Ed
há 4 meses
Vamos analisar cada uma das alternativas para identificar a correta sobre jogos repetidos: A) "Se existe um único equilíbrio de Nash em um jogo estático, o único equilíbrio de Nash perfeito em subjogos quando repetimos esse jogo é a repetição do equilíbrio estático em todas as rodadas." - Esta afirmação é verdadeira, pois se o jogo estático tem um único equilíbrio de Nash, a repetição desse equilíbrio em todas as rodadas é um equilíbrio de Nash perfeito em subjogos. B) "A estratégia de gatilho é capaz de sustentar cooperação independente do nível de paciência dos jogadores." - Esta afirmação é falsa, pois a estratégia de gatilho depende do nível de paciência dos jogadores para sustentar a cooperação. C) "Em um jogo de horizonte infinito, é impossível atingir cooperação entre os jogadores." - Esta afirmação é falsa, pois em jogos de horizonte infinito, com estratégias adequadas, é possível alcançar cooperação. D) "Para haver cooperação, necessariamente um jogador deve aceitar um payoff por período menor que o obtido no equilíbrio de Nash do jogo estático." - Esta afirmação é falsa, pois a cooperação pode ser sustentada sem que um jogador precise aceitar um payoff menor. E) "Repetir um equilíbrio de Nash em todas as rodadas de um jogo repetido é um equilíbrio de Nash perfeito em subjogos." - Esta afirmação é verdadeira, pois repetir um equilíbrio de Nash em todas as rodadas é, de fato, um equilíbrio de Nash perfeito em subjogos. Após a análise, as alternativas A e E estão corretas, mas a A é a que se refere diretamente à questão inicial sobre a repetição do equilíbrio de Nash em todas as rodadas. Portanto, a resposta correta é: A.
Já tem uma conta?
Ao continuar, você aceita os Termos de Uso e Política de Privacidade