Logo Passei Direto
Buscar

Determine a equação da reta tangente à função f(x)=x4, no ponto (1,1). f(x)=4x f(x)=x+4 X f(x)=4x-3 f(x)=-4x+3 f(x)=-4x-3

User badge image
Computacional360

há 4 meses

Respostas

User badge image

Ed Verified user icon

há 4 meses

Para determinar a equação da reta tangente à função \( f(x) = x^4 \) no ponto \( (1, 1) \), siga os passos abaixo: 1. Calcule a derivada da função: \[ f'(x) = 4x^3 \] 2. Avalie a derivada no ponto \( x = 1 \): \[ f'(1) = 4(1)^3 = 4 \] Isso significa que a inclinação da reta tangente no ponto \( (1, 1) \) é 4. 3. Use a fórmula da equação da reta: A equação da reta tangente pode ser escrita na forma: \[ y - f(a) = f'(a)(x - a) \] Onde \( a = 1 \) e \( f(1) = 1 \): \[ y - 1 = 4(x - 1) \] 4. Simplifique a equação: \[ y - 1 = 4x - 4 \] \[ y = 4x - 3 \] Portanto, a equação da reta tangente à função \( f(x) = x^4 \) no ponto \( (1, 1) \) é \( f(x) = 4x - 3 \).

Essa resposta te ajudou?

0
Dislike0
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar essa resposta. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Ainda com dúvidas?

Envie uma pergunta e tenha sua dúvida de estudo respondida!

Essa pergunta também está no material:

Mais perguntas desse material

Mais conteúdos dessa disciplina