( x^2 \). - A antiderivada de \( 3 \) é \( 3x \). - Portanto, a antiderivada de \( 2x + 3 \) é \( x^2 + 3x \). 2. Avaliar a antiderivada nos limites de 0 a 1: \[ \left[ x^2 + 3x \right]_0^1 = (1^2 + 3 \cdot 1) - (0^2 + 3 \cdot 0) = (1 + 3) - (0) = 4. \] Assim, o valor da integral \( \int_0^1 (2x + 3) \, dx \) é \( 4 \). Portanto, a alternativa correta é: b) \( 4 \).

Essa resposta te ajudou?

0
Dislike0
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar essa resposta. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Ainda com dúvidas?

Envie uma pergunta e tenha sua dúvida de estudo respondida!

Essa pergunta também está no material:

Mais perguntas desse material

Calcule o limite \( \lim_{x \to 0} \frac{\tan(x)}{x} \).

a) 1
b) 0
c) 2
d) \( \infty \)

Determine o limite de \( \lim_{x \to \infty} \frac{2x^3 + 5}{3x^3 + 2} \).

A) \( \frac{2}{3} \)
B) \( 0 \)
C) \( 1 \)
D) \( \infty \)

17. **Problema 17**: Calcule a derivada de \( f(x) = \ln(x^2 + 1) \).

A) \( \frac{2x}{x^2 + 1} \)
B) \( \frac{1}{x^2 + 1} \)
C) \( \frac{2}{x^2 + 1} \)
D) \( \frac{x}{x^2 + 1} \)

Qual é a integral \( \int_0^1 (x^4 - 4x^3 + 6x^2 - 4x + 1) \, dx \)?

A) 0
B) 1
C) \( \frac{5}{6} \)
D) \( \frac{1}{2} \)

Determine a derivada de \(f(x) = \cos(x^2)\).

a) \(-2x\sin(x^2)\)
b) \(-\sin(x^2)\)
c) \(-2x\cos(x^2)\)
d) \(-x^2\sin(x^2)\)

Mais conteúdos dessa disciplina